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ABSTRACT 

SOLUTION APPROXIMATION FOR ATMOSPHERIC FLIGHT 

DYNAMICS USING VOLTERRA THEORY 

Ashraf Mohammed Kandeel Omran 
Old Dominion University, December 2010 

Director: Prof. Brett Newman 

This dissertation introduces a set of novel approaches in order to facilitate and 

enrich Volterra theory as a nonlinear approximation technique for constructing 

mathematical solutions from the governing relationships describing aircraft dynamic 

behavior. These approaches reconnect Volterra theory and flight mechanics research, 

which has not been addressed in the technical literature for over twenty years. Volterra 

theory is known to be viable in modeling weak nonlinearities, but is not particularly well 

suited for directly describing high performance aircraft dynamics. In order to overcome 

these obstacles and restrictions of Volterra theory, the global Piecewise Volterra 

Approach has been developed. This new approach decomposes a strong nonlinearity into 

weaker components in several sub-regions, which individually only require a low order 

truncated series. A novel Cause-and-Effect Analysis of these low order truncated series 

has also been developed. This new technique in turn allows system prediction before 

employing computer simulation, as well as decomposition of existing simulation results. 

For a computationally complex and large envelope airframe system, a Volterra 

Parameter-Varying Model Approach has also been developed as a systematically efficient 

approach to track the aircraft dynamic model and its response across a wide range of 

operating conditions. The analytical and numerical solutions based on the proposed 

methodology show the ability of Volterra theory to help predict, understand, and analyze 



nonlinear aircraft behavior beyond that attainable by linear theory, or more difficult to 

extract from nonlinear simulation, which in turn leads to a more efficient nonlinear 

preliminary design tool. 
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CHAPTER 1 

INTRODUCTION 

1.1 Problem Motivation and Description 

Constructing mathematical solutions from the governing relationships describing 

aircraft dynamic behavior is required for analysis, understanding, and synthesis. In the 

analytic sense, mathematical aircraft dynamic models are typically unsolvable for several 

reasons. First, the aircraft dynamic model is of high order, which is described by many 

coupled states, hundreds or thousands, due to actuator and sensor dynamics, airframe 

flexibility, unsteady aerodynamics, and other sub-system dynamics such as the engine 

and atmosphere. Second, many nonlinear components and their mathematical expressions 

appear in the aircraft equations of motion, for example, inertial coupling, gravity 

projections, rotating frame effects, kinematic relationships, and actuator saturation. Third, 

for most aircraft the aerodynamic and propulsive coefficients are presented in the form of 

look-up tables, sophisticated mathematical expressions, or high order polynomials. These 

factors make it extremely difficult to find analytic solution. 

Nonlinear numeric simulation provides the most accurate solution procedure for 

the aircraft models. In a strict sense, nonlinear simulation results provide an approximate 

solution, especially when compared with experimentally derived responses from the 

physical system, which might be approximate as well due to test error. However, with 

careful treatment, results of the nonlinear simulation can be brought extremely close to 

exact solutions in cases where this information is derivable, and is assumed to be possible 

in cases where this information is not derivable. The residual solution errors can be 

reduced to a sufficiently small level where the accuracy of the model being solved 

becomes the critical issue, not the solution accuracy. Unfortunately, results based on 

nonlinear simulation have no underlying analytical structure. Tracing the aircraft motion 
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behavior characteristics back to their parametric origins based on specific numeric 

propagation is virtually impossible. Herein, nonlinear simulation is treated as the 

benchmark for evaluating the accuracy of other available solutions in the absence of 

experimental or exact results. 

To circumvent these difficulties, many approximation techniques have been 

applied to solve the aircraft's dynamic equations of motion. Two main approximation 

methodologies exist: the model simplification approach and the solution simplification 

approach. In the model simplification approach, some techniques use assumptions 

coming from physical, experimental, or computational observations. For example, rigid 

body, non-rotating flat earth, and simple engine model assumptions are quite reasonable 

for many aircraft models. Other model simplification techniques consider the low order 

approximations such as longitudinal and lateral motions. This type of simplification is 

commonly referred as model order reduction. However, after applying these model 

simplification techniques, there remains a need to solve the resultant simplified models, 

since the aircraft's nonlinearities are still embedded in such models. 

Linearization, as a model simplification technique, reshapes the aircraft equations 

of motion in the form of an inexpensive relational solvable model. Many time and 

frequency domain analyses using solution descriptions based on eigenvalue-eigenvector 

sets and transfer matrices (poles and zeros) have been proposed to characterize the linear 

model. These characterization tools have been and are still broadly used in flight 

mechanics for design and control. Unfortunately, the linear model validity is restricted to 

small variations from the equilibrium condition. Even using interpolation concepts to 

build a global linear parameter-varying model does not help in rendering some nonlinear 

phenomena, which have been observed in many classes of aircraft. 

After realizing the linearization technique is inadequate to render phenomena such 

as wing rock, spin entry, and pilot-induced oscillation, the flight mechanics community 

has started to apply nonlinear solution simplification techniques. Bifurcation, describing 
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function, and perturbation expansion are common nonlinear solution simplification 

techniques for analyzing the onset behavior of aircraft to these phenomena. Although 

these techniques show potential for understanding and analyzing nonlinear behavior of 

aircraft, these techniques sometimes do not provide a precise cause-and-effect analysis. 

In fact, none of these techniques has the capability to construct a general conclusion for 

the nonlinearity consequences. This limitation is because of the assumptive, iterative, and 

computational details in developing a solution based on these techniques, which restrict 

any general development to nonlinear systems. 

Volterra theory has emerged as a popular nonlinear solution simplification 

technique, primarily because of its extension of the impulse response concept from linear 

theory. In addition, Volterra theory has more analytical structure than other solution 

simplification techniques because of the so-called Volterra kernels. These kernels are 

unique signatures for the system, carrying the effect from the system parameters, and 

rendering the system behavior for any arbitrary input. These kernel features are not 

available in the other nonlinear solution simplification techniques. Volterra theory has 

had few applications to flight mechanics in the literature. The last efforts applying 

Volterra theory to flight mechanics date back to 1991. All these efforts have been 

abandoned because of computational difficulties in applying Volterra theory to strong 

nonlinearities in flight dynamic systems across the flight envelope. These observations 

underscore the need for new approaches that facilitate Volterra theory to be better suited 

for aircraft models. 

This dissertation investigates solution approximation methodologies for 

atmospheric flight dynamics using Volterra theory. The aims of the dissertation are to 

develop such approaches for: 1) relaxing the computational and mathematical difficulties 

that have been faced by the previous attempts, 2) merging Volterra theory with model 

simplification concepts for constructing foundations that can qualify and predict the low 
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order flight dynamic motions, and 3) developing an overall Volterra model, which has the 

capability to render the aircraft movement across a wide array of operating conditions. 

1.2 Literature Review 

Approximation techniques including model simplification and solution 

simplification have been applied for many modeled and un-modeled physical systems to 

deliver a mathematical base through which the system behavior can be better understood. 

The literature has been filled by such techniques, for example, References 1-3 cite over 

330 technical papers on model reduction alone as a model simplification technique. In 

this dissertation, the literature review will focus on approximation techniques applied to 

aircraft dynamics such as linear theory, bifurcation, describing function, and perturbation 

theory compared with Volterra theory, thus demonstrating why Volterra theory is much 

more promising than these techniques. 

1.2.1 Classical Flight Dynamics Analysis 

Mathematical modeling and solution of aircraft dynamic behavior for analysis, 

understanding, and synthesis requires an efficient and accurate technique, especially 

when the aircraft moves from one flight regime to another. This process is compounded 

by system nonlinearities, including but not limited to aerodynamic derivatives, inertial 

coupling, and actuation limits, all leading to significant changes in dynamic 

characteristics across the flight envelope. Therefore, universal approaches to explore and 

evaluate dynamic behavior over all flight regimes are sought. 

One standard approach is based on the differential equation model and its 

nonlinear simulation. In this differential equation model, first principles of mechanics 

with a set of assumptions are used to describe the aircraft dynamic behavior in the form 

of differentiable and algebraic relationships. The differentiable relation formulates the 

state derivative vector as a nonlinear function of the state and input vectors. The algebraic 
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relation formulates the output vector as a nonlinear function of state and input vectors. 

These equations comprise the so-called "nonlinear state space" model. The nonlinear 

simulation based on this model provides an accurate and specific solution for overall 

motion.4,5 However, the results based on the nonlinear simulation are relatively more 

computation costly and less structured analytically. 

Linear analysis, on the other hand, provides inexpensive relational models and 

solutions, which are relatively less precise but much broader. Linearization theory starts 

by using Taylor series expansion for the differentiable and algebraic relationships with 

respect to the state and input vectors. By retaining only the first derivatives with respect 

to the state and input vector, the equations of motion are then approximated by the so-

called "linear state space" model. This model has four matrices: state transition matrix, 

input distribution matrix, output distribution matrix, and direct input-output matrix. These 

matrices are constant for a given expansion point, but vary across the flight envelope. 

Many methods have been proposed to characterize and understand the aircraft dynamic 

motion based on this linear model in terms of eigenvalues, eigenvectors, transfer 

polynomial coefficients, and transfer polynomial roots. More details about the procedure 

of applying linear theory to the aircraft equations of motion have been reported in many 

scholarly books such as References 6 and 7. 

Applying the linear theory in flight mechanics research has been studied more 

extensively than any other approximation technique. For characterizing aircraft dynamic 

behavior through linear theory, a basic technique is to relate the open- and closed-loop 

transfer function poles and zeros to fundamental parameters such as stability and control 

derivatives, thereby exposing insight to the dynamic mechanisms of the response. This 

approach is widely used in aircraft dynamics, such as the short period or dutch-roll 

approximations, which rely on a quadratic or second order model.6"9 More advanced work 

for characterizing the aircraft open-loop and closed-loop behavior based on fourth order 

linear models have been listed in References 10-19 using the so-called "Literal Factors" 
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or "Symbolic Factoring" technique. Flying qualities, the acceptability of the airplane 

motion under manual control by the human pilot, have been widely qualified through 

linear models by defining acceptable ranges for various model parameters or transient 

responses.20'21 For high order aircraft systems, the concept of equivalent flying quality 
99 9 

metrics based on linear models has been considered. ' Flying quality concept using 

linear modeling for elastic vehicles has also been proposed.24 

Linear theory has been employed to understand some specific flight phenomena. 

In References 25 and 26, eigenvector analysis has been employed to reduce the three 

degrees of freedom spin motion model to two sub-models: a two degrees of freedom 

pitch-roll motion and one degree of freedom yaw motion. Routh-Hurwitz criterion has 

been applied to these reduced order sub-models. The results of such analysis have 

concluded that 1) for pitch-roll motion, the frequency term of the motion is controlled by 

the gyroscopic and rotary derivatives; whereas the damping term of the motion is 

controlled by the oscillatory derivatives, and 2) for yaw motion, a higher oscillatory 

derivative improves the stability of the motion. In Reference 27, linear sensitivity 

analysis has been used to understand the mechanism of stall recovery through the 

variation of both eigenvalues and eigenvectors with the flight condition (airspeed, 

altitude, etc.). Such analysis has concluded that 1) the airspeed has more influence on the 

short period mode than the phugoid mode, and 2) the center of gravity position drives the 

system to instability through the short period mode. 

Model reduction based on linear theory for flight mechanics applications has been 

widely investigated. Many modern linear control synthesis techniques produce a 

controller with dynamic order at least equal to the plant dynamic order, which is 

undesirable for implementation. Thus, differing viewpoints exist for what to reduce, the 

original high order vehicle model or the resulting high order controller model. In addition 

to this, many strategies for order reduction exist. For example, in Reference 28, (i-

synthesis has been used to reduce the order for the flexible B-52 bomber model. 
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Reference 29 has used a combined frequency-weighted internally balanced truncation-

residualization procedure to obtain higher accuracy reduced order models intended for 

flight control design applications. Reference 30 considered using H2 and Hm norms 

applied individual flexible mode transfer functions to identify their contribution to the 

overall transfer function of a flexible aircraft model for the purpose of order reduction. A 

full detailed survey about related research has been listed in Reference 31. 

Many techniques have been proposed in the literature to design flight control 

systems based on the linear model. Reference 32 has provided an extensive survey for 

this topic up to 1969. Even after this date, the flight mechanics community is still heavily 

dependent on using linear theory. For example, in Reference 33, eigenstructure 

assignment based on linear theory has been used to design flight control systems for the 

L-1011 aircraft model using eigenvalue criteria and a gradient search to increase the 

damping. Reference 34 has proposed designing compensators of specified structure for 

shaping the closed-loop step response that uses linear quadratic output-feedback 

techniques with a glide slope coupler as an example. Reference 35 has applied the partial 

eignenstructure assignment approach via static output feedback to design a robust flight 

control system for a lateral stability augmentation system (SAS). In Reference 36, a flight 

control system has been developed for a XV-15 representation based on model inversion 

using the linear theory. 

Linear theory has demonstrated the capability to be: 1) a characterization tool for 
8 24 

aircraft behavior and performance, " 2) an understanding tool for the underlying 

mechanism of some flight phenomena,25"27 3) a model reduction tool for aircraft 

models, and 4) 

a design tool for flight control systems. " Although these tools have 

proved that linear theory gives intuition about system behavior more than the nonlinear 

simulation, linear theory has failed to render phenomena such as pitch-up, stall, elevator 

or rudder control surface blockage, wing rock, roll-yaw spin inertial coupling, nose slice, 

falling leaf, and pilot-induced oscillation. These phenomena have been observed 
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following the onset of unusual attitudes and extreme maneuvers for many aircraft such as 

the F-14, F-15, and F-18. This lack of fidelity in the linear theory has pushed the flight 

mechanics research community to use more advanced nonlinear solution simplification 

techniques such as bifurcation and describing function, which are discussed next. 

Bifurcation analysis starts first by computing the variation of equilibrium points 

with some parameters such as input signals, center of gravity, or aircraft mass. Then, the 

bifurcation diagram is constructed showing the dependency of these equilibrium points 

on the varying parameters. The point on this diagram, where the stability type changes, is 

called a bifurcation point. In the case of a high order system, the procedure is called 

"continuation". Full details about the bifurcation technique are given in References 37 

and 38. The bifurcation diagram leads to many conclusions about the global behavior of 

the system, various characteristics like jump phenomenon, onsite of limit cycles, and 

chaotic behavior. 

Bifurcation has been recognized as one the best methods to study nonlinear 

aircraft dynamics in a global sense. The earliest work applying bifurcation to study 

aircraft behavior has been reported in Reference 39 for the variable sweep F-14 fighter 

and a fixed swept-wing F-4 fighter. The outcomes of this work proved the bifurcation 

method's capability to understand some onset phenomena at high angle of attack such as 

wing rock, spin entry, and stall. In Reference 40, bifurcation and continuation methods 

have been applied to an F-15 fighter aircraft. This work has studied the influence of 

control augmentation on nonlinear motion and stability. The equilibrium and limit cycle 

solutions' variation with control surface deflections of the F-15 has been visualized. 

Based on such a visualization, it has been concluded that not only do the controls 

suppress wing rock, but also increase the divergence tendency and may lead to departure 

and spin. The effect of the center of gravity offset and engine dynamics on the spin entry 

and recovery has been investigated in Reference 41 for the Alpha Jet fighter using the 

bifurcation method. In Reference 42, the prediction for the onset of wing rock, spiral 
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divergence, and jump phenomena that cause the F-14 to enter a spin has been 

investigated by bifurcations. Based on this investigation, a simple feedback control 

system has been designed to eliminate the wing rock and spiral divergence instabilities. 

Besides the wing rock and spin entry phenomena, bifurcation has been also applied to 

study the pilot induced oscillation in Reference 43. Reference 44 represents many details 

about applying bifurcation methods to understand and expose the aircraft dynamic 

behavior during onset to various phenomena. Recently, the bifurcation method has been 

used to design flight control systems in References 45-47. 

Describing function analysis has been mostly used to generate limit cycle 

behavior in many flight models as reported in References 48-50. In Reference 48, the 

classical sinusoidal describing function analysis has been used to accurately duplicate and 

predict the observed oscillatory characteristic due to the presence of Coulomb friction in 

a nozzle pivot mechanism. In References 49-50, the describing function technique has 

been employed to understand the effects of rate saturation on flight control systems 

undergoing pilot-induced oscillations. Because perturbation expansion analysis breaks 

down quickly in time or in parameter strength, the technique has been rarely applied in 

flight mechanics research. One example is given in Reference 51. Other techniques such 

as multiple time scales analysis as an extension of perturbation analysis in Reference 52 

have also been used to describe the nonlinear dynamic behavior of aircraft, or to design 

and analyze flight trajectories as in Reference 53. 

Although bifurcation, describing function, and perturbation analysis as nonlinear 

solution simplification techniques have shown a potential for understanding and 

analyzing nonlinear behavior of aircraft, these methods sometimes do not provide a 

precise cause-and-effect result, do not address transient behavior, or do not cover a 

sufficient range of time and/or parameter variation. In fact, none of these techniques has 

the capability to construct a general conclusion for the nonlinear consequences because of 

assumptive, iterative, and computational details, which restrict any general symbolic 
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development to nonlinear systems. In conclusion, there is a need for a more structural 

nonlinear approximation method, which has the same capability as the linear theory. 

Volterra theory is often considered as an extension of the impulse response concept from 

linear theory and possesses the desired analytic structure for characterization, and is thus 

reviewed in the next section. 

1.2.2 Volterra Theory Background 

Volterra theory is a nonlinear mathematical approximation for describing the 

input-output relationship of dynamic systems. Volterra theory is named in the honor of 

the Italian mathematician Vito Volterra, who develop the theory in 1887, with the first 

encompassing publication appearing in 1927 and later reprinted in 1959.54 An early use 

of this theory has been reported in a series of technical reports at the Massachusetts 

Institute of Technology by Wiener55 to study the response to Gaussian white noise of a 

series RLC circuit with nonlinear resistor. The work of Wiener was followed by 

Brilliant56 and George57 to apply the theory for communication problems. These reports 

have moved Volterra theory from the theoretical side to the practical-usage side. The 

outcomes of these reports have attracted the attention of other research communities to 

apply Volterra theory in different disciplines, one of them being aeronautical engineering. 

The theory represents the input-output relationship as an infinite series of 

homogeneous linear and nonlinear sub-systems as an extension of Taylor's power 
CO 

series. A system is called a degree-^ homogeneous system, if an input au(t) is applied to 

the system and the output is then any{t), where y{t) is the equivalent response for the input 

u{t). The first term of the Volterra series is a degree-1 homogeneous sub-system, in which 

the change in output amplitude is proportional to the input amplitude. The second term is 

a degree-2 homogeneous sub-system, in which the change in output amplitude is 

proportional to the square of the input amplitude and so on. Each degree-^ homogeneous 

sub-system is represented by an n dimensional convolution integral, while the input 
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signal is dynamically weighted by the so-called nth order kernel. The nlh order kernel is an 

^-dimensional function in time or complex frequency, depending on the domain of 

interest. Each kernel appearing in the convolution integrals reflects a specific system 

behavior. 

In general, kernels are of two classes: the state-dependent class and the state-

input-dependent class. The only member of the state-dependent class is the zero order 

kernel, which represents the response of the output due to the initial system state. If the 

system motion is started at an equilibrium condition (both state and input values) and the 

equilibrium input is maintained, the zero order kernel equals zero. On the other hand, if 

the state value is mismatched to the equilibrium input, or vice versa, the zero order kernel 

is nonzero and can be interpreted as motion of the system from the initial state to the 

equilibrium state (stable), or the state reacting to the input. Sometimes the response of the 

zero order kernel can be a sustained oscillation representing a limit cycle, or possess a 

divergent behavior for an unstable equilibrium. The state-input-dependent class contains 

all other Volterra kernels starting with the first kernel. Those kernels represent the 

behavior of the system to any arbitrary input. In this class, each Volterra kernel is 

represented with the input in a multidimensional convolution integration. Both the state-

and state-input-dependent class kernels are unique for a given system. For weak 

nonlinearities, all higher order kernels are seen to quickly tend to negligible values in the 

system representation. For a completely linear system, only the zero and first order 

kernels remain. The uniqueness of the Volterra kernels makes Volterra theory more 

promising than other nonlinear approximation techniques.58'59 

Since the kernels are the backbone of Volterra theory, identifying these kernels 

has been the main concern of all research communities. Two categories have appeared in 

the literature to identify the kernel. The first identification category uses the observed 

input and output signals either in the time or frequency domain to estimate the kernels. 

