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Abstract

Offset curves and surfaces have many applications in computer-aided de-

sign and manufacturing, but the self-intersections and redundancies must be

trimmed away for their practical use. We present a new method for offset

curve and surface trimming that detects the self-intersections and eliminates

the redundant parts of an offset curve and surface that are closer than the

offset distance to the original curve and surface.

We first propose an offset trimming method based on constructing ge-

ometric constraint equations. We formulate the constraint equations of the

self-intersections of an offset curve and surface in the parameter domain of the

original curve and surface. Numerical computations based on the regularity

and intrinsic properties of the given input curve and surface is carried out

to compute the solution of the constraint equations. The method deals with

numerical instability around near-singular regions of an offset surface by using

osculating tori that can be constructed in a highly stable way, i.e., by offsetting

the osculating torii of the given input regular surface. We reveal the branching

structure and the terminal points from the complete self-intersection curves of

the offset surface.

From the observation that the trimming method based on the multivariate

equation solving is computationally expensive, we also propose an accelera-

tion technique to trim an offset curve and surface. The alternative method

constructs a bounding volume hierarchy specially designed to enclose the off-

set curve and surface and detects the self-collision of the bounding volumes



instead. In the case of an offset surface, the thickness of the bounding volumes

is indirectly determined based on the maximum deviations of the positions

and the normals between the given input surface patches and their osculat-

ing tori. For further acceleration, the bounding volumes are pruned as much

as possible during self-collision detection using various geometric constraints

imposed on the offset surface. We demonstrate the effectiveness of the new

trimming method using several non-trivial test examples of offset trimming.

Lastly, we investigate the problem of computing the Voronoi diagram of

a freeform surface using the offset trimming technique for surfaces. By trim-

ming the offset surface with a gradually changing offset radius, we compute

the boundary of the Voronoi cells that appear in the concave side of the given

input surface. In particular, we interpret the singular and branching points

of the self-intersection curves of the trimmed offset surfaces in terms of the

boundary elements of the Voronoi diagram.

Keywords: Offset Curve, Offset Surface, Offset Self-intersection, Trimming

Redundancies, Near-singular Regions, Branching Structure, Bounding Volume

Hierarchy, Voronoi Diagram
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Chapter 1

Introduction

1.1 Background and Motivation

Mass production of standardized industrial products in machine-controlled

assembly lines is the gist of the modern manufacturing system. Unlike tradi-

tional craft production, it is important to describe what and how to produce

in a precise language. The area of computer-aided design and manufactur-

ing (CAD/CAM) emerged in the 1950s, and since then has been extensively

used in numerically controlled machining in the automotive and aircraft indus-

tries [23]. A description has been an essential tool for a rapid and controllable

production process.

In the applications of CAD/CAM, freeform curves, surfaces, and solids

have been widely used as primitives to represent the shape of industrial objects.

They are defined in precise mathematical terms and the characteristics have

been studied in a prolific context in mathematics for thousands of years. In the
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early ages of CAD/CAM, the main focus was on the representation of these

geometric entities and how to design these geometric objects in numerically

compact and efficient ways. Research interest was since then expanded to

analyzing various properties of curves, surfaces and solids and manipulating

the designed objects to sculpt new objects. Geometry Processing, the term

first coined by Barnhill and Riesenfeld [6, 68], is a subfield of CAD/CAM

that mainly focuses on the analysis of geometric properties of curves, surfaces

and solids. Examples of geometry processing include the curvature analysis of

curves and surfaces, contour extraction, the computation of offsets of curves

and surfaces, and so forth.

The development of geometry processing has introduced many useful geo-

metric analysis tools.Offsetting is one of these essential tools in the CAD/CAM

applications. Offset operation in CAD/CAM reproduces new curves and sur-

faces with the constant spacing from the original curves, surfaces and solids.

Offsetting is an essential component in CAD/CAM systems because it is much

more cost-effective to alter the existing object than to create the new shape

of an object from scratch. In the automotive or aircraft industry, for instance,

the hull of a car or a plane is sculpted from a set of surfaces. The thickness

of surfaces, however, might vary depending on the choice of the material or

the detailed design. To fabricate the steel plate from the designed surface, the

surface must be offset to a real-world object having the given thickness.

Offsetting is also essential in designing a way of manufacturing industrial

objects. Modern factories often utilize numerically controlled (NC) machining

to produce objects when the precise measurement is required. In NC machin-

ing, an object is finished by subtracting a raw material with cutter tools that

have various shapes of tips attached. To sculpt the correct shape and avoid a
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(a) (b)

(c) (d)

Figure 1.1: Offsetting applications. (a), (b) Sculpting the inner/outer surface

of sheet-like objects by offsetting their outer/inner counterparts. (c) Planning

a path of the ball cutter in NC machining. (d) Offset path of the ball cutter

avoids overcutting and undercutting in NC machining (image in (a) from [40]

and images in (c), (d) from [13]).

waste of materials, the paths of the cutter tools must follow the surface of the

design, but the size and the shape of the cutter tips must be considered when

planning the path. If it fails to plan the cutter path correctly, the cutter will

overcut or undercut the hull of the designed object, as shown in Figure 1.1 (d).

As explained above, offsetting curves and surfaces has been one of the most

fundamental components of geometry processing tools with a wide variety
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of CAD/CAM applications including tool path generation for CNC machin-

ing [11, 92], tolerance analysis [67], collision-free access space representation

in robotics, brush stroke representation [43], and so on [63, 72, 74].

Theoretically speaking, an offset curve or surface (also known as a parallel

curve or surface in geometry) is a curve or surface of which loci have a con-

stant distance d from its progenitor curve or surface [80]. In the majority of

its applications, the distance is taken along the normal direction of the curve

or surface so that the offset curve or surface would have constant thickness

as a result. Despite its significance and bountiful applications, offsetting has

several research challenges to be addressed. First of all, offset curves and sur-

faces tend to show more sophisticated and pathological behavior than their

progenitor curves and surfaces. This is because offset curves and surfaces of-

ten do not belong to the same function class as the progenitor curves and

surfaces. For instance, curves and surfaces are represented as parametrized

functions in many CAD/CAM applications. In particular, rational polynomial

functions such as rational Bézier functions and rational B-spline functions are

dominantly used in CAD/CAM as they have a compact representation while

offering great controllability and numerical stability (Farin [23]). Neverthe-

less, the offsets of rational curves and surfaces become non-rational in general,

which causes lots of technical problems.

The non-rationality of offsets of rational curves and surfaces can be easily

confirmed by checking the mathematical equations of offset curves and sur-

faces. Given a regular parametric curve C(t) and a regular parametric surface

S(u, v), the offset curve O(t) and the offset surface O(u, v) of distance d > 0

4



(a)

(b)

Figure 1.2: (a) Offset curve formulation. (b) Offset surface and its progenitor

surface. Singularity of offset surface is drawn in the pink circle.

are defined as follows:

O(t) = C(t) + d ·N(t) (1.1)

O(u, v) = S(u, v) + d ·N(u, v) (1.2)

where N(t) and N(u, v) is a unit normal field of C(t) and S(u, v), respectively.

Because of the normalized terms N(t) and N(u, v) in their formulation, O(t)

and O(u, v) are usually non-rational.

Another challenge of offset curves and surfaces arises from the fact that the

regularity of the progenitor curves and surfaces do not guarantee the regularity

of their offsets any more. One can observe this phenomenon easily in surface

case. Note that

N(u, v) =
Su(u, v)× Sv(u, v)

||Su(u, v)× Sv(u, v)|| (1.3)

is well-defined for a regular surface S(u, v) as the u and v-partial derivatives
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Su(u, v) and Sv(u, v) are non-parallel, and the term Su(u, v) × Sv(u, v) never

vanishes. Even if the surface S(u, v) is regular, the offset surface O(u, v) may

have certain areas where the partial derivatives Ou(u, v) and Ov(u, v) become

almost parallel. This problem occurs generically around the area where the

surface S(u, v) has curvature close to 1/d and the offset is taken to the concave

side of the surface (see Figure 1.2).

More serious problems occur when offsetting is used in practice because

not all of the regions in offset curves and surfaces are desired in CAD/CAM

applications. Let us revisit the NC machining application where the 2D cutter

tool path is computed from offsetting the boundary of the designed surface.

As shown in Figure 1.1 (c), when the cutter tip passes the region where the

surface is more concave than the inverse of its curvature, the tool should not

follow all of the surface boundaries as it is, but change the direction abruptly.

Otherwise, the tool is going to over-mill the surface of the object and penetrate

the part surface. Hence, instead of defining the literal offset curves and surfaces

using Equation (1.1) and (1.2), research focuses have been on detection of

the potential self-intersections in offset curves and surfaces and trimming the

redundant region from offset curves and surfaces.

Unfortunately, identifying the self-intersections and trimming the redun-

dancies from offset curves and surfaces has long been considered as one of

the most challenging problems in geometric processing [6]. Because of the

aforementioned reasons, it is not easy to propose a stable algorithm from

trimming offset curves and surfaces properly. Also, the near-singular areas of

offsets introduce serious numerical instability, in particular, when computing

the self-intersection curves of O(u, v) and consequently trimming all redun-

dant parts of O(u, v) that are closer than the distance d to some other parts

6



of the progenitor surfaces.

These difficulties have promoted active research publications in computer-

aided geometric design, including survey articles on offset curve/surface ap-

proximation techniques [18, 63, 72] and even a book on PH curves/surfaces [25].

Compared with these research problems, however, the previous work on com-

puting the self-intersection of offset curves/surfaces and trimming offset re-

dundancies has been quite limited.

In this thesis, we tackle the problem of identifying the self-intersections of

offset curves and surfaces even when offsets contain degenerate singularities.

We also propose a method to trim the redundant regions from offset curves

and surfaces using the detected self-intersections. Redundancy throughout this

thesis is defined as the region where the shortest distance from the point on the

offset to the progenitor curve and surface is smaller than the offset distance.

In the case of the ball cutter path, the path will cover the original surface

without overcutting if we exclude those redundant regions from the ball cutter

path. The scope of this thesis is on handling the offset curves and surfaces of

parametrized curves and surfaces with the rational polynomial presentation.

In our experiment, the input progenitor curves and surfaces will be given as

Bézier and B-spline curves and surfaces. However, the methodology itself can

be expanded easily to other general algebraic curves and surfaces.

1.2 Research Objectives and Approach

In geometry processing, the intersection between two parametric curves is a

set of discrete points, and the intersection between two parametric surfaces is

a set of intersecting curves. These intersections are also realized as the solution
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of the following implicit algebraic functions.

C1(t)− C2(r) = 0 (1.4)

S1(u, v)− S2(s, t) = 0 (1.5)

The intersection points or curves are then found by finding the zero set of

the implicit function Equation (1.4) or (1.5). The solution is expressed as a

set of the points in tr-space in case of curves, or implicit algebraic curves

in uvst-space in case of surfaces. The solution of Equation (1.5) is again the

solution of three equations in u, v, s, t: f1(u, v)− f2(s, t) = 0, where f = x, y, z

coordinates of the two surfaces S1 and S2. When S1(u, v) and S2(s, t) are

rational, the intersection curve is often a non-rational algebraic space curve of

relatively high degree in general. Kim and Elber [21] propose a method to find

the zero set of the implicit function of a high degree with geometric constraints

and approximate the solution curve with low degree curve segments.

The solution of self-intersections is formulated in a similar manner. In-

stead of two different curves(surfaces), the implicit equations are formulated

by copying the same curve(surface), but with different parametrizations as

follows.

C(t)− C(r) = 0 (1.6)

f(u, v)− f(s, t) = 0 for f = x, y, z (1.7)

The problem in this formulation is how to deal with the trivial solution: t = r

or (u, v) = (s, t), which is the result of a curve(surface) always completely

overlapping with itself. For the rational surfaces, there is a systematic way of

removing the trivial solution from the surface self-intersections [70]. In case

of offset curves and surfaces, however, non-rational terms in the formulation
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hinder removing trivial solutions from the solution of self-intersections. To

handle the non-rationality in offset curves and surfaces, it is required to develop

a different way of formulating the constraint equations in the parameter space

to detect self-intersection while eliminating the trivial and other redundant

solutions from the solutions of the offset curve/surface self-intersections.

In this thesis, we introduce a geometric framework to detect the self-

intersections of offset curves and surfaces and trim the redundant regions. We

figure out complex topological behaviors resulted from offset self-intersections

not in the Euclidean space, but the parameter domain of the curves and sur-

faces. However, geometric constraints observed in the Euclidean space are also

integrated into designing an algorithm for trimming self-intersections.

We first focus on identifying the topological structure of trimmed offset

curves and surfaces. We formulate a set of implicit constraint equations, the

solution of which yields the self-intersections of offset curves and surfaces.

The solution of the equations is computed using the existing multivariate

geometric equation solver, such as IRIT system [41]. The equations fed to

the IRIT system are constructed based on the geometric constraints from an

isosceles relation between two points of the progenitor curves/surfaces and

their corresponding offset points that intersect each other. Several inequality

constraints help to trim redundancies from the solution of self-intersection

equations. For offset curves, two equations in the tr-space are formulated to

find self-intersection points, while eliminating the trivial solution such that

t = r. In the case of offset surfaces, three equations in the uvst-space are

formulated to detect self-intersections and the trivial solution for (u, v) = (s, t)

and other redundant solution are eliminated.

In implementing offset trimming, we have observed that the existing multi-

9



variate equation solver becomes numerically unstable and even fails to produce

the solution when tracing the solution near the singular regions of offset sur-

faces. Computations in these regions become so unstable as the derivatives

almost vanish. To overcome these difficulties, self-intersections around near-

singular regions are handled in a separate routine: the computation of offset

self-intersections is executed with a more numerically robust and stable sur-

face structure. Potential pathological behaviors observed around near-singular

regions are deviated by employing the new substituted structure.

The multivariate solver we used in computing the self-intersections heavily

relies on curve or surface subdivision in solving the given constraint equations:

the entire domain of curves and surfaces is subdivided, and a set of constraints

is tested until the solver guarantees the existence of the solution or the subdi-

vision tolerance reaches the specified value. Subdivision of curves and surfaces

is, however, an expensive process. Even though some parts of curves and sur-

faces are trimmed out by the inequality constraints, subdivision continues to

occur because the solver must test trivial solutions in self-intersections in the

remaining regions of curves and surfaces. Supposed that two points are not

trivial unless the difference between them in the parametric space is smaller

than ε, we have to subdivide the domain of the given curves and surfaces again

and again until the size of subdivided curve or patch becomes below ε.

In the second part of this thesis, we propose a method to accelerate detect-

ing and trimming self-intersections and redundancies of offset curves and sur-

faces while maintaining a similar or even higher level of robustness and accu-

racy. The acceleration is accomplished by using the bounding volume hiearchy

(BVH), which encloses the actual geometry of an offset curve or surface with

simpler geometric objects, thus reducing the computational cost of geometric
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tests involved in offset self-intersection detection. Whereas the BVH of ra-

tional curves or surfaces is often constructed from positions of the curves or

surfaces, the proposed BVH is constructed from both bounding volumes and

bounding normals of the progenitor curves or surfaces. The bounding volumes

of offsets are usually thicker than those of the progenitors because of scaling

the normals with the offset radius.

Finally, we relate the problem of trimming offset curves and surfaces to

another challenging problem in CAD/CAM: finding the Voronoi diagram of

freeform surfaces. From the trimmed offset surfaces with varying offset radius,

we derive the Voronoi diagram of a freeform surface in 3D, separating the 3D

space into a set of cells, the boundaries of which are loci of points that are

equidistant to at least two different points on the given surface.

1.3 Contributions and Thesis Organization

The main contribution of this work can be summarized as follows, based on a

few unique aspects of the proposed approach:

• We raise an important research issue for the offset surface trimming

problem. The near-singularity of an offset surface is a generic nature

that can be observed in the offset surface evolution. Whenever an offset

is taken to the concave side of a freeform surface, the singularity starts

to develop naturally for almost every offset radius. A systematic way of

handling this generic problem is very critical for practical applications

of offset surface trimming in the computer-aided geometric design.

• As an important first step towards handling the near-singular offset sur-

faces in a computationally stable way, we introduce a unique way of
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formulating the constraints on offset self-intersections in an offset-free

manner, i.e., using the input surface S(u, v) and its partial derivatives

only. Chapter 5 has more detailed technical discussions on this issue.

• We focus attention on revealing the branching structure of the offset

self-intersection trimming curves on the offset surfaces. The branching

structure is evident in the zoom-in views of many test examples of this

thesis. This important feature has been overlooked in previous work.

The main computational difficulty is in detecting the terminal endpoint

of each branch, where the offset surface has a tangential self-intersection.

We show that the bivariate representation of freeform surfaces provides

an effective tool for attacking this non-trivial problem. The uv-solution

curve in the parameter domain gives a stable way of checking whether

the curve tracing has reached at the tip of a branch.

• The correct topology of the branching structure is determined by iden-

tifying all the junctions where multiple branches meet and are correctly

connected. Based on the loop construction for the redundant trimming

region, we present an approach to stitching pairs of matching curve seg-

ments on the loop.

• The process of trimming offset surface is further accelerated with the

introduction of the new bounding volume hierarchy and the subsequent

trimming constraints. This acceleration enables us to produce trimmed

offset surfaces more efficiently than the subdivision-based constraint

equation solving techniques, which makes the trimming algorithm more

practical.
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• Based on the efficient offset trimming, we have explored the Voronoi

diagram construction for freeform surfaces. The construction of the 3D

Voronoi structures of freeform surfaces has been tried yet, to our best

knowledge.

The rest of this thesis is organized as follows. Chapter 2 summarizes some

fundamental theories on curves and surfaces that are also the essential build-

ing blocks in understanding this thesis. In Chapter 3, we review previous work

on offset curves and surfaces. We then present our scheme in the curve case in

Chapter 4 where we introduce a geometric configuration that governs the self-

intersection of an offset curve and propose a method to trim self-intersections

and redundant regions from the self-intersection solution. The scheme is then

extended to the surface case in Chapter 5, where we formulate the constraint

equations to find the partial solutions of self-intersections without trivial solu-

tions and further trim the partial solutions. The performance of this method

is analyzed in Chapter 6. Based on the analysis, we propose a new approach

to accelerate self-intersection detection and trimming of offset curves and sur-

faces. In Chapter 7, we derive the Voronoi cells of freeform surfaces in 3D from

the trimmed offset surface results. Finally, we conclude this thesis with future

work in Chapter 8.
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Chapter 2

Preliminaries

2.1 Curve and Surface Representation

In this thesis, we represent the progenitor curves or surfaces by rational poly-

nomial functions. Widely used rational polynomial representations on curves

and surfaces are Bézier representstions and B-spline representations. There-

fore, we briefly review both representations on curves and surfaces and sum-

marize the algebraic and geometric properties of those curves and surfaces in

this chapter. More details on these representations can be found in CAGD

textbooks (e.g., Farin [23]).

