508 research outputs found

    An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier-Stokes Equations

    Full text link
    We discuss model reduction for a particular class of quadratic-bilinear (QB) descriptor systems. The main goal of this article is to extend the recently studied interpolation-based optimal model reduction framework for QBODEs [Benner et al. '16] to a class of descriptor systems in an efficient and reliable way. Recently, it has been shown in the case of linear or bilinear systems that a direct extension of interpolation-based model reduction techniques to descriptor systems, without any modifications, may lead to poor reduced-order systems. Therefore, for the analysis, we aim at transforming the considered QB descriptor system into an equivalent QBODE system by means of projectors for which standard model reduction techniques for QBODEs can be employed, including aforementioned interpolation scheme. Subsequently, we discuss related computational issues, thus resulting in a modified algorithm that allows us to construct \emph{near}--optimal reduced-order systems without explicitly computing the projectors used in the analysis. The efficiency of the proposed algorithm is illustrated by means of a numerical example, obtained via semi-discretization of the Navier-Stokes equations

    A methodology for using nonlinear aerodynamics in aeroservoelastic analysis and design

    Get PDF
    A methodology is presented for using the Volterra-Wiener theory of nonlinear systems in aeroservoelastic (ASE) analyses and design. The theory is applied to the development of nonlinear aerodynamic response models that can be defined in state-space form and are, therefore, appropriate for use in modern control theory. The theory relies on the identification of nonlinear kernels that can be used to predict the response of a nonlinear system due to an arbitrary input. A numerical kernel identification technique, based on unit impulse responses, is presented and applied to a simple bilinear, single-input single-output (SISO) system. The linear kernel (unit impulse response) and the nonlinear second-order kernel of the system are numerically-identified and compared with the exact, analytically-defined and linear and second-order kernels. This kernel identification technique is then applied to the CAP-TSD (Computational Aeroelasticity Program-Transonic Small Disturbance) code for identification of the linear and second-order kernels of a NACA64A010 rectangular wing undergoing pitch at M = 0.5, M = 8.5 (transonic), and M = 0.93 (transonic). Results presented demonstrate the feasibility of this approach for use with nonlinear, unsteady aerodynamic responses

    Solution Approximation for Atmospheric Flight Dynamics Using Volterra Theory

    Get PDF
    This dissertation introduces a set of novel approaches in order to facilitate and enrich Volterra theory as a nonlinear approximation technique for constructing mathematical solutions from the governing relationships describing aircraft dynamic behavior. These approaches reconnect Volterra theory and flight mechanics research, which has not been addressed in the technical literature for over twenty years. Volterra theory is known to be viable in modeling weak nonlinearities, but is not particularly well suited for directly describing high performance aircraft dynamics. In order to overcome these obstacles and restrictions of Volterra theory, the global Piecewise Volterra Approach has been developed. This new approach decomposes a strong nonlinearity into weaker components in several sub-regions, which individually only require a low order truncated series. A novel Cause-and-Effect Analysis of these low order truncated series has also been developed. This new technique in turn allows system prediction before employing computer simulation, as well as decomposition of existing simulation results. For a computationally complex and large envelope airframe system, a Volterra Parameter-Varying Model Approach has also been developed as a systematically efficient approach to track the aircraft dynamic model and its response across a wide range of operating conditions. The analytical and numerical solutions based on the proposed methodology show the ability of Volterra theory to help predict, understand, and analyze nonlinear aircraft behavior beyond that attainable by linear theory, or more difficult to extract from nonlinear simulation, which in turn leads to a more efficient nonlinear preliminary design tool

    Adaptive polynomial filters

    Get PDF
    Journal ArticleWhile linear filter are useful in a large number of applications and relatively simple from conceptual and implementational view points. there are many practical situations that require nonlinear processing of the signals involved. This article explains adaptive nonlinear filters equipped with polynomial models of nonlinearity. The polynomial systems considered are those nonlinear systems whose output signals can be related to the input signals through a truncated Volterra series expansion, or a recursive nonlinear difference equation. The Volterra series expansion can model a large class of nonlinear systems and is attractive in filtering applications because the expansion is a linear combination of nonlinear functions of the input signal. The basic ideas behind the development of gradient and recursive least-squares adaptive Volterra filters are first discussed. followed by adaptive algorithms using system models involving recursive nonlinear difference equations. Such systems are attractive because they may be able to approximate many nonlinear systems with great parsimony in the use pf coefficients. Also discussed are current research trends and new results and problem areas associated with these nonlinear filters. A lattice structure for polynomial models is also described

    Model reduction of controlled Fokker--Planck and Liouville-von Neumann equations

    Full text link
    Model reduction methods for bilinear control systems are compared by means of practical examples of Liouville-von Neumann and Fokker--Planck type. Methods based on balancing generalized system Gramians and on minimizing an H2-type cost functional are considered. The focus is on the numerical implementation and a thorough comparison of the methods. Structure and stability preservation are investigated, and the competitiveness of the approaches is shown for practically relevant, large-scale examples

    Krylov Subspace Model Order Reduction for Nonlinear and Bilinear Control Systems

    Get PDF
    The use of Krylov subspace model order reduction for nonlinear/bilinear systems, over the past few years, has become an increasingly researched area of study. The need for model order reduction has never been higher, as faster computations for control, diagnosis and prognosis have never been higher to achieve better system performance. Krylov subspace model order reduction techniques enable this to be done more quickly and efficiently than what can be achieved at present. The most recent advances in the use of Krylov subspaces for reducing bilinear models match moments and multimoments at some expansion points which have to be obtained through an optimisation scheme. This therefore removes the computational advantage of the Krylov subspace techniques implemented at an expansion point zero. This thesis demonstrates two improved approaches for the use of one-sided Krylov subspace projection for reducing bilinear models at the expansion point zero. This work proposes that an alternate linear approximation can be used for model order reduction. The advantages of using this approach are improved input-output preservation at a simulation cost similar to some earlier works and reduction of bilinear systems models which have singular state transition matrices. The comparison of the proposed methods and other original works done in this area of research is illustrated using various examples of single input single output (SISO) and multi input multi output (MIMO) models
    corecore