The second identification category directly computes the kernel from the differential 
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equations. The first category is more suited for physically un-modeled dynamic systems 

such as biomedical, biological, and neuron systems.60'61 For such identification, a discrete 

form of Volterra series is frequently used. Alper62 proposed the first work to apply 

Volterra series in a discrete fashion. Alper's work has received an obvious 

acknowledgement to identify the kernels. In his method, the system is treated as a black 

or gray box. As the input starts to excite the system, the input and output signals are 

recorded, and based on the least square estimation (LSE) or other regression techniques, 

Volterra kernels are defined. LSE can be cast as a recursive algorithm60'63 or a non-

recursive algorithm.64"66 Another method to estimate Volterra kernels from the system 

identification point of view has been provided by the use of sinusoidal or impulsive 
*L n t 

inputs. The strategy is an extension from the use of impulsive and sinusoidal inputs to 

identify linear systems. This identification category captures only the input-output 

behavior of a system and disregards any internal structure. 

For computing the Volterra kernels from the nonlinear differential equations, 

some analytical forms such as Lie derivatives, growing exponential method, Carleman 

linearization method, and variational expansion method have been developed. The idea of 

using Lie derivatives to compute Volterra kernel from the differential equation has been 

introduced in Reference 68. The Lie derivatives approach has been used to compute 

kernels analytically for biologically inspired motion detection through vision processing 

in Reference 61. The Lie derivative approach lacks tractability since the process 

constructs the kernels as a series. Each term in this series is defined as a function of Lie 

derivatives. Finding a closed-form expression for such a series is not always practical. 

Furthermore, divergence of these derivative expressions may restrict their utilization 

when approximated by a truncated series. 

The growing exponential method provides the kernels by an ^-dimensional 

Laplace transform. In this method, the input is assumed a finite sum of excitation in the 

form of exponents with different frequencies or eigenvalues and the same assumption is 
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set for the output. Equating each individual exponent term in the differential equation 

leads to a set of equations in terms of kernels. Solving this set of equations brings 

expressions for the kernels. The idea of the growing exponential method is an extension 

to the one-dimensional Laplace transform. More details of the algorithm are given in 

References 58 and 69. The use of the multivariable Laplace transform in system theory 

and interconnection rules was first introduced in Reference 57. The idea is developed 

through other research efforts in References 70 and 71. A number of methods for 

computing kernels or transfer functions corresponding to given differential equations 

have been proposed in References 72-74. The method has been applied to characterize 

some dynamic systems as listed in References 75 and 76. The growing exponential 

method often delivers the kernels in unwieldy forms, which restricts the applicability for 

nonlinear characterization. 

The idea of using resubstitution or Picard iterations was the baseline to develop 

closed-form expressions of the kernels for a bilinear state vector equation.77 Using 

Carleman linearization to obtain a bilinear state vector equation has been employed to 

develop approximate closed-form kernels for any nonlinear system. The Carleman 

linearization technique is discussed in Reference 78. In Reference 79, the Kronecker 

product has been used to enrich the Carleman linearization idea for developing analytical 

Volterra kernels. Carleman linearization or bilinearization for Volterra theory has been 

used in References 80 and 81. Although the method is mathematically simple and has the 

ability to deliver a general analytical solution for the kernels, the method lacks an ability 

to render certain highly nonlinear features such as a limit cycle because of the essential 

modeling assumptions of the method. 

The variational expansion method was initially developed based on a perturbation 

point of view. The method starts by assuming the differential vector as a polynomial in 

terms of states and input. A state-equation description is then obtained for each degree-/? 

homogeneous sub-system in a state space representation. It turns out that, although the 
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equation for the degree-^ sub-system is coupled nonlinearly to the equations for the lower 

degree sub-systems, each of the equations has identical first order (linear) terms.58 

Although this expansion extends the ^-dimensional problem to infinite dimension, the 

original nonlinearity of the system is broken into a sequence of pseudo-linear time 

invariant (PLTI) systems, which are solvable. The input of each PLTI system is a 

nonlinear function of all previous system states and the input. The first notable 

application for the variational expansion approach to show the capability of the method in 

approximating nonlinear differential systems was discussed in Reference 82. The method 

has also been employed in several flight mechanics studies, which highlight the 

capability of the method to capture nonlinearities imbedded in flight systems.83"84 

However, the method has not been employed to any significant extent for analytical 

purposes. 

The first work, which applied Volterra series in the aeronautical field, was 
85 • 

probably by Herdman. Later on, the application of Volterra theory in aeronautical 

engineering has spread to several aeronautical disciplines. One of the remarkable 

pioneers in brining Volterra theory to aerospace engineering is Walter Silva, who has 

provided many research reports in this topic. Reference 86 is Silva's first work in 

applying Volterra series for aeroservoelastic analyses. In his Ph.D. dissertation, Volterra 

series have been applied for many nonlinear aerodynamics examples using discrete 

Volterra models. Other research in the same area has been reported by Silva applying 

Volterra series as a model reduction technique to unsteady transonic aerodynamics88 and 

to unsteady fluid-structure systems.89,90 

For the aeroelasticity area, Silva and others have applied Volterra series through 

different algorithms for identification and characterization. In Reference 91, a discussion 

for identifying a nonlinear aeroelastic system based on Volterra theory is presented in the 

time domain for a wind-tunnel semi-span model using positive and negative step inputs 

in pitch. Reference 92 has introduced a Volterra kernel extrapolation technique to predict 
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the variation of kernels with flight conditions. The algorithm starts by identifying various 

kernels from input-output data at a specific number of flight conditions using a multi-

wavelet based algorithm. A polynomial curve-fit extrapolation, for each kernel's 

parameters with flight condition, is then used to predict the Volterra kernels at a new 

flight condition. Volterra kernel extrapolation has been successfully applied to flight data 

from the F/A-18 Active Aeroelastic Wing. The research efforts in Reference 92 have 

demonstrated that the kernel can be characterized with the flight conditions. This idea 

will be extended in this dissertation as shown later. 

In Reference 93, Volterra series have been used to predict aeroelastic instabilities 

with uncertainty analysis investigating the robustness of Volterra models. An interesting 

algorithm has been developed in Reference 94 to estimate the unmodeled nonlinearities 

in the aeroelastic dynamic system. The difference between the predicted linear behavior 

and the actual nonlinear behavior is employed to estimate the high order kernels. The 

algorithm has been successfully applied to a nonlinear pitch-plunge system. In 

References 95-96, a method to identify fluid basis functions with proper orthogonal 

decomposition using Volterra system realization is applied for two-dimensional inviscid 

flow over a bump with forcing. However, the listed work in References 91-96 has only 

applied the Volterra concept with numerical-based algorithms, which lack any analytical 

structure for understanding the influence of system parameters in Volterra kernels and 

system behavior. 

Unlike most of the published numerical-based work in applying Volterra theory 

for aeronautical engineering, a few reports have recently appeared with an analytical-

based fashion developing Volterra kernels from the system nonlinear differential 

equations. In Reference 97, a growing exponential method has been used to analytically 

compute the first three kernels of the two-dimensional lifting surface in an 

incompressible flow field. The analytical kernels were then used to analyze and 

determine the subcritical aeroelastic response and flutter instability with the influence of 
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geometric nonlinearities. This work has been extended in Reference 98 to the study of 

open- and closed-loop subcritical aeroelastic response and flutter prediction of simple 

nonlinear two-dimensional airfoils in an incompressible flow. More work for analytical 

kernels with aeronautic applications has been recently documented in Reference 99. 

However, most of these efforts have been applied to specific systems without any general 

parametric study, which enables one to achieve a more general conclusion. In contrast, 

this dissertation provides methodology for the generalized approach. 

1.2.3 Current Research Focus 

A few applications for Volterra methodology to flight mechanics appear in the 

literature. In 1983, Herdman documented the first work of using Volterra theory in flight 

dynamics in Reference 85. This work is also the first application for Volterra theory in 

aeronautical engineering as mentioned in Reference 99. The work was done under the 

motivation of the Flight Dynamics Laboratory, Air Force Wright Aeronautical 

Laboratories in Ohio for developing new nonlinear flight qualities metrics. The work 

aimed to set some mathematical bases for Volterra theory that can be used as a 

foundation in developing the nonlinear flight qualities. The work developed a six degree 

of freedom aircraft model with Euler angle representation. A transformation from Euler 

angle representation to four parameter quaternion representation has been used to reduce 

the order of kinematic nonlinearities. The Picard's successive approximation technique 

has been developed to construct the solution for the presented aircraft model. This work 

has summarized the mathematical foundation without any numerical or analytical results. 

The work was documented in a technical memorandum (TM) under contract with the 

United States Air Force. The project engineer of this work was Charles Suchomel, who 

continued the work as shown next. 

Suchomel has developed many distinguished efforts to apply Volterra theory in 

flight dynamic research area during the second half of 1980s. His first work is given in 
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Reference 100, which has not been officially published, but in Reference 101, Suchomel 

has documented in detail the work of Reference 100. Volterra theory has been 

numerically evaluated by an application to an F-8 nonlinear aircraft model. Therein, the 

implemented F-8 aircraft model was a modified version of the model in Reference 102. 

The modifications involved the addition of a thrust and aerodynamic drag model. The 

analysis was restricted to the longitudinal motion. The source of nonlinearity in this F-8 

model includes: 1) the product of the body velocities with pitch rate, 2) the products of 

the wing and tail lift and drag with sines and cosines of wing and tail angle of attacks, 

and 3) the wing and tail lift curve coefficients as a cubic polynomial with the angle of 

attack. A 2.2 deg pitch nose down pulse maneuver excited the Volterra model and the 

exact nonlinear model for 2 s out of the 20 s simulation. This maneuver generated a high 

amplitude variation in all the longitudinal states. For example, the angle of attack 

changed from +7 to -20 deg and the pitch rate changed from -25 to +24 deg/s. These 

ranges are categorized as a high amplitude maneuver for such an F-8 model. The results 

of the three term Volterra model provided a maximum absolute 5% error for all variables. 

The author highlighted that the accuracy of the results depends on the integration step 

time and the number of truncated terms. In addition, the author indicated that the 

kinematic nonlinearity has a 10% effect on the overall results. However, the author did 

not compare the Volterra model with the linear model to judge how nonlinear the F-8 

model is. 

Suchomel reported another remarkable attempt of applying Volterra theory to 

flight mechanics in Reference 101. This work proposed novel nonlinear flight quality 

metrics. The study started by a generic two state nonlinear model. This generic model 

has an affine form. The first and second derivative matrices of the aerodynamic 

coefficients were counted. A two term Volterra series is analytically derived. The step 

response is then selected as a methodology for the proposed nonlinear flight quality 

metrics. The first Volterra series term has two exponential functions with two distinct 
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eigenvalues. These two exponential functions are multiplied by eight coefficients. The 

first Volterra series term yields to the same linear flight qualities metrics given in 

Reference 20. The second Volterra series term has sixteen coefficients multiplied by all 

the permutated multiplications of the exponential functions. The work considered one of 

these coefficients as an example to define the nonlinear flight quality metrics through the 

dependency of such a coefficient on aerodynamic derivatives. The work has an un-

matured form with no general conclusion or analysis. The idea, which Suchomel brought 

in this work, was very promising for a new attitude to qualify the performance aircrafts. 

Regrettably, Suchomel did not continue developing his novel idea. 

Directly after Suchomel's efforts, other work appeared in References 83 and 84 

by a research group in the Mathematics Department at the Virginia Polytechnic 

Institution. One of the co-authors was Herdman. The work studied two common observed 

phenomena for high performance aircraft: stall limit cycle and wing rock. A simplified 

longitudinal dynamic model of the T-2C high performance aircraft model was selected 

therein. The model has been taken from Reference 103 and has been modified by 

replacing the look-up table plunging force coefficient behavior with a set of polynomials 

for pre-stall, pre-stall/stall, stall/post-stall, and post-stall regimes. The plunging force 

coefficient dependency with angle of attack has a linear polynomial in both pre-stall and 

post-stall regimes, while a quadratic polynomial is present in pre-stall/stall and stall/post-

stall regimes. The differential form of Volterra theory is then used to compare the linear-

based model with the Volterra-based model. The results show a high accuracy level by 

the Volterra model to capture the aircraft limit cycle behavior, while the linear model 

failed to render this limit cycle phenomenon. The second example in this work was given 

for the wing rock phenomenon. Although Volterra analysis showed the ability to capture 

the limit cycle, the Volterra model was still restricted to a certain equilibrium region. 

The work in References 83 and 84 has been extended in Reference 104 to a global 

approach, which replaces the integral kernels with a repeatedly updated regression model 
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using state-input memory values from the past three time steps and 24 regression 

coefficients. Although the approach showed satisfactory results, the approach is limited 

by only allowing system representation through finite sets of numerical coefficients and 

memory bits, thus destroying the underlying analytical function framework. The work in 

Reference 104 was more oriented to discrete control. The authors employed these 

truncated Volterra series to construct a nonlinear control algorithm. The controller used 

the truncated Volterra model to build an estimator. The model assumes that both angle of 

attack and pitch rate are measurable at the moment k-1 and then the Volterra model is 

used to estimated the value of angle of attack and pitch rate at the next moment k. A 

control law is then developed in terms of angle of attack error. Also the model was 

constructed in a nonlinear adaptive fashion, such that the regression coefficients are 

updated with each sampling time. The adaptive version of the controller has performance, 

which was slightly worse than the non-adaptive case. However, comparing this nonlinear 

adaptive controller based on the Volterra model with the linear adaptive controller, the 

outcomes prove the superiority of Volterra-based model with a noticeable difference 

especially for the smoothness of the controller action time histories. 

All the previously cited works for applying Volterra series in flight mechanics 

emphasize the ability of Volterra series to describe the aircraft behavior during aggresive 

maneuvers and to be a good estimator for nonlinear adaptive control. These efforts have 

been abandoned for almost 20 years (the last work was published in 1991) because of 

computational difficulties in applying Volterra theory to strong nonlinearities in flight 

dynamic systems across the envelope. This dissertation brings Volterra theory back to the 

flight mechanics research community by proposing a set of new approaches. These 

approaches enrich and facilitate Volterra theory to be more applicable for flight dynamic 

characterization. These approaches include: 

1. Relaxing the computational cost to apply Volterra theory for strong 

nonlinearities as in the aircraft dynamics case. 



20 

2. Developing a nonlinear cause-and-effect parametric study for the low order 

atmospheric flight motions that can be used as a foundation to qualify the high 

performance aircraft. 

3. Constructing a global model with the capability to render the aircraft behavior 

across a wide range of maneuvers and operating conditions. 

Recall the work in References 83 and 84, the resultant Volterra-based model was 

restricted to certain equilibrium regions, which restricts the ability to capture the aircraft 

behavior while moving from one flight region to another. Even the global approach 

proposed in Reference 104 has a discrete form, which put a ceiling on any analytical 

foundation. For that reason, this dissertation aims to face these difficulties by proposing a 

"Piecewise Volterra Approach". This approach breaks down the strong nonlinear model 

to a set of weak nonlinear sub-models, and a proper interpolation is then employed to 

move between the sub-models. This reduction in computation simplifies the required 

mathematical manipulation to employ Volterra theory in flight mechanics. For example, 

attack angle and associated aerodynamic behavior is classified as pre-stall, stall, and post-

stall. These domains can reflect different stability tendencies. In pre-stall, the behavior is 

usually linear, but in the stall regime, the aerodynamics can be strongly nonlinear. In the 

post-stall domain, the behavior can also be nonlinear but to a lesser extent. For 

investigating the feasibility of this global approach, a piecewise fashion is initially 

applied to a nonlinear pitch-plunge model for a high performance aircraft. A set of 

Volterra series sub-models can be generated for these various domains. Thus, the system 

behavior can be rendered from one sub-domain (pre-stall, pre-stall/stall, stall/post-stall, 

post-stall) to another sub-domain. An impulse response technique is used to estimate the 

Volterra kernels. For computational efficiency, reduced order Volterra terms are 

addressed. The order of the model is determined from a generic strength index metric. 

Subsequently, a piecewise Volterra kernel technique is used to switch between the 

Volterra sub-models. Feasibility of the universal piecewise approach is determined by 
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several input test cases. The test cases are compared with solutions generated from 

numerical integration of the nonlinear differential equations. Also, the proposed approach 

is compared with a global linear piecewise approach. 

Based on the results of the global piecewise Volterra approach, it has been shown 

that a truncated two term Volterra series is enough to capture the behavior of the 

nonlinear dynamic system in a specific sub-domain. The nonlinearity in this sub-domain 

is mathematically given in the form of quadratic and bilinear nonlinearities, which leads 

to a significant reduction in the mathematical manipulation. This reduction is then used to 

develop the second approach, which is called herein "Nonlinear Cause-and-Effect 

Analysis". The cause-and-effect analysis provides a general analytical framework to 

predict the nonlinear behavior for the first and second order single degree of freedom 

(SDOF) sub-systems. The work is considered a demonstration tool to understand and 

analyze the nonlinear phenomena observed in aircraft dynamic behaviors. Symbolic 

nonlinear SDOF first and second order systems of generic nature are investigated as basic 

representations for system dynamics. The nonlinearity herein is mathematically 

considered as state quadratic terms, an input quadratic term, and as state-input bilinear 

terms. A variational expansion methodology, one of the most efficient analytical Volterra 

techniques, is used to develop an approximate nonlinear solution. The solution is given as 

a two term truncated Volterra series. The two terms symbolize the first and second 

kernels, which are sufficient to capture the quadratic and bilinear information initially 

assumed in the nonlinear systems. Such an analytical solution is visualized in the time 

domain for understanding the effect of each nonlinear and linear term in the kernels' 

structures. Also, this parametric study illuminates the cause of the observed deviation 

between the linear and nonlinear simulations. This deviation appears in the steady state 

response, settling time response, the phase shift response, and in general the transient 

response shape for any input. For that reason, these analyses are called the "Cause-and-

Effect". Following the same rationale of linear analyses in the literature, a parametric 
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exploration for a nonlinear step response is conducted to characterize the overall system 

response. Feasibility of the proposed implementation is assessed by four examples: surge, 

pitch, roll, and yaw motions. 

The third approach represents a global modeling technique for Volterra series 

based on a more computationally efficient interpolation to make the global Volterra 

technique more systematic than the piecewise Volterra approach. The method is called 

herein "Volterra Parameter-Varying Approach", which is suited for an aircraft's complex 

and large envelope (such as the F-16) more than the piecewise approach. The VPV 

algorithm starts by applying the local two term Volterra series sub-model in the 

differential form. This sub-model captures the quadratic and bilinear characteristics 

represented by inertial coupling nonlinearity, gravitational nonlinearity, kinematic 

nonlinearity, and aerodynamic and propulsive nonlinearity. The total flight speed and the 

altitude define the operating condition or the varying parameter. Other equivalent sub-

models are generated at different operating conditions over the entire flight envelope. The 

coefficients of these local sub-models are then tabulated with the varying parameter (total 

speed and altitude). Different interpolation techniques are then investigated to select the 

most proper systematic interpolation. The algorithm employs the flight condition 

dependency to slide over the original nonlinearities hyper-surfaces and projects it as a 

Volterra parameter variation with the flight condition. The proposed VPV model has 

many advantages, which include: 

• The model has the capability to render the aircraft behavior across wide ranging 

maneuvers, while the linear model is restricted to only mild maneuvers. 