2.1.1 Bézier Representation

A Bernstein polynomial is a polynomial function defined as follows.

Bn
i (t) =

(
n

i

)
(1− t)n−iti (2.1)
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A Bézier curve of degree n is a curve parametrized in t ∈ [0, 1] and expressed

as a weighted sum of Bernstein basis functions as follows.

c(t) =

n∑
i=0

biB
n
i (t) (2.2)

where bi’s are called control points of the curve and determine the shape of

the curve. Bézier curves are robust in numerical computations because of the

properties listed below.

1. Convex hull property: Because Bernstein bases are always nonnegative

and summed up to one, every point on a Bézier curve is included in the

convex hull of control points of the curve.

2. Affine invariance: When a Bézier curve transforms under an affine trans-

formation, control points of the transformed curve are the control points

of the original curve transformed by the same transformation.

3. Endpoint interpolation: A starting and an ending points of a Bézier curve

are control points of the curve, that is, b0 = c(0) and b1 = c(1).

The k-th order derivative of a Bézier curve is defined as follows.

dkc(t)

dtk
=

n!

(n− k)!

n−k∑
i=0

ΔkbiB
n−k
i (t) (2.3)

where Δk is the iterated forward difference operator defined as Δkbi = Δk−1bi+1−
Δk−1bi. The k-th order derivative of a Bézier curve is another Bézier curve

with k lower degrees, and the control points are directly computed from dif-

ferencing the control points of the (k − 1)-th order Bézier curve. When the

original Bézier curve is cubic that has b0, b1, b2 and b3 as control points,

for instance, the first order derivative is a quadratic Bézier curve controlled
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by 3(b1 − b0), 3(b2 − b1) and 3(b3 − b2), and the second order derivative is

a linear Bézier curve controlled by 6(b2 − 2b1 − b0) and 6(b3 − 2b2 − b1),

and so forth.

A Bézier surface patch of degree m×n is a surface patch parametrized by

u and v in [0, 1]× [0, 1] as follows.

S(u, v) =
m∑
i=0

n∑
j=0

bi,jB
m
i (u)Bn

j (v) (2.4)

where bi,j’s are control points of the surface and Bm
i (u) and Bn

j (v) are Bern-

stein bases of degree m and n, respectively. Bézier surface is one of a tensor

product surface that is written in the matrix form of S(u, v) = MT (u)BN(v).

Just as Bézier curves, Bézier surface also has convex hull property, affine in-

variance, and endpoint interpolation.

For a Bézier surface, we can compute the partial derivatives similar to those

of a Bézier curve. Here we only list the first and the second order partials of

Bézier surface (in Equation (2.5), (2.6) and Equation (2.7), (2.8), (2.9)) but

the higher order partial derivatives can be computed in a similar way.

Su(u, v) = m
m−1∑
i=0

n∑
j=0

(bi+1,j − bi,j)B
m−1
i (u)Bn

j (v) (2.5)

Sv(u, v) = n

m∑
i=0

n−1∑
j=0

(bi,j+1 − bi,j)B
m
i (u)Bn−1

j (v) (2.6)
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Suu(u, v) = m(m− 1)

m−2∑
i=0

n∑
j=0

(bi+2,j − 2bi+1,j + bi,j)B
m−2
i (u)Bn

j (v) (2.7)

Svv(u, v) = n(n− 1)
m∑
i=0

n−2∑
j=0

(bi,j+2 − 2bi,j+1 + bi,j)B
m
i (u)Bn−2

j (v) (2.8)

Suv(u, v) = mn

m−1∑
i=0

n−1∑
j=0

(bi+1,j+1 − bi+1,j − bi,j+1 + bi,j)B
m−1
i (u)Bn−1

j (v)

(2.9)

2.1.2 B-spline Representation

Compared to Bézier representation, B-spline representation provides a more

general form to express rational polynomial curves and surface. Instead of

using Bernstein polynomials as bases, B-spline curves and surfaces use piece-

wise polynomial bases that give more flexible and local control than Bézier

representations.

A B-spline curve is defined as follows.

c(u) = d0N
n
0 (u) + d1N

n
1 (u) + · · ·+ dD−1N

n
D−1(u) (2.10)

where Nn
i (u)’s are B-spline bases of degree n and di’s are de Boor points or

control points of the B-spline curve. Piecewise control comes from splitting

the interval of the curve based on a knot sequence and evaluating the curve

with linear interpolations of control points on each interval separately. The

multiplicity of knots determines the continuity of the curve, and the number

of distinct knots determines the number of the interval split. The number of

control points D and the number of knots K in a B-spline curve are related,

satisfying D = K − n+ 1.
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A basis function Nn
i (u) of a B-spline curve is recursively defined as follows:

N0
i (u) =

⎧⎪⎨
⎪⎩
1 if ui−1 ≤ u ≤ ui

0 else

(2.11)

Nn
i (u) =

u− ui−1

ui+n−1 − ui−1
Nn−1

i (u) +
ui+n − u

ui+n − ui
Nn−1

i+1 (u) for n > 0 (2.12)

A B-spline curve is also evaluated by repeating linear interpolations on

control points with de Boor algorithm written below.

c(u) = dn
I+1(u) for uI ≤ u ≤ uI+1 (2.13)

dk
i (u) =

ui+n−k − u

ui+n−k − ui−1
dk−1
i−1 (u) +

u− ui−1

ui+n−k − ui−1
dk−1
i (u) (2.14)

where k = 1, · · · , n and i = I − n+ k+1, · · · , I +1. B-spline curves also have

affine invariance and end point interpolation properties just as Bézier curves.

A B-spline surface is also a tensor product surface defined as follows.

S(u, v) =
D−1∑
i=0

E−1∑
j=0

di,jN
m
i (u)Nn

j (v) = MTDN (2.15)

where D is a control net of size D × E and m and n are the degrees of B-

spline bases along u and v directions. What we have defined and discussed on

B-spline curves are easily extended to B-spline surfaces as well.

Finally, curves and surfaces can also be represented by rational B-splines

as follows.

c(u) =
w0d0N

n
0 (u) + w1d1N

n
1 (u) + · · ·+ wD−1dD−1N

n
D−1(u)

w0Nn
0 (u) + w1Nn

1 (u) + · · ·+ wD−1Nn
D−1(u)

(2.16)

S(u, v) =
MTDwN

MTWN
(2.17)

where wi’s are the weights of B-spline bases. Dw has the elements wi,jdi,j and

W has the elements wi,j . Curves and surfaces that have different weights are
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called Non-Uniform Rational B-Spline curves/surfaces (NURBS) and have

extensive use in many CAD/CAM systems.

2.2 Differential Geometry of Curves and Surfaces

Fundamentals of geometric decisions and operations in offset trimming stem

from many concepts in differential geometry of curves and surfaces. In this

section, we review differential geometric properties and terminology of curves

and surfaces used throughout this thesis. For further details, readers refer to

textbooks of differential geometry (e.g., DoCarmo [10], Spivak [80]).

2.2.1 Differential Geometry of Curves

In the differential geometric perspective, a parametrized differential curve is

a mapping f : I → R
2 (in case of a planar curve) or f : I → R

3 (in case of a

spatial curve), defined in an open interval I = (a, b) ∈ R such that

f(t) = (x(t), y(t)) (a planar curve) (2.18)

f(t) = (x(t), y(t), z(t)) (a spatial curve) (2.19)

where x(t), y(t) and z(t) are differentiable. A tangent f ′(t) of the curve is then

expressed as f ′(t) = (x′(t), y′(t)) or f ′(t) = (x′(t), y′(t), z′(t)). A curve f(t) is

said to be regular if f ′(t) �= 0 for all t ∈ I. If there exist some points on the

curve such that f ′(t) = 0, we call those points singular points of the curve.

Many terms in differential geometry are often only defined for regular curves.

The regularity of a curve is the underlying assumption for many concepts

introduced below.

A regular spatial curve f(t) = (x(t), y(t), z(t)) can be reparametrized with
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a new parameter s such that

s = s(t) =

∫ t

t0

|f ′(t)|dt =
∫ t

t0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt (2.20)

. This parametrization is called arc-length parametrization and simplifies many

formulae on curves.

Supposed that a curve is parametrized by arc-length, |f ′′(s)| = κ(s) is

called a curvature of f . For κ(s) �= 0, f ′′(s) = κ(s)n(s) is well-defined and

n(s) is a unit normal of a curve at s. We call a point a singular point of order

1 when f ′′(s) = 0, whereas a singular point of order 0 when f ′(s) = 0. If f(t)

is not parametrized by arc-length, the curvature κ(t) is formulated as follows.

κ(t) =
|f ′(t) ∧ f ′′(t)|

|f ′(t)|3 (2.21)

The plane spanned by a normal n(s) and a tangent t(s) of a curve is called an

osculating plane. A curvature shows the rate of how the curve is bent within

the osculating plane. A unit vector b(s) = t(s)∧n(s) is called a binormal vector

at s. Then the torsion τ(s) of a curve at s is defined as b′(s) = τ(s)n(s). A

torsion represents the rate of how the curve deviates from the osculating plane.

t(s), n(s) and b(s) are related to each other as shown in Equations (2.22),

forming a local frame of a curve at s, which is called a frenet frame.

t(s)′ = κ(s)n(s)

n(s)′ = −κ(s)t(s)− τ(s)b(s)

b(s)′ = τ(s)n(s) (2.22)

In case of a planar curve f(t) = (x(t), y(t)), a normal vector n(t) and a
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curvature κ(t) are simplified as follows.

n(t) =
(y′(t),−x′(t))√
x′(t)2 + y′(t)2

(2.23)

κ(t) =
x′(t)y′′(t)− x′′(t)y′(t)

(x′(t)2 + y′(t)2)
3
2

(2.24)

In this case, an osculating circle of a curve f(t) at t is a circle that has 1
|κ(t)| as

a radius and f(t) + 1
|κ(t)|n(t) as a center. This circle touches the curve, having

the same curvature as the curve at t.

2.2.2 Differential Geometry of Surfaces

A parametrized differential surface is a mapping S : U → R
3 defined on U , a

subset of R2 such that

S(u, v) = (x(u, v), y(u, v), z(u, v)) (2.25)

where x(u, v), y(u, v) and z(u, v) are differentiable. For a surface to be reg-

ular, this mapping must be one-to-one, or equivalently satisfy the following

constraints:

∂S

∂u
∧ ∂S

∂v
�= 0 for all (u, v) ∈ U (2.26)

.

A normal map (gauss map) of S(u, v) is another mapping N : q → R
3 such

that

N(q) =
Su ∧ Sv

|Su ∧ Sv|(q) for all q ∈ S(u, v) (2.27)

.

Two relevant geometric entities explain the local geometric properties of a

surface: the first and the second fundamental forms of the surface. First, the
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first fundamental form of the surface S(u, v) is defined as follows.

E =< Su(u, v), Su(u, v) > (2.28)

F =< Su(u, v), Sv(u, v) > (2.29)

G =< Sv(u, v), Sv(u, v) > (2.30)

where < · , · > is a dot product. The first fundamental form is involved

in various measurements of the surface, such as the area of regions on the

surface, the length of curves on the surface, and the angle between tangents

on the surface.

Next, the second fundamental form of the surface S(u, v) is defined as

follows.

e =< N(u, v), Suu(u, v) > (2.31)

f =< N(u, v), Suv(u, v) > (2.32)

g =< N(u, v), Svv(u, v) > (2.33)

The first and second fundamental forms are closely related to definitions of

different types of curvatures on the surface. Among those curvatures, widely

used ones are the gaussian curvature K and the mean curvature H of S(u, v),

which are defined as follows.

K =
eg − f2

EG− F 2
(2.34)

H =
eG− 2fF + gE

2(EG− F 2)
(2.35)
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Chapter 3

Previous Work

The definition of offset curve and surface (under the name of parallel curve and

surface) can be found in many textbooks of differential geometry [10, 80]. The

differential properties of offset curves and surfaces are often given as exercise

problems in these textbooks. In the field of CAGD, researches on offsetting

curves, surfaces, and solids have started to gain attention in the 1980s while

attempting to define geometric operations systematically. The long history of

offset curve and surface computation since then has been well-documented

in survey articles [18, 63, 72] and textbooks [25]. In his survey paper [63],

Maekawa categorizes researches on offset curves and surfaces into four groups:

offsetting the particular types of curves and surfaces, the approximation of

offsets, self-intersections of offsets, and offset curves and surfaces with non-

Euclidean or non-uniform distance metric. In this chapter, we briefly summa-

rize the previous work on offset curve and surface computation. We review

the researches that focus on offset curves and offset surfaces separately, al-
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beit some of the methods apply to both curves and surfaces. Also, we discuss

researches about generating offset curves on surface in the last section.

3.1 Offset Curves

Offsets of planar curves have gained many research interests from the early

ages in the CAGD community. Farouki [26] gives greater details of geometric

properties of offset curves and also algebraic properties of the exact offset

curves [27]. As exact offset formulation involves a nonrational term derived

from the unit normal, handling nonrationality has been always an important

issue in offset curve and surface computation. To handle nonrationality in offset

curves (and surfaces as well), some researchers have focused on the particular

type of curves that simplifies the offset formulation. For instance, Farouki and

his colleagues have published many papers in Pythagorean-Hodograph(PH)

curves, the special case of rational curves, of which offsets are also represented

in terms of rational functions. (See the survey [28] and the book [25] for further

details.) Analogous to PH curves, researchers have also investigated the class

of rational surfaces that generates rational offset surfaces. Krasauskas and

Peternell [50] discuss the characteristics of such rational offset surfaces.

Another direction to overcoming the nonrationality of offset curves is to

approximate offset curves with other rational functions. Many approxima-

tion methods employ an iterative refinement strategy in approximating offset

curves for a prescribed tolerance: B-spline curves are subdivided into smaller

curves when the approximation errors are beyond a tolerance value and ap-

proximated independently for the subdivided curves. Elber et al. [18] pro-

vide a comparative study of the existing offset curve approximation meth-
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ods [14, 15, 17, 37, 38, 49, 56, 71, 83] both quantitively and qualitatively. Here,

they compare the quality of the approximated curves based on the number of

control points in the approximated curves.

The mathematical definition of an offset curve generates a curve that con-

sists of loci having a constant distance from the progenitor curve, but the

definition itself does not guarantee that the minimum distance between the

progenitor and the offset curves is also equal to the offset radius for the entire

domain of the curve. In other words, an offset curve may contain some parts

that are globally closer to the progenitor curve than the offset radius. Also,

if a point on the progenitor curve has the curvature equal to the inverse of

the offset radius, the corresponding point on the offset curve becomes a cusp

in which the tangent is not well-defined. There has been an extensive number

of researches that tackle the problems of identifying potentially pathological

behaviors in an offset curve such as discontinuities, cusps, and self-intersection

points, and computing the topological and geometrical structure of an offset

curve. Maekawa et al. [61] find the singular points such as cusps and self-

intersection points in planar offset curves by solving the bivariate constraint

equations of offset curves. Solutions of the constraint equations are computed

numerically based on interval arithmetic. Elber [22] also trims planar offset

curves by removing redundant parts in offset curves caused by singularities.

Based on the observation that parts of an offset curve that are closer to the

progenitor curve than the offset radius must be eliminated, he formulates the

bivariate constraint equations such that the distance between the offset curve

and the progenitor curve must be not smaller than the offset distance.

Another widely used technique to compute the topology of an offset curve is

to decompose and analyze offset curve equations with a subresultant sequence.
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Caravantes et al. [9] have proposed to detect significant points by solving sev-

eral univariate polynomials through the subresultant space and topologically

sort the solutions of these equations to yield the offset curve. However, their

method is somewhat slow because the equations to solve are complex, and

there are no guarantees of applying the method to general rational curve func-

tions.

Computing the topology of an offset curve by finding discontinuities and

self-intersections in the exact offset curve and trimming them away is based

on solving complex constraint equations of relatively high degree, which dete-

riorates the performance of the method. Therefore, different approaches have

been proposed: an offset curve is first approximated, and unnecessary parts

are trimmed from the approximated offset curve. Kim et al. [46] demonstrate

the robustness in offset curve trimming by approximating rational curves in

biarcs. Arc-based approximation provides simple computation of the curvature

of curves, therefore making it easy to identify cusps from the offset curves.

They adapt the point projection method of Hu and Wallner [39] using oscu-

lating circles, and find a robust and stable self-intersection detection technique

on planar offset curves. Lee et al. [57] further enhance the robustness of the

approach and accelerate the algorithm by building a bounding volume hierar-

chy of bounding circular arcs (BCAs) to compute self-intersections in planar

offset curves. Although offset trimming of a planar curve is now considered

almost a solved problem thanks to these researches, the approximation nature

causes unguaranteed behaviors in the offset curve. The parametrization of the

approximated curve is different from the original curve, and the topological

decisions are made in the new arc-parameter domain instead of the original

curve domain, which only gives the empirical similarness of the result.
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3.2 Offset Surfaces

Farouki [24] seeks geometric properties of offset surfaces in detail with im-

plementation results on offset surfaces. However, this work only handles the

normal behaving offset surfaces and excludes the discussion of the patholog-

ical behaviors of offset surfaces. Compared with the robust results presented

in offset curve trimming, the complexity and non-trivial situations of offset

surface trimming hinder active researches in offset surface trimming. To cir-

cumvent these difficulties, the majority of the previous approaches in offset

surface trimming are either on the approximation of non-rational offsets using

rational surfaces or on the special cases where the offset surfaces are repre-

sented in terms of rational surfaces.

There are very few previous results for offset surface trimming [3, 6, 62, 78,

88]. The majority of offset trimming results are on triangular meshes, where the

exact offset surfaces are approximated with meshes. The mesh offset algorithms

are mainly based on grid structures [69, 87], and consequently approximate

the trimmed offset solutions in relatively low grid resolutions. There are a

few exceptions where the offset trimming can be carried out directly on the

offset mesh [8, 12, 53]. For the problem we consider in the current work,

the near-singular regions generate a large number of long and thin surface

elements, the intersection of which causes computational difficulties in the

determination of correct topology among these spike-like features clustered

together. Consequently, the grid or mesh-based approaches have limitations

in handling these thin features. In particular, Campen and Kobbelt [8] and

Kyung et al. [53] compute the offset mesh as the Minkowski sum of an input

mesh and a sphere, where the offset sphere is approximated by a polygonal
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mesh. Their trimming algorithms are highly efficient and robust; however, the

trimming results are limited to the accuracy of sphere approximation.