• The model provides a tractable analysis by linking Volterra kernels to the high 

order stability and control derivatives, while the linear model is restricted to the 

first order derivatives only. 

• The cause-and-effect Volterra approach analyses can be applied to the global 

reduced order models taken from this VPV model providing an efficient nonlinear 
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preliminary design tool in qualifying the aircraft responses before computer 

simulation is invoked, or as an analysis tool to dissect a given simulation trace. 

The VPV model is applied in this dissertation to the F-16 longitudinal motion to move 

across the flight envelope showing a superior matching compared to the linear parameter-

varying (LVP) model. The kernel variations due to total velocity and altitude are 

visualized over the entire flight envelope to show the merit of Volterra kernels to 

characterize the longitudinal motion. 

1.3 Research Contribution 

Novel techniques to facilitate and enrich Volterra theory have been proposed. 

These techniques bring Volterra theory back to the flight mechanics research community 

twenty years after the last related publication. Volterra theory has been known for 

modeling weak nonlinearities, which is not well suited for high performance aircrafts. In 

order to overcome these obstacles and restrictions on Volterra theory, the global Volterra 

approach (piecewise approach and parameter-varying approach) has been developed.105" 
107 This global approach opens a new window for practical use of Volterra theory when 

applied to systems with a strong overall nonlinearity by decomposing the nonlinearity 

into weaker component nonlinearities appearing in several operational sub-regions only 

requiring a low order truncated series. A novel cause-and-effect analysis of these low 

ordered truncated series has been developed, which provides system prediction before 
1 AQ 110 

employing computer simulation. " Modeling the aircraft dynamics implementing 

these approaches in Volterra theory offers more efficient nonlinear preliminary design 

techniques than have been offered by other linear and nonlinear approximation 

techniques. 
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1.4 Dissertation Outline 

This dissertation is composed of six chapters, including the current Chapter 1. 

Chapter 2 introduces some foundations for Volterra theory and techniques to identify 

Volterra kernels from the observed input-output signals and from the nonlinear 

differential equations. Chapter 3 is dedicated to the piecewise global Volterra technique. 

This method is a novel approach that increases the practical use of Volterra theory when 

applied to systems with a strong overall nonlinearity requiring several high order kernels 

by decomposing the nonlinearity into weaker component nonlinearities appearing in 

several operational sub-regions requiring fewer kernels. The piecewise Volterra model is 

recommended for low order dynamics. Chapter 4 presents the cause-and-effect analyses 

for the first and seconded order single degree of freedom system. A two term truncated 

Volterra series, which is enough to capture the quadratic and bilinear nonlinearities, is 

developed for first and second order generalized nonlinear single degree of freedom 

systems. The resultant models are given in the form of first and second kernels. A 

parametric study of the influence of each linear and nonlinear term on kernel structures is 

investigated. A step input is then employed to quantify and qualify the nonlinear response 

characteristics followed by some low order atmospheric flight examples. In Chapter 5, a 

Volterra parameter-varying modeling approach is proposed to model the high order 

aircraft dynamics. The global analytical kernels based on the VPV approach is visualized 

over the flight envelope. This visualization emphasizes the capability of Volterra theory 

to analytically characterize the aircraft dynamics more than other approximation 

techniques. The dissertation is concluded in Chapter 6, which contains proposals for 

future investigation. 
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CHAPTER 2 

VOLTERRA THEORY 

This chapter provides the necessary background of Volterra theory and different 

methods to estimate the so-called Volterra kernels. This background is used throughout 

the dissertation to develop the proposed approaches. Section 2.1 introduces the 

mathematical and dynamical insights of Volterra theory. Section 2.2 discusses the nature 

of the kernels and their shapes. Section 2.3 outlines a numerical procedure, which 

estimates Volterra kernels via an impulsive technique. Three analytical techniques to 

develop Volterra kernels from the differential equations are discussed in Section 2.4. 

2.1 Mathematical and Dynamical Foundation 

Many physical systems can be described across a set of nonlinear differential and 

algebraic equations between input, state, and output signals. A commonly used 

representation is the nonlinear state space form 

x(t)= f{t,x{t\u{t)} 
y(t) = g{t,x{t\u{t)} 

where x€Rn denotes the state vector, u e Rrn the input vector, and y^Rp the output 

vector. Vectors / E Rn and Rp denote the system nonlinearities and t G R1 is time. 

Volterra series represents the input-output relation of a nonlinear system as an infinite 

sum of multidimensional convolution integrals. 
oo 00 00 00 k 

y ^ K ^ + Y l l - ^ K i h ^ i ^ ^ - Y l ^ t - r M h (2.2) 

4=1 o 0 0 '=1 

In Equation (2.2), /^(r/.z^, ...Jk) denotes the klh order Volterra kernel. 

To solidify the mathematical applicability of Equation (2.2) and its origins, a 
co 

conceptual derivation is given first. The theory supposes that output y(f) of a system at a 
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particular time t depends nonlinearly on all values of the input at times equal and prior to 

t. In other words, y(t) depends on u(t-z) for all t > 0. If u(t-z) can be quantified by the set 

u/(t), 112(f), then output y(t) is expressible as a nonlinear function of these quantities. 

y{t) = y{ux{t),u2(t\ .} (2.3) 

The theory supposes the input u(t-r) is given by an infinite series involving products of 

u,(t) with functions < ,̂(r) serving as an orthonormal basis for the appropriate functional 

input vector space. 
00 

u { t - r ) = Y u . ('&(*•) (2.4) /=i 

^ { ^ { t ^ T = \ \ f 0 / 1 \ (2.5) 

Exploiting the orthogonality property of r), quantities u,(t) are computed as 

00 

«/(')=/"('-*•>,•(*•>**• (2.6) 
0 

Finally expand Equation (2.3) with a general power series, or 

y(t) = 00 + £ 0, u,t (0 + E Z 0hh (>K (0 + (2.7) 
/| =1 /,=! <2=1 

and substitute from Equation (2.6) yielding 

00 a , 

y i f ) d , ^ (ri V 
0 '1=1 
®® CO OO 

+ J J Z Z 9'A A (T> K (T2 )u{t-T,)u{t-T2)dTxdT2+ 

(2.8) 

0 0 '1=1 '2=1 

Equation (2.8) has a term-by-term correspondence with Equation (2.2) authenticating, for 

the purpose here, the Volterra series solution. A more rigorous mathematical proof can be 

found in Reference 58. 
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Although the previous derivation gives a conceptual understanding of Volterra 

theory's mathematical origin, it is also beneficial to look at the dynamical intuition of the 

Volterra representation. The theory represents the input-output relationship as an infinite 

series of homogeneous linear and nonlinear sub-systems expanding upon Taylor's power 

series.58 Homogeneity, in general, means that the change in the amplitude of the input 

generates a change in the amplitude of the response without any change in the shape. If 

the shape of the response of the system distorts with change in amplitude of the input, 

then the system is a non-homogeneous one. A linear system is an example of a 

homogeneous system at n = 1, whereas a nonlinear system is typically non-homogeneous, 

but not in all cases. 

The n h term of the Volterra series is a single input single output degree-w 

homogeneous stationary nonlinear system, which is defined through the generalized 

convolution integral as 
00 oo 

(2-9) 
= J - \hXt~rx,---,t-rn)u{r,)---u{Tn)dT,-dzn 

—oO —oo 

where hn{rv---,t^) is the kernel of the system defined for r, e(-oo,oo), / =1,2, .., n. In 

Equation (2.9), y„(f) denotes the system output and u(t) denotes the system input. This 

system is called a degree-rc homogeneous system, because if an input au(t) is applied to 

the system, the output is then anyn(f), where yn(t) is the equivalent response for the input 

u{t). The first term of the Volterra series is a degree-1 homogeneous sub-system, in which 

the change in output amplitude is proportional to the input amplitude. The second term is 

a degree-2 homogeneous sub-system, in which the change in output amplitude is 

proportional to the square of the input amplitude and so on. Each degree-^ homogeneous 

sub-system is represented by an n dimensional convolution integral, while the input 

signal is dynamically weighted by the so-called «th order kernel. The n h order kernel is an 
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n-dimensional function in time or complex frequency, depending on the domain of 

interest. Each kernel appearing in the convolution integrals reflects a specific system 

behavior. 

2.2 Kernel Nature and Shape 

In Equation (2.9), the kernel is a one-sided function in each argument t i due to the 

causality of the system. Thus, the system response at a certain time cannot depend on 

future values of the input. This one-sided characteristic implies that "0" can replace the 

infinite lower limit of the integration. Also, the input signal is considered to have a zero 

value prior to t = 0, which leads to the replacement of the upper limit of the integration by 

t. Both changes yield 

I I 
y{t) = j---jhn(r],--,rn)u(t-T])---u(t-Tn)dTi--dTn 

: : (2.io) 
= j---jh„(t-Tl,---,t-Tn)li(Tl)---u(Tn)dTr--clTn 

0 0 

The structure of the kernel h„(T\>'">Tn) l s described in terms of arguments t/, t2, • 

. . , r„. Three forms of the kernel commonly appear: symmetric kernel, triangular kernel, 

and regular kernel. The symmetric kernel for a stationary system is defined to be 

Ksym (r 1, • •• •• ,t„):= hn (r,(,), • • •, r , ( B )) (2.11) 

where jt(.) denotes any permutation of the integers 1 , 2 F o r some computational 

algorithms, kernel symmetry is not guaranteed. In such a case, a symmetrization 

• 58 technique could be applied to h„ yielding hnsym as 

Kvnfc 1' • • -^n) = ^ Z ^ t ( i ) ' " " (2.12) n\ 4) 
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For example, if the system has an asymmetric kernel as 

/z2(r l,r2) = g ( r ] ) / ( r l , r 2 ) (2.13) 

the symmetric kernel is then computed as 

KYM KFC )/(*"!,T2)+ g(R2)/(r2, r , ) ] 
1 

(2.14) 

Although the symmetric kernel in Equation (2.14) has more terms than the one in 

Equation (2.13), such symmetrization brings the kernel into the most standard form. 

A triangular kernel is the second special form of the kernel. The triangular kernel 

is defined such that hmn (r,, • • •, r„) = 0 for r;+, > T) for i, j positive integers. Figure 2.1 

shows an example of the operating domain over which the degree-2 h2ln (r,, r 2 ) kernel 

could be defined. However, the operating domain of a triangular kernel is not unique. For 

a degree-/? kernel, there are n\ possibilities to define the domain. 

The third special form is the regular kernel. This form is developed from a 

triangular kernel as follows. For a system with a triangular kernel, the output is given as 

n 
0 0 0 

(2.15) 

0 0 

where 

and A(cr) denotes the unit step function. Replace oi by r/ = 07-02 where 02 is treated as a 

constant, then 

(2.16) 0 0 
u(t-<r2)---u{t-crn)dT]da2da3 •••da n 

Replace 02 by x2 = 0>0j where 03 is a constant, then 
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^ ( 0 = J — J \ , w ( r , +T2 + <T3,T2 +a3,a2,---,an)u(t-T] -r2-cr3)i(t-T2 -cr3)x 
o o ( 2 - 1 7 ) 

u{t-cr3)---u(t-<jn]drldT2da3 •••dan 

Continuing this process, one finds 

i i 
y{t)=["-\hntn(T]+-- + Tn,T2+-- + Tn,Tn_]+Tn,T„)x 

0 0 (2-18) 

u(t~Tx Tn)u(t~T2 Tn)---ll(t-Tn)dTxdT2---dTn 

In this way, the regular kernel is defined as 

Kreg{h^2>-^n) = K,r,g(* 1 +~' + Tn,T 2 +-" + T„,T„_, + T n,T„) (2.19) 

This structure leads to writing the input-output representation for the degree-^ stationary 

homogeneous system as 

t i 
y{t) = \-\hnreg(rvT2,---,Tn)i(t-Tx r„)x 

o o ( 2 . 2 0 ) 

u(t-r2 Tn)---u(t-Tn)dTxdT2"-dTn 

The main reason for this conversion from the triangular kernels to regular kernels 

is to generate kernels with an orthant domain instead of a triangular domain without 

bringing any discontinuity. For example, if a triangular kernel is defined as 

Krkh^2) = Mr , ) s in ( r 2 )+3s in ( r , ) Ja ( t , -T2) (2.21) 

Both symmetric and regular kernels, equivalent for this triangular kernel, are computed as 

K y m = ^[{cos(r,)sin(r2)+3sin(r,)}A(r, - r 2 ) 
2 (2.22) 

+ {cos(r2 )sin(r,)+3 sin(r2 )}A(r2 - r,)] 

Keg (ri ^2) = C0S(71 + T2 )sinfe ) + 3 S'm(h + T2 ) 
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The three kernels of Equations (2.21) and (2.22) are shown in Figures 2.2-2.4 to 

emphasize the philosophy behind the regular kernel generation, since a symmetric kernel 

shows discontinuity, while a regular kernel does not. 

Volterra theory represents the system as an infinite sum of multidimensional 

convolution integrals by 

Each term k in such a series is a homogeneous sub-system of degree-/:, which has kernel 

h/t(Ti,T2,...,Tk) as mentioned before. Volterra kernels are causal homogeneous functions 

with respect to their arguments. These kernels represent the behavior of the system to any 

arbitrary input, which concludes that kernels are unique signatures for the system. Each 

kernel appearing in the convolution integrals reflects a specific system behavior. For 

example, the first kernel hi represents the linear behavior of the system. The merit of 

using Volterra theory is that such series for many nonlinear systems can be truncated by a 

certain number of terms when considering a bounded time interval and input amplitude. 

In this way, the input-output relation of a nonlinear system can be approximated as a 

"finite" sum of multidimensional convolution integrals. However, it is difficult to find 

such bounds of input and time. Most weak nonlinear systems only require between two 

and three terms and more nonlinearities means more terms. 

(2.23) 



Figure 2.1 Triangular Domain for Degree-2 Kernel 

Figure 2.2 Triangular Kernel 
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Figure 2.3 Symmeterized Kernel 

Figure 2.4 Regularized Kernel 
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2.3 Kernel Identification based on Input-Output Signals 

Since, kernels are the backbone of Volterra theory, they must be constructed by 

some means. Several methodologies have been addressed to estimate the Volterra kernels. 

Some methods are iterative and numerical in nature, identifying the nonlinear system as a 

black box or gray box. For example, one of these numerical techniques is based on linear 

regression or least square estimation (LSE). LSE can be cast as a recursive algorithm or a 

non-recursive algorithm. Another method to estimate Volterra kernels from the system 

identification point of view is provided by the use of sinusoidal or impulsive inputs. The 

strategy is an extension from the use of these inputs to identify linear systems. This 

strategy captures only the input-output behavior of a system and disregards any internal 

structure. 

In this section, Volterra kernel estimation via impulsive input is implemented. 

The kernels are estimated from a time domain system identification perspective. As the 

input u{t) is applied to and the output y(t) is recorded from the undefined system, the 

waveform of the output and input signals are used to estimate the kernels. This 

methodology is especially favorable for reflecting the operational meaning of Volterra 

kernels. For an impulsive input, every kernel indicates the response of the system as a 

function of time and a certain number of distinct time lags. For example, a second order 

kernel is a function of both time and time lag r i , or hi{t, t-xi), which reflects how the 

system memory (nonlinearity) from an applied input at previous time (t-TL) affects the 

response of the system with input at time t. Based on the operational meaning of the 

kernel and the input time lag, kernel identification can be realized by inputting a signal 

waveform of multiple impulses with variable amplitude and variable time lag. 

A procedure is given in Reference 58 for first and second order kernel estimation 

which is generalized here to nh order. The diagonal values of n kernels are estimated first 

by applying a sequence of variable strength impulse inputs one at a time as 
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ui{t)=AlS{t) , / = 0,1,2,...,; (2.24) 

where d{t) denotes the unit impulse function. Each input generates a corresponding 

response y,(t) as 

y ,(t) = h0(t)+A,hx{t)+A,2h2(t,t)+ +A"hn(t,t,-,t) and / = 0,1,2,...,» (2.25) 

Equation (2.25) represents a set of simultaneous equations for the diagonal kernel values. 

These diagonal values are computed as 

hit) = A-]y(t) 

h(t)=[h0(t) hx{t) h2(t,t) ... hn (t,t,...,t)\ 

= y M T 

A = 

1 A0 Aq 

1 A, A? 4" 

1 An An ... A" 

(2.26) 

This computation is carried out at each point in the time series. The impulse strengths 

must be selected to ensure excitation of relevant nonlinearities and invertibility of the 

(«+l)X (n+l) matrix^. 

This methodology can be extended to estimate off-diagonal values of the high 

order kernels by exciting the system through a sequence of time delayed impulses. The m 

off-diagonal kernel values are estimated by applying a sequence of variable strength time 

delayed impulse inputs one at a time. 
uj{t)= A^it)^ B^t-tL) , / = 1,2,...,m (2.27) 

The produced responses corresponding to these inputs are 
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y, (t)=K (0+(0 + b, \ (t - tL) + A? h2 (t, t) 

+ 2AjBih2 (it, t-tL)+B?h2(t-tL,t-tL)+~-

+ A?h„(t,t,-,t) + ^A?-lBih„(t, — ,t,t-tL) 

+ hr2B?hn{t,-J,t-tL,t-tL) 
1 - 2 

+ ...+ N^AFBR2K(u,t-tL,-J-tL) 

+ B^hn(tJ ~tL,-,t -tL)+ B';hn{t ~tL,t -tL,-,t -tL) 

i = 1,2, 
i 

- I ' 

(2.28) 

/=i 

Equation (2.28) also represents a set of simultaneous equations, this time for the off-

diagonal kernel values. These off-diagonal values are computed as 

where 
h'(t) = [ABY y'{t) 

h2(t,t-tL) 

h3(t,t,t-t L) 

hJ{t,t-tL,t-tL) 

h'(t) = hn(t,-,t,t-tL) 

hn(t,---,t,t-tL,t-tL) 

hn(t,t,t-t, ,---,t-tL) 

hn(t,t-tL, — ,t-tL) 

(2.29) 
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[AB] = 

2A]B] 3AfBx 3A,B; 

2 A2B2 3 A2
2B2 3A2B2 1 A;-'B2 

n("~l) *n-iDi n{n-1) 
1 - 2 

'-A"2-ZB2 - - f ^ B r 
1 - 2 

2A B 3A'B 3A B 
m m m m m m 

-A"~lBm 1 
jn-

1 - 2 
A"~ZBZ 

m m 

n(n-\) 
1 - 2 

m m 

y ' (0= 

y, (')-^o(')- AA (t)~ BA {t-tL)~ A?h2(t, t)-BX (t-tL,t-t,) 
A?hn{t,t,-,t)-B?hn(t-tL,t-tL,-,t~tL) 

y2{t)-Kit)-Mid-BiKit-h)-4>h{t,t)-B2
2h2{t-tL,t-tL) 

An
2hn it,t,-,t)~ B"hn if-tL,t-tL,~-,t-tL) 

ymif)- K(0-Am\(0- Bm\(t-tL)-A^h2(t,t)- Blh,it-tL,t-tL) 
. <hn{t,t,-,t)-Bn

mhn{t-tL,t-tL,-,t-tL) 

-AB" 

This computation is carried out at each point in the time series. The impulse 

strengths are selected to strongly excite the nonlinearities of interest and to avoid 

singularity of the mxm matrix [AB\ By varying the value of ti from zero to in, the 

desired temporal horizon of the Volterra model, the value of any kernel at an off-diagonal 

point in the domain can be defined numerically. It is only necessary to calculate the 

kernels over half of the domain with this procedure, the remaining half is obtained from 

kernel symmetry. If only two kernels through h2{t,t-ti) are sought, the above general 

technique simplifies considerably. Equation (2.28) reduces to a single equation and the 

matrix inverse solution in Equation (2.29) is replaced by scalar division. 
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y(t) = h0(t) + Ahx(f) + Bht(t -tL)+ A2h2(t,t) 
+ 2ABh2 ( t j - tL)+ B2h2 {t-tL,t-tL) 

/ \ 1 r / x /x (2-30) 
h2 {t, * ~ t,\= —— {y(0 " K (0 " AK (0 2AB 

- B\ {t -1L) - A2 h2 (t, t)- B2h2(t -t,,t -tL )} 

Estimating Volterra kernels based on the impulsive response is used in this dissertation 

only within Chapter 3. 

2.4 Kernel Identification from Differential Equations 

Identifying the kernels from the input-output signals is quite general but captures 

only the input-output behavior of a system and disregards any internal structure. On the 

other hand, the usage of analytical methods exposes internal structure but is more 

restricted in applicability. Three analytical methods to develop the Volterra kernels from 

the nonlinear differential equation are discussed in this section: Carleman linearization 

method, growing exponential method, and variational expansion method. A brief 

discussion is presented to show the procedure, capability, and limitation of each method 

in the next three subsections. 

2.4.1 Carleman Linearization Approach 

The single input single output state space representation of the nonlinear affine 

system is defined as 

. y ( 0 = ; / M 0 , 0 

where xeR" denotes the state vector, u eR1 the scalar input, and y e R1 the scalar output. 

Vectors FeRn, GeRand HeR1 denote the nonlinear analytical functions in x and 

continuous function in t, where I e R1 is time. The system in Equation (2.31) is also 

called a linear-analytical state equation. The Carleman linearization approach can be 

applied to F(x(t),t), G(x(t),t), and H(x(t),t) as 
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(2.32) 

where 

F ( j c (4 t) = A, (/)*(/) + A2 {t)x{2\t)+• • • + 4 (r)x(i)(f) + • • • 

G(x{t\t) = B0 (?)+ B{ (t)x(]){t) + B2 (t)x{2)(t)+- + Bi [t]x{,){t)+••• 

H{x{t\ t) = C, (/)x(0+C2 (/)x(2)(/)+• • • + C, (t)x{,)(t)+••• 

x<%) = 1 
xM(0 = *(0 

x(2)(t) = x(t)®x(t) 

x(3)(t) = x(t)®x(t)®x(t) 

x ( , ) ( t )=x( t ) f j®x( t ) 
k=1 

and x(/), «(/), and y(t) now denote signals referenced to the expansion point. In Equation 

(2.33), ® is the Kronecker product. The Kronecker product for two matrices P of the 

dimension NPXMP and Q of the dimension NQX MQ is defined as 

(2.33) 

PuQ Pw.Q 

PNM "' PNMPQ 
(2.34) 

The resultant matrix P®Q has dimension (NpNq) x (MpMq). 

After considering Carleman linearization for N terms only, Equation (2.31) is then 

approximated as 

AM 

k=0 k= 1 

y(th±ck(ty%) 
(2.35) 

k=1 

Equation (2.35) and the index notation to follow is modestly generalized from that in 

Reference 58. The system in Equation (2.35) can be formulated as a bilinear system by 

considering the differential equation of x{l\l) as58 
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(2.32) 
k=i k=i-1 

where 
i-i j-2 

A* ( o = ( ^ n ® J + 7 - ® « y n ® 7« 

w = w i n ® 7» ] + 7 » ® ( f i n ® 7« 

\ ("I \ 

+ • • + \YI>. ® 
/ 

\ ( \ 

+ • • + i t . ® 
/ U=> / 

v . ( ')=**-( ') 
and A: = /, / +1, / + 2, • • •, N 

In Equation (2.37), there are (/-1) Kronecker products in each Aik(f)and Bik(/)terms. 

The derivation of Equation (2.37) is a sequential one. The first step of the derivation is 

presented as 

it it W ] = ( 0 ® * ( I ) ( 0 + ( 0 ® 

d_ 
dt 

AM N-2 
[x,2)W]= E 4 W H t b 1 BM\tH>) ® *(l)(<) 

[k=1 k=0 J 

+ x % ) ® { g M'Vk)(t)+WMOl+• 
k=1 jfc=0 

dt k= 1 
N-2 
^\Bk(t)®In+In®Bk(t)Y^(t)u(t)-

d_ 
dt 

k=0 

N-1 

*=i i-=0 

(2.38) 

In Equation (2.38), the upper limit of the summation of AK terms has been reduced to N-1 

to remove the (/V+l)th order terms x(v+l). Also, the upper limit of the summation of Ak 

terms has been reduced to N-2 to remove the (7V+l)th order terms x(A )̂w(t). The 

differential equations of x(,)(/) for i =1,..., Arcan be collected in a state space model as 
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with 

*®(0= ^(0*® (0+ Bo( t)u( t)+ (0*®( 'M0 
y ( t ) = C ( t y ( t ) 

(2.32) 

Xi A,2 ' A,N ' 4 ) ' B\,0 

0 A,2 ' ' A ,N 0 
A(t) = 0 o • ' A,N 0 u{t) 

0 0 • 0 _ 

B\,\ B\,2 ••• B\,N-\ 

B2,\ B2,2 B2,N-\ 

0 B\2 B3,N-L 

0 0 BN,N-

each row of has 

, C(0=[C I ( f ) C2(t) - CH(t 

x^(t)u(t). The closed-form expression of the Volterra kernels are analytically defined as 

ho(t)=C(t)®(t,0)xf 
hk(t,Tl, — ,Tk) = 

C (/)0(/,r, )BX (r, )o ( r„ r 2 % (r2 )• • • 5, (rk_x )o(r,_„rA (r t )o(r„o)xo
0 

+ C (/)0(/,r, (r, )o( r„ r 2 )BX (r2 )• • • J®(r t_„r, )fi0 ( r t ) 

(2.40) 

Note the kernels of the bilinear system are of the triangular form. 

2.4.2 Growing Exponential Approach 

Assume the input as a sum of excitations in the form of 

N 

u(t) = Yde 
i=\ 

and the output is assumed as 

(m1Ai+- • •+m,Ji)l 

(2.41) 

(2.42) 
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where mi is a counter for each parameter By substituting the assumed input and output 

forms in the differential equation and solving for 

a set of linear algebraic equations is generated for the kernels in 

the complex Laplace domain. By equating the coefficients of like exponents, the 

symmetric kernels are computed as 

/ /1(5)=CG1 0 . . .0(^) 

H 2 (5,, 52) - — GUj0,.., 0 ( 4 ' K ) 

H N (5,, s2, • • •, sN ) — ^1,1,...,1 (^1 s »"'" > ^n ) 

where s denotes complex frequency and 

(2.43) 

(2.44) 

2.4.3 Variational Approach 

The variational method assumes the state vector derivative i is expandable as an 

infinite power series in terms of the state vector x e R" and scalar input u e R] around 

an arbitrary point, defined by (x0, u0), as 

00 00 / — I 

x = = , and ^(0) = 1 , *(l) = * (2.45) 
/=o 7=0 k=\ 

The matrix K„ of dimension nxri is defined as 

K « = ye{0,1,2,"-,00} and K()0 = 0 (2.46) 

Note Â J0 has a null value. Thus, the expansion holds around an equilibrium point 

(i = 0). The matrix KiJ represents the derivatives of the vector function /(x:,w) with respect 
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to x°J and 1/ at point (x0,u0). The input u is generalized to be au(t), where a is a tracking 

parameter that ultimately will be set to unity. In this case, the response x(t) can be 

expanded in terms of a as 

00 

x = ^jotXf (2.47) 

By substituting in Equation (2.45) and rearranging according to the coefficients of a1 (/' = 

1,2, ...), a set of differential equations is generated as 

x, £10JC, l Kq îi 

Xj K]QX2 ^20 J ^ - ^ ^ X ^ U Q2ti 

x3 = KwX3 + K30x\V + ^20 [X1 ® X2 + X2 ® Xl ] (2.48) 

+ KuX2U + K2XX\2)U + Knxxu2 + K03U3 

Equation (2.48) represents the system as an infinite set of differential equations. Although 

this expansion extends the ^-dimensional problem to infinite dimension, the original 

nonlinearity of the system is broken into a sequence of pseudo-linear time invariant 

(PLTI) systems, which are solvable. The input of each PLTI system is a nonlinear 

function of all previous system states and the input u. Figure 2.5 shows the schematic 

diagram of the method for the PLTI systems through the kth term. 

In Figure 2.5, the first PLTI system has a linear transition matrix @(t-to) based on 

the square matrix Kxo, which is excited by an input u multiplied by the column vector 

The state response of this system xj has a closed-form convolution integral solution in 

term of u. This solution is mapped to the next PLTI system by a nonlinear function 

fi(xj,u). This sequence is repeated for a certain number k, which provides satisfactory 

results. Note that where i = 2,3,...,k, automatically keeps the order of 

input u to the power i. For example, fi(xj,u) is a sum of u , x\u, and x\ . By substituting 

for x/ as a convolution integral of u, the bilinear term x/u and the state quadratic term x\2) 
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become a function of u2. Then, X2 is defined as a convolution integral of u . In general, 

this condition is not essential to the method, but it is necessary to extract the kernels. 

Figure 2.5 Variational Expansion Method Schematic Diagram 

The Carleman linearization method, growing exponential method, and variational 

expansion method have been proposed for single input single output systems. More 

investigation is required to extend these methods for multiinput multioutput systems. The 

growing exponential method provides the kernels as a set of TV-dimensional Laplace 

domain transfers. However, the method delivers the kernels in unwieldy forms, which 

restricts the applicability for nonlinear characterization. The Carleman linearization or 

bilinearization method delivers the kernels in a triangular form. The method is 

mathematically simple. However, the method replaces the nonlinear system by a higher 

order bilinear system, which limits practical usage to only affine systems. The differential 

method is more general. The generated kernels are not necessarily restricted to being 

symmetric or triangular as in the other methods. However, the method requires many 

special mathematical manipulations during conversion to integral form. In this 

dissertation, the variational method is used throughout Chapters 3-5. 
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CHAPTER 3 

PIECEWISE VOLTERRA APPROACH 

This chapter is dedicated to the piecewise Volterra approach, which facilitates the 

use of Volterra theory in a piecewise fashion for strong nonlinearity. In Section 3.1, the 

theory of the global Volterra methodology is presented. Section 3.2 starts by introducing 

the strength index to determine the order of the Volterra series for different sub-models. 

Subsequently, an algorithm based on this strength index to switch between the Volterra 

sub-models is listed. As a demonstration, the approach is applied to a simplified 

nonlinear model of a high performance aircraft longitudinal dynamics given in Section 

3.3. Feasibility of the universal approach is determined by several input test cases in 

Section 3.4. Extracting the global kernels is discussed in Section 3.5. 

3.1 Global Methodology 

The number of Volterra series terms required to model the system behavior 

depends on two main attributes. The first is the strength of the nonlinearity involved in 

the system reflecting the number of required Volterra series terms in the sense of more 

terms for more nonlinearity. For example, a single degree of freedom first order system 

with a cubic nonlinearity defined byx = / ( x ) = ax3 +bx + u , where x is the state, u is the 

input, /(x) is the system's state space function, and a and b are constants. Changing the 

ratio between a to b changes the strength of the nonlinearity. Figure 3.1 shows the shape 

of/fx) for different values of a and b. In Case 1, the system is linear and then the first 

term of the Volterra series is enough to capture the system's behavior. The inherent twist 

or the curvature in the function fix) increases with the increase in the case number on 

Figure 3.1. More specifically, in Case 3, the system has more curvature or twist (more 

nonlinearity) than in Case 2. The dynamical analysist can then tell that the number of 

Volterra series terms to render the system behavior in Case 3 is more than in Case 2. 
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X 

Figure 3.1 Cubic Nonlinearity Strength 

The second attribute is the operating space range to be covered by the model. 

Hence the series is expanded around an operating point, and a wider range to be captured 

by the model requires more terms in the series. For example, recall Case 5 on Figure 3.1 

and consider that three different Volterra series around the origin are required to cover 

three different operating spaces Rj, R2, and R3 as shown in Figure 3.2. It is clear that the 

number of terms in the Volterra series to cover the space R3 is more than space R2, which 

is more than the space Rj. However, in the case of nonlinearity strength (see Figure 3.1) 

or in the range case (see Figure 3.2), there is no quantitative scale or gauge to tell exactly 

how many term are required in each case. In the next section, the concept of "Strength 

Index" is developed to measure the required number terms of the Volterra series (strength 

of the nonlinearity) to render the system behavior in a certain region. 

These two attributes show that sometimes the overall behavior of the system can 

not, or should not, be represented by a single series high order expansion. Hence if the 

series is expanded around an operating point, increasing the range and/or the strength of 

the nonlinearity to be captured by the model will require more terms in the series. 

Unfortunately the convolution integral becomes ever more computationally expensive 
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with more terms. For example, take the case in Figure 3.2. If a series is expanded around 

x0 = 0 or wo = 0 and the required covered range is |x| < 1, an nth order Volterra series will 

be required then. For this case in Figure 3.2, n is at least seven and may be more. The 

model will involve a potentially prohibitive nth (at least 7th) dimensional integral. Instead, 

the entire range can be replaced by five sub-models of klh (2nd or 3rd) order Volterra series 

as shown in Figure 3.3. The new model has in general k kennels instead of n kernels, 

where k < n. This reduction in the number of the kernels not only reduces the 

computational cost, but also facilitates the process of understanding the dynamical insight 

of the system. Thus, visualizing and analyzing a two dimensional surface of the 2nd order 

kernel is much easier than a five dimensional surface of the 5th order kernel. 

x 

Figure 3.2 Operating Space Range of Cubic Nonlinearity 
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Figure 3.3 Schematic Diagram of Piecewise Approach 

The global Volterra approach is proposed here to assemble the kernels in all of the 

sub-regions. This assembly process is constructed through interpolation or modeling 

techniques such as piecewise, linear, spline, or design of experiments. The assembly or 

the modeling process considers the operating conditions (x0 or u0) to be the interpolation 

factor. This interpolation factor will increase the kernel dimension, as the kernel must be 

scheduled according to the current value of the factor. For example, in the case of the 1 st 

kernel /*i(t) of the system in Figure 3.3, a new modeling or interpolation dimension will 

be added making h\(t, x0) or h\(t,u0). In this chapter, piecewise interpolation is used to 
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switch between the sub-systems in the simulation process. The piecewise Volterra 

approach is more suited for a handy nonlinearity as in the given example (see Figure 3.3), 

where one can manually break down the nonlinearity or the range to pieces. The 

assembly process should be then considered carefully in order to retain smoothness and 

continuity when switching between these sub-regions. Other important issues in this 

process are determining the number of sub-regions, the range or amplitude of each sub-

region, and the operating point location within each sub-region. A systematic algorithm 

to apply the piecewise interpolation and to address these other issues is given in the next 

section. 

3.2 Strength Index and Piecewise Switching Algorithm 

The traditional technique to determine the number of required terms in the series 

for modeling the system dynamics is based on trial and error. First a model with n terms 

is initially constructed. The model is then compared to the nonlinear simulation for 

selected test cases. New terms are included, or existing terms are deleted, depending on 

the comparison results. The technique is a trade-off between number of terms and 

response accuracy. This technique is time consuming, and the simulated test cases can 

not cover all possibilities of system behavior. For these reasons, a new function called the 

"Strength Index" S is proposed in the current research. This index uses the estimated 

diagonal values of each input dependent kernel, instead of the extensive simulation across 

all kernels, to judge their importance. The index S, is defined as a convolution line 

integral over the diagonal kernel of /th order multiplied by the same order of input, as 

demonstrated in Equation (3.1). An absolute value applied to the integral argument will 

be preferred to avoid the possibility of integral area cancelling. 

H 

a n d / = 1, 2 , 3 , • • • , n (3.1) 
0 
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Each index S, is considered as a gauge to measure the magnitude of each term in the 

system model. Thus a large strength index value for SI, relative to SJ, means that the 

corresponding kernel has a significant contribution in rendering the system behavior, and 

vice versa. In this way, Equation (3.1) is used to determine how many terms should be 

considered in the model. 

An important issue concerns the switching between sub-model Volterra series, 

when the system transitions from one operating point to another across several sub-ranges. 

Global linear models are typically constructed based on the interpolation between the 

linear sub-models at different operating points. A linear gain scheduled control system is 

a prime example. In this way, use of a global Volterra series is proposed. This approach 

is addressed by employing the sub-model Volterra kernels in an interpolation procedure. 

Effectively a new dimension is added to the series kernels. For example the first kernel 

will have two arguments instead of one, or h](t,u0) instead of hj(t), where u0 is the 

operating point around which the sub-model is constructed. An interpolation technique is 

used to move through the tables of Volterra kernels. The number of sub-models and the 

range of each model may have a large effect on global model accuracy, therefore an 

intelligent sequence is outlined here to find an appropriate number of the sub-models, the 

range of each one, and the operating point locations. The sequence is organized as shown 

next. 

1) Select an operating point within a candidate sub-space. The selected operating 

points should lay in a region of stability. In this way, all the estimated kernels 

either diminish or oscillate as the time arguments (17, t2, •••) grow to infinity. 

2) Assume an «th order Volterra series model as an initial trial. 

3) Use Equation (2.26) to compute the state dependent kernel and the diagonal value 

of each input dependent kernel. 

4) Compute the strength index of each input dependent kernel using Equation (3.1). 
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5) Compare the strength index value of each kernel with respect to the first one. If 

the strength ratio is more than 10%, then the kernel is considered to be significant 

in the model. 

6) Reduce or expand the order of the model based on the strength ratio results. 

7) Render the sub-space by exciting the approximate model by a step input with 

different amplitudes and compare the response to the nonlinear simulation. The 

sub-space is defined as the region where the response error is within a specified 

tolerance. 

8) Sweep the operating point forward and backward across the sub-space and return 

to Step 2 to maximize the range and minimize the number of kernels. 

Since convergence of the Volterra series generation is excitation amplitude 

dependent, these amplitudes must be carefully chosen. Amplitude selection is based on 

constraining the responses to remain within the sub-region of interest while 

simultaneously forcing the responses to transit nearly all of the sub-region. Selecting 

amplitude in this way allows for identification of nonlinearities residing within the sub-

region of interest and avoids convergence issues associated with computing higher order 

kernels across all sub-regions with large amplitude excitation. Since accuracy of the 

Volterra series is strength index cutoff dependent, the cutoff must be chosen for the 

intended application. For the application of system analysis, rather than high fidelity 

simulation, a cutoff of 10% is reasonable. 

3.3 Longitudinal Aircraft Example 

A simplified longitudinal dynamic model of a high performance aircraft is chosen 

as an example for the proposed piecewise Volterra approach. The model is addressed in 

References 83 and 104 for the short period mode, where the motion involves rapid 

changes to the angle of attack and pitch attitude at roughly constant airspeed. The 

suitability of this model is that the dynamics cover both linear and nonlinear flight 
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behavior through an extensive range in angle of attack. The model is mathematically 

described as 
ce = q + 9.168 C7 (a) - 1 . 8 3 4 ^ +7°)+ 7.362 
q = 5.730(Cmaa + Cm&£e)+2.865 

-0.07378 a , a <14.36° 
(3.2) 

0.09722a - 2.865 a + 20.04 , 14.36° < a < 15.6° 
-0.01971a2 + 0.7439a-7.808 , 15.6° < a < 19.6° 

- 0.4733 - 0.01667a , 19.6 ° < a 

C7\a) = 

In Equation (3.2), a is the angle of attack in degree, q is the pitch rate in degree per 

second, Se is the elevator control surface deflection in degree, Cz(a) is the plunging force 

coefficient, Cmse is the pitch moment coefficient with elevator deflection, and Cma is the 

pitch moment coefficient with angle of attack. The model is simplified further by fixing 

the pitching coefficients as Cma = -1 1/deg and Cmse = -1.5 1/deg. The sole nonlinearity in 

the model is the plunging force coefficient C^a). The coefficient behavior is shown in 

Figure 3.4. The nonlinearity approximates stall and lift recovery at high attack angles. 