As mentioned above, the majority of conventional methods deal with the

offset surface trimming problem using rational surface approximations to the

exact but non-rational offset surface [78]. Thus the offset self-intersection can

be reduced to a slightly easier problem of intersecting rational surfaces. Nev-

ertheless, around the near-singular regions of an offset surface, it is extremely

challenging to approximate the offset surface with rational surfaces that can

faithfully preserve the intersection topology or guarantee the approximation

error. This limitation has promoted different approaches such as Maekawa et

al. [62] that can directly compute the offset surface self-intersection from the

given surface definition:

S(u, v) + d ·N(u, v) = S(s, t) + d ·N(s, t), (3.1)

for (u, v) �= (s, t). Nevertheless, the numerical instability is again generic even

in this case, for the problem of self-intersecting a bivariate surface around

near-singular regions of the surface. The curve tracing of Maekawa et al. [62] is

based on the Runge-Kutta iteration of Aomura and Uehara [3] to a differential

equation derived from this equation. Wang [88] proposed a different formula-

tion of differential equations and dealt with discrete singular self-intersections

only. Nevertheless, the conventional methods have no explicit discussions on

the branching structure of the offset trimming curves.

Regardless of using either approximate or exact offset representations, the

offset self-intersection and trimming methods convert the given problem to a

curve arrangement problem in the uv-parameter space of the given input sur-

face. The approximation-based methods usually have a less serious problem in

28



constructing the arrangement of curve segments, mainly due to the simplifica-

tion of the given problem using low degree surfaces for approximation. On the

other hand, for direct methods based on the exact offset formula, there is a

higher chance of getting into difficulty deciding the correct arrangement in the

uv-parameter domain, because of the collapsing nature of the offset around

near-singular regions. In this respect, the near-singularity issue we raise in this

thesis is important for the offset surface trimming problem.

Mizrahi et al. [65] demonstrated the offset surface trimming as a special

case of the Minkowski sum computation for freeform surfaces. In some sense,

the previous results on the Minkowski sum computation (see those referenced

in Mizrahi et al. [65]) can be used for offset surface trimming up to a certain

level. But their general approach has limitations in handling the near-singular

surface features we consider in this thesis.

3.3 Offset Curves on Surfaces

The researches introduced in the previous sections investigate offset curves and

surfaces that have a constant offset distance from the progenitors in Euclidean

space. Some CAD/CAM applications, however, necessitate offsets with non-

Euclidean distance metric. A geodesic offset curve, for instance, is a curve of

which locus has a constant distance d to the progenitor curve lying on a surface.

Different from a Euclidean offset curve, the offset distance of the geodesic

offset curve is measured along the geodesic path from the progenitor curve

so that the geodesic offset curve also lies on the same surface. In CAD/CAM

applications, geodesic offsets are used in the construction of linkage curves

between two blending surfaces [33], tool path generation of 3-axis ball-cutter

29



milling with constant scallop height [30], planning spray gun trajectories [4],

or automatic fiber placement [75].

In the field of CAGD, Patrikalakis and Bardis [66] have first proposed a

computational approach to compute a geodesic offset curve on a NURBS sur-

face. They derive the differential equations to compute the geodesic direction

of a curve on a surface, which is perpendicular to the tangent of the curve.

Then they compute the sample points in uv-parametric space on the geodesic

path using a numerical integration method such as Runge-Kutta iteration. The

computed points are interpolated to construct the spline curve that approxi-

mates the exact geodesic offset curve. Wolter and Tuohy [89] enlist a geodesic

offset curve as an example of applications for generating a procedurally defined

high-ordered curve. As the closed-form equation of the geodesic offset curve

is complicated or even not feasible to formulate, they also derive the differen-

tial equations of the curve and solve the equations using a numerical method.

These conventional approaches are also adopted by other researchers [7, 31].

As solving differential equations using Runge-Kutta-like numerical meth-

ods is quite complicated and time-consuming, there have been alternative

approaches to approximate geodesic offset curves. Ulmet [85] provides more

industry-friendly and practical methods by approximating geodesic lines with

linear vectors lying on the tangent plane of the curve on the surface, taken

from the direction perpendicular to the tangent of the curve. They also sug-

gest another alternative by projecting the tangent vector back onto the sur-

face. Those methods pursue the efficiency of computation while sacrificing

the quality of the approximation. They also emphasize the importance of

reparametrization in computing geodesic paths across multiple patches with

different parametrization. Geodesic paths are also actively researched in the
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context of generating constant scallop height in 3-axis milling with ball cut-

ters [30, 76, 81, 44]. By planning paths of the cutters as following the geodesic

offset lines, the amount of redundancy in machining can be minimized. Re-

searches sofarmentioned handle the geodesic offset curves on freeform sur-

faces. There has also been an extensive number of researches about computing

geodesic offsets on triangular meshes which we will not review in detail in this

thesis [36, 47, 59, 90].
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Chapter 4

Trimming Offset Curve
Self-intersections

In this chapter, we introduce a framework to detect and trim self-intersections

of an offset curve when the progenitor curve is the planar curve defined in

R2. The basic idea of the proposed method is to detect the points on the

offset curve where self-intersection occurs by solving constraint equations for-

mulated in parametric tr-space. This framework applies similarly to find self-

intersections of an offset surface, despite that the dimension of parameters

increases from t to (u, v).

Detected self-intersection points subdivide the offset curve into several

curve segments. Redundant segments are eliminated to construct the final

trimmed offset curve, which does not include any intervals that are closer

than the offset radius of d. Trimming self-intersections from an offset curve is

a much simpler process than that of an offset surface. Still, it is worthwhile

to analyze the trimming process because several concepts proposed here can
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be shared or expanded to design an algorithm for trimming an offset surface

that we will mention from Chapter 5. In this chapter, we grasp the intuition

of the geometric relation on the self-intersection points of offsets via offset

curves in R2. We also propose a method to trim the redundant intervals from

offset curves. Several examples of trimmed offset curves are also presented to

validate the proposed method.

We first identify constraint equations governing self-intersection points of

an offset curve. For a parametric curve C(t) = (x(t), y(t)) in R2, an offset

curve O(t) is defined as follows:

O(t) = C(t) + d ·N(t) (4.1)

where d is an offset distance and N(t) is a unit normal field of C(t), that is,

N(t) =
(y′(t),−x′(t))√
((x′)2 + (y′)2)

( for
dC(t)

dt
= (x′(t), y′(t)) ) (4.2)

. If two arbitrary points C(t) and C(r) (t �= r) on the curve meet each other

when offset, C(t), C(r) and their common intersection point O(t) = O(r) have

to form an equilateral triangle. Figure 4.1 illustrates the geometric configura-

tion between two points C(t), C(r) and their corresponding offset point O(t)

(or O(r)). Based on this configuration, we formulate two constraint equations

that must be satisfied at every self-intersection point on the offset curve.

As shown in Figure 4.1,

cosα =
h

d
=

‖C(r)− C(t)‖
2d

, (4.3)

and equivalently

〈N(t), C(r)− C(t)〉
‖C(r)− C(t)‖ =

‖C(r)− C(t)‖
2d

(4.4)

〈N(r), C(t)− C(r)〉
‖C(t)− C(r)‖ =

‖C(t)− C(r)‖
2d

. (4.5)
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Figure 4.1: The eqilateral triangle relation at offset curve self-intersection.

Non-rational terms in Equation (4.4) and (4.5) can be converted into rational

terms by squaring both sides of the equations as follows:

4d2 〈M(t), C(r)− C(t)〉2 = ‖C(r)− C(t)‖4‖M(t)‖2 (4.6)

4d2 〈M(r), C(t)− C(r)〉2 = ‖C(t)− C(r)‖4‖M(r)‖2 (4.7)

where N(t) = M(t)/‖M(t)‖ and N(r) = M(r)/‖M(r)‖. Instead of solving

Equation (4.4) and (4.5), we solve Equation (4.6) and (4.7) that have twice

larger degrees but are only composed of rational terms.

Equation (4.6) and (4.7) are necessary conditions for the self-intersection

points of the offset curve; every self-intersection point is a solution of Equa-

tion (4.6) and (4.7), but every point such that t = r also satisfies the above

equations. To eliminate the trivial solutions such that t = r, we introduce an

inequality constraint (4.8) that filters out the solutions in which t and r are

too close.

(t− r)2 > ε (4.8)
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Offset curves can be subdivided at the self-intersection points so that im-

portant topological decisions are made on these points; the offset curve seg-

ments bounded by the self-intersection points or the boundary points are elim-

inated or kept based on these decisions. To decide whether a curve segment be

eliminated or not, we pick a sample point inside each segment and compute

the minimum distance from this point to the progenitor curve C(t). Any point

can be selected, but we pick the middle point of the curve where the parameter

of the point is a center of the domain of the curve. If the minimum distance

is smaller than the offset distance d, there exists another point C(t1) on the

curve that is closer than the offset distance, and the selected point belongs to

the curve segment that penetrates to other curve segments or itself. Because

the whole curve segment behaves in the same topological way, the entire curve

segment, including the point can be eliminated as well. Finally, trimmed curve

segments are merged to construct a single closed curve, a single open curve,

or a combination of closed and open curve segments.

4.1 Experimental Results

The proposed method is validated with various offset curves in R2. In Fig-

ure 4.2, the progenitor curves are presented in black lines, and trimmed offset

curves are shown in various colors. For each progenitor curve, we generate

offset curves by both increasing and decreasing offset distances. In Figure 4.2

(a), self-intersection begins to appear when the original curve is offset into the

concave side. When the curve is offset into the concave side, the region where

normal flips (as known as “ fishtail”) begins to appear. (See the blue line in

Figure 4.1.) Fishtail segments appear whenever the offset distance is larger
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than the radius of the curvature of the curve. Our method trims the offset

curve segments containing fishtails because the projected distances of these

segments to the progenitor curve are smaller than the offset distance.

In Figure 4.1 (b), topologies of the offset curves are different from that

of the original curve depending on the offset distance; the original curve is a

single open curve, whereas the offset curves start to show islands inside when

the offset distance increases. This topological difference of the offset curves is

also observed in Figure 4.1 (d) as well. Here, one single closed progenitor curve

is offset to several disconnected closed offset curve segments.

Though we do not find any discrepancies in the current trimming result, the

choice of ε in Equation (4.8) may cause inaccurate trimming results. If there

indeed exist local self-intersections within ε in O(t), we do not have a method

to detect those self-intersections, yet. Especially, this situation happens when

self-intersections occur in the region where the offset distance is just larger

than the curvature of radius.
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(a) (b)

(c) (d)

Figure 4.2: Trimmed offset curves. The progenitor curves are shown in black.
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Chapter 5

Trimming Offset Surface
Self-intersections

5.1 Constraint Equations for Offset Self-Intersections

Constraint equations for the self-intersections of an offset surface are con-

structed in a similar way to those of an offset curve. We first consider the

derivation of three polynomial equations, the common solution of which pro-

duces a superset of the following offset self-intersection curve in the (u, v)-

domain:

S = {(u, v) | O(u, v) = O(s, t), for some (s, t) �= (u, v)}. (5.1)

Figure 5.1 shows a generic configuration for the self-intersections of an offset

surface, where an offset O(u, v) from S(u, v) meets another offset O(s, t) from

S(s, t). Then the three points S(u, v), S(s, t), and O(u, v) = O(s, t), form

an isosceles triangle. Using geometric constraints derived from this triangle,

38



we formulate three polynomial equations in (u, v, s, t). The solutions to these

equations include redundant solutions. We discuss how to eliminate redundant

solutions using other constraints formulated as inequalities.

Remark: One very significant and unique feature in our derivation of these

constraint formulae is that the offset surface O(u, v) or O(s, t) never appears

explicitly in the final form of equality and inequality constraints. Dependent

only on the input surface S(u, v) and the first and second partial derivatives

of S(u, v), the constraint solving process should be as irrelevant as possible

from the near-singularity of the offset surface in some areas.

5.1.1 Coplanarity Constraint

In the triangle of Figure 5.1, the three vectors N(u, v), N(s, t), and S(u, v)−
S(s, t) are coplanar. A necessary condition for the offset self-intersection at

O(u, v) = O(s, t) can be formulated as follows:

det [Su × Sv, Ss × St, S(u, v)− S(s, t)] = 0, (5.2)

where Su × Sv = Su(u, v)× Sv(u, v) and Ss × St = Ss(s, t)× St(s, t).

When S(u, v) is a bivariate polynomial surface of degree (m,n), Equation

(5.2) is a four-variate polynomial equation of degree (3m−1, 3n−1, 3m−1, 3n−
1) in (u, v, s, t). For a bicubic surface S(u, v), the polynomial has degree 8 in

each variable. Compared with other equations to be derived below, this equa-

tion has a lower degree and therefore plays an important role in accelerating

the equation solving for the formulated constraints.
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5.1.2 Equi-angle Constraints

In Figure 5.1, let h denote the half-length of the base of the triangle: h =

‖S(u, v)− S(s, t)‖/2, then we have

cosα =
h

d
=

‖S(u, v)− S(s, t)‖
2d

, (5.3)

and equivalently

〈N(u, v), S(s, t)− S(u, v)〉
‖S(u, v)− S(s, t)‖ =

‖S(u, v)− S(s, t)‖
2d

. (5.4)

Replacing N(u, v) by (Su × Sv)/‖Su × Sv‖, we have

2d
〈Su × Sv, S(s, t)− S(u, v)〉

‖Su × Sv‖ = ‖S(u, v)− S(s, t)‖2. (5.5)

The term ‖Su × Sv‖ is represented as the square-root of a function, which is

difficult to handle in conventional multivariate equation solvers. Squaring the

above equation, we get the following square-root-free equation:

4d2 〈S(u, v)− S(s, t), Su × Sv〉2 = ‖S(u, v)− S(s, t)‖4‖Su × Sv‖2. (5.6)

Similary, we can derive the symmetric equation as well:

4d2 〈S(u, v)− S(s, t), Ss × St〉2 = ‖S(u, v)− S(s, t)‖4‖Ss × St‖2. (5.7)

5.2 Removing Trivial Solutions

To avoid trivial solutions: (u, v) = (s, t), we also employ the following inequal-

ity constraint:

(u− s)2 + (v − t)2 > ε2, (5.8)

for a small constant ε > 0.
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Figure 5.1: The eqilaternal triangle from an offset self-intersection condition.

Due to the symmetry of (u, v) and (s, t) in Equations (5.2)-(5.7), it is

clear that duplicate solutions are generated for these constraints. We may

avoid duplicate solutions as well as trivial solutions, by considering one linear

inequality constraint: u− s > ε (or v − t > ε), instead of the above quadratic

inequality. However, for the purpose of checking the stability of computing

results (as discussed in the first paragraph in Chapter 5), we keep both copies

of the duplicate solutions.

5.3 Removing Normal Flips

The normal vector Ou×Ov of the offset surface O(u, v) should be in the same

direction as the normal vector Su × Sv of S(u, v), the condition of which can
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be formulated as follows:

f(u, v) = 〈Ou ×Ov, Su × Sv〉 > 0. (5.9)

This inequality constraint is very useful in the elimination of redundant offset

surface patches that result from the surface area where one (but not both) of

the principal curvatures to the concave side is larger than 1/d, thus introducing

local self-intersections in the offset surface. The formula for f(u, v) is derived

in 5.A:

f(u, v) = ‖M(u, v)‖2 + d · p(u, v)

‖M(u, v)‖ + d2 · q(u, v)

‖M(u, v)‖2 , (5.10)

where

M(u, v) = Su × Sv,

p(u, v) = 〈Su ×Mv +Mu × Sv,M〉 ,
q(u, v) = 〈Mu ×Mv,M〉 .

Using an auxiliary variable: σ = ‖M(u, v)‖ = ‖Su × Sv‖ > 0, the inequality

constraint f(u, v) > 0 can be converted to

σ4 + d · σ · p(u, v) + d2 · q(u, v) > 0, (5.11)

σ2 = ‖Su × Sv‖2, (5.12)

σ > 0. (5.13)

These trivariate constraints are easier to test than other fourvariate conditions.

By checking these constraints first, we have greatly accelerated the whole

solution procedure.
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5.4 Multivariate Solver for Constraints

We can solve a system of Equations (5.2)–(5.7) under the additional constraints

of Equations (5.8)–(5.13) using the IRIT Library [41]. In Equations (5.6)–(5.7),

the offset distance d appears in a squared form of d2; thus, −d will also be a

solution whenever d is. Nevertheless, the negative offset S(u, v) − d · N(u, v)

is invalid, and the redundant solutions from −d should be filtered out.

The invalid negative offset solutions can be removed systematically by

adding two auxiliary variables: σ = ‖Su × Sv‖ > 0 and τ = ‖Ss × St‖ > 0.

Equations (5.6)–(5.7) are then replaced by the following four equations in

lower degree:

2d 〈S(u, v)− S(s, t), Su × Sv〉 = σ‖S(u, v)− S(s, t)‖2, (5.14)

2d 〈S(u, v)− S(s, t), Ss × St〉 = τ‖S(u, v)− S(s, t)‖2, (5.15)

σ2 = ‖Su × Sv‖2, (5.16)

τ2 = ‖Ss × St‖2. (5.17)

Because of the solution procedure in a higher dimensional space, we need to

spend more computing time in this approach (often three more times). Nev-

ertheless, there is an improvement in numerical stability due to the reduction

of degrees in Equations (5.14)–(5.15). One can decide which approach to take

depending on the relative importance of efficiency and stability for specific

applications.