The Cz{a) model originally was discrete data points collected from a wind tunnel test. 

The coefficients in Equation (3.2) were then numerically computed to provide a fit for 

these points over the corresponding a intervals as mentioned in References 83 and 104. 

Figure 3.4 shows how the plunging force coefficient has different slope values. 

Every distinct slope demonstrates different characteristics in system behavior. The 

constant slope value in the pre-stall and post-stall regions renders linear system behavior. 

From the linear perspective, the system is plunge axis statically stable in these regions. 

Thus, a negative rate of change in plunging force coefficient creates a damping plunge 

force counteracting the original perturbation. Along with the negative pitch axis static 

stability (Cma < 0), this damping force contributes to the aircraft returning to trimmed 

equilibrium flight in the sense of dynamic stability. Note in the pre-stall regime, the 

settling time is less than in the post-stall regime, because of the larger slope value in 
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Figure 3.4. On the other hand, the significant curvature in the stall regime renders 

nonlinear system behavior. The stall regime can be split into two sub-regimes. The first 

one is the pre-stall/stall regime. In this sub-regime, the slope switches from negative to 

positive or from stability to instability. The second one is the stall/post-stall regime, 

where the slope switches from instability to stability. Both sub-regimes capture the 

nonlinear behavior of the system as unstable and stable limit cycles. Note the classical 

pitch static margin characterization of stability is not applicable to the Equation (3.2) 

model having a fixed Cma but independently varying nonlinear Cz(a). Also note the 

nonlinearity is a function of the angle of attack, but elevator deflection is the core 

mechanism to move through the various regimes. In the case of stable linear behavior, the 

analogous value of elevator deflection is below -9.5 deg or above -11 deg, and in between 

these values both unstable and stable limit cycle behavior is experienced. 

0 

-0.2 

- 0 . 4 

o n -0.6 

-0.8 

- 1 

regime 

0 5 10 1 5 20 2 5 

a (deg) 

Figure 3.4 Nonlinear Plunging Force Coefficient Cz(a) 
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Here the space is divided into four sub-spaces based on the range of elevator 

deflection, consistent with Equation (3.2). Two sub-spaces exist for linear behavior in the 

pre-stall and the post-stall regions, and two for nonlinear behavior in the stall regimes 

also exist. For the two nonlinear sub-spaces, the points around which the series were 

expanded were selected to have a negative slope. For example, in the pre-stall/stall sub-

space, Cz initially decreases with increasing angle of attack (negative slope) until a 

minimum point (a = 14.74 deg or Seo = -9.5 deg) is reached. After this minimum point, Cz 

increases with an increasing angle of attack (positive slope). To avoid expanding on 

unstable behavior (positive slope), the operating point is selected to be Seo = -9.5 deg. In 

the same way, the operating point is selected in the stall/post-stall sub-space. This careful 

selection is a critical feature for success but it places the expansion points near the edge 

of the sub-regions. 

After selecting the operating points, a fifth order Volterra series model is initially 

assumed as mentioned in Section 3.2. The diagonal waveforms of the kernels are 

computed for an angle of attack output signal, expanded around a = 0 deg and the 

elevator operating point value deo, as a set of simultaneous equations as in Equation 

(2.26). One test case of the diagonal kernels is presented in Figure 3.5 for the stall/post-

stall sub-space. These diagonal kernel waveforms are estimated around an operating point 

defined by Seo = -11 deg. Note the operating point can be defined by elevator deflection 

or the corresponding angle of attack at trim. Figure 3.5 shows that the first kernel is the 

most significant one followed by the second diagonal kernel. This qualitative observation 

can help in deciding how to reduce the order of the sub-model, but it is preferable to base 

this judgment on quantitative numerical criteria such as the strength index. 

A strength index is used to evaluate the number of terms required to render the 

system's behavior in each sub-space. Table 3.1 mentions the value of the strength indices 

in each sub-space. Each index is computed by numerical integration. A 20 s time span 

and a unit step input are considered. Several iterations are conducted searching for 
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optimal operating points and ranges (see Table 3.1) based on the sequence listed in 

Section 3.2. The ratios between the strength of the first kernel Sj and higher order 

strengths change from one sub-space to another depending on the level of nonlinearity. In 

the first sub-space, the strength index of the first kernel is the only significant value 

compared to the others. The strength index of the second kernel S2 is raised in the second 

sub-space to be approximately 10% of the strength index of the first kernel. This 

quantification means the nonlinearity starts to appear in a significant way. The ratio of S2 

to Si in the second sub-space is the same as in the third sub-space implying the level of 

nonlinearity in the second and third sub-spaces is the same. In the fourth sub-space, the 

ratio S2/S1 decreases to 7% indicating reduced but still significant nonlinearity. The 

strength indices of the third and higher order kernels have very small values with less 

than 2% strength of Si in all sub-spaces. All these results indicate that the first and second 

order kernels are sufficient to render the system angle of attack behavior in all sub-spaces. 

The off-diagonal second order kernel values are then constructed. This overall kernel 

generation procedure was implemented on a desktop computer with reasonable 

turnaround time. 

Table 3.1 Kernel Strength Indices 

Sub-
Space 
Index 

Range 
(deg) 

Seo 
(deg) 

s, 
(deg) 

s2 
(deg) 

S i 

(deg) 
S4 

(deg) 
S5 

(deg) 

1 a < 1 4 . 3 0 7 . 7 2 x 10"12 2 . 0 x 1 0 - 1 2 9 . 9 x 10"'2 1 . 7 x 10"12 

2 1 4 . 3 < a < 1 5 . 6 - 9 . 5 2 3 . 7 2 . 3 0 . 5 7 0 . 2 2 0 . 0 8 2 

3 1 5 . 6 < a < 1 9 . 6 - 1 1 2 4 . 6 2 . 2 0 . 4 5 0 . 1 5 0 . 0 5 5 

4 1 9 . 6 < a - 1 4 2 5 . 1 1.8 0 . 2 7 0 . 0 8 0 . 0 2 7 
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The accuracy of each sub-model is evaluated by step input excitation. A step input 

is used with different amplitudes. The estimated response is compared to the result of the 

nonlinear simulation. Figure 3.6 shows a comparison between the stall/post-stall Volterra 

series second order model and the nonlinear simulation response to a step input of -0.5 

deg from the initial operating values deo = -\ \ deg and a = 0 deg. The 2nd order sub-model 

is sufficiently accurate, even as the angle of attack crosses all four regions. However an 

increase in the amplitude of the input leads to a decrease in the accuracy. The results 

show how the reduced second order model of the Volterra series is able to render the 

system behavior in the four sub-spaces. 

Combining the four sub-models into a global model, and assessing the accuracy 

across the entire operating range, is addressed next. For numerical simulation, a 

differential equation form of the Volterra series is more convenient than the integral form. 

This differential form is based on breaking down the original nonlinear differential 

equations into a sequence of pseudo-linear time invariant systems (PLTI) where the input 

to the next system is a nonlinear function of the previous system output. Based on Table 

3.1, two terms of a Volterra series are enough to capture the system behavior for all 

regions using this piecewise interpolation technique. Thus, Equation (3.2) is broken down 

as the two pseudo linear differential equation sets 

' AN 1 (XJ '-1.834 
— 

' AN 1 + 
-5.73 0 QI. 

«9 

<12 

1 
-5.73 0 

a2 

<12 
+ 

0 

(3.3) 

where An, Seo, and g(ai) have different values for each sub-space as given in Table 3.2, 

and the output a equals the summation of states o./ and a.2. Along with nonlinear 

simulation, the piecewise global Volterra approach is also compared to a linear piecewise 

global approach. The model is previously derived in Reference 83 for local behavior 
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evaluation. The model is a piecewise linear model of Cz(a). The state space model is 

documented in Equation (3.4). 

a 

A. 
a 

A. 
a 

A. 
a 

A. 

-0 .668 1 

-5 .73 0 
0.811 1 
-5 .73 0 
0.312 1 
-5 .73 0 
-0.153 1 
-5 .73 0 

+ 

+ 

+ 

+ 

-1.834 
8.595 

-1.834 
8.595 

-1.834 
8.595 
-1.834 
8.595 

<5; + 

8.+ 

12.84 
2.865 

-34.60 
2.865 

-25.73 
2.865 
8.715" 
2.865 

a <14.74° 

14.74° <a< 17.4° 

17.4" < a <18.87° 

18.87° <a< 28° 

(3.4) 

Table 3.2 Differential Volterra Parameters of Equation (3.3) 

Sub-space Index An (Ms) Seo (deg) g(a7) (deg/s) 

1 - 0 . 6 6 8 0 0 

2 - 0 . 6 7 1 - 9 . 5 0.891 a/ 

3 0 . 4 5 9 - 1 1 - 0.181 a] 

4 - 0 . 1 5 3 - 1 4 0 
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Figure 3.6 Angle of Attack Step Response of Stall/Post-Stall Sub-Model 
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3.4 Piecewise Volterra Model Validation 

The piecewise global Volterra approach and its accuracy are evaluated by three 

test cases with different input waveforms. The first input signal is assigned to primarily 

validate the sub-models and the local behavior around certain operating conditions. The 

input is designed to have a fast smooth change from 0 deg to -9.5 deg within 5 s. The 

input is then held at -9.5 deg as shown in Figure 3.7. The final value is selected to lie 

inside a nonlinear region (pre-stall/stall). During the first 5 s, there is no large difference 

between the linear model and the Volterra model as shown in Figure 3.8. When the input 

starts to settle at Se = -9.5 deg, the nonlinearity becomes dominant and its signature 

appears in the system behavior as a limit cycle waveform. In this period, the linear model 

shows a significant inability to capture this phenomenon. The linear model responds as an 

oscillatory damped system, since this model has no mechanism to generate a limit cycle 

phenomenon. On the other hand, the Volterra model shows more adequacy to render the 

system behavior through the 2nd order kernel h2. The maximum amplitude error from the 

Volterra model for this approximately 4.5 deg amplitude angle of attack limit cycle is 0.5 

deg compared to 4.5 deg error in the linear model case. Both models do a good job of 

predicting the oscillation frequency. Based on this test case, the Volterra model shows 

ample ability to capture nonlinear behavior with reasonable qualitative and quantitative 

accuracy in the sub-models (see Figure 3.8). 

In addition to the time response, a parametric time track is visualized over the 

phase plane for further analysis as shown in Figure 3.9, where the rate of attack angle is 

plotted against the attack angle from t = 0 s to t = 100 s. During the first 5 s, there is no 

difference between the linear model track and the Volterra model track compared to the 

nonlinear simulation track. As the tracks start to intersect the vertical line of a = 14.7 deg 

(minimum value of Cz, see Figure 3.4), each track heads in a different direction. The 

linear model track forms a spiral orbit converging at the attractor point (a = 14.7 deg and 
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da/d/ = 0). This track is a damped oscillatory response. In contrast, the Volterra model 

and nonlinear simulation tracks head away to form a limit cycle with a semi cardioid 

shape. To the left side of the line a = 14.7 deg, the cardioid path has a tendency to move 

towards the attractor point or a tendency for stability (negative slope of Cz). After the 

track crosses to the right of this line, the tendency is inverted to instability or divergence 

(positive slope of Cz). Hence the indentation near a = 14.7 deg and da/d/ > 0 appears 

when moving from a stable Cz to an unstable Cz, and likewise the protuberance near a = 

14.7 deg and da/d/ < 0 appears when moving from an unstable Cz to a stable Cz-

Eventually a balance between these two competing effects ensues and the system forms a 

limit cycle with smooth curvature around the line a = 14.7 deg. Note the linear model 

track crosses this line with a slope discontinuity. Observations based on the phase plane 

(see Figure 3.9) imply the Volterra model has high capability to render smooth inversion 

of the slope of Cz from negative to positive values in the same way as the nonlinear 

simulation, which the linear model can not provide. 

The second input is assigned to have more excitation range and to move over and 

return across the sub-regions in rapid succession. The input starts to excite the dynamic 

behavior from the pre-stall linear region going through the entire space (from 8e = 0 deg 

to S e= -14 deg), returning back to the pre-stall linear region (Se = -5 deg), and finally 

settling in the pre-stall/stall nonlinear region as shown in Figure 3.10. Although both 

linear and Volterra models have a close qualitative behavior in rendering system 

dynamics during the first 50 s, the linear system proves very poor in rendering system 

behavior in the final duration (from t = 50 s to t = 120 s). This observation from the 

second test case (see Figure 3.11) indicates that linear and Volterra models have the same 

level of accuracy if switching between regions is very fast (sharp change in input). The 

breakdown of the linear model beyond t = 50 s is again due to an inability to perform 

sustained oscillation. The Volterra model again has less than 0.5 deg error in angle of 

attack across the entire test case relative to the nonlinear simulation. Also the phase plane 
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shown in Figure 3.12 leads to the same conclusion from the time response. Thus the 

linear model and Volterra model tracks have the same performance during the fast 

change in the input. However the linear track loses its accuracy when the input is held in 

the pre-stall/stall nonlinear region. 

Because of the insensitivity to rapid input changes, test case three assigns an input 

with smooth movement over the entire space as shown in Figure 3.13. This input tries to 

imitate the real movement of input experienced in practice (generated from bio-pilot or 

autopilot), which should be dynamically smooth. Figure 3.14 shows that linear and 

Volterra models are quantitatively close. The maximum error developed by the linear 

model is 1.2 deg compared to 0.4 deg developed by the Volterra model for an overall 25 

deg change in angle of attack. From the qualitative perspective, the Volterra model is 

more adequate (see Figure 3.14), especially in rendering system hysteresis. In the first 

duration (from t = 0 s to t = 15 s), both linear and Volterra models provide close results. 

Conversely, the linear model starts to have less accuracy in the second half of the 

maneuver (from t = 20 s to t = 40 s). Thus some residual state is accumulated in the 

system memory when passing through the nonlinear region in the first duration. This 

accumulated memory appears in the second half of the maneuver, primarily as amplitude 

growth. Such a phenomenon can not be captured by the linear model as the Volterra 

model does. After the memory effect dissipates both systems return to the same 

equilibrium at t = 45 s. 

Because of the large excitation in this test case, a phase plane is plotted in two 

segments. Figure 3.15 shows the phase plane in the first 10 s for when the system crosses 

from the linear region to the nonlinear regions. As it appears in Figure 3.15, both linear 

and Volterra model tracks follow the nonlinear simulation. However the linear model 

track starts to deviate as the system enters the nonlinear region. Figure 3.16 shows the 

second window of the phase plane from t - 10 s to / = 25 s. The three tracks rotate around 

the point defined by a = 14.7 deg and da/dt = 0 deg/s by cardioid orbits (pre-stall/stall 
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region). The input then moves the track to rotate in another circular orbit (stall/post-stall 

region) around the point defined by a = 23 deg and da/d/ = 0 deg/s. Although linear and 

Volterra model tracks have the same shape, the Volterra model shows a superior 

performance with higher accuracy than the linear model. The linear track is incapable of 

producing the radius of this circular orbit in the nonlinear system. All these test cases 

validate the capability of the Volterra model to be quite adequate in rendering the global 

behavior of the system with nonlinear phenomena (limit cycle and amplitude hysteresis 

memory effect). 
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Figure 3.7 Step Input Test Case 
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Figure 3.9 Phase Plane of Step Response Test Case 
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Figure 3.12 Phase Plane of Bang-Bang Response Test Case 

0 

- 5 

ai d) "O 

- 1 0 

5 i i ' i ^ i i i i 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 

t (s ) 

Figure 3.13 Stair Input Test Case 
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Figure 3.14 Stair Response Test Case 

Figure 3.15 Phase Plane from t = 0 s to t =10 s for Stair Response Test Case 
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Figure 3.16 Phase Plane from t =10 s to t =25 s for Stair Response Test Case 

3.5 Global Kernel Evaluation 

Analysis of flight vehicle dynamic behavior, based on the Volterra model kernels, 

is addressed next. Although a differential form of Volterra theory using piecewise 

interpolation was implemented for simulation accuracy purposes, the integral form can 

also be used in creating the global model. Developing the kernel from this differential 

form requires many mathematical manipulations. For now, as a fast computational tool to 

validate the globality of the method, the impulsive identification technique is used to 

estimate these kernels. Later in Chapter 4 and Chapter 5, the analytical kernels will be 

computed from the differential form. The primary intent here is dynamic analysis based 

on the integral kernel framework. To that effect, the sub-models of local Volterra kernels 

are employed in a look-up table procedure using linear interpolation. In this way a new 

dimension is added to the series kernels. For example, the first input kernel will have two 
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arguments, hi(ti,Seo), instead of one, /?/(//), where Seo is the operating point around which 

the sub-model is constructed. Figure 3.17 and Figure 3.18 show the global Volterra 

kernels for zero and first orders. These kernels appear as surfaces across the two 

independent variables. The values of the zero order kernel ho(t/,Seo) and the first order 

kernel hi(ti,Seo) are nonzero across all sub-spaces. On the other hand, the second kernel 

h2(ti,t2,(>eo) is nonzero in three regions (pre-stall/stall, stall/post-stall, and post-stall), and 

has a zero value elsewhere. The hyper-surface representing the second kernel can not be 

fully plotted in three dimensions. For visualization, Figure 3.19 shows the second kernel 

hyper-subsurface for the pre-stall/stall region. 

The surface shown in Figure 3.17 reflects how the zero kernel's nature changes 

temporally, and from one flight regime to another. This surface primarily represents the 

initial condition response. First note that for all elevator values, the kernel, with respect to 

time, starts at zero. This initial value is consistent with how the kernels were computed 

for a = 0 deg initially. At a low value of Seo, ho(ti,Seo) has a linear characteristic waveform 

with respect to the time axis. The waveform of ho(ti,deo) looks like an under-damped 

second order system. As time increases the amplitude of the conducted oscillation 

decreases and tends to zero, leaving a nonzero steady state value. The frequency and 

damping values from this region are consistent with those from Equation (3.4). 

Conversely, at a high value of deo, the nonlinearity becomes important, and ho(ti,Seo) 

exhibits a nonlinear or non-exponential shaped waveform. The nonlinearity appears here 

as a self-starting or initial condition excited limit cycle within ho(ti,Seo). As time increases 

the amplitude of this oscillation is constant at an approximate value of 9.5 deg, while the 

corresponding frequency is 2.4 rad/'s. In between the Sen extremes, ho(ti,deo) gradually 

changes from a linear to a nonlinear waveform proportional to elevator setting. 

The waveform of hi(ti,8eo) can be fairly well modeled as an under-damped second 

order system over the entire space in the sense that hi(ti,deo) represents the linear portion 

of the system. The characteristic of this linear waveform changes from one sub-space to 
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another. Figure 3.18 shows how the characteristics of the plunging force coefficient Cz 

have been projected on to the hi(t/,Seo) waveform. The observation indicates a higher 

damped oscillatory response (relatively high negative slope of Cz) in the pre-stall sub-

space, and a lower damped oscillatory response in the post-stall sub-space (relatively low 

negative slope of Cz). In the post-stall region, the oscillation amplitude continues to 

decrease for large time but at a rather slow rate. The frequency and damping values for 

the two regions in Figure 3.18 roughly correspond to values extracted from the linear 

model in Equation (3.4). In between the two distinct regions in Figure 3.18, a sharp 

change is observed in the two stall sub-spaces. This sharp change is expected, since the 

difference between the operated elevator deflection in the pre-stall/stall sub-space (Seo = -

9.5 deg) and stall/post-stall sub-space (5eo = -11 deg) is only 1.5 deg. This difference 

means that any small change in Se leads to a significant change in system behavior or a 

sharp change in hi(tj,Seo). 