Finally, note that even though we start the derivations of Equations (5.2)–

(5.17) with the offset surface as well as the regular input surface, the final

forms of these constraints are given only in terms of S(u, v) and its first and

second partial derivatives. This is a unique feature of our approach, which
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Figure 5.2: Curvature analysis on the surface S(u, v): (a) the outer loop (in

black) is the boundary of a redundant trimming region, whereas the red region

is the set of (u, v)-parameters where S(u, v) has one of the principal curvatures

to the concave side larger than 1/d; (b) a zoom-in view on the upper-right

corner of the region.

may be very useful in the development of other algorithms for offset-related

geometric problems.
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(a) (b)

(c) (d)

Figure 5.3: (a) An arrangement of solution curve segments from the constraint

solver in the uv-domain; (b) the same curve arrangement, where matching

segments are in the same color and matching endpoints are shown in blue line

connections; (c) the arrangement of self-intersection curve segments in the xyz-

space, where the color shows the correspondence with the matching uv-curve

segments; (d) an X-junction with four branches of trimmed self-intersection

curve segments on the offset surface (in the same color coding with (b) and

(c)).
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5.A Derivation of f(u, v)

We derive the formula of f(u, v) as a function that depends on the first and

second partial derivatices of S(u, v):

f(u, v) = 〈Ou ×Ov, Su × Sv〉
= 〈(Su + d ·Nu)× (Sv + d ·Nv), Su × Sv〉
= 〈Su × Sv, Su × Sv〉+ d · 〈Su ×Nv +Nu × Sv, Su × Sv〉
+ d2 · 〈Nu ×Nv, Su × Sv〉

= ‖Su × Sv‖2 + d · 〈Su ×Nv, Su × Sv〉
− d · 〈Sv ×Nu, Su × Sv〉+ d2 · 〈Nu ×Nv, Su × Sv〉

= ‖Su × Sv‖2 + d · 〈Su, Nv × (Su × Sv)〉
− d · 〈Sv, Nu × (Su × Sv)〉+ d2 · 〈Nu, Nv × (Su × Sv)〉 . (5.18)

For the sake of simplicity, we denote

M(u, v) = Su(u, v)× Sv(u, v), (5.19)

which is the (non-unit) normal of S(u, v). Differentiating the unit-normal

N(u, v) =
M(u, v)

‖M(u, v)‖ , (5.20)

we get

Nu =
Mu ‖M‖2 −M 〈M,Mu〉

‖M‖3 , (5.21)

Nv =
Mv ‖M‖2 −M 〈M,Mv〉

‖M‖3 . (5.22)

Taking the cross product with M , they produce

Nu ×M = (Mu ×M)/‖M‖, (5.23)

Nv ×M = (Mv ×M)/‖M‖. (5.24)
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By substituting Equations (5.23))–(5.24) to (5.18), we obtain

f(u, v) = ‖M‖2 + d

‖M‖ 〈Su,Mv ×M〉 − d

‖M‖ 〈Sv,Mu ×M〉

+
d2

‖M‖ 〈Nu,Mv ×M〉

= ‖M‖2 + d

‖M‖ 〈Su ×Mv − Sv ×Mu,M〉

− d2

‖M‖ 〈Nu ×M,Mv〉

= ‖M‖2 + d

‖M‖ 〈Su ×Mv +Mu × Sv,M〉

+
d2

‖M‖2 〈Mu ×Mv,M〉

= ‖M‖2 + d · (p(u, v)/‖M‖) + d2 · (q(u, v)/‖M‖2),

where p = 〈Su ×Mv +Mu × Sv,M〉, and q = 〈Mu ×Mv,M〉.

5.B Relationship between f(u, v) and Curvatures

f(u, v) again can be written as follows.

f(u, v) = ‖M‖2 + d

‖M‖ 〈Su,Mv ×M〉 − d

‖M‖ 〈Sv,Mu ×M〉+ d2

‖M‖ 〈Nu,Mv ×M〉

= ‖M‖2 + d

‖M‖ 〈Su ×Mv − Sv ×Mu,M〉 − d2

‖M‖ 〈Nu ×M,Mv〉

= ‖M‖2 + d

‖M‖ 〈Su ×Mv +Mu × Sv,M〉+ d2

‖M‖2 〈Mu ×Mv,M〉

= ‖M‖2 + d · (p(u, v)/‖M‖) + d2 · (q(u, v)/‖M‖2),

where p = 〈Su ×Mv +Mu × Sv,M〉, and q = 〈Mu ×Mv,M〉.
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First,

p(u, v) = 〈Su ×Mv +Mu × Sv,M〉
= 〈Su ×Mv,M〉 − 〈Sv ×Mu,M〉
= 〈Su × (Suv × Sv + Su × Svv),M〉 − 〈Sv × (Suu × Sv + Su × Suv),M〉
= 〈Su × (Suv × Sv),M〉+ 〈Su × (Su × Svv),M〉
− 〈Sv × (Suu × Sv),M〉 − 〈Sv × (Su × Suv),M〉

= 〈Suv(Su · Sv)− Sv(Su · Suv),M〉+ 〈Su(Su · Svv)− Svv(Su · Su),M〉
− 〈Suu(Sv · Sv)− Sv(Sv · Suu),M〉 − 〈Su(Sv · Suv)− Suv(Sv · Su),M〉

= 〈Suv(Su · Sv),M〉 − 〈Svv(Su · Su),M〉 − 〈Suu(Sv · Sv),M〉+ 〈Suv(Sv · Su),M〉
= fF‖M‖ − Eg‖M‖ − eG‖M‖+ fF‖M‖ = −‖M‖(Eg − 2fF +Ge).
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Second,

q(u, v) = 〈Mu ×Mv,M〉
= 〈Mv,M ×Mu〉
= 〈Mv,M × (Suu × Sv + Su × Suv)〉
= 〈Mv,M × (Suu × Sv)〉+ 〈Mv,M × (Su × Suv)〉
= 〈Mv, Suu(M · Sv)− Sv(M · Suu)〉+ 〈Mv, Su(M · Suv)− Suv(M · Su)〉
= 〈Mv,−Sv(M · Suu)〉+ 〈Mv, Su(M · Suv)〉
= −e‖M‖ 〈Mv, Sv〉+ f‖M‖ 〈Mv, Su〉
= −e‖M‖ 〈(Suv × Sv + Su × Svv), Sv〉+ f‖M‖ 〈(Suv × Sv + Su × Svv), Su〉
= −e‖M‖ 〈(Su × Svv), Sv〉+ f‖M‖ 〈(Suv × Sv), Su〉
= −e‖M‖ 〈Svv, Sv × Su〉+ f‖M‖ 〈Suv, Sv × Su〉
= −e‖M‖ 〈Svv,−M〉+ f‖M‖ 〈Suv,−M〉
= eg‖M‖2 − f2‖M‖2 = ‖M‖2(eg − f2).

Finally,

f(u, v) = ‖M‖2 + d · p(u, v)‖M‖ + d2 · q(u, v)‖M‖2

= ‖M‖2 − d(Eg − 2fF +Ge) + d2(eg − f2)

= ‖M‖2(1− 2d
Eg − 2fF +Ge

2‖M‖2 + d2
eg − f2

‖M‖2 )

= ‖M‖2(1− 2d
Eg − 2fF +Ge

2(EG− F 2)
+ d2

eg − f2

EG− F 2
) (where ‖M‖2 = EG− F 2)

= ‖M‖2(1− 2dH + d2K).

where H = 1
2
eG−2fF+gE

EG−F 2 (mean curvature) and K = eg−f2

EG−F 2 (gaussian curva-

ture). Reminding that H = (κ1 + κ2)/2 and K = κ1 · κ2 where κ1 and κ2 are

principal curvatures of S(u, v),
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f(u, v) =
‖M‖2
d2

(κ1 − 1

d
)(κ2 − 1

d
) (5.25)

Hence, the inequality constraint (5.10) is equivalent to filtering out the

region whether one of the principal curvatures is larger than the inverse of the

offset radius, but not both.

5.3 Trimming Offset Surfaces

The solution curve segments (constructed by the constraint solver) in the uvst-

space are projected to the uv-domain and generate an arrangement of planar

curve segments. Because of the symmetry in the relations: O(u, v) = O(s, t)

and O(s, t) = O(u, v), the projection to the st-domain should be the same as

the one to the uv-domain. In practice, the two projections are slightly different

in their computing results due to numerical error. When the difference is rel-

atively large in some areas, we cut off these segments from the solution curve.

The large difference hints on the unreliability of the result. The constraint

solver often produces no solutions around the regions of numerical instability.

Thus we start with an incomplete arrangement of solution curve segments.

We can explain the numerical instability geometrically using a curvature

analysis as shown in Figure 5.2, where the closed loop (in black) is the bound-

ary of a redundant trimming region for the test example of Figure 5.3. In

other words, Figure 5.2 is the final result of the loop construction of Fig-

ure 5.3, starting from an incomplete curve arrangement of Figure 5.3 (a). The

red region of Figure 5.2 is the set of (u, v)-parameters where S(u, v) has one

of its principal curvatures to the concave side larger than 1/d. The boundary

of this region corresponds to the singular curves of the offset surface O(u, v),
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where the offset self-intersection computation becomes highly unstable. One

can notice that the loop (in black) has an almost tangential contact with the

boundary of the red region, for which our constraint solver produces unreliable

solutions which are discarded.

The missing parts usually correspond to the terminal points at the tips of

some branches of the offset trimming curve in the xyz-space. We try to bridge

the missing gap using an intersection curve tracing based on a sequence of

pairs of osculating torii to the offset surface. At the limiting point very close

to the terminal location, we are essentially approximating the offset surface

using an almost identical tori, but with slightly different parameterizations.

This approach closes the missing gap using the geometry of a limiting torus

that approximates the offset surface within a small error bound.

The osculating tori are first constructed for the regular input surface, one

for S(u, v) and the other for S(s, t), using their principal curvatures at the

locations of (u, v) and (s, t), where (u, v, s, t) is the solution from the constraint

solver for the endpoint of the solution curve that we are trying to extend. We

use a construction scheme similar to Liu et al. [60], where the osculating torus is

used for the acceleration of point projection. For intersection curve tracing, we

use osculating tori of relatively small sizes and recompute them after advancing

a short distance to reduce the error accumulation. The osculating tori for

O(u, v) and O(s, t) are simply computed by offsetting the osculating tori for

S(u, v) and S(s, t) by the offset distance d.

The hard part of the surface intersection at a singular intersection point is

how to decide where to stop the intersection curve tracing. The terminal point

is a singular intersection point, where the traced curve changes its direction

abruptly to the opposite. In our case, the missing segment is incrementally
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constructed from both sides of (u, v) and (s, t), and finally closed at the meet-

ing point (u, v) = (s, t), where the corresponding point (x, y, z) will be the

terminal point of the self-intersection curve segment. The tori-intersection be-

comes unstable as the curve tracing approaches the terminal point, where the

two osculating tori intersect almost tangentially. Thus instead of intersecting

the two almost identical tori, we compute the intersection curve using their

normal sections (by intersecting the tori with a plane determined by the curve

tracing direction and an almost the identical normal vector of the two tori.

We stop the curve tracing when the simultaneous tracings in (u, v) and (s, t)

meet at a common location.

Once all the terminal points are computed and their (u, v) locations are

detected, the gluing operation proceeds by matching two curve segments in the

uv-domain to a connected branch in the xyz-space until a Y-junction, where

the branch meets two other branches of the Y-junction. In the uv-domain,

the tracing proceeds along two matching curve segments, each of which will

meet a different uv-curve segment at a crossing location (u, v), where the

corresponding offset point O(u, v) is the exact location of the Y-junction. At

the crossing location (u, v), the two uv-curve segments are cut, each into two

pieces, and two redundant pieces are purged away. The tracing further proceeds

along the remaining curve segment at the (u, v) crossing. Repeating the same

step for the other matching curve (now interpreted as an st-curve), we can

trace the other branch of the Y-junction.

Two closely located Y-junctions form an X-junction by shrinking the main

branch to length zero and thus merging the two Y-junctions to a joint junction

finally with four remaining branches (see Figure 5.3). In the tracing of curve

segments in the uv-domain, an X-junction can be detected by the existence of
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three uv-curve segments in the neighborhood of a (u, v)-crossing that the trac-

ing encounters (see Figure 5.3(a)). It is sometimes difficult to decide whether

it is just one X-junction or a pair of two Y-junctions, which is often a good

indication to the chance of forming an X-junction.

5.4 Experimental Results

We have implemented our offset surface trimming algorithm using the pro-

posed loop construction algorithm in C++ (Section 5.3 as well as the IRIT

solid modeling library [41] for solving the system of equality and inequal-

ity constraints in Section 5.1), on an Intel Core i7-6700K 4.0GHz PC with

a 32GB main memory. To demonstrate the effectiveness of our approach, we

have tested our algorithm against several test examples of regular freeform

surfaces.

Figure 5.4 shows the results from testing our offset trimming algorithm on

three examples of Maekawa et al. [62]. The first two test results are on easy

cases, which shows that our algorithm works for general types of offset surfaces,

not only specialized for handling near-singular offset self-intersections. In these

two examples, the solution in the surface parameter domain has two separate

components; clearly, one is the uv-component of the solution curve and the

other is the st-counterpart of the solution. One can check the correctness of

these solutions from the zoom-in views in the right column of Figure 5.4(c).

The third example of Figure 5.4 is a typical case of offset surface trimming in

the vicinity of near-singular offset self-intersections.

The color-coding in Figure 5.4(a) provides the matching information on

the solution curve segments, where the pair of black segments (or loops in the
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second example) corresponds to the main branch of the offset trimming curve

(or the main loop in the second example). In the third example of Figure 5.4

(a), there are four other curve segments (shown in different non-black colors)

on the trimming loop, each of which is a pair of matching segments with

a common endpoint that corresponds to a terminal point at the tip of one

branch on the offset trimming curve. In the zoom-in view of Figure 5.4(c), one

can realize that it is hard to predict the exact location of the terminal point

visually. Without having the correspondence map of the offset trimming loop

in the uv-domain, it is extremely difficult to decide whether the curve tracing

along the offset self-intersection in the xyz-space has under- or over-shooted

the target location at the terminal point. Moreover, it is important to have

a stable tracer along the offset self-intersection curve – the curve tracing will

eventually reach a singular intersection point.

The constraint solver often produces an incomplete map for the offset trim-

ming loop in the uv-domain. The first two examples of Figure 5.4 are the direct

results from the constraint solver (computed with the formulae derived in Sec-

tion 5.1). On the other hand, the third example is the final result of the offset

trimming algorithm based on both Section 5.1 and 5.1, which is completed by

removing all redundant segments and adding all missing segments to form a

closed loop in the self-intersection curve. The correct detection of all terminal

points is the main challenge of this work. Depending on the different levels

of singularity at the terminal points of the offset self-intersection curve, there

will always be some non-trivial cases where the offset trimming curve has very

complex shapes.

To further test the performance of our method on more general types of

offset surface trimming examples, we have generated two different sets of offset
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(a) (b) (c)

Figure 5.4: Examples from Maekawa et al. [62]: (a) the arrangement of solution

curves in the uv-domain; (b) the input surface S(u, v) (in blue) and the offset

surface O(u, v) (in red), and the offset trimming curve (in black) in the xyz-

space; (c) zoom-in view of (b).
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surfaces: (i) scaling the input surface along the x-direction, and (ii) changing

the offset distance. The progenitor surface S(u, v) is a bicubic Bézier surface

with 16 control points Pij :

[Pij ] =

⎡
⎣

(0, 0.4575, 0) (0.1525, 0.4575, 0.305) (0.305, 0.4575, 0.305) (0.4575, 0.4575, 0)

(0, 0.305, 0.305) (0.1525, 0.305, 0.7625) (0.305, 0.305, 0.7625) (0.4575, 0.305, 0.305)

(0, 0.1525, 0.305) (0.1525, 0.1525, 0.7625) (0.305, 0.1525, 0.7625) (0.4575, 0.1525, 0.305)

(0, 0, 0) (0.1525, 0, 0.305) (0.305, 0, 0.305) (0.4575, 0, 0)

⎤
⎦

This surface is symmetric with respect to u = 0.5, v = 0.5, and u = ±v,

which is intended to produce an X-junction in the middle of the offset surface.

We compute the offset trimming curve for the surface, and repeat the same

computation for scaled versions of the surface along the x-direction, each with

the offset distance fixed to d = 0.15. The offset trimming results are shown

in Figure 5.5, where the leftmost two columns show the intermediate results

from the constraint solver, and the rightmost two columns are the final results

of the offset trimming construction. To show the correctness of the trimming

curve construction on the offset surface, the zoom-in views on the most critical

parts are also reported in Figure 5.6. As expected from the symmetry of the

input surface, Figure 5.6 (a) demonstrates the construction of an X-junction

with four branches, at the center of the offset surface. The last two examples

belong to the case of having only one main branch with two singular endpoints,

which can be detected by the missing segments in the incomplete loops shown

in Figures 5.5(a)–(b).

Finally, we consider a variable offset distance d, and consider the structural

evolution of the offset trimming curve as the distance d changes. As the input

for this test, we take the fourth surface of Figure 5.5, the offset of which

with the distance d = 0.15 had two Y-junctions, one long main branch and

four short branches on the offset trimming curve. As we decrease the offset

distance, the branches get shorter and shorter, and at some distance, only the
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main branch remains. Even in the zoom-in views of Figure 5.7(d)–(i), it is hard

to decide the branching structures (in the xyz-space) visually. Nevertheless, it

is easy to tell the structures in their offset trimming loops in the uv-domain,

as shown in Figure 5.7 (a). Five trimming curves, each with two Y-junctions,

are shown in Figure 5.7 (b), whereas one curve with only one main branch is

shown separately in Figure 5.7 (c).

5.5 Summary

We have presented a new approach to the offset surface trimming problem,

which can deal with the generic nature of near-singular offset self-intersections

by computing the branching structure in a stable way. The precise locations

of the terminal points of the branches are extremely difficult to detect, in

particular, since the offset surface has a considerably more complicated shape

than the input surface. Nevertheless, by developing offset-free computing tools,

we have made the whole construction procedure as stable as possible, mainly

based on the regularity of the input surface. Even in some non-trivial cases

where the branching structure is inevident even in the zoom-in view of small

features (often enlarged by 104 times), the correspondence map of an offset

trimming loop in the uv-domain stably clarifies the branching structure. In

some sense, we have converted the near-singular structure of the problem to a

regular arrangement of solution curves in the uv-domain.
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(a) (b) (c) (d)

Figure 5.5: 1st row: x:y = 1:1, 2nd row: x:y = 1.01:1, 3nd row: x:y = 1.05:1,

4th row: x:y = 1.2:1, 5th row: x:y = 1.5:1, 6th row: x:y = 2:1. (a) Input surface

S(u, v); (b) offset surface O(u, v); (c), (d) trimmed self-intersection curves on

the offset surface (from (c): side-view and (d) bottom-view).
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Zoom-in views of the offset trimming curves on the offset surface

O(u, v) in the xyz-space, where the control nets are scaled along the x-direction

in the ratios of x : y = (a) 1 : 1, (b) 1.01 : 1, (c) 1 : 05 : 1, (d) 1.2 : 1, (e)

1.5 : 1, and (f) 2 : 1, where the offset distance is fixed to d = 0.15. Cyan points

in (e) and (f) represent detected singular points where O(u, v) = O(s, t).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Offset trimming curves: (a) in the uv-domain and (b), (c) in the

xyz-space; (d)–(i) zoom-in views of the offset trimming curves (when viewed

from below toward the upward direction) on the concave side of the offset

surfaces (with the offset radius d = (d) 0.1575, (e) 0.1545, (f) 0.1515, (g)

0.1485, (h) 0.1455, (i) 0.1200).
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(a) (b)

Figure 5.8: Examples from Seong et al. [78]: (a): the arrangement of solution

curves in the uv-domain; (b): the input surface S(u, v) (in blue) and the offset

surface O(u, v) (in red), and the offset trimming curve (in black) in the xyz-

space.
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Chapter 6

Acceleration of trimming offset
curves and surfaces

6.1 Motivation

Robustness is often one of the most important goals in designing a geometry

processing tool. Here, “robust” can imply a variety of aspects: sometimes it

means fast, numerically stable, computationally efficient, or resource-saving. In

the typical CAD/CAM applications using offsets, attention is often on yield-

ing precise shapes of the geometric objects. In NC machining, for instance,

offsetting generates a path of a cutter tool that follows and cuts the hull of

the object. Preciseness is more important than speed in this situation as de-

signing the path is often a one-time process, and the precomputed path can

be reused again and again to reproduce millions of products under the same

milling machine. Speed and efficiency, however, become an essential factor in

other types of offset applications. In particular, designing a fast and com-
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putationally efficient offset trimming algorithm is required when handling a

variety of offset radii with the same progenitor object or trimming offsets of

continuously deforming objects.