Figure 3.19 shows the second kernel in the pre-stall/stall sub-space. This kernel 

represents the source of input excited limit cycle behavior. Thus the waveform of this 

kernel reflects a sustained constant amplitude oscillation. Note the frequency of 

oscillation in Figure 3.19, when moving along the diagonal, is 4.4 rad/s, approximately 

twice that in Figure 3.17 for high Seo values. However, when moving along only one of 

the time axes, the frequency is 2.2 rad/s, consistent with Figure 3.17 and observed 

oscillations in all three test case responses. Based on all these observations, it can be 

indicated that the ho kernel represents one of the nonlinearity's signatures imbedded in 

the system's memory (homogeneous induced limit cycle), the hi kernel represents a 

linear behavior (damped oscillatory response) of the system with an arbitrary input, and 

the h2 kernel is the nonlinear behavior of the system with the input history (non-

homogeneous induced limit cycle). Building such global kernels provides a tool to 

predict and evaluate the system behavior from one flight region to another before 

exercising the nonlinear simulation tool. 
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Figure 3.18 Global First Order Volterra Kernel 



Figure 3.19 Second Order Volterra Kernel in Pre-Stall/Stall Sub-Space 
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CHAPTER 4 

NONLINEAR CAUSE-AND-EFFECT ANALYSIS 

In Chapter 3, the globality of the Volterra model has been validated through a 

piecewise fashion. Relying on this fact, in this chapter, an analytical methodology is 

presented to conduct dynamical assembly of simple low order nonlinear responses for 

system synthesis and prediction. The procedure is set forth generically and then applied 

to several atmospheric flight examples. A two term truncated Volterra series, which is 

enough to capture the quadratic and bilinear nonlinearities, is developed analytically for a 

first order system in Section 4.1 and the analytical step response is also visualized and 

parametrically investigated in Section 4.2. For the second order system, the same 

analyses are given in Sections 4.3 and 4.4. Reducing the full order aircraft dynamics to a 

set of low order flight dynamic sub-systems while preserving the link to the more general 

model is given in Section 4.5. Finally, in Section 4.6, uniaxial surge, pitch, roll, and yaw 

motions are presented as examples of the low order flight dynamic systems to show the 

ability of the proposed analytical Volterra-based models to predict, understand, and 

analyze the nonlinear aircraft behavior beyond that attainable by linear-based models. 

4.1 First Order System Analytical Volterra Kernels 

The main purpose of this section is to develop Volterra kernels for a nonlinear 

first order single degree of freedom (SDOF) system. The general governing equation can 

be expressed as 
x = f(x,u) (4.1) 

where xeR] denotes the state variable, ueR] the input, and / e R1 the system 

nonlinearity. Using the Taylor series expansion of fix,u) and assuming coordinates are 

chosen such that x0 = 0 and u0 = 0 , the differential equation can be represented as 
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X — ^^ ^^ KYX 14. — K^^X K^^X + JC^QX + * * * ID + KJ ̂  .XW 
(4.2) 1 = 0 y = o 

+ k~.,x2u-\ 1-kmu2 + k^xu2 H \-kmu2 H— 

where Ar,y is the corresponding coefficient to the term xV and z',y = 0,1,2,3,.... and &oo= 0. 

Based on the global Volterra approach in Chapter 3, a small set of linear and nonlinear 

terms is enough to specify the system characteristics in a certain domain. Therefore, the 

bilinear state-input, quadratic state, and quadratic input terms in addition to the linear 

terms in Equation (4.2) are considered to be sufficient. As a function of these terms, the 

system is reduced to 

Note the linear state term coefficient has been re-symbolized by a instead of k\$. This re-

symbolization has the purpose to emphasize the uniqueness of this term by comparison to 

the others, as clearly indicated later in this section. 

The variational method is now applied to develop the Volterra kernels. The state x 

can be then expressed as a sum of infinite terms. 

By substituting in Equation (4.3) and equating a! coefficients, where i = 1,2,3, ... , a set 

of pseudo differential equations is generated as 
cXj " I W 

X W (XX JCQ^M ^2QX + JXXI KFFILL (4.3) 

x = ocx, + a2x7 + a3x, h— (4.4) 

x, = ax, + 

X^ — CIX^ 4- "I" Jc^^X^U ^ ky^X-flA. 

"02 (4.5) 

The solution of the first differential equation for x/ with zero initial condition is 

(4.6) 

The solution of x2 is then given as 
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I I I 

x2 =k20 je fl('-r)x,2 (r )dr + ku\e a('-r)xx (T>(r>/r + k02\e a{"r)u2 (r )dr 
(4.7) 

— X2 X2 "I-

where x2
s ,x2', and x2 represent the quadratic state, bilinear state-input, and quadratic 

input component contributions in X2. 

Replacing the solution of xj in the quadratic state component xf by the 

convolution integral in Equation (4.6) leads to 

x? = kJ\ea(,-r)x2{r)lT = k20k2
m\ea^]ea{l-x\{r, ]dzx J e f l ( w ^ ( r 2 ) / r2c/r (4.8 ) 

or 
1 t 

xf = k20k2
n jeai'~T)jea(T-r']A(T - T, Mr, )dr, JE^'^A(r - r2)/(T2 )dr2dr 

0 0 

= *2o*oi JJ> ( '" r ' - r 2 ) j> (R)A(r - r, )A(t - r2 )dx 
0 0 |_o 

w(r,)w(r2 )dr[dr2 

(4.9) 

The step function A(r-r,) is defined by 

A(x) = 
[1 x > 0 

0 x < 0 
(4.10) 

Use of the minimum function min( t / , T2) can replace the two step functions A ( t - t / ) and 

A ( t - t 2 ) a s 

/ / 

X2 "^20^01 J J e 

0 0 
fea(r)d r 

-minf-T -̂rj) 
u{tx)u{T2)dtxdT2 (4.11) 

where min(x,^) refers to the minimum values between x and y. The quadratic state 

component x%s is then written as 

k k qs _^20_0i 
2 a 

l ± ( 4 . 1 2 ) 
0 0 

The quadratic input component x\ yields the standard Volterra form 
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I i t 

jcf = k02jea{'-r)u2{T)clT = £02 J j> ( '" r | )£(r, - r ^ r , ) / ^ ^ (4.13 ) 
0 0 

where <5(Ti-r2) is the impulse function. 

For the bilinear state-input component xb
2

sl, the convolution integral is substituted 

for X] as 
t I T\ 

xb
2

si = kx ,Jea( '- r ,x, (r)/(r )dr = kx Je f l ( ' - r | )jea ( r ' - r2 ,w(r2 )ir2u(h ]dt} (4.14) 
0 0 

or 

r r 
x2' = fcu£01 J j V ^ A f o -T2)u(Tx)u(T2)dTxdT2 (4.15 ) 

0 0 

Unlike the quadratic components x2
s and x2 , the bilinear component x2' has a 

triangular form, which means that the double convolution integral is defined over a 

triangular domain A(T/-T2). To keep all the components in the same form, a 

symmetrization approach is used. The transformation between triangular and symmetric 
c o 

kernels is listed as 

Kynih = Y.Ki (^(1)>' " Un)) (4.16) 
™ 4) 

where n(.) denotes any permutation of integers 1 , 2 A p p l y i n g this transformation, 

the symmetric form of the bilinear component is 

xbsi _ ̂ 11̂ 01 
i I 
Jj[eo('-r2)A(r,-r2)+ea{'-T'}A(T2 -rx%{rx)u{T2)dTxdT2 

2 °° (4.17) 

2 
^ 0 0 

The operator max(x, y) refers to the maximum value between x and y. 
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Adding the quadratic and bilinear components to the linear term offers an 

approximate solution for x as 
i i i 

x a j/z,^ - r)u(T)dT + jjh2(t ~ - T2)u(Tl)u(T2)dTldT2 (4.18 ) 
0 0 0 

where 

hx(r) = k m e a ^ (4.19) 

h2{z„T2) = hf + h2' +h'<' 

= ^ S L ) [j _ ™n(r, ^)] + M o i max(r, ,r2) + ^ ( r , _ ^ j ( 4 2 0 > 

The resultant approximate solution is given by the two kernels hi and For any 

arbitrary input u(t), one can compute the response x using convolution integrals or the 

pseudo state space representation. These kernels are a unique signature of the first order 

SDOF system being functions of the nonlinear system parameters. For understanding 

how the system behavior varies with these parameters, their influence on each kernel is 

presented next. 

The first kernel hi is an exponential function with a gain koi and power factor a. It 

is clear that this power factor a controls the divergence or convergence of the first kernel 

histories. For a positive a, the value of hi keeps increasing with time to be infinite as time 

tends to infinity. This observation concludes that the system has a divergent or unstable 

response for any input. If a is null, the first kernel is constant with time, which means that 

the system linear response is the input integration. In case of negative a, at time zero, the 

value of hi is koi. This value keeps decreasing with time, yielding zero at time equal to 

infinity. Figure 4.1 shows the normalized generic shape of hj for negative a. The 

normalized kernel starts at 1 with a downward slope with angle (p = arctan(a). This slope 

is an indication for the initial or maximum speed by which the system responds for any 

arbitrary input. If a 2% value is considered as a tolerance for approximate steady state, 
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the required time to be inside this zero vicinity is labeled here as the linear kernel settling 

time . This time is computed as a function of a to be 

, -ln(0.02) 4 
4 = H — f o r a < 0 (4.21) 

M M 

The second kernel has three components: quadratic state kernel/zf, quadratic 

input kernel Af, and bilinear state-input kernel . Each component is a two dimensional 

surface as a function of ry and x2- The quadratic state kernel has three exponential 

terms. The linear coefficient a controls the divergence and convergence of this surface. 

For null a, the surface is defined by k20k^ min(ry, x2) using l'Hopital's rule. This 

minimum operator represents two ramp surfaces t/ and x2 merged at the diagonal line, 

which implies that if the system is critically stable in the linear sense (a = 0), the state 

quadratic term has a divergent kernel shape (instability). Such a conclusion is not 

accessible using the linear analysis. For positive a, the surface starts at the zero value 

heading upwards to a divergence referring to unstable behavior for any external 

excitation. If the value of a is negative, the surface starts at zero and diminishes at infinite 

time arguments x y and x2- The exponential term with the minimum operation in the 

exponent works on directing the surface upward and enforcing the surface edges to be 

zero, while the two regular exponential terms of ry and X2 work on heading the surface 

downward. The irregular exponential term competes with the two regular terms reaching 

a maximum surface value at xi = X2 = ln(2)/|a|~ 0.7/|a|, beyond which this effect 

diminishes. The two standard exponential terms then dominate the shape of the surface, 

yielding zero as the two arguments ry and r? go to infinity. One example of this surface is 

given in Figure 4.2, where a = -5 1/s. The overall shape of this kernel is determined by its 

diagonal (ry = r2). The normalized general shape of this diagonal is shown in Figure 4.3. 

The surface has a maximum value 0.25£20&0
2, l a at time rfm = ln(2)/|a| ~ 0.7/|a|. Also, the 
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required time by which the surface is considered as zero is referred to here as the 

quadratic state kernel's settling time This time is computed to be 

The surface of the quadratic input kernel component /zf is an exponential impulse sheet 

oriented vertically on the t j = X2 diagonal, which has the same shape and characteristics as 

the first kernel in Figure 4.1 but with a different gain ko2 instead of koi. 

function including a maximum operator in the power. This operator divides the domain 

into two triangles A(xrxj), where i and j = { 1 , 2 } . Over the domain A ( t , - t ) ) , the normalized 

surface starts at value 0.5 at r, = z) = 0. The surface heads to zero (stable or convergent) as 

r, tends to infinity in the case of negative a, or heads to infinity (unstable or divergent) in 

the case of positive a. Thus, the exponential function of the argument xt is the active one 

over this domain. For null a, the normalized surface is a flat one with a value 0.5. For 

positive or negative a, the two surfaces merge at the diagonal line where xi = x2 or at the 

intersection of the two triangles. Figure 4.4 shows an example of the bilinear state-input 

kernel at a = -5 1/s. The diagonal shape of this kernel is the same as the linear first kernel 

but with different gain (see Figure 4.5). The gain here is koiku!2. The initial slope angle cp 

is arctan(a) and Th
k" is defined as 

(4.22) 

The surface of the bilinear state-input kernel component h^' is an exponential 

4 
for a < 0 (4.23 ) a\ a\ 
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^ (s) 

Figure 4.2 First Order System Quadratic State Second Kernel (a = -5 1/s) 
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Figure 4.3 First Order System Quadratic State Second Kernel Diagonal (a < 0) 
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Figure 4.5 First Order System Bilinear State-Input Second Kernel Diagonal (a < 0) 

4.2 Analytical Step Response of First Order System 

The response to a step input is selected herein as the baseline to characterize the 

system behavior. The system overall step response is computed by summing individual 

components as 

, qs , bsi , c.ji X ^ Xj "r X2 i- X2 "i- Xj 

Ak, 01 

a 
Azkl k 

qs _ 71 "-01 "-20 
2 3 a 

(e2a/-2ateat - l ) , xf + fl/£,a,) 

In Equation (4.24), A is the step input amplitude. The four terms x\, xf , xb
2

si, and xf'are 

the contributions of the linear, quadratic, and bilinear components in the system behavior. 

Assembling these components together presents the overall response. To show each 
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component effect on the overall behavior, the generic shape of each term is individually 

visualized as shown in Figure 4.6 and 

Figure 4.7 for the stable case (a < 0). Both linear and quadratic input components have 

the same mathematical structure except for the steady gain as shown in Figure 4.6. 

Although the normalized state quadratic and bilinear components have different 

mathematical structure, both yield the same generic shape as shown in 

Figure 4.7 but with different parameters. 

All responses start at zero and head upward. The initial slope of the normalized 

linear and input quadratic terms is tan(^) = a, while both the normalized state quadratic 

and bilinear terms have a zero initial slope. This observation indicates that both state 

quadratic and bilinear terms have no influence on the initial rate by which the system 

behaves for any input excitation. The initial rate *(o) is a function of the ratio between the 

linear coefficient &oi and the quadratic input coefficient &02 in addition to the input 

amplitude^. 

Both the quadratic state xf and bilinear state-input xh
2

s' responses have a 

noticeable lag. The duration of lag in the quadratic state component is longer than for 

the bilinear state-input x2
sl, but its transient rise is steeper. Thus, the quadratic state 

kernel /zf has zero edges and the bilinear state-input kernel h 2 ' has nonzero edges. 

Referring to these two lags as and z^', if 2% is considered as the required threshold 

to leave the vicinity of such a lag, then these two lags are approximately found to be 

0.45/|a| and 0.2/\a\. Note that the quadratic state and bilinear state-input step responses 

include a ramp function multiplied by an exponential function, which sets hurdles in 

computing their lag times analytically; a reason for which numerical fitting is considered. 

These time lags are the instances at which a deviation between linear and nonlinear 

simulation starts to be significant in the case of a zero quadratic input coefficient. 

This deviation widens due to an increase in the slopes of the quadratic state and 

bilinear state-input components after exiting from their lag vicinity. At a certain point, the 
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rate of each component reaches its maximum value followed by a rapid decreasing. 

Sequentially, each term settles to its steady value at an equivalent settling time rl
rs= zf's = 

4/|a| for the linear term and the quadratic input component, z?/= 6.6/|a| for the quadratic 

state component, and 5.8/|a| for the bilinear state-input component. The overall 

response settles at 

-

Akw A k0Xk20 A JcQlku A k02 

\a\ \a\a a \a\ (4.25 ) 

The time for reaching this steady value depends on the ratio between the coefficients of 

each term and the input amplitude. 

t(s) 
i 

Figure 4.6 First Order System Linear or Quadratic Input Response to Step Input (a < 0) 
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Figure 4.7 First Order System Quadratic State or Bilinear State-Input Response 
to Step Input (.a < 0) 

4.3 Second Order System Analytical Volterra Kernels 

Following the same sequence for the nonlinear second order SDOF system, and 

assuming that quadratic and bilinear terms are enough to capture system nonlinearity in a 

certain neighborhood, the system is defined below. 

X kj QQ X "I- ^qj Q X ^200 ̂  1 "̂020 ̂  0̂01 ̂  1̂01 ̂ ^ 11 ""^002 ̂  
or 
X = V 

v = ~(o2x - 2£conv + k200x2 + &110xv + k020v2 + komu + kmxu + kouvu 4- k002u2 

(4.26) 

The parameter kimn is the corresponding coefficient to the term x'v"'u" and I, m, n = 0,1,2. 

Note that the linear terms have been re-symbolized by - 2gcon instead of kmn and —a2 

instead of km. This re-symbolization is for the purpose of keeping the discussion in the 
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sense of undamped natural frequency co„ and damping ratio C The variational method is 

used to develop the Volterra kernels. The method assumes that the input is au where a is 

any arbitrary constant. The state position x and state rate v can be then be expressed as a 

sum of infinite terms. 

x = axx +a2x2 +a3x3 +• 

v = «v, +a2v2 +a3v3 +• 
(4.27) 

By equating coefficients of a', a set of pseudo differential equations is generated. 

x, 0 1 
-co2 -2<Zo)n 

0 1 
G)„ • 2 fr. 

0 
+ k ."•ooi _ 

r o 
+ + 

k\\ox\v\ 

0 0 0 0 
+ 

k V2 
_ 020 1 _ 

+ 
Q| Xj W 

+ + 
_̂ 002W 

(4.28 ) 

-or, •2 
+ • 

Under the piecewise Volterra approach, two terms are considered sufficient to 

describe the system in a certain sub-domain. The first linear state space model is defined 

by state, input, output coefficient matrices A, B, C as 

(4.29) 
0 1 "1 0" ' 0 " 

A = 
-ml -2<;cDn_ , C = 0 1 , B = k 

The transition matrix O of this system is computed as 

- sin(<y/ + <p) -— sin(<»/) 
0)d 

•J —E~A 
—e~a sin(®/) , sin(p)dt - <p) 

O (t) = eAl = 
~0)„ 
CO,, a A 7 ? 

, ^ = cos"1(c) (4.30) 
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In Equation (4.30), o = denotes the system's damping factor and cod = -£2a>n is 

the system damped natural frequency. The solution of the first linear pseudo sub-system 

[xy v/]T for zero initial condition is then computed as 

i 

= jc$>(t-T)Bu(T)dT (4.31 ) 

Substituting the system state space matrices leads to 

v001 
co. 

I 

J V ^ sin(<yrf(/ - r))u{t)dT 
d o 

vi = 
001 

I 

^e-a{'-T)sm(cod(t-T)-(p)i{T)dT 
(4.32) 

For the second pseudo sub-system [X2 V2] , the solution of X2 is sought as a sum of 

six components 

x2 = X2 + x2 + x2 I X*) I I X2 (4.33 ) 

where x, ,x, x2", and x2'are quadratic state, bilinear state-rate, quadratic rate, 

bilinear state-input, bilinear rate-input, and quadratic input components respectively. The 

second pseudo state space is then rewritten as 

0 1 X 2 " 0 " 
— + 

\r< -2£a>„\ _ V 2 . k 
_ 200 _ 

A Bqs 

r 0 " " 0 " ' 0 " 
+ x,u + V,U + k 

_ 101. 
J k 

. oil _ 
1 k 

_ 002 . 

x,2 + 
0 0 

x , v , + 
k 

. 1 1 0 . 
I 1 

k 
."-020 . 