In this section, we provide an alternative approach to identifying the self-

intersections of offset curves and surfaces, which accelerate an offset trimming

process. The new framework relies on a hierarchical spatial structure spe-

cialized in finding the self-collision and self-intersections of offset curves and

surfaces. With the efficient data structure, we reduce the search space during

self-intersection detection in offset curves and surfaces. We also reveal various

geometric constraints to narrow down this search space further.

The main focus of Chapter 4 and 5 is on the identification of the correct

branching structures and trimming regions in the self-intersections of offset

curves and surfaces. There we skip discussions about the performance of the

trimming algorithm intentionally. Before designing the acceleration algorithm,

we first investigate the performance of the trimming algorithm proposed in the

previous chapters.

The trimming algorithms in Chapter 4 and 5 first constructs implicit alge-

braic equations that constrain the self-intersections of offset curves or surfaces.

The equations are formulated in the parametric space of curves or surfaces and

solved with the subdivision-based multivariate equation solver. The solver sub-

divides NURBS curves or surfaces until the subdividends become flat enough

to determine whether the constraints are satisfied, or the subdivision tolerance

is reached.

Solving a set of constraint equations with the multivariate equation solver

is a bottleneck of the offset trimming process, which makes the process slow

due to several reasons. First, the subdivision used in solving equations is an ex-
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pensive operation. When the progenitor curves and surfaces are Bézier curves

or surfaces, for instance, the solver executes the de Casteljau subdivision algo-

rithm. A single subdivision of a Bézier curve of degree n takes O(n2) interpo-

lations, and that of a Bézier surface of degree n×n takes O(n3) interpolations.

The computational cost increases exponentially in the dimension of parameters

in the equation. These interpolations are even repeated during the recursive

subdivision of the curves or surfaces.

The more critical problem that makes the trimming algorithm slow is that

the trivial solutions such that t = r or (u, v) = (s, t) always exist in finding the

self-intersections of the offset curves or surfaces. If the threshold of filtering

the trivial solutions increases, the trimming algorithm will speed-up but may

miss the subtle details in the self-intersections of the offsets. On the other

hand, the small threshold value makes the equation solving problematically

slow. The trivial solutions occur because of the independent parametrization

of the duplicate progenitor surface used in the algebraic constraint equations

for the self-intersections of the offset curves or surfaces. Every self-intersection

point appears twice in the parametric domain as the solutions of the constraint

equations are symmetric in the parametric space; if (t, r) is the solution of the

self-intersection curve, so is (r, t). If (u, v, s, t) is the solution, so is (s, t, u, v).

Table 6.1 provides the execution time only spent in solving the constraint

equations of the offset surface self-intersections using the IRIT system’s subdivision-

based multivariate geometric equation solving module. Most example surfaces

we have tested are bicubic Bézier surfaces except Maekawa 3 modeled with a

bisextic Bézier surface and all of Seong’s examples (Pipe, SweepCurve and

Helix) modeled with B-spline surfaces. Experimental results show that the

complexity of the self-intersection curves of the offset surfaces determines the
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Example Description Time
(hh:mm:ss)

Srf12 d80 x : y = 12 : 10, d = 0.12 (Fig. 5.7(i)) 00:24:02

Srf12 d97 x : y = 12 : 10, d = 0.1455 (Fig. 5.7(h)) 00:39:14

Srf12 d99 x : y = 12 : 10, d = 0.1485 (Fig. 5.7(g)) 00:41:36

Srf12 d101 x : y = 12 : 10, d = 0.1515 (Fig. 5.7(f)) 00:44:04

Srf12 d103 x : y = 12 : 10, d = 0.1545 (Fig. 5.7(e)) 00:45:45

Srf12 d105 x : y = 12 : 10, d = 0.1575 (Fig. 5.7(d)) 00:47:54

Srf10 d100 x : y = 10 : 10, d = 0.15 (Fig. 5.5(a)) 01:10:31

Srf10.1 d100 x : y = 10.1 : 10, d = 0.15 (Fig. 5.5(b)) 01:09:22

Srf10.5 d100 x : y = 10.5 : 10, d = 0.15 (Fig. 5.5(c)) 00:59:09

Srf12 d100 x : y = 12 : 10, d = 0.15 (Fig. 5.5(d)) 00:41:11

Srf15 d100 x : y = 15 : 10, d = 0.15 (Fig. 5.5(e)) 00:30:50

Srf20 d100 x : y = 20 : 10, d = 0.15 (Fig. 5.5(f)) 00:27:15

Maekawa 1 Maekawa’s 1 (bell-shaped) (Fig. 5.4(a)) 00:50:04

Maekawa 2 Maekawa’s 2 (rolled sheet) (Fig. 5.4(b)) 00:20:12

Maekawa 3 Maekawa’s 3 (sextic bezier surface) (Fig. 5.4(c)) 20:08:16

Pipe Seong’s (pipe) (Fig. 5.8(a)) 01:07:36

SweepCurve Seong’s (curve swept surface) (Fig. 5.8(b)) 00:42:34

Helix Seong’s (helix) (Fig. 5.8(c)) 01:24:11

Table 6.1: Execution time of trimming offset surfaces based on the multivariate

equation solving. d denotes the offset distance.

performance of the self-intersection detection algorithm when the degrees of

the progenitor surfaces are the same. The fewer regions the constraint equa-
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Description Time (hh:mm:ss)

Srf10 d100, with the bicubic progenitor surface 01:10:31

Srf10 d100, with the bisextic progenitor surface 09:47:18

Srf20 d100, with the bicubic progenitor surface 00:27:15

Srf20 d100, with the bisextic progenitor surface 04:44:28

Table 6.2: The impact of the degree of the progenitor surfaces on the perfor-

mace of offset trimming algorithm.

tions are tested and the more regions the auxiliary inequalities remove, the

faster does the trimming algorithm yield the self-intersection curves. (See the

simplicity of the self-intersection curves in Figure 5.7 (i), which only takes

about 24 minutes to solve the constraint equations.)

Even though the offsets of bicubic surfaces demonstrate relatively short

execution time, each example still takes from 20 minutes to about an hour

in computing the solution of the constraint equations. Also, note that the

bisextic Bézier surface in Figure 5.4 (c) takes almost 20 hours to compute the

self-intersection curves of the offset surface, despite the simple structure of the

self-intersections. To demonstrate the impact of the degree of the surface to

the execution time of the equation solving, we compare the self-intersection

computation time of bicubic Bézier surface offsets with bisextic Bézier surface

offsets in Table 6.2. In Table 6.2, the degrees of example Bézier progenitor

surfaces are raised from bicubic to bisextic without any modification in the

shape of the surfaces. The degree elevation of the surfaces does not change

the structure of the self-intersections of the offset surfaces, but make drastic

increases in the execution time of the trimming algorithm. Because the degrees
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of the polynomial terms in the constraint equations are squared when removing

roots from the normal terms, the surfaces expressed in the higher degree terms

worsen the performance of the trimming algorithm exponentially. Thus, it

is crucial to reduce the number of subdivisions to make a faster trimming

algorithm.

6.2 Basic Approach

The self-intersections of an offset curve (and an offset surface as well) are

categorized into the local self-intersections and the global self-intersections,

depending on the source of the intersections [46]. In the planar curve case,

the local self-intersections of the offset curves occur when the curvature of

the progenitor curves is larger than 1/d, whereas the global self-intersections

occur when two distant locations on the progenitor curves correspond to the

same point on the offset curves. Kim et al. [46] first detect and eliminate the

local self-intersections of the planar offset curve before handling the global

self-intersections.

Similarly, the local and the global self-intersections also occur on offset sur-

faces; the only difference is that the local self-intersections of the offset surfaces

are detected based on the principal curvatures of the progenitor surfaces. (See

Section 5.3 for the details.) Nevertheless, the trimming algorithms proposed in

Chapter 4 and Chapter 5 handle the local and the global self-intersections of

offset curves and surfaces altogether through the unified algebraic equations.

Subdivisions are always performed on the fly in tr-space (in case of trimming

offset curves) or in uvst-space (in case of trimming offset surfaces), which

require function evaluations in higher dimensions and higher degrees. This sit-
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uation hinders the acceleration of trimming the self-intersections of the offset

curves and surfaces. Therefore, the acceleration algorithm must distinguish

the local self-intersections from the global self-intersections and minimize the

number and the dimension of subdivisions during the computation.

In the geometry processing, a hierarchical spatial structure is a commonly

used technique for the acceleration of the geometric queries and manipulations.

A hierarchical spatial structure organizes a geometric object in 2D or 3D spa-

tial bins of hierarchy where a bin in a higher level of the hierarchy contains all

of its child bins below, each of which also contains its lower-level bins. Among

the different types of hierarchical spatial structures, we employ the bounding

volume hierarchy(BVH) to store curves and surfaces. The construction and

the usage of the BVH are implemented in a divide-and-conquer manner: the

complex geometric object is divided into smaller pieces, making the structure

of the problem more straightforward and more comfortable to handle. The

beauty of the BVH comes from the fact that it reduces the number of com-

putations by bounding relatively complicated geometric objects with simpler

objects and handling the queries on the simpler geometric objects instead. To

find the self-intersections and trim the offset curves and surfaces, the BVH

to enclose the target offset curves or surfaces are first constructed, and the

self-intersections are detected using the BVH instead of the actual geometries.

In this chapter, we propose a special BVH and geometric queries operated

on the BVH while trimming offset curves or surfaces. In the proposed BVH,

the bounding volumes enclosing offset curves or surfaces are modeled from the

composites of the bounding volumes of the progenitor curves or surfaces and

the bounding volumes of their normals. Recall that an offset curve and surface
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are defined as follows:

O(t) = C(t) + dN(t) (6.1)

O(u, v) = S(u, v) + dN(u, v) (6.2)

The normal term N(t) (or N(u, v)) in the offset definition is also another curve

or surface, so the normal term can be bounded by a spatial structure as well.

Therefore, the maximum deviation between the actual offset geometry and its

bounding volume, or a bounding error of the bounding volume, is the sum of

the bounding error of the progenitor geometry and the bounding error of the

normal geometry scaled by the offset distance d.

The challenges of the bounding volume construction arise from the fact that

the offset bounding volumes easily become bulkier than those of the progenitor

curves and surfaces. In particular, the bounding error of the normal terms

becomes dominant when the offset distance is relatively large compared to the

size of the progenitors. Fatter bounding volumes increase the amount of the

local space search in the detection of the offset self-intersections and deteriorate

the performance of the trimming algorithm as well. We also propose several

trimming techniques to reduce the number of comparisons in the intersection

tests. With these techniques, the local bounding volume pairs that do not

contribute to the self-intersections of offset curves and surfaces are eliminated

in the early stages of the trimming algorithm.

In the following sections, we first briefly demonstrate how to construct the

BVH of the offset curves from the combination of the BVH of the progenitor

curves and the BVH of the normals. We also show how to employ the BVH

in trimming the offset curves. We then propose a method to construct the

BVH of the offset surfaces and to trim the offset surfaces using the BVH. The
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BVH of offset curves is mentioned for the completeness of the justification of

the BVH-based trimming algorithm so that we will give more attention to the

construction of the offset surface BVH. Furthermore, the performance gain of

using the BVH will be much more significant in trimming the offset surfaces.

6.3 Trimming an Offset Curve using the BVH

Equation 4.4 reveals the isosceles relation between the self-intersection points

on an offset curve and their corresponding progenitor points. Among the self-

intersection points that we obtain from the solution of the constraint equa-

tions, the self-intersection points which belong to the local self-intersections

of the offset curve are eliminated with the redundant curve segments in the

post-process of the equation solving. We modify this algorithm by replacing

the constraint equation solving with the geometric intersection tests on the

bounding volumes enclosing the offset curve. Here the bounding volumes must

be designed such that the intersection tests take less computational effort but

still guarantee the accuracy of the results.

Before explaining the details of the BVH-based offset curve trimming algo-

rithm, we suppose that the progenitor curve C(t) be a planar curve (x(t), y(t))

where x(t) and y(t) are either cubic Bézier polynomials or cubic B-spline poly-

nomials. When the latter is used, the curve is converted to a set of piecewise

cubic Bézier forms through the knot insertion beforehand.

Each offset curve is enclosed by a set of bounding volumes, each of which

encloses a monotone curve segment in the offset curve. We select Axis-Aligned

Bounding Boxes (AABBs) as the bounding volumes of the offset curves be-

cause the coordinate-wise addition can be used in the construction of the

70



bounding volumes. Here the monotonicity of a curve segment in a leaf AABB

is important because the AABB of a monotone curve is easily constructed by

comparing only the endpoints of the curve. The monotonicity condition also

assures that two curve segments intersect at most at a single point when their

AABBs overlap. The intersection points are then easily computed by applying

a point projection method of Hu and Wallner [39] or other Newton iteration

methods on the curve segments enclosed in the colliding bounding volumes.

To divide an offset curve into a set of monotone curve segments, the ex-

treme points of O(t) must be identified in advance. Let O(t) = (Ox(t), Oy(t))

be an offset curve of C(t) = (x(t), y(y)) where O(t) = C(t) + dN(t). Then the

derivatives of O(t) are formulated as follows.

O′(t) = C ′(t) + dN ′(t)

= (x′(t), y′(t)) + d
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t)2 + y′(t)2)
3
2

(x′(t), y′(t))

= (x′(t), y′(t))(1 + d
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t)2 + y′(t)2)
3
2

)

= C ′(t)(1 + dκ(t)) (6.3)

O′′(t) = C ′′(t)(1 + dκ(t)) + C ′(t)dκ′(t)

(6.4)

Extreme points to separate the curve to the monotone curve segments include

x-extreme points, y-extreme points and inflection points. Using Equation (6.3)

and (6.4), the extreme points of the offset curve are identified as the solutions
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of the following equations.

O′
x(t) = x′(t)(1 + dκ(t)) = 0 (x-extreme point)

O′
y(t) = y′(t)(1 + dκ(t)) = 0 (y-extreme point)

O′
x(t)O

′′
y(t)−O′

y(t)O
′′
x(t) = (x′(t)y′′(t)− y′(t)x′′(t))(1 + dκ(t))2 = 0 (inflection point)

(6.5)

Equation (6.5) implies that the extreme points of the offset curve occur at the

same t as those of the progenitor curve in addition to the singular points of

the offset curve where the curvature becomes −1
d . Singular points of the offset

curve are dependent on the offset distance d, whereas the extreme points of the

progenitor curve can be shared between the offset curves with varying offset

distance.

The computational cost of finding the exact singular points in an offset

curve is high because one has to solve the following equation.

κ(t) =
x′(t)y′′(t)− y′(t)x′′(t)

(x′(t)2 + y′(t)2)
3
2

(x′(t), y′(t)) = −1

d
(6.6)

Even for a simle cubic Bézier curve, Equation (6.6) includes the polynomial

terms of degree 12. Instead of directly solving Equation 6.6 for the entire

domain of the curve, we do simple monotonicity tests to figure out whether

the monotonicity of the curve segment is guaranteed or not. The segments not

guaranteed to be monotone are subdivided into smaller curve segments and

tested for the monotonicity again. The performance of the algorithm depends

on the number of subdivisions: if we can find the monotone curve segment in

the early stages during subdivision, it will reduce the number of intersection

tests between the bounding volumes as well.

The monotonicity of the offset curve is tested in the following steps. We

start with the offset curve separated by x-extreme and y-extreme and inflection

72



points of the progenitor curve. Extreme points of the progenitor curve can

be easily computed. (For instance, we only need to solve at most quadratic

equations for a cubic progenitor curve) For an x-monotone, y-monotone, and

inflection-free progenitor curve segment, its corresponding offset curve segment

is checked to have any singular points in it. To this intent, we first check

the minimum value of x′(t)y′′(t) − x′′(t)y′(t) in the curve segment: if this

value and the offset distance d are positive, we know that O′(t) �= 0 for this

curve segment, which makes the segment monotone. If the minimum value is

negative, we further investigate the range of κ(t) by computing the nominator

and the denominator of κ(t). If we can guarantee the minimum value of κ(t)

is larger than −1
d , we conclude that the curve segment is monotone and stop

the subdivision of the segment.

The monotonicity test yields a hierarchy of the bounding volumes, each

of which encloses the monotone offset curve segment. We perform the local

self-intersection tests and the global self-intersection tests on this BVH. The

global self-intersection tests are performed by comparing whether two bound-

ing volumes in BVH overlap or not. Sorting the bounding volumes along the

x-axis (or the y-axis) in 2D further accelerates the speed of the tests as it

reduces the number of comparisons between the bounding volumes.

Figure 6.1 shows the trimmed offset curves computed using the proposed

BVH. Bounding volumes generated during offset curve trimming are also

shown as red boxes in Figure 6.2. In Figure 6.2, the bounding volumes in

the concave side of the offset curves and near the singularities are small com-

pared to those in the convex side. This is because the curvature tests based on

finding the range of κ(t) can quickly prune the BVH in the convex side of the

offset curves but must search the BVH further in the concave side where the
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Figure 6.1: Examples of trimmed offset curves.

Figure 6.2: Bounding volumes enclosing offset curves. Axis-aligned bounding

boxes(AABBs) are used to bound monotone offset curve segments.
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sign of κ(t) approaches to −1
d . However, the overall number of subdivisions

is still low compared to solving the constraint intersection equations for the

entire domain of the curves, as proposed in Chapter 4.

6.4 Trimming an Offset Surface using the BVH

6.4.1 Offset Surface BVH

Similar to an offset curve, we enclose an offset surface with a hierarchical

spatial structure of the bounding volumes. Each bounding volume must be a

simple-shaped object that fits the acceleration of the decision tests and the

geometric operations used in detecting the self-intersections and removing the

redundant regions from the offset surface. Previous work on the BVH has pro-

posed various types of bounding volumes enclosing the general surface. Among

those bounding volumes, spheres, axis-aligned bounding boxes (AABBs), ori-

ented bounding boxes (OBBs) are widely-used bounding volumes because they

are easy to construct and maintain. However, those bounding volumes are of-

ten too loose relative to the actual geometry. Swept sphere volumes such as

line swept spheres (LSS), and rectangle swept spheres (RSS), on the other

hand, are more sophisticated bounding volumes that give a more tight fit to

the actual geometry [54]. In using swept sphere volumes, we must design a

simple-shaped geometry approximation (e.g., a line for LSS and a rectangle

for RSS) and identify the bounding error, or the thickness of the bounding vol-

ume, which is the maximum difference between the geometry approximation

and the actual geometry enclosed.

In this section, we design a new BVH enclosing the offset surface that is

also specialized in the decision tests performed in offset surface trimming. The
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(a)
(b)

Figure 6.3: (a) An example offset tetrahedron enclosing the surface. (b) Re-

cursive subdivion of the domain in building the BVH of the surface.

bounding volume in the new BVH is a kind of a tetrahedron swept sphere, or

an offset tetrahedron. The hierarchy of bounding volumes is constructed recur-

sively from a root node enclosing the offset surface of the entire domain to leaf

nodes enclosing only the fraction of patches on the offset surface. Let O(u, v) be

the offset surface of the progenitor surface S(u, v) defined on [u1, u2]× [v1, v2].

To build the BVH, we split the offset surface along u and v-iso lines of the

surfaces and yield the subpatches of the surface, the domains of which are

[u1,
u1+u2

2 ] × [v1,
v1+v2

2 ], [u1+u2
2 , u2] × [v1,

v1+v2
2 ], [u1,

u1+u2
2 ] × [v1+v2

2 , v2], and

[u1+u2
2 , u2] × [v1+v2

2 , v2] as shown in Figure 6.3 (b). The bounding volume of

O(u, v) contains a tetrahedron formed by O(u1, v1), O(u2, v1), O(u2, v2) and

O(u1, v2) which are four corner points of the offset surface and spheres swept

along the hull of tetrahedron. A radius of the sweeping sphere is the max-

imum difference between the tetrahedron and the actual offset surface. The
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radius is determined so that the sphere-swept tetrahedron must contain all of

the bounding volumes enclosing the subpatches of the surface. The subpathes

recursively split, as shown in Figure 6.3 (b) until the length of both u and v

domains of the patch becomes smaller than the predefined tolerance. When

the subpath cannot split anymore, the bounding volume enclosing the patch

becomes a leaf node of the offset surface BVH.

Whereas the structure of bounding volumes is constructed from the top-

most root node enclosing the whole offset surface down to leaf nodes, the

bounding error of each offset tetrahedron is computed in the opposite direc-

tion: the bounding error of any non-leaf offset tetrahedron is computed from

the bounding errors of their four child offset tetrahedra. The question is then

how to compute a bounding error of a leaf node that guarantees to enclose

the actual offset surface patch. We will explain how to compute the bounding

error of the leaf node and how to derive the bounding errors of the non-leaf

nodes from their child nodes below.

Bounding Error of a Leaf Offset Tetrahedron

The bounding error of a leaf node must be large enough to guarantee that

the offset tetrahedron encloses the actual offset surface patch, but the large

bounding error also makes the bounding volume too bulky, which hinders

the acceleration of the offset trimming algorithm. In the previous work on

offset tetrahedron-based BVHs, Kim et al. [45] represent the NURBS surface

patch in a leaf node with the simpler NURBS surface such as the Coons

patch. To construct a BVH for a semi-regular quad mesh, Kang et al. [42]

model a leaf patch as a bilinear surface. When the surface is parametrized in

terms of the rational polynomial functions, the natural choice of the underlying
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representation of a leaf bounding volume would be the rational polynomial

surface of the lower degree because of the easiness in handling the upper bound

of the bounding error. For those geometries, the bounding error between the

actual geometry and the bounding volume can also be represented in terms of

the rational polynomial functions.

If we model a leaf node of the offset surface BVH by approximating the

offset surface with another NURBS representation X(u, v) of lower degree, the

bounding error between O(u, v) and X(u, v) becomes ε as follows:

|O(u, v)−X(u, v)| = |S(u, v) + dN(u, v)−X(u, v)| ≤ ε (6.7)

We can also interpret ε as a Hausdorff distance between O(u, v) and X(u, v),

which is the maximum value of the minimum distance values between O(u, v)

and X(u, v) for all of the points on the surface. Unfortunately, it is difficult to

compute ε because N(u, v) is not rational in general and makes the degree of

Inequality (6.7) too high. Instead of approximating the leaf node with NURBS

representation directly, we construct the bounding volume of the offset surface

with simpler geometry. By approximating the progenitor surface S(u, v) with

another type of geometry that is simpler to compute and bound the normal

of the surface, we make the process of computing the bounding error of the

offset surface approximation less complicated.

A torus patch is what we propose to approximate each progenitor surface

patch S(u, v) and use to construct the leaf bounding volume of the offset

surface BVH. To construct a torus patch for the given surface patch, we adopt

the method of Lie et al. [60], as mentioned in Section 5.3. This method finds

the osculating torus at a point on the surface as follows: The major radius R

and the minor radius r of the torus are computed from the principal curvatures
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κ1 and κ2 at a point on the surface such that R = 1
κ1

and r = 1
κ1

− 1
κ2
. The

torus is aligned so that the principal directions of the surface and the torus

patch match.

The torus patch is advantageous in handling the offset operations of the

surface because the torus is closed under offsetting. Let T (s, t) be a torus

where s ∈ [−π, π] and t ∈ [−π, π]. Then T (s, t) and the normal field Nt(s, t)

of T (s, t) are given as follows.

T (s, t) = ((R+ r cos t) cos s, (R+ r cos t) sin s, r sin t) (6.8)

Nt(s, t) =
Ts(s, t)× Tt(s, t)

|Ts(s, t)× Tt(s, t)| = (cos t cos s, cos t sin s, sin t) (6.9)

When T (s, t) is offset by the distance d, the offset torus To(s, t) becomes

To(s, t) = T (s, t) + dNt(s, t)

= ((R+ r cos t) cos s, (R+ r cos t) sin s, r sin t) + d(cos t cos s, cos t sin s, sin t)

= ((R+ (r + d) cos t) cos s, (R+ (r + d) cos t) sin s, (r + d) sin t).

(6.10)

Therefore, the offset of torus is another torus of which minor radius increases

by the offset distance d while having the same major radius R.

Fitting the progenitor surface with torus patches makes the bounding error

analysis of the offset surface easier. From Equation (6.10), we know that the

osculating torus of a point on the offset surface is easily derived from the

osculating torus of the corresponding point on the progenitor surface by merely

adding the offset distance d to the minor radius of the torus. The maximum

deviation between the offset surface and the osculating torus of the offset

surface is then represented as a combination of the maximum deviation of the

position fields and the maximum deviation of the normal fields between the

progenitor surface and its osculating torus.
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Suppose S(u, v) be the progenitor surface and T (s, t) be the osculating

torus at some point (u0, v0) on S(u, v). We denote εtorus pos be the maximum

bounding error between T (s, t) and S(u, v) and εtorus nor the maximum bound-

ing error between Nt(s, t) and N(u, v) as follows:

|T (s, t)− S(u, v)| ≤ εtorus pos (6.11)

|Nt(s, t)−N(u, v)| ≤ εtorus nor (6.12)

where Nt(s, t) and N(u, v) are the normal fields of T (s, t) and S(u, v), respec-

tively. The maximum bounding error between the offset surface O(u, v) and

its osculating torus To(s, t) satisfies the following inequality.

|O(u, v)− To(s, t)| = |S(u, v) + dN(u, v)− T (s, t)− dNt(s, t)|
≤ |S(u, v)− T (s, t)|+ d|N(u, v)−Nt(s, t)|
≤ εtorus pos + dεtorus nor (6.13)

By approximating the progenitor surface patches with the osculating tori, the

offset surface also gains the bounding error derived from the bounding errors

of the progenitor surface. In the experiments, we fit each surface patch with

the torus osculating at the center point S(umid, vmid) = S(u1+u2
2 , v1+v2

2 ) when

the domain of the surface is [u1, u2]× [v1, v2].

Figure 6.4 shows a surface patch on the progenitor surface, the corre-

sponding offset surface patch, and their osculating tori. In Figure 6.4 (a), the

grey surface represents the progenitor surface S(u, v), and the patch marked

by a red quadrangle is the surface patch for which we want to find the leaf

bounding volume. This patch is approximated by a torus patch osculating at

S(umid, vmid). As the osculating torus only gives a local fitting near the oscu-

lating point S(umid, vmid), we cut out the torus by projecting the boundaries
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(a) (b)

(c) (d)

Figure 6.4: (a) Oscualting tori at the progenitor surface. (b) Offset of torus is

also the osculating torus of the offset surface. 4 adjacent toroidal patches of

progenitor surface (c) and their counterparts on offset surface (d).
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of the surface patch onto the torus and generate a torus patch bounded by

four corner points T (s1, t1), T (s2, t2), T (s3, t3) and T (s4, t4). The original sur-

face patch and the bounded torus patch almost coincide in Figure 6.4 (a) This

torus patch is bounded again by slightly bigger torus patch bounded by the

s- and t-isolines of the osculating torus, T (min si, t), T (max si, t), T (s,min ti)

and T (s,max ti) to simplify the computation (marked as the purple surface in

Figure 6.4 (a)).

Figure 6.4 (b) shows the corresponding offset surface patch and its oscu-

lating torus. Here, the actual offset surface O(u, v) is marked as light purple,

whereas the leaf surface patch of interest is marked as a grey quad. Red rectan-

gle represents the torus patch that has four corner points To(s1, t1), To(s2, t2),

To(s3, t3) and To(s4, t4) and the dark purple-colored patch represents the torus

patch bounded by the same s- and t-isolines as the torus patch in Figure 6.4

(a). In Figure 6.4 (c), we observe that the boundaries of the surface patches

and their torus approximations coincide, and there are few overlaps between

the neighboring torus patches. Those boundaries, however, no longer coincide

well in the offset surfaces, as shown in the discrepancies of the boundaries in

Figure 6.4 (b). Because of these discrepancies, the torus patches bounding the

leaf nodes of the offset surface overlap severely with each other, as shown in

Figure 6.4 (d).

The severe overlaps between nearby torus patches make it difficult to com-

pute the bounding error of the parent torus patch that encloses their child

torus patches. Each torus patch is constructed independently on the certain

point on the offset surface, but an aggregate of child nodes can have many dif-

ferent geometric configurations depending on the local geometry, causing the

computation of bounding errors complicated. Instead of directly constructing
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a hierarchy from torus patches, we bound again a torus patch with an off-

set tetrahedron where the tetrahedron comes from four corner points of the

offset surface, O(u1, v1), O(u2, v1), O(u1, v2) and O(u2, v2). Offset tetrahedra

formed by the points on O(u, v) are more convenient in building up the hier-

archy of the bounding volumes because they can share the corner points with

the adjacent tetrahedra. Briefly speaking, the offset surface patch in a leaf

node is bounded by a sphere-swept tetrahedron, which is again bounded by

the osculating torus of the offset surface. Figure 6.5 depicts this two staged

bounding volume construction. The figures are drawn schematically such that

the surfaces are simplified as the curves, the osculating tori as the arcs, and

the tetrahedra as the lines. However, the relation shown in Figure 6.5 can also

be applied to the case of bounding the offset surface, without loss of generality.

(a) (b)

Figure 6.5: Schematic diagram of the bounding error computation using the

offset osculating tori.

From the discussion above, we know that the maximum distance between

the offset torus and the offset surface is εtorus pos + dεtorus nor. Then the max-
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imum distance between the offset tori and the tetrahedron is the addition

between the maximum distance between the offset tori and the offset surface

and the maximum distance between the offset surface and the tetrahedron as

follows.

|To(s, t)− Tet(x, y, z)| = |T (s, t) + dNt(s, t)− Tet(x, y)|
= |T (s, t) + dNt(s, t)−O(x, y) +O(x, y)− Tet(x, y)|
≤ |T (s, t) + dNt(s, t)−O(x, y)|+ |O(x, y)− Tet(x, y)|
≤ (εtorus pos + dεtorus nor) + εoffset tetra (6.14)

where Tet(x, y, z) is a tetrahedron constructed from four points on O(u, v).

From the equation 6.13 and 6.14, we determine the bounding error of the

offset tetrahedron as follows.

ε ≤ (εtorus pos + εtorus nor)× 2 + εoffset torus (6.15)

We defer the explanation of the details of computing the actual error val-

ues, εtorus pos, εtorus nor and εoffset torus in the discussion above. To compute

these values, we must find the maximum values of the lefthand side of the in-

equalities 6.11, 6.12 and 6.13. These computations can be done algebraically

by differentiating the lefthand side equation with respect to u, v, s, and t. The

computational cost, however, will be prohibited because the equations to solve

consists of a combination of rational and non-rational terms from S(u, v) and

N(u, v), as well as the transcendental terms from T (s, t). Instead of finding

the upper bound of the inequalities algebraically, we exploit the geometric

properties of the torus to simplify the bounding errors εtorus pos, εtorus nor and

εoffset torus.
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First, εtorus pos and εtorus nor are approximated based on the assumption

that the osculating torus T (s, t) is fitted to the mid-point of the surface patch

in the leaf node. This assumption implies that the upper bound of the in-

equalities 6.11 and 6.12 have high chances to appear on the boundaries of the

surface patch and in particular, one of the four corner points of the surface

patch. To obtain εtorus pos and εtorus nor, we compute |T (s, t) − S(u, v)| and
|Nt(s, t)−N(u, v)| for four corner points of the progenitor surface patch and

pick the maximum values among them.

For εoffset torus, we note that the computed torus patches are osculated to

the surface either on the outer equator of the torus (T (0, 0) = S(umid, vmid))

or on the inner equator of the torus (T (0, π) = S(umid, vmid)), depending on

the sign of the gaussian curvature K = κ1κ2 at S(umid, vmid). That is, if

two principal curvatures of the surface have the same sign, we fit the outer

major circle to the surface and the inner major circle, otherwise. Depending

on which side of torus we use to fit the surface, the bounding error values can

be determined as follows.

1. If the outer circle is fit: We approximate εoffset torus by measuring the

distance between Toffset(smid, tmid) and the tetrahedron made up of four

corner points of the offset surface (see Figure 6.6 (a)).

2. If the inner circle is fit: We find the distance between the tetrahedron

made up of four corner points of the offset surface and four points in the

mid-boundary of the offset torus patch. Then we take the maximum of

four values as εoffset torus (see Figure 6.6 (b)).

In conclusion, we enclose the actual offset surface patch in the leaf node

by a tetrahedron of which points are four corners of the actual geometry with
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(a) (b)

Figure 6.6: Sample points to compute εoffset torus on (a) the outer torus and

(b) the inner torus patches.

the bounding error of ε.

Bounding Error of a Non-leaf Offset Tetrahedron

Once the leaf bounding volumes are constructed, the bounding errors of all in-

ternal bounding volumes are computed from the bounding errors of their child

nodes. Assume a non-leaf node n enclosing the surface S(u, v) on [u1, u2] ×
[v1, v2] has four child nodes n11, n12, n21 and n22 enclosing S(u, v) on [u1, umid]×
[v1, vmid], [umid, u2]× [v1, vmid], [u1, umid]× [vmid, v2] and [umid, u2]× [vmid, v2]

where umid = u1+u2
2 and vmid = v1+v2

2 . If the bounding error of each child

node is εii for i ∈ {1, 2} and j ∈ {1, 2}, the bounding error εn of the node n
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satisfies the following inequality:

εn ≤ max(ε11, ε12, ε21, ε22)

+ max(dist(p11, n), dist(p12, n), dist(p21, n), dist(p22, n), dist(pcenter, n))

(6.16)

where dist(p, n) is the minimum distance from a point p to the offset tetrahe-

dron n and p11, p12, p21, p22 and pcenter are S(umid, v1), S(umid, v2), S(u1, vmid),

S(u2, vmid) and S(umid, vmid), respectively. This inequality can be proven by

the simple triangular inequalities constructed on the edges of the node n and

nijs. The computation of finding the bounding errors of the offset tetrahedron

with two children nodes is already shown by Kang et al. [42].

6.4.2 Finding Self-intersections in Offset Surface Using BVH

In this section, we explain how to use the BVH constructed in Section 6.4.1

to accelerate the detection of the self-intersections and redundancies in the

offset surface. Suppose that the hierarchy of bounding volumes is already con-

structed for the surface S(u, v). In general, the self-intersections of S(u, v) are

detected by testing the intersections between the bounding volumes, as shown

in Algorithm 1. Here, a bounding volume is split into child nodes and tested

whether they have intersections among them. Each child node is also tested

to contain any self-intersections. The detection tests are executed recursively

until the node becomes the leaf node.

Algorithm 1 Find self-intersection in BV n enclosing S(u, v)

1: procedure FindSelfIntersection(n)

2: for every child node ni of n do
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3: for every child node nj of n do

4: if ni �= nj then

5: FindIntersection(ni, nj)

6: for every child node ni of n do

7: FindSelfIntersection(ni)

8: procedure FindIntersection(ni, nj)

9: if n1 is a leaf and n2 is a leaf then

10: if n1 is adjacent to n2 then

11: return

12: ε1 ← bounding error of n1

13: ε2 ← bounding error of n2

14: dtetra ← dist(tetrahedron1, tetrahedron2)

15: if dtetra ≤ ε1 + ε2 then

16: if n1 is a leaf then

17: if n2 is a leaf then

18: return (n1, n2)

19: else

20: for every child node ni of n2 do

21: FindIntersection(n1, ni)

22: else

23: if n2 is a leaf then

24: for every child node ni of n1 do

25: FindIntersection(ni, n2)

26: else

27: for every child node ni of n1 and nj of n2 do
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28: FindIntersection(ni, nj)

Algorithm 1 yields a list of pairs of leaf bounding volumes having the dis-

tance smaller than the sum of the bounding errors. Here, the self-intersections

are detected only up to the resolution of the leaf node. Therefore, the addi-

tional step of identifying the intersection curve between the intersecting sur-

faces must be performed for the detected pairs of leaf nodes.