Bb,r 

(4.34) 

Defining a new output coefficient matrix Cx = [1 0], the solution of the quadratic state 

component xfs is computed as 
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60 

xf =JCI©(/-r)Bv*1(r)rI(r>/r 

I z 
- JVCT('"r) sin(cod(t - T))\eMT-Tl) sin(^(r - r, )>(r, ]dt, 

Ir It2 1 
200 001 

d 0 

T 

x j V ^ - ^ sin(a>rf ( t - T2 )MT2 )dr2dr (4.35 ) 

t i 
J V ^ s i n ^ (t - T))Je_,r(r"ri) s i n ( ^ (r - r, ))A(r - r, Mr , VTi 

o 
7 J 2 ( 

200 001 

0 
t 

x Je sin(«d(r - r2 ))A(r - r2 )/(r2 )dx2dt 

If the -min(-n, -xi) operator replaces the multiplication of the two step functions A(r-ri) 

A(r-T2) in addition to some mathematical and trigonometric manipulations, then Equation 

(4.35) becomes 

k k n">nn/v! 
X-, — 

2 t t 

J J 
o 0 -min( - r , , - r 2 ) 

x {cos(a>rf ( ( / - r , ) - ( / - r 2 )))sin (cod (t - r)) (4.36 ) 
- cos(cod ((/ - r ,) + - r2 )))sin (lcod (t - r))sin(cod (t - r ) ) -
- sin(a>d ((/ - r ,) + (/ - r2 )))cos(2<y^ (/ - r))sin (o>d (t - r ^ ( r , )u(r2 ]dv dxxdr2 

Computing the integration with respect to r brings the solution of the quadratic state 

component to the form 
i i 

xf = \ \ K { t - h,t-T2)U(t1)U(T2)dz]dT2 ( 4 . 3 7 ) 

where 

2 ( 4 . 3 8 ) 
x {M, cos(^ (r, - r2))+ M2 cos(o)d (r, + r2))+M3 s i n ( ^ (r, + r2))} 
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M1(r„r2) = ( \ - C ) 
frmir̂ ,̂ ) 

1 + -

M2(T],T2) = 

2(9 - 8 C ) 

b-c) 1 + 
?<rmtn(r,,r2) 

Tlr 

- sir(<y(/ mir^r, ,r2)-<p) 

sin(ffld min^ , , r 2 ) - <p) 

M 
, , g y j l - Z 2 r , , v v 
fa' r2 ) = —^ i 1 ^ COSK mln(Tl'T2 ) ~ <P) 

2(9-S£2)' 
rmin^.rj) cos(30rf minfa ,r2 )-<£)> 

(4.39) 

(4.40) 

(4.41 ) 

where cos (p) = £ / . 

It is clear that the only difference between quadratic state expression and bilinear 

state-rate one is a phase shift -q> for the terms oijij in addition to the gain difference (see 

Equations (4.32) and (4.35)). One can use the same steps to derive the bilinear state-rate 

solution as 
1 1 

*2r =\\hh
2
V{t-Tx,t-T2)u{Tx)u{T2)dT,dT2 (4.42) 

where 

h r i r ^ h ^ p ^ e ^ e - ^ {M, c o s ^ r , - r 2 ) + p) 
2 / l - C 2 ^ 

+ M2 cos(a>d (r, + T2 ) - (p)+M3 sin(®d fa + r 2 ) - <p)} 

(4.43 ) 

In case of the quadratic rate component, the shift -(p appears in both terms ojjii and (ojti. 

The expression of the quadratic rate component is 
1 1 

xf =l\hq
2
r(t -rt,t -T2)u(zl)u(T2)dT]dT2 (4.44) 

where 
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K r ( r , , t 2 ) = - r ^ T J e ~ a T ' e ~ a T i C 0 S K fo " ) ) 
2 v i> i ) 2 ( 1 - C , p d

 1 V V " ( 4 . 4 5 ) 

+ M2 COS(cod(r, +T2)~2<p)+M3 S I N ( ^ ( r , + r 2 ) - 2 ( p ) } 

Note for xf andjcf, the factors M\, M2, and M3 are the same as in Equations (4.39-4.41). 

For the bilinear state-input component, the expression is developed as 

1 

0 

= ^ Je-a{'-z<} sin(^ - r, ))J<?~a(l<) s\n(cod(r, -TMZ2)CIT2U{T, ]drt (4.46 ) 
0 0 

= ^ f ' i V ^ sin(^(/ -r,))sin(^(r, -r2))A(r, - r2 M r > ( r 2 )oMr 2 
00 

The kernel of this component is triangular. Employing the symmetrization approach as in 

the case of the first order system gives the solution of the bilinear state-input component 

in the form of 

* 1 
4SI = J J hi' (T-T„T- r2 )U(TX )U{T2 ]drxdv2 (4.47 ) 

0 0 

where 

1 hsi ( \ 0̂01̂ 101 -<rmax(r, ,r2) h2 (t,,t2)= — e 
V 2a>2

d (4.48) 
x {sin(e>^ min(r,, t2))sin(orf max(r, ,r 2 ) - 0)d min(r,, r2))} 

The difference between the bilinear state-input x2' and the bilinear rate-input x" 

components is a shift -<p in the term coJ^x-xj) in addition to the gain differences. The 

solution of the bilinear rate-input component is thus 

i 1 
4rl = \\Kn {t - rx,t - r2)u{rx)u{r2)dTxdr2 (4.49) 

0 0 

where 



90 

l-bri( „ \ ^001^011 -

2V1 ~ C a d (4-50) 

x|sin(fi^ minfa,r2))sin(6>d maxfa ,T 2 ) -eo d minfa,r2)-<p)} 

The quadratic input component, as in the case of first order systems, yields 

xi - ^002 f sin(<wd (/ - r))u2 (r)dt J /» o 

= 0̂02 j j - ^ f a ^ f a ^ ^ r , 

(4.51) 

0 0 

where 

ftffa.r,)-*002* ^ ' s i n ^ r . ^ f a - r 2 ) (4.52 ) 

The overall second kernel is a sum of the six components quadratic state /zf, 

bilinear state-rate , quadratic rate h%r, bilinear state-input bilinear rate-input , 

and quadratic input /zf. The resultant second kernel along with the first kernel represents 

an approximate Volterra-based model for the second order SDOF system. 

t i i 
x « | /z , it - r)w(r)ir + J J h2 (t - rx, t - t2 )wfa )u(t2 )drxdr2 

0 0 0 (4.53 ) 
h2 = K? + /z f + /zf + /zf + hh

2
n + /z|' 

The Volterra-based model presents the system as two analytically developed kernels. 

These analytical forms are used to understand each kernel characteristic as a function of 

system parameters for the second order SDOF system. 

The first kernel hi is an exponential sinusoidal function with a gain kooi/cod, 

frequency co&, and a damping factor a. If the damping factor is less than zero, then the 

system lacks the damping required to stabilize the response for any excitation. Thus, the 

positive exponential power shapes a divergent kernel. When taking the damping factor 

off (null damping factor), the remaining sine term keeps the kernel shape as an oscillatory 
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one. For positive damping factor, it is better to parameterize the kernel by the damping 

ratio C If the damping ratio is more than or equal to unity, then the sine term diminishes 

and the resultant first kernel is a sum of two exponential terms, which is the case in the 

first order system. These two exponential terms become equal at C = 1. For less than 

unity damping ratio £*< 1, the generic shape of the first kernel is shown in Figure 4.8. In 

this case, the kernel starts at zero and oscillates around zero. The amplitude of such 

oscillation decreases with time, where the loci of minimum and maximum points are 

located along the envelope functions himax and him\n. 

lr k 
1 (A 001 -at i ( , \ "-001 -at , a t a \ AlmaxW = 6 ' ^ m i n l ^ e (4.54) 

cod 

The maximum points occur at times {2niz+(p)loid, while the minimum points occur at 

times ((2n+\)jr+(p)/ojci, where n = 0,1,2,... The kernel h\ settles down inside a 2% band 

around zero at time 

, - I n ( 0 . 0 2 ) 4 _ A „ 1 ^ c c n Tks = i '- » — for 0 < < l (4.55 ) 
<7 a 

There are six terms for the second kernel: quadratic state /zf, bilinear state-rate 

h^sr, quadratic rate/z^, bilinear state-input , bilinear rate-input /zf', and quadratic input 

, each being a two dimensional surface in x7 and x2- The expression of the quadratic 

state kernel /zf has three coefficients Mi, M2, and M3, which depend on the minimum 

operator. These operator coefficients work as dynamic weighting factors for three two-

dimensional periodic signals multiplied by two-dimensional damping signals. Also, these 

operator coefficients force the edges of the kernel shape to be zero. Thus, all these 

coefficients have zero value edges. If the system lacks damping (negative a), the 

generated quadratic state kernel has zero edges heading upward to infinity as x/ and x2 

go to infinity. The surface becomes a constant amplitude two-dimensional sinusoidal 

surface for a zero damping factor. In case of positive damping factor, the overall kernel 

has a damped sinusoidal shape. One example for this surface is given in Figure 4.9 for £"= 
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0.1 and con = 2 rad/s. The generic shape of the normalized quadratic state kernel diagonal 

J^{T,T) is shown in Figure 4.10. The most interesting feature of the diagonal histories is 

that they do not oscillate around zero as would be expected. The shape oscillates around 

another shape, which is similar to the one in Figure 4.3, the quadratic state diagonal 

kernel 1Qs{t,t) of the first order system. During the oscillation, a set of maximum and 

minimum points are generated with a frequency a>d. The time of the maximum points is 

((2n+\)7t)l(Od, while the minimum point times are (2nn)/(Od, where n = 0,1,2, The loci 

of the signal maximum or minimum points are defined by 

k k2 . \ k k7 

where hVmm and hfmax are the lower and upper loci. As shown in Figure 4.10, the upper 

locus settles after the lower locus. The settling time of the upper locus is a solution of a 

second order quadratic equation in e'al, Each coefficient in this equation is a function of £ 

The settling time of the surface (or the diagonal) is computed to be 

€ — I " a •1+ ^1 + 0.08/^,(4') 
for 0 < ^ < 1 (4.57) 

The bilinear state-rate kernel /^" is mathematically the same as the quadratic state 

kernel /zf except a phase shift -(p is added to co^r-r?). This phase shift has a significant 

effect on the shape of the kernel. The produced bilinear state-rate kernel starts at zero 

value. The damping ratio controls the convergent and divergent behavior of the surface as 

the case in the quadratic state kernel; C< 0 divergent, £*> 0 convergent, and C= 0 neutral 

oscillatory surface. In case of C > 0, as the damping ratio moves closer to unity, there is 

less oscillation. If the damping ratio is less than unity, the surface oscillates around zero. 

This oscillation damps with time to zero at infinity. Figure 4.11 is an example of this 
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surface at C = 0-1 and a>„ = 2 rad/s. The generic shape of the normalized diagonal 

h^sr(r, r) in case of 0 < ( < 1 is shown in Figure 4.12. During the oscillation of the 

surface, two sets of maximum and minimum points appear at times (6wr-4^)/3/e></ and 

(6njr+4(p) /3/cod respectively. The loci of these peaks are an indication of the surface 

settling time. These loci are defined from the steady envelope of the kernel, which are 

hb
2

sL = > *™> 2 f e> - 2 ' ' } 

h bsr 
2min 

-k kl 
""llÔ OOl 

2 V W 

(4.58 ) 

( 9 - 8 ^ 2 ) V3 ) (9-8C2) 

,3/2 

-sin 5 (p 
\ J ; 

i h - c 2 

2 y 9-8£" 

r 4 ( c ) = Z1 ^-(9-8C2) + (3-4C2)cos(l 1^ /3) -4^-Vl 7 ? 7 s in( l 1?/3)} 

(4.59) 

sin (49? / 3)-2£ sin / 3) + sin(^/3 + 

Based on these loci the settling time of the surface is a solution of a quadratic second 

order equation in terms ofe~°' . By observation, the upper locus settles after the lower one. 

Using the upper locus, the settling time is computed as 

.bsr 1 
n ; =-ln<! 

2^4 (C) for 0 < ^ < 1 (4.60) 

The 2% vicinity is considered from the normalized gain of the bilinear state-rate kernel. 

The quadratic rate kernel hf is similar to the quadratic state kernel hf except the 

phase shift -cp in the two arguments. This phase shift warps the diagonal lines of the 

kernel surface. The damping ratio controls the surface divergence or convergence (£* > 0 
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convergent surface, f = 0 oscillatory surface, and C, < 0 divergent surface). One example 

for the surface of the quadratic rate kernel hf is given in Figure 4.13 at C= 0.1 and o)„ = 

2 rad/s. The surface diagonal generic shape for 0 < C < 1 is shown in Figure 4.14. The 

quadratic rate diagonal kernel hf{r,T) has a set of periodic maximum and minimum 

points appearing at times (2«+l)7i/tWd and 2/m/&>d respectively. Because of phase shift, 

there is one non-periodic maximum point appearing at time 4̂ >/3cyd (see Figure 4.13). The 

loci of the periodic maximum and minimum points is defined as 

hLn = 2 v M ^ * -e~" ) 
2(1-£2)o>2

d 

K\„ = Z020^1
 2Y&te-2" + ) 

2(1 - C ) o ) 2
d (4.61) 

w6(g)=i-£2 + v ? A * 
, x 4 £ j \ - < Z 2 , , 

cos(2^>) + r— sin(2<p) 
( 4 - 3 C 2 ) 

where ĥ min a n d max a r e the lower and upper loci. The settling time of the surface is 

computed to be 

r r — l n -
CT 

for 0<C<1 

The value of r'[sm Equation (4.62) changes from 3.55la (C= 0.1) to 3.6/a (C= 0.7), which 

can be approximated by 3.61 a. 

For the bilinear state-input kernel, the normalized expression has the same 

structure as the corresponding first order system term, but multiplied by two sine 

functions. The damping factor o controls the divergence and convergence of the surface. 

For the positive damping factor, using the damping ratio, there are three cases: 0 < ( < 1, 

C = 0, and C ̂  1 • For null damping ratio, the normalized surface starts at zero and keeps 

oscillating around 0.25. For £*>1, the function reduces two first order systems with two 

different damping coefficients. These coefficients become the same at £ = 1. If C < 1 the 
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normalized surface starts oscillating from a zero value at the two frequencies and with an 

amplitude damped after successive oscillations, while the two arguments x\ and x2 go to 

infinity. Figure 4.15 is an example for the bilinear state-input kernel at C= 0.1 and co„ = 2 

rad/s. The generic shape of the 2x2= diagonal time histories is shown in Figure 4.16. 

Starting at zero, the kernel oscillates upward generating two sets of maximum and 

minimum points determined by frequency cod. The maximum points occur at time 

(2n+\)n/cod, while the minimum ones occur at time 2nizl(od- The envelope of the kernel is 

defined by J r , 0 . 5 r ) = 0.5*"" and /^ i n(r,0.5r)=0 , where h ^ and are the 

upper and lower locus, respectively. Using the upper locus, the surface settling time is 

computed as Th
k
s
s' = 4/<r . 

The bilinear rate-input kernel is similar to the bilinear state-input kernel with 

phase shift. This phase shift makes the surface oscillate around zero with a frequency cod-

The damping ratio controls the divergence and convergence of the surface as well as the 

other surfaces. Figure 4.17 is an example for the bilinear rate-input kernel at £= 0.1 and 

con — 2 rad/s. The generic shape of the T2 = Ti diagonal time histories is shown in Figure 

4.18. There are two sets of maximum and minimum points determined by frequency cod-

The maximum points occur at time (2rm+q>)/cod, while the minimum ones occur at time 

('{2n+\)K+<p)l(Od• The bounding curves for these sets are defined by 

^ I x f ) = (1 - and ^ ( r , r ) = - ( l - ^ 2 > - < » , where h ^ and are the upper 

and lower loci, respectively. Using the upper locus, the surface settling time is computed 

asr*" = - l n ( 0 . 0 2 / ( l - ) ) / a . The settling time values change from 3.9/a at f =0.1 to 

2.25/(7 at C=0.9. 

The quadratic input /zf kernel is an impulsive sheet over the diagonal kernel line. 

The amplitude of this sheet has the same shape as the first kernel as shown in Figure 4.8. 



r { s ) 

Figure 4.8 Second Order System First Kernel (0 < ( < 1) 
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n TT STT SW 
T2T5 ~BFS -WD 

(T,T) (8) 

Figure 4.10 Second Order System Quadratic State Kernel Diagonal (0 < Q< 1) 

J*-
^ 15 

Figure 4.11 Second Order System Bilinear State-Rate Kernel (C, = 0.1 and co„ = 2 rad/s) 
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Figure 4.12 Second Order System Bilinear State-Rate Kernel Diagonal (0 < ( < 

6 (s) 

W - 10 

Figure 4.13 Second Order System Quadratic Rate Kernel (£= 0.1 and con = 2 rad/s) 
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Figure 4.14 Second Order System Quadratic Rate Kernel Diagonal (0 < £*< 1) 

Figure 4.15 Second Order System Bilinear State-Input Kernel ( ( = 0.1 and co„ = 2 rad/s) 
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Figure 4.16 Second Order System Bilinear State-Input Kernel Diagonal (0 < C< 1) 



101 

-p 

! fM 0-

• 

0 f 
Wrf _ f+4ir _ 

(S) 
Figure 4.18 Second Order System Bilinear Rate-Input Kernel Diagonal (0 < C< 1) 

4.4 Analytical Step Response of Second Order System 

The step response of this approximate nonlinear system is computed as 

X X j I X 2 I X ̂  I X2 I X 2 I X 2 I 

with 

1 ~~ -J. G)„ 
1 — -sm(a>J + (p) 

us _ 0̂01̂ 200̂  j 1 e 

2 6 ' ' + 

CO., k-cf 

V w 5 

+ tp)- 2(3 - 2<^2)sin(ft>/ + 

- + 3 <p) — = = = = = sin(<0d f - 2 <p-(p) 

-2a 

+ 
4(1-c2) 

2 + -T=L=sm(2(Ddt + 3<z>)— \ = 

(4.63 ) 

(4.64 ) 

(4.65 ) 
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k2 k A2 bsr /t001/Vll0^1 

2 ~ a>„5 2 ( l - ^ r ( 9 " 8 C 2 ) 

+ Jl-C'e-'*[(3-4£2)cos(2codt + <p)+ ^ J l - ^ 2 s in(2a d t + q>)+ ^ ( 9 - 2 ) ] 

k 2 k A2 q̂r _ 001 020 
2 ~ 4ffl>B 

, - 2 o ( 2 sin (#>) + sin + (p) - -sin(2<ad/ + 

+ e 2 sin - - sin ( ( o d t + q>) - 7S\X\{l(0dt -

k k A' bsi 001 "'lOl-'1 

CO., 

^ t + 2{l - C2 )sin (o)dt + q>)~ adt cos + 

<2 „-<* 

( s i n ^ / ) - ^ cos(<y/)} 
k k A p~ 

bri _ ^OOl^Ol l^1 e 

2 — 2(0 

k A qi _ 002 
2 _

 2 G)„ 
1 -

VT7? 
sin(<y^ + ̂ 9) 

(4.66) 

(4.67) 

(4.68 ) 

(4.69) 

(4.70) 

where A is the input amplitude. Assembling the linear term x/ along with all the nonlinear 

components x f , x2
r, x f , xf ' , x2', and xf' gives the overall system response for a step 

input. Each term has different influences on the overall behavior. Figures 4.19-4.24 show 

the generic shape of each individual component for 0 < < 1. The resultant generic 

shapes in Figures 4.19-4.24 are specifically taken at £*= 0.1 or less in some cases in order 

to show all the feature of each response. As in the case of the first order system, both 

linear and quadratic input terms have the same generic shape but with different gain; 

k00i A / a>l for the linear term and km2A2 / a>2
n for the quadratic input component. 

All responses start at zero with a zero rate (initial conditions), and head upward or 

downward depending on their equivalent sign. The nonlinear components 

x f , x2
sr, x f , x f ' , and x f ' have observed initial time lags. If a 2% tolerance is considered 

to define this lag vicinity, the equivalent time lags are computed as 
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qs _ 1.5^"-0.05 bsr _ 1.33^-0.05 qr _ 0.38^ - 0.03 
Trl ~ ' Trl ~ •> Trl ~~ O- a <7 (4.71 ) 
bsi _ 0.97£-0.02 hn _ 0.33^-0.02 

cx a 

where < / , r*/r, r*/, r , and vh
r" are the time lags for x f , x2

w, x f , x f , and x f respectively. 