The key to the acceleration of Algorithm 1 is in the reduction of the num-

ber of comparisons between the bounding volumes. This can be either done

by finding the non-relevant bounding volumes in the stages as early as possi-

ble and excluding them from further recursions, or by finding the geometric

conditions to guarantee that two bounding volumes never overlap with each

other. From now on, we explore the additional constraints to exclude non-

relevant bounding volumes or bounding volume pairs that never contribute to

the self-intersections of the trimmed offset surface.

Detection of the Normal Flipping in Offset Surface

In Section 5.3, we state that the region of the surface where the normal of the

offset surface flips from the normal of the progenitor surface must be excluded

and not included in the trimmed offset surface. The difference between the

normal of the offset surface and the normal of the progenitor surface comes

from Equation 5.10 and is reformulated as Equation 5.25. The geometric

meaning of Equation 5.25 is that the offset surface flips its orientation when

one of the principal curvatures of the surface at that point is larger than the

inverse of the offset radius, but not both of the curvatures. This constraint is

analogous to finding the local self-intersections or the fishtails of the planar
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offset curves. By omitting the positive redundant terms from Equation 5.25,

the function f(u, v) that determines the normal flipping of the offset surface

is simplified as follows:

f(u, v) = (κ1 − 1

d
)(κ2 − 1

d
) (6.17)

where κ1 and κ2 are the principal curvatures of the progenitor surface at

S(u, v) and d be the offset distance. If f(u, v) is positive, the normals of both

progenitor and offset surface are the same, and the offset surface faces reversely

if f(u, v) is negative. Therefore, the region in offset surface where f(u, v) is

non-positive must be excluded in the trimmed offset surface.

When the BVH is used to find the self-intersections of offset surface, the

sign of f(u, v) must be determined for each bounding volume: if f(u, v) is non-

positive for the entire domain of O(u, v) in the bounding volume, the bound-

ing volume and all of the child nodes of this volume no longer need to check

self-intersections within them. If f(u, v) is partially positive for the bounding

volume of O(u, v), the bounding volume must split, and the child nodes are

tested again for the normal flipping. When the sign of f(u, v) is tested for

the bounding volume, we have to figure out either whether the upper bound

of f(u, v) is positive or whether the lower bound of f(u, v) is negative for

the domain of the bounding volume. In order to compute the exact upper or

lower bounds of f(u, v) for the specific domain representing the bounding vol-

ume, the curvature analysis tool such as that in the IRIT geometric modeling

system might be useful. However, f(u, v) involves the terms of the principal

curvatures of the surface, and finding the maximum and minimum values of

the principal curvatures on the continuous surface already requires a large

number of computations.
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Instead of the computation involving the curvature terms of the surface,

we determine the sign of f(u, v) of the bounding volume by comparing the

value of f(u, v) for some sample points on the offset surface. To this purpose,

we determine the normal flipping on each leaf bounding volume by sampling

the four corner points of the leaf node and test f(u, v)s only for the sampled

points. First, if f(u, v)’s are negative for all of the corner points, we consider

the normal of this leaf bounding volume as fully flipped. If all of the sample

points have the positive f(u, v) values, this bounding volume is marked as not

flipped. Finally, if some of the four corner points have the positive f(u, v) values

whereas others have the negative f(u, v), we mark the bounding volume as

partially flipped, in which the offset surface flips somewhere inside the bounding

volume. Only the nodes marked as fully flipped are excluded from the bounding

volume intersection test in advance.

Figure 6.7 shows three different regions in the offset surface regarding

normal flipping. The regions colored as grey in xyz-domain in Figure 6.7 (a)

or white in uv-domain in Figure 6.7 (c) represent a collection of leaf nodes

marked as not flipped, whereas the regions colored as green represent partially

flipped leaf nodes. Leaf nodes marked as fully flipped are colored as orange in

this figure. Figure 6.7 (b) and (d) are zoom-in views around the red circles in

Figure 6.7 (a) and (c), respectively. Here the leaf nodes marked as partially

flipped are colored as green, and the boundaries of the node are drawn as

black lines. We can observe that partially flipped nodes successfully separates

the fully flipped regions of the offset surface from not flipped regions despite

the approximation we used to determine the signs of f(u, v) of the bounding

volumes.

91



(a) (b)

(c) (d)

Figure 6.7: Normal-flipped regions of the offset surface (a) in the xyz-space

and (b) the zoom-in view of (a); the corresponding region (c) in the uv-domain

and (d) the zoom-in view of (c).

Projection Distance-based Offset Surface Trimming

The trimmed offset surface only contains the regions where the minimum

distance to the progenitor surface is at least the offset distance. In other words,
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if the minimum distance from some point (u0, v0) on the offset surface O(u, v)

to the progenitor surface S(u, v) is smaller than offset distance, that point

does not belong to the final trimmed offset region. For these points, we can

find another point (u1, v1) on S(u, v) such that |O(u0, v0)− S(u1, v1)| < d. In

the case of planar offset curves, these points are expected to appear near the

fishtails, where the offset curve abruptly changes its direction and orientation.

In the offset surfaces, these points are expected to appear near the region

where the offset surface flips its normal.

We can exclude a bounding volume from testing the self-intersections of

the offset surfaces when there exists (u1, v1) such that |O(u, v)−S(u1, v1)| < d|
for the entire bounding volume. If we can find a sphere that has its center at

some point on the progenitor surface S(u1, v1) and the radius of the sphere is

offset distance d, and this sphere contains the entire volume of the bounding

volume, any bounding volume pairs containing this bounding volume no longer

need to test intersections.

To simplify the computation, we use a more relaxed condition in the ex-

periment to test whether each bounding volume can be trimmed based on

the minimum distance to the progenitor surface. We measure the projection

distance from the center of each offset tetrahedron (bounding volume) to the

base surface. If the measured distance is less than the ρ ·d where d is the offset

distance, and ρ is some constant far larger than 1, we exclude any bounding

volume pairs including this bounding volume from intersection tests. To find

out this region, we measure the projection distance between the center of the

offset tetrahedron and the base surface. If the measured distance is far less than

the offset distance, we exclude the bounding volume from the self-intersection

detection.
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Self-intersection Tests of the Sibling Nodes

If we can find the additional constraints to ensure that the bounding volume

does not have any local self-intersections in it, any pair of the bounding vol-

umes under the branch of this bounding volumes in the BVH also have no in-

tersections between them. Moreover, if two bounding volumes are determined

not to intersect at all in the early stage of the intersection tests, we do not need

to explore the sub-branches of these bounding volumes anymore, which can

save the computational time spent on intersection tests. One constraint that

ensures the local self-intersections on the surface is derived from the range of

the normals of the surface. Suppose the normal of the surface be bounded by

a normal cone N(m,α) where m is the axis of the cone, and α is the angle

of the cone. If α is less than 90 degrees, there exist no loops in the intersec-

tion curves that generate the local self-intersections within the surface [77].

In the middle of finding the intersection between two bounding volume in Al-

gorithm 1, therefore, if the parent node that contains two bounding volumes

has the angle of the normal cone less than 90 degrees, it is guaranteed that

the two bounding volumes never intersect. Therefore, for all of the bounding

volume pairs encountered in the intersection tests, we first find the common

parent node enclosing both bounding volumes. If the angle of the normal cone

of the parent node is less than 90 degrees, two bounding volumes do not need

to be subdivided to test intersection anymore.

Figure 6.8 shows an example of two bounding volumes and their common

parent node shown in the uv-domain. The depth of the BVH in Figure 6.8 is

4, meaning that the surface is subdivided in u- and v-directions for four times

to reach the leaf nodes. As we always subdivide the surface in both directions,
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the domain of every bounding volume is a square, and the bounding volumes

of depth h are aligned in the grid that has the interval of 1
2h

in both directions.

In Figure 6.8, two nodes to test intersections are marked in thick black lines.

The common bounding volume enclosing both nodes is the bounding volume

of depth 0, which is marked as a red square in Figure 6.8 (a). This example

demonstrates that even the small bounding volumes in proximity can have a

large common parent node when the bounding volumes are placed slightly off

from the grid structure of the BVH. Unfortunately, these situations are en-

countered frequently in the self-intersection tests of the offset surfaces because

the bounding volumes of the offset surfaces have relatively large bounding er-

rors compared to those of the progenitor surfaces. In extreme cases, almost all

leaf nodes of the offset surface BVH interfere with the neighboring nodes. The

smallest square-shaped node enclosing both bounding volumes in Figure 6.8

is the node of size 4, which has the same size as nodes of depth 2, as shown

in Figure 6.8 (b). However, this node does not belong to the current BVH

because it is shifted from the actual nodes of the same size in the BVH.

To remedy this problem, we add the auxiliary nodes to the BVH. The

concept of constructing the auxiliary nodes that have overlaps in the parameter

domain of the surface with the existing bounding volumes is similar to that

of a loose octree where space is partitioned with some overlaps allowed [84].

The number of the nodes in the BVH increases approximately four times by

shifting the nodes in u-, v- and diagonal directions in the parameter domain.

We shift each node by half of the size of the node so that the new node always

overlaps with the two nodes in the original BVH.

When the normal cone of the common parent node is checked for intersec-

tion, we only care for the parent node of which normal does not flip. When
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(a) (b)

Figure 6.8: The common parent nodes (in red) of two leaf bounding volumes (in

black) in (a) the originial bvh and (b) the bvh with the additional overlapping

nodes.

not normal-flipped, the normal cone of the offset surface bounding volume is

the same as the normal cone of the progenitor surface bounding volume. Thus,

we compute the normal cone of the progenitor surface instead of that of the

offset surface.

Algorithm 2 Find self-intersection in BV n enclosing O(u, v)

1: procedure FindSelfIntersection OffsetSurface(n)

2: for every child node ni of n do

3: for every child node nj of n do

4: if ni �= nj then

5: FindIntersection OffsetSurface(ni, nj)

6: N(m,α) ← normal cone of S(u, v) corresponding to O(u, v)
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7: if n is not flipped and α < π
2 then

8: return

9: for every child node ni of n do

10: FindSelfIntersection OffsetSurface(ni)

11: procedure FindIntersection OffsetSurface(ni, nj)

12: if n1 is flipped or n2 is flipped then

13: return

14: if n1 is a leaf and n2 is a leaf then

15: if n1 is adjacent to n2 then

16: return

cp ← common parent of ni and nj

17: N(m,α) ← normal cone of S(u, v) corresponding to cp

18: if α < π
2 then

19: return

20: ε1 ← bounding error of n1

21: ε2 ← bounding error of n2

22: dtetra ← dist(tetrahedron1, tetrahedron2)

23: if dtetra ≤ ε1 + ε2 then

24: if n1 is a leaf then

25: if n2 is a leaf then

26: return (n1, n2)

27: else

28: for every child node ni of n2 do

29: FindIntersection OffsetSurface(n1, ni)

30: else
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31: if n2 is a leaf then

32: for every child node ni of n1 do

33: FindIntersection OffsetSurface(ni, n2)

34: else

35: for every child node ni of n1 and nj of n2 do

36: FindIntersection OffsetSurface(ni, nj)

Algorithm 2 is the modified version of Algorithm 1 that includes the ac-

celeration techniques discussed above. In particular, the modifications added

in Algorithm 2 reduce the number of recursions in line 23-36 of the procedure

FindIntersection OffsetSurface.

Collision Detection within a Leaf Node

In experiments, we realize that further accelerations are desirable in practice.

We apply the sub leaf level of self-intersection tests to trim more local self-

intersections from the results. For the detected colliding bounding volume

pairs, we sample the points on the subdivided surfaces and compute the convex

hull of the sampled points. If the convex hulls of two bounding volumes do not

overlap within the tolerance, we determine that two bounding volumes doe

not intersect and eliminate the pair them from the colliding pair list.

6.4.3 Tracing Self-intersection Curves

The self-intersection detection algorithm proposed in the previous section

yields a list of the leaf bounding volume pairs that have the potential intersec-

tions on the offset surface. For the detected pairs, we identify how the actual

intersection curves proceed in the bounding volumes. The intersection curves
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are computed first by finding the intersection points between the boundaries of

the surface in one bounding volume and the surface in the other bounding vol-

umes using the curve-surface-intersection algorithm. These intersection points

serve as starting points to trace the intersection curves within the bounding

volumes. We trace the intersection curves using a numerical tracing method,

such as that of Wang [88]. Equation (6.18)–(6.20) represents the constraint

equations used in the numerical tracing of the intersection curves.

(S(u, v)− S(s, t)) · d(N(u, v) +N(s, t)) = 0 (6.18)

(S(u, v)− S(s, t) + dN(u, v)) · Ss(s, t) = 0 (6.19)

(S(u, v)− S(s, t) + dN(u, v)) · St(s, t) = 0 (6.20)

Equation (6.18) is derived from the equidistance constraint where the

points on the offset self-intersection curves have the same distance d from

the progenitor surface, whereas Equation (6.19) and (6.20) represent the pro-

jection constraints such that the points on the offset self-intersection curves

must be orthogonal to the progenitor surface. We use the fourth-order Runge-

Kutta method to trace these equations and yield a list of piecewise polylines

as the intersection curves.

Figure 6.9 demonstrates the curve tracing results in the uv-domain. In

Figure 6.9 (a), the intersection curves are only traced within the leaf nodes

marked as self-colliding. When the tracing points reach to one boundary of

the bounding volumes in the pair, we find the next colliding pair and continue

the tracing. Figure 6.9 (b) shows an zoom-in view of the green circle marked

in Figure 6.9 (a). We stop the numerical tracing around the singular point

of O(u, v) where Ou(u, v)×Ov(u, v) almost vanishes because the differentials
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(a) (b)

Figure 6.9: (a) Intersection curves from numerical tracing. (b) The zoom-in

view of the green circle marked on (a).

used in the numerical tracing becomes unstable around the singularities of

O(u, v). Around the singularities, we switch from the numerical tracing to

the self-intersection computation using torus patches, just as mentioned in

Section 5.3.

6.5 Experimental Results

We also have implemented the BVH-based offset surface trimming algorithm

in C++, and measure the performance of the algorithm on an Intel Core

i7-6700K 4.GHz PC with a 32GB main memory. We have applied the new

trimming algorithm to the offset surface examples experimented in Chapter 5

to compare the execution time of both algorithms. In all of the experiments,

we set the resolution of the leaf node to 1
512 in both u and v directions, which
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(a) (b) (c)

(d) (e)

Figure 6.10: The colliding bounding volumes (in red) in the uv-domain as a

result of acceleration techniques.

means that each offset BVH has 512 × 512 = 262, 144 leaf nodes and their

non-leaf nodes in the upper level of the BVH.

We first demonstrate the performance gain obtained from the various ac-

celeration techniques proposed in Section 6.4.2. We compare the performance

of Algorithm 1 in which the BVH is searched in a straightforward way to find

the colliding bounding volume pairs, with Algorithm 2 in which the various

pruning techniques are employed in the middle of the collision detection. Ta-

ble 6.3 shows the number of bounding volume pairs collected when the different

levels of acceleration techniques are applied. The first row in Table 6.3 shows

the number of the pairs detected only with Algorithm 1. Considering the total
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(a) (b) (c)

(d) (e)

Figure 6.11: Collision pairs in xyz-domain as a result of acceleration tech-

niques.

number of the leaf nodes is about 260K, the number of bounding volume pairs

shown in the first row is relatively large: for instance, each leaf bounding vol-

ume in Srf10 d100 collides with approximately 366 leaf bounding volumes in

average. This is because of the bounding errors from the normal terms scaled

by the offset distance, which thicken the bounding volume in the offset BVH

and cause overlaps between the nearby bounding volumes. Fortunately, these

numbers drastically decrease according to the addition of bounding volume

filtering techniques. We determine the order of applying the trimming tech-

niques based on the prior experiments to maximize the performance gains of

the algorithm.
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Figure 6.10 and 6.11 show the leaf bounding volumes of collision in the

uv-domain and in the xyz-space. In Figure 6.10 (a), the detected bounding

volumes are distributed in the entire offset surface because the redundant

local self-intersections occur because of the thickness of offset surface bounding

volumes. When the normal flipping regions are trimmed as in Figure 6.10 (b),

the bounding volume pairs in the normal flipping region (colored as orange

in Figure 6.10) of offset surface are trimmed away. In Figure 6.10 (c), the

bounding volume pairs, each of which shares the common parent bounding

volume, are eliminated. In this example, most of the bounding volume pairs

in the flat or convex regions of the offset surface are pruned in this step. The

bounding volumes closer to the progenitor surface than the offset distance d

are eliminated in Figure 6.10 (d) and only the bounding volumes near the

actual self-intersection curves are left after the sub leaf level of refinements as

shown in Figure 6.10 (e).

Table 6.4 lists the execution time of the BVH-based surface offset trimming

algorithm. We observe significant improvements in terms of the execution time:

the self-intersection computation is accelerated up to approximately 500 times

for several examples in the experiments. Note that, however,Maekawa 1 only

shows approximately ×2 performance improvement. When the offset distance

is relatively large compared with the problem size as shown in this example, the

thickness of the offset surface bounding volume also increases cannot expect

the drastic reduction of the number of colliding pairs.
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Example Description Eq. Solving Bvh

Srf12 d80 x : y = 12 : 10, d = 0.12 00:24:02 00:00:46

Srf12 d97 x : y = 12 : 10, d = 0.1455 00:39:14 00:01:19

Srf12 d99 x : y = 12 : 10, d = 0.1485 00:41:36 00:01:18

Srf12 d101 x : y = 12 : 10, d = 0.1515 00:44:04 00:01:20

Srf12 d103 x : y = 12 : 10, d = 0.1545 00:45:45 00:01:18

Srf12 d105 x : y = 12 : 10, d = 0.1575 00:47:54 00:01:26

Srf10 d100 x : y = 10 : 10, d = 0.15 01:10:31 00:01:20

Srf10.1 d100 x : y = 10.1 : 10, d = 0.15 01:09:22 00:01:27

Srf10.5 d100 x : y = 10.5 : 10, d = 0.15 00:59:09 00:01:20

Srf12 d100 x : y = 12 : 10, d = 0.15 00:41:11 00:01:23

Srf15 d100 x : y = 15 : 10, d = 0.15 00:30:50 00:00:49

Srf20 d100 x : y = 20 : 10, d = 0.15 00:27:15 00:00:45

Maekawa 1 Maekawa’s example 1 00:50:04 00:26:29

Maekawa 2 Maekawa’s example 2 00:20:12 00:00:06

Maekawa 3 Maekawa’s example 3 20:08:16 00:00:24

Pipe Seong’s example 01:07:36 00:00:24

SweepCurve Seong’s example 00:42:34 00:00:19

Helix Seong’s example 01:24:11 00:00:25

Table 6.4: Execution time (in hh:mm:ss) of trimming algorithms using the

multivariate equation solving (third column) and the BVH-baed acceleration

techniques (in fourth column).
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6.6 Summary

We have presented a new approach to trimming the offset curves and sur-

faces that accelerates the trimming algorithms presented in Chapter 4 and

5. The modified trimming algorithms capture the accurate topological behav-

iors of the self-intersections of the offset curves and surfaces while showing

a significant performance improvement. In particular, the self-intersections in

the near-singularities and the branching points are still revealed in the offset

surface self-intersections. To accelerate the trimming algorithm, we construct

the bounding volume hierarchy of the offset curves and surfaces from the po-

sition and the normal of the progenitor curves and surfaces. We also present

various geometric conditions to prune the offset curve and surface BVHs. The

experiment results show that the modified offset surface trimming algorithm

accelerates the trimming ×500 in the best case.
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Chapter 7

Application of Trimmed Offset
Surfaces: 3D Voronoi Diagram

7.1 Background

A Voronoi diagram is a partition that subdivides space into cells, and each cell

contains all of the loci that are closer to the particular site than other sites in

the space. In the classical definition, the sites of the Voronoi diagram consist

of points in the plane. Here Voronoi cells are convex polygons constructed

from intersecting half-planes between the sites. An edge of each Voronoi cell

is a bisector line that is equidistant from two different sites, and a vertex is a

point where there exist three equidistant sites among the sites. This standard

Voronoi diagram has been well-studied and thoroughly analyzed in computa-

tional geometry [5]. Generalized Voronoi diagrams, on the other hand, have

various shapes of sites from simple points, line segments [48], and curves [2] to

more complex high-dimensional geometries such as spheres and cylinders [32],
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and freeform surfaces or a combination of different geometries. If the sites are

general objects, however, the construction of the Voronoi diagram becomes

more intricated: Voronoi cells are split not only between distinct sites but also

by the same sites.

Finding a Voronoi diagram of a planar curve is a dual problem of com-

puting trimmed offset curves as a Voronoi diagram derives trimmed offsets

and vice versa (Held [34]). Figure 7.1 illustrates the connection between a

Voronoi diagram and trimmed offset curves of a planar curve. The boundaries

of Voronoi cells are parts of the bisector lines that are equidistant to two dif-

ferent points on the curve. A point on the bisector line, which is distance d

far away from the two sites on the progenitor curve, is also one of the self-

intersection points of the offset curve with the offset distance d. A borderline

separating two Voronoi cells is composed of a collection of self-intersection

points of trimmed offset surfaces with varying offset distances. Finally, ver-

tices of the Voronoi cells that have three equidistant sites are interpreted as

points where two self-intersection points meet in trimmed offset curves.

The connection between a Voronoi diagram and trimmed offsets is also

valid in 3D as well. Similar to that of planar curves, we define a Voronoi

diagram of a freeform surface as a partition separating 3D space into a set

of 3D cells in which each cell is closer to the particular surface patch than

other patches of the surface. The 3D Voronoi diagram is also derived from

the trimmed offset surfaces as follows. Given an offset surface O(u, v) with

the offset distance d, the self-intersection curves obtained from offset surface

trimming are spatial curves that have the same distance d to at least two dif-

ferent sites on the progenitor surface. When the self-intersection curves of the

trimmed offset surface of varying offset distances are collected, these curves
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Figure 7.1: A relation between trimmed offset curves with varying

offset distances (left) and a Voronoi diagram of a curve (right) (images

from Held [35]).

will construct the bisector surfaces that become the boundaries of 3D Voronoi

cells. Y-branch or X-branch points in the trimmed self-intersection curves im-

ply that there exist more than three equidistant points on the progenitor

surface, so the traces of those branch points form the spatial curve where two

or more Voronoi cells meet.

Identifying the structure of the Voronoi diagram of a single closed curve

or surface is also related to the problem of finding the medial axis transform

(MAT) of the object. In CAGD, there have been a variety of methods to con-

struct the medial axes for polyhedra, including, for instance, thinning, distance

field computation, and surface sampling [32]. Nevertheless, few attentions are

in the construction of the Voronoi diagram or medial axis transform of freeform

surfaces.

In this chapter, we further investigate the relation between trimmed offset

surfaces and a Voronoi diagram in 3D. Whereas there has been an extensive

number of methods to construct Voronoi diagrams of planar curves [1, 2, 58],
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to our best knowledge, there have no previous works on computing Voronoi

diagrams of freeform surfaces from trimmed offset surfaces in CAGD yet. We

identify the boundaries of Voronoi cells of a freeform surface by offsetting the

surface with offset radius changing. Even though using discrete samples in

offset distance, a collection of self-intersection curves and branching points

in the self-intersection curves will reveal the structure of bisecting surfaces

and trisecting curves, which are components of the Voronoi diagram of the

progenitor surface.

In this chapter, we investigate the relationship between trimmed offset

surfaces and voronoi digram in 3D. Whereas there already exists methods to

compute trimmed offset curves from Voronoi diagram of planar curves, to our

best knowledge, there has been previous work relating trimmed offset surfaces

and Voronoi diagram of freeform surfaces in CAGD yet. We propose a method

to identify Voronoi diagrams of freeform surfaces from trimmed offset surfaces

with varying offset distances. The structure in self-intersection curves of the

trimmed surface is interpreted in the terminology of Voronoi diagram and vice

versa.

7.2 Approach

Given a progenitor surface S(u, v), we compute the boundaries of Voronoi cells

that appear on the concave side of the surface. These boundaries are coming

from intersecting bisecting surfaces of a progenitor surface, which are equidis-

tant to two distinct sites on the progenitor. Instead of intersecting bisectors,

however, we derive the Voronoi diagram of the surface from a set of trimmed

offset surfaces with offset radii continuously changing.
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The idea of constructing the Voronoi cells from trimmed offsets is inspired

by the offset surface trimming results shown in Section 5.4. In Figure 5.7,

we show the evolution of self-intersection curves of trimmed offset surfaces

when an offset radius changes from 0.12 to 0.1575. In this example, the self-

intersection curve is a simple closed curve without any branching points when

the offset radius is small (Figure 5.7 (i)), but starts to contain Y-branch points

when an offset radius increases. Figure 5.7 (a) also indicates that locations of

branching points are co-related between different trimmed offsets.

Examples in Section 5.4 include self-intersection curves for only a few in-

stances of surface offset trimming. This is because the speed of the trimming

algorithm proposed in Chapter 5 is not fast enough to compute multiple in-

stances of trimmed offset surfaces. With the acceleration algorithm proposed

in Chapter 6, we achieve a significant speed-up in computing self-intersection

curves of trimmed offset surfaces, which enable us to compute hundreds of

trimmed offset surfaces in a short time. Therefore, we compute the bound-

aries of the Voronoi diagram of the given freeform surface by densely sampling

offset radii in the interval of interest and identifying the self-intersection curve

structures of each offset surface.

Figure 7.2 shows the example of accumulated self-intersection curves of

trimmed offsets in uv-domain and xyz-space. We represent branching points

of self-intersection curves as red and blue dots and singular points using green

dots. Each self-intersection curve (drawn as black in uv-domain and purple

in xyz-space) is a d-isoline on a bisector surface of the progenitor surface. A

curve that connects continuously evolving branch points is a tri-sector curve

that occurs as a result of bisector surface intersection. The curve is also a

trace of points that have three equidistant sites on the progenitor surface.
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(a) (b)

Figure 7.2: Self-intersection curves of varying offset distances in (a)uv-domain

and (b) xyz-space.

Figure 7.2 (b) shows that this example has five distinct bisector surfaces on the

concave side, each of them separated by tri-sector curves. The boundaries of

the bisector surfaces are either tri-sector curves that connect adjacent bisector

surfaces or curves consisting of singular points in which the normals of trimmed

offset surfaces vanish. By displaying the self-intersection curves of trimmed

offsets altogether, we qualitatively identify the topological structure of the

Voronoi diagram of the progenitor surface.

7.3 Experimental Results

We have constructed the boundaries of Voronoi cells for the freeform surfaces

tested in Chapter 5 and 6. Bisector surfaces and tri-sector curves are derived

from singular and branching points of self-intersection curves in trimmed offset
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surfaces with varying offset radius. In experiments, we set offset radii tested in

the previous chapters to the default offset radii. We then generate 100 samples

of trimmed offset surfaces for the given progenitor surfaces, with intervals of 50

percent and 150 percent of the default offset radii. All of the self-intersection

curves have been computed with the trimming algorithm proposed in Chap-

ter 6, which accelerates the detection of self-intersections in offset surfaces by

using the proposed bounding volume hierarchy.

Figure 7.3 shows Voronoi diagrams of two progenitor surfaces: the surface

in the upper row comes from the fourth row in Figure 5.5 The example surface

in the upper row is the progenitor surface from the fourth row in Figure 5.5,

whereas the surface in the lower row is the progenitor surface from the fifth row

in Figure 5.5. For both surfaces, we compute trimmed offset surfaces on the

concave side of the progenitors, with offset radii varying from 0.075 to 0.225.

The boundaries of Voronoi cells of both surfaces are composed of one broad

main bisector surface and four side bisector surfaces separated from the main

bisectors. The size of side bisector surfaces, however, is different between two

surfaces: the upper surface that is more square-shaped has larger side bisector

surfaces, meaning that the branch points of self-intersection curves start to

develop from smaller offset radii.

When the progenitor surface is perfectly square-shaped as shown in Fig-

ure 7.4, there is no longer a main bisecting surface such as those in Figure 7.3,

but only four side bisecting surfaces appear in the Voronoi diagram. Four sin-

gular points and four branching points converge to a single point in the middle

in uv-domain when the offset radius decrease. In xyz-space, four distinct sin-

gular points collapse to the X-branch point in the self-intersection curve, and

the apex of the bisecting surfaces is a sharp cuspidal point in xyz-space.

113



We also compute the Voronoi diagram structure for a more complicated B-

spline surface. In Figure 7.5, we compute a collection of trimmed offset surfaces

and their self-intersection curves for the pipe progenitor surface experimented

in Figure 5.8 (see the left image of Figure 5.8). Black lines in Figure 7.5

represent the self-intersection lines of trimmed offset surfaces, whereas red

lines represent traces of Y-branching points of trimmed offset surfaces. We also

select three instances of trimmed offset surfaces and draw them in Figure 7.6.

The corresponding self-intersection curves are drawn as blue curves in uv-

domain (the above images) and also in xyz-domain with the offset surfaces.

When the offset radius is small, the self-intersection curves of the trimmed

offset surface consist of three loops in uv-domain, two of which appear in

the same position in xyz-space. These loops start to grow when the offset

radius increases and are merged to a single loop shown in the right images of

Figure 7.6. Furthermore, when the offset radius grows, the new bisector surface

starts to develop on the outer area of the pipe surface (see the isolated half-

circles appeared in the upper right region in uv-domain). As demonstrated

above, the geometric structure of the Voronoi diagram boundaries becomes

complicated, even for such a simple pipe surface.

7.4 Summary

In this chapter, we construct the boundary elements of a Voronoi diagram

of a freeform surface from the self-intersection curves of trimmed offset sur-

faces. Even though discretely sampled in offset radii, the development of self-

intersection curves in shrinking or expanding offset surfaces reveals the geo-

metrical structure of bisector surfaces and the connection of adjacent bisecting
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surfaces on the boundary of Voronoi cells.

In the experimental results demonstrated in this chapter, we have some

of the self-intersection curves around near-singular regions left disconnected

because of the numerical instability in tracing self-intersection curves. For

instance, Y-branching points and singular points must be merged into a single

point in uv-domain in Figure 7.2. From the experimental results, though, we

can easily observe that there exists some level of smoothness and continuity

in the boundaries of bisecting surfaces. We hypothesize that self-intersection

curves and bisecting surfaces missing near singularities be handled using this

smoothness and continuity conditions but leave the topic as future work. Just

as trimmed offset curves of a planar curve is derived from a Voronoi diagram of

the curve and vice versa, the experiment results shown in this chapter implies

that the construction of the Voronoi diagram of a freeform surface and the

computation of trimmed offset surfaces are mutually beneficial to each other.

Therefore, the Voronoi diagram of a freeform surface will also help to handle

singularities in the self-intersection curves of offset surfaces.
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(a) (b)

(c) (d)

Figure 7.3: Self-intersection curves of varying offset distances in (a)uv-domain

and (b) xyz-space.
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(a) (b)

(c) (d)

Figure 7.4: Self-intersection curves of varying offset distances in (a)uv-domain

and (b) xyz-space.
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(a) (b)

Figure 7.5: Self-intersection curves of varying offset distances in (a)uv-domain

and (b) xyz-space.

Figure 7.6: Self-intersection curves of varying offset distances in (a)uv-domain

and (b) xyz-space.
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Chapter 8

Conclusion

In this thesis, we have presented a geometric framework to detect the self-

intersections and trim the redundant regions from the offset curves and sur-

faces. First, we identify the geometric structure of the self-intersections on the

trimmed offset curves and surfaces. From the isosceles relation between the

points of the progenitor curves or surfaces and their corresponding intersection

points on the offset curves or surfaces, we construct the geometric constraint

equations in the parameter domain of the progenitor curves or surfaces. The

constraint equations of the self-intersections are formulated in a 2-dimensional

parametric space in case of the offset curves, and in 4-dimensions in case of

the offset surfaces. Additional inequality constraints are introduced to trim

the redundant regions from offset curves and surfaces. These offset trimming

algorithms enable us to capture the generic nature of the self-intersections

of the offset curves and surfaces, including the self-intersections around near-

singularities and the terminal points of the self-intersection curves that make
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a branching structure.

We also present a method to accelerate the trimming algorithm of the

offset curve and surface self-intersections, based on the observation that afore-

mentiond equation solving has limitations on the performance of the algo-

rithm. The modified trimming algorithm constructs the hierarchical structure

of bounding volumes enclosing the offset curves or surfaces and accelerates the

detection of the self-intersections with various pruning techniques applied to

the bounding volume hierarchy.

Finally, we also investigate the relationship between the trimmed offset

surfaces and the 3D Voronoi diagram of the progenitor surfaces. The system-

atic way of identifying the topology of self-intersection curves in the trimmed

offset surfaces with the acceleration algorithm of trimming offset surfaces pro-

vides us hints for deriving the boundary elements of 3D Voronoi cells from the

trimmed offset surfaces of varying offset distance d.

Trimming offset curves and surfaces is a complicated problem because of

the structure of the self-intersections is complex, and algebraic approaches of-

ten derive the equations of high degree. The solution also generally involves

pathological behaviors around singularities. We hope our trimming algorithm

will be beneficial to identify the structure of the self-intersections of the offset

curves and surfaces and improve the performance of the offset curve and sur-

face trimming. Handling the singularities of the self-intersections of the offsets

will also help us to identify the structures of the related constructs, such as

that of the Voronoi diagram.
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초 록

오프셋 곡선 및 곡면은 computer-aided design (CAD)와 computer-aided man-

ufacturing (CAM)에서 널리 이용되는 연산들 중 하나이다. 하지만 실용적인 활

용을 위해서는 오프셋 곡선 및 곡면에서 생기는 자가 교차를 찾고 이를 기준으로

오프셋 곡선 및 곡면에서 원래의 곡선 및 곡면에 가까운 불필요한 영역을 제거하

여야한다.본논문에서는오프셋곡선및곡면에서생기는자가교차를계산하고,

오프셋곡선및곡면에서생기는불필요한영역을제거하는알고리즘을제안한다.

본 논문은 우선 오프셋 곡선 및 곡면의 자가 교차점들과 그 교차점들이 기인

한 원래 곡선 및 곡면의 점들이 이루는 평면 이등변 삼각형 관계로부터 오프셋

곡선 및 곡면의 자가 교차점의 제약 조건을 만족시키는 방정식들을 세운다. 이

제약식들은 원래 곡선 및 곡면의 변수 공간에서 표현되며, 이 방정식들의 해는

다변수 방정식의 해를 구하는 solver를 이용하여 구한다. 오프셋 곡면의 경우,

원래 곡면의 주곡률 중 하나가 오프셋 반지름의 역수와 같을 때 오프셋 곡면의

법선이 정의가 되지 않는 특이점이 생기는데, 오프셋 곡면의 자가 교차 곡선이

이 부근을 지날 때는 자가 교차 곡선의 계산이 불안정해진다. 따라서 자가 교차

곡선이 오프셋 곡면의 특이점 부근을 지날 때는 오프셋 곡면을 접촉 토러스로

치환하여 더 안정된 방법으로 자가 교차 곡선을 구한다. 계산된 오프셋 곡면의

자가 교차 곡선으로부터 교차 곡선의 xyz-공간에서의 말단 점, 가지 구조 등을

밝힌다.

본 논문은 또한 바운딩 볼륨 기반의 오프셋 곡선 및 곡면의 자가 교차 곡선

검출을 가속화하는 방법을 제시한다. 바운딩 볼륨은 기저 곡선 및 곡면을 단순

한 기하로 감싸고 기하 연산을 수행함으로써 가속화에 기여한다. 오프셋 곡면의

자가 교차 곡선을 구하기 위하여, 본 논문은 오프셋 곡면의 바운딩 볼륨 구조를



기저 곡면의 바운딩 볼륨과 기저 곡면의 법선 곡면의 바운딩 볼륨의 구조로부터

계산하며이때각바운딩볼륨의두께를계산한다.또한,바운딩볼륨중에서실제

오프셋곡선및곡면의자가교차에기여하지않는부분을깊은재귀전에찾아서

제거하는 여러 조건들을 나열한다.

한편, 자가 교차가 제거된 오프셋 곡선 및 곡면은 기저 곡선 및 곡면의 보로노

이구조와깊은관련이있는것이알려져있다.본논문에서는자유곡면의연속된

오프셋 곡면들로부터 자유 곡면의 보로노이 구조를 유추하는 방법을 제시한다.

특히,오프셋곡면의자가교차곡선상에서나타나는가지점이나말단점과같은

특이점들이 자유 곡면의 보로노이 구조에서 어떻게 해석되는지 제시한다.

주요어: 오프셋 곡선, 오프셋 곡면, 오프셋 자가 교차, 오프셋 특이점, 자가 교

차 곡선 구조, 접촉 토러스, 바운딩 볼륨 구조, 자유곡면의 보로노이 다이어그램

학번: 2016-30283
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