Note because of the expression complexity of these nonlinear components, a fitting 

technique is employed to find approximate expressions for the equivalent time lags as 

listed in Equation (4.71) and as shown in Figure 4.25. Linear approximations are 

adequate for a wide range of damping ratio. The 2% threshold is defined by the steady 

value of each term for x j and xbJ' and the maximum value for x%, xbJr, and xb
r" . The 

linear term and the quadratic input component do not have such time lags. Both start 

immediately to rise to their steady value. This observation is consistent with the one in 

the first order system case, which emphasizes that any noticeable change in the initial 

slope of the nonlinear response, from that given by the linear model, is traced back to the 

quadratic input nonlinearity. Also, the time lags are the instances at which a deviation 

between linear and nonlinear simulation starts to be significant in the case of a zero 

quadratic input coefficient, which is frequently observed in aircraft applications. 

After leaving the 2% vicinities, all responses oscillate around their equivalent 

steady values. All terms correlated with the rate, x2
r, x f , and xh", oscillate around a zero 

value. This observation means that they do not have any influence on the overall 

response's steady value. Thus, for the stable case £*> 0, when the total system behavior 

settles down, its rate settles at zero (v = V1+V2+... = 0). Then, these terms diminish. 

All terms oscillate with the same frequency a>d generating a set of maximum and 

minimum points. Both quadratic state xq
2

s and bilinear state-input x2' components 

achieve their minimum and maximum values at the same times, which are (4n+5)n/2/a)d 

and (4n+3)%l2l(Od respectively, where n = 0,1,2,... The remaining components including 

the linear term have minimum and maximum values at times (2n+3)nlcod and (2n+2)nlcod, 

where n = 0,1,2,... Based on these results, both quadratic state x f and bilinear state-
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input xb
2
s' components produce a phase shift in the observed peaks especially after the 

linear behavior settles down. 

The loci of the maximum and minimum points are achieved by retaining only the 

steady effect of the oscillation terms in the original expressions (see Equations (4.64-

4.70)) as 

r _kmA\] e 
lmin — 2 6)„ ' lmax 2 G)„ 

1 + 
i a / 1 7 ? (4.72) 

c2 k Al 
qs _ 001 200 
2min 6 

k - k - A {i-vAcy+vsicy2"} 

k2 k A2 
.qs _ "-POI^OO^1 

2 max 6 <y„ 

Wi 

Vs 

4(1 -ef 
1 

4<yrf/sin(^)+ 2(3 - 2£"2)cos(^>) + cos(3#>) + • 

4 - c 2 ) 
2 -

a / i 3 ? 

rsin (3^)- sin(2^> + q>) 

~ cos (2 <P + q>) 

2min — 
k2

mKwA2 j -0)je~a 8C < 2* _ e-a 

12(1 - c 2 f / 2 9 - 8 C 1 

k2 k A1 
bsr A"001n110̂ 1 

X2 max 
A. 

2(l-£T(9-SC2) 9 " 8 C 

cqr 
2 max 

3 ̂ 001 £020 A2 (4 - 2 +44"*) 
2a>:(9 -H2) 

0̂20 A2 (4 — 2 + 4<£"4) 

(e-^-e-" ) 

bsi _ 0̂01 ̂ 101 ^ J 1 £_ 
2min — ,4 | 1 

2(\-C 

bsi _ ^001 ̂ IQl ^ 2 max 4 

0)„ 
n̂ni ^mi A I , B 

1 + 
2(1-c2f 

x Jyri 
2 min 

-k k A k k A2 
„bri "-001 ""011̂ 1 

2 max 2a>> 

(4.73 ) 

(4.74) 

(4.75 ) 

(4.76) 

(4.77) 
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k A2 
rqi _ 002 

2 max 0)„ 
1 -

k A2 
Yqi _ 002 

2min — 2 
CO. 

1+ (4.78 ) 

where xLirand 7minv 
./ max are the loci of minimum and maximum points for the term x' , 

where i = {(), qs ,bsr, qr, bsi, bri, g/}and j ={ 1,2}. These loci are good estimators for the 

settling time of each component. For the linear term and quadratic input component, the 

response settling time based on their equivalent loci isr' s = =4/<r . By solving a 

quadratic equation formed by equating Equation (4.75) to a 2% value, the settling time of 

the quadratic rate component is 

Tqr
 = 

1 
In-

- 1 + 7 1 + 0 . 0 8 / ^ ( 4 - ) 

6(4 -%2 + 4 ^ 4 ) 

(9 -8C 2 ) 

for 0 < £ < 1 

(4.79) 

For the rest of terms xf ,xb
2'r ,xb

2
s', and xb" , a fitting technique is used based on the results 

in Figure 4.26 to present the settling times as 

TZ = 
6 .8^ 2 -8 .2^+9 .0 

7 . 4 ^ - 8 . 3 ^ + 8.2 

T„sr _ - 0 . 2 3 ^ - 0 . 5 4 ^ + 6.8 

r ,„ = - 2 . 2 ^ - 2 . 7 ^ + 7.4 
(4.80) 

<r a 

Quadratic approximations are needed here to cover a range of damping ratio. The overall 

settling time depends on the ratio between the coefficients, undamped natural frequency, 

and damping ratio. 

Based on the solution in Equations (4.63-4.70), if the system has low frequency, 

the nonlinearity of the system starts to be significant even when the system has small 

nonlinear coefficients, but influence of this frequency on the settling time is the same as 

in the linear case. On the other hand, the damping ratio ( does not change the ratio 

between the linear and nonlinear terms, but changes the overall settling time. In addition, 

the sign ratio between the coefficients plays an important role in the settling time. 
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Negative nonlinear coefficients may lead to improvement of the settling time or make it 

longer. Using this assembly, the estimated overall steady value xss is 

k A k2 IT A2 lc It A2 !r A2 
_ 001 001 200 001 101 002 

s s , 2 + fi + 4 + 2 0)„ <y„ 
(4.81 ) 

This steady value depends on the system parameters as well as the input amplitude. 

Figure 4.19 Linear or Quadratic Input Response to Step Input (0 <C< 1) 

m 7ir 3Er„ TH; 201s 
Us) 

Figure 4.20 Quadratic State Response to Step Input (0 < C < 1) 



t(s) 

Figure 4.22 Quadratic Rate Response to Step Input (0 < C< 1) 
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3JT TIT HIT 
lSTe 2hln 

t(s) 
Figure 4.23 Bilinear State-Input Response to Step Input (0 < ( < 1) 

Figure 4.24 Bilinear Rate-Input Response to Step Input (0 < f < 1) 
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Figure 4.25 Lag Time Variation for Nonlinear Components 

C 

Figure 4.26 Settling Time Variation for Nonlinear Components 
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4.5 Low Order Uniaxial Flight Dynamic Sub-Systems 

This section shows how the full order aircraft dynamic model can be represented 

as a set of low order flight dynamic sub-systems while preserving the link to the more 

general model. The four low order system examples: surge, pitch, roll, and yaw motions, 

are offered herein as demonstrations. Each example represents a SDOF uniaxial motion. 

Reference 113 contains a frequently cited full order dynamic model of a high 

performance aircraft. This model is considered under many assumptions: the aircraft is a 

rigid body with six degrees of freedom (6DOF) except for an internal constant spinning 

engine rotor, the aircraft mass is constant, the aircraft body is symmetric about the XZ 

plane, the atmosphere is stationary, and the earth is flat with constant gravity. Based on 

those assumptions the nonlinear equations of motion, derived from Newtonian mechanics, 

are 

. _ qS T 
u = rv-qw-gsm& + — Cx +— (4.82) 

m ' m 

v = pw-ru +gcos6sm(p + — CY (4.83) 
m T 

w = qu-pv + gcos0cos(p + — C7 (4.84) 
m ~T 

P = ^ L j ^ q r + j L ( r + p q ) + ~ - C L r (4.85) 

Iy Iy Iy (4.86) 

r = ^ ~ p q + ^ ( p - q r ) + ^ C N r + H e q (4.87) 
h h 

The aerodynamic and engine data used in the aircraft model have been developed 

by test at the NASA Langley Research Center in 1979 as listed in Reference 113. This 

test was conducted in low-speed wind tunnel facilities. The model data represents the 
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total aerodynamic coefficients (Cx ,CYt^CZt,C^,Cm ,CN ) corresponding to angle of 

attack a, sideslip angle /?, elevator deflection Se, aileron deflection Sa, and rudder 

deflection Sr. In Reference 5, a simplified model of the F-16 aerodynamics is represented. 

Simplification comes about by programming leading edge flap movement as a function of 

angle of attack and Mach number (an actual schedule in the F-16 control system) and 

combining associated tabular aerodynamic data, along with additional approximation of 

sideslip dependency. The new model has the capability to reduce the computational time 

with acceptable accuracy, but the simplicity of this model restricts the angle of attack 

range to -10° /+45° and the sideslip angle range to -30°/+30°. For completeness, the 

equations for the aerodynamic coefficients of the simplified model will be listed here. 

More details are given in Reference 5. 

CXT = CX(A,5E)+^CXQ{A) 
2V 

CyT =-0.02/?+ 0.021 

cz=cz{41-

(S } (8 \ r a + 0.086 (8 \ r 

1 2 0 J 1 3 0 J 
br 
2V ' 2V pK 

f o \ 

v57.3y 
-0 .19 

f 2 \ ~ 

25 l_r +—C7Aa) 2V q 

(4.88) 

(4.89) 

(4.90) 

CLr =CL(a,0)+CL,m(a,p\ ^ y C L J a , j 3 ^ y ^ C L r ( a ) + ^ C L p ( a ) (4.91 ) 

CUr =CM(a,Se)+CZr{xcgr-xcgy^CMq(a) (4.92) 

CNT =CN{a,P)+CNS {a,p\ + 

+ ^CNr{a)+^CNp(a)-CYT{xcgr 
bp 

(4.93 ) 
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The equivalent aerodynamic tables of this model are given in Reference 5. All tabular 

data are valid only for the bounds on angle of attack, sideslip angle, and control surface 

deflections (see Table 4.1 where the given data is from Reference 5). 

Table 4.1 Control Surface Limits 

Control 
Surface 

Travel Limit 
(deg) 

Rate Limit 
(deg/s) 

Time Constant 
(s) 

Elevator ±25 60 0.0495 

Aileron ±21.5 80 0.0495 

Rudder ±30 120 0.0495 

The afterburner turbofan engine model is considered a first order lag for actual 

power level. The lag time constant is related to actual power and commanded power 

(linear function of throttle deflection) levels by a linear function with different slopes, 

and the thrust is then computed from tabular data corresponding to the actual power level, 

altitude, and Mach number. All the numerical values of the engine model are given in 

Reference 5. Even though this first order lag models engine thrust spool up or spool down, 

the angular momentum of the engine rotor (He) appearing in the aircraft pitch and yaw 

acceleration equations is assumed constant. The control surface actuators are assumed to 

be first order lags with some nonlinearities in actuation limitation. 

The dominant behavior of a conventional aircraft can be fairly well described by a 

symmetric motion (longitudinal) and an asymmetric motion (lateral-directional), if the 

engine angular momentum He is assumed zero. For symmetric longitudinal flight, the 

lateral-directional variables are exactly zero due to airplane symmetry about the XZ plane. 

In this case, the aircraft motion can be described by a reduced nonlinear longitudinal 

model as 
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i = -qw-gsm0 + — Cx (a,q,8e) + — (4 94) 
m m v ' 

w = qu + gcos6 + — Cz (a,q,p = 0 ,8 e ) M 95 \ 
m \ • J 

q , (a,q,P = d,S,) (4.96) 
r 

e = q (4.97) 

Using the stability axes and the relations w = V sin(a), u=V cos(a), and V2= u2 + w2, one 

can replace the surge u and heave w equations by 

V = ^T{M,H,8th)-^-CD(a,q,8e)-gM0-cc) 

m m 

mV mv V 

(4.98 ) 

(4.99 ) 

and 
C D = ~ C X T cos(t t)-CZ i sin (a) 

C, = -CZT cos(a)+ CXF sin (a) ( 4 - 1 0 0 ) 

where V is the total velocity. 

If an autopilot is assumed to hold the altitude to a constant value H0 and the flight 

path angle y0 = 60 - a0 at zero value along with q0 = 0, then variation of the total velocity 

is given as 

V = C-^T(V,HoAh)-^-CM,8eohf(v,8lhj) (4-101 ) 

m 2m 

where a0 and 8eo are the trimmed angle of attack and elevator deflection along with 

trimmed throttle Stho, which are determined by the specified parameter vector 6 = [H0 

V 0 f . Equation (4.101) represents a first order SDOF system for total velocity with 

throttle as the input. The perturbation form of Equation (4.101) is then given by 

introducing the first order and second order (quadratic and bilinear) derivatives of the 

function / as 
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dV V r 3Slh 2! 8V2 x r 

+ -
a 2 / i a V h \ 2 ( 4 ' 1 0 2 ) 

dVdSlh "21 dslh 

The two perturbed quantities AV and ASth, not necessarily small, are measured from the 

nominal values defined at the operating condition. Equation (4.102) is a specific case of 

the more general Equation (4.2). Since the aerodynamic and engine models of the aircraft 

are given in the form of look-up tables, a finite difference technique is an appropriate 

choice to compute the derivatives appearing in Equation (4.102). The second derivative 

o f / with respect to Sth, is zero for the equivalent engine model. 

Another example of a longitudinal low order flight sub-system is the nonlinear 

pitching motion. In such motion, the total velocity is assumed constant in magnitude (V = 

V0) and direction (y = y0 = 0, Q = a). The pitch motion, assuming it to be much faster than 

heave motion, is then described as a second order SDOF sub-system as 

e = q 

• v&r (a Aa x t4"103) q = j cMt {o, q,se)=f\e, q, se, ej 

where 6 and q are the position and rate, while Se is the input signal. The parameter vector 
A 

6 is introduced through q . Expanding the nonlinear function /around the nominal point, 

defined by 0 , leads to 

A0 = Aq 

d0y ^ dqy r dSe 2\d02y ^ 2! dq (4.104) 

+^{3)AOA q+-*l-(e]A0ASe+*I-(e)AqASe + O)AS2
+... 

dddq v r dme
 v r c dqdse

 y r 2! dSt
2 v ^ 

Equation (4.104) corresponds to Equation (4.26) in the general case. Here, the second 

derivative of the function/ with respect to q is zero, since the pitching moment is a linear 

function of q. Also, the coupled derivative with respect to q and Se is zero in the aircraft 
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model. The perturbed quantities AQ, Aq and A8e are defined from the nominal value 

determined by the operating condition 6 = [H0 V0]T. 

For the lateral-directional sub-systems, roll motion and yaw motion are 

considered as examples. Recall the governing roll rate expression in Equation (4.85). If 

the pitch and yaw rates are assumed zero (q = q0= 0, r = r0 = 0), the roll motion is 

represented as 

P = ^-CLr(a, p, Sa,Sr,p) = f(p, a, S) (4.105) 
1 x 

where 6 represents the operating condition [H0 Va pa q0 r0]T. Thus, the angle of attack is 

considered as an input signal, which changes the roll rate. If there is a sideslip angle hold 

system activated (fi = po, Sa = Sao, Sr = 5ro, all determined from the specific 6 ), the 

equation of the roll motion then approximately matches the first order SDOF generic 

model as 

^ SpXPP 2! dp (4106) 

oaop 2 \da 

The two perturbed quantities Ap and A a are measured from the operating condition. The 

nonzero trim rolling rate is denoted by p0. Several of the / derivatives appearing in 

Equation (4.106) are zero for the aircraft model. However, the roll moment is linearly 

dependent on the roll rate. This linear relation between roll moment and roll rate has a 

significant variation with the angle of attack, which appears as a bilinear term in the 

model. The main purpose of this model is to show the angle of attack influence on the 

steady roll rate. 

For the low order yaw motion sub-system, at constant total speed (V = V0) and 

zero roll angle, pitch rate, and flight path angle (<p = <p0 = 0, q = q0= 0, y = y0 = 0), the 
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sideslip is then equal to the negative of the yaw angle {fi = -y/). The yaw moment 

equation is then given as 
r 

cos (aj 
qSb I (4.107) 

Replacing the nonlinear function / of the yawing moment by a Taylor expansion around 

the nominal point defined by 0 = \Ha V0]T which determines the nominal values a0, 5eo, 

t̂ho (all nonzero) and /?0, «5ao, <5ro (all zero), the model conforms to the standard nonlinear 

second order SDOF model as 

A\j/ = \—rAr 
cos(«0) 

A ( 4 108) r drx ^ 8Sr
y r r 2! dy/ 2! dr2 V ^ 1 J 

+ + -%-(§ W W + 
dy/drK ^ dy/dSr

 r drdSr
 V ^ r 2\dd2

r
X ^ r 

In this low order model, the rudder deflection is the input signal. Several of these 

derivatives are again zero. The aileron is taken as zero since there is no roll. Changing the 

rudder deflection leads to an insignificant change in the roll motion that can be neglected 

for simplicity. Note that for the aircraft model, the rate of change in the rolling moment 

due to rudder deflection is less than 10% of the rate of change due to aileron deflection. 

4.6 Low Order Motion Examples 

A set of four low order flight systems (surge, pitch, roll, and yaw), previously 

developed in Section 4.5, are employed to demonstrate the dynamical assembly 

methodology given in Sections 4.1-4.4, to predict the behavior of such systems. For each 

motion, the trim values of the total nonlinear aircraft model are computed at certain 

operating conditions. These conditions are selected to represent the behavior of the 

aircraft near the boundaries of the flight envelope. The low order flight systems are then 
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extracted from the overall model. These low order systems still have the aerodynamic-

propulsive coefficients represented by look-up tables. After that, the finite difference 

technique generates both first and second order stability and control derivatives around 

the previously considered operating condition. These derivatives are passed to linear-

based and Volterra-based models, while the look-up tables are used for the nonlinear 

simulation. Table 4.2 shows the operating conditions, initial conditions, and the 

linear/nonlinear aerodynamic-propulsive derivatives for surge and roll motions. 

Table 4.2 Numerical Data for Surge and Roll Motions 

V0 
( f t / s ) 

H0 
(kft) 

a0 

(deg) 
a (kl0) 

( 1 / s , 1 / s ) 

koi 
( f t / s 2 , 1 / s 2 ) 

ho 
(1/ft, 1/rad) 

k,, 
( 1 / s , 1 / s ) 

Surge 
Motion 

3 0 0 10 1 5 . 8 5 - 0 . 0 2 8 5 1 3 . 4 4 - 4 . 5 7 X I 0 " 5 4 . 0 6 X I 0 - 3 

Roll 
Motion 

3 0 0 10 10 - 1 . 0 3 5 8 0 . 0 6 5 0 0 . 0 2 4 

Based on previous analysis, several nonlinear features that describe the system 

can be predicted without the need for nonlinear simulation. For the surge motion, 

considering the step response more specifically, two nonlinearities appear in the model, 

quadratic state xqs and bilinear state-inputx2
s'. The linear term a (k;o = -0.0285 1/s) has 

a low value indicating that quadratic nonlinearity xqs is more dominant than the bilinear 

nonlinearity x2
sl according to the respective gains in Equation (4.24). Thus, the quadratic 

component is proportional to k2ok2oi/a3 = 356.7 ft/s, while the bilinear component is 

proportional to kuko/a2 = 67.2 ft/s. The lag time of each nonlinear component is r J = 

0.45/|a| = 15 s and r*/'= 0.2/|a| = 7 s. The linear term has a settling time Al\a\ = 140.4 s, 

while the two nonlinear components have settling times rqs
s = 6.6/|a| = 231.6 s and r*v" = 

5.8/|a| = 203.5 s. Since the quadratic state component xqs has a negative value and it is 
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more dominant than the bilinear component xb
2

si, the overall settling time is expected to 

be less than the linear one depending on the input amplitude. At a low amplitude input, 

the settling time is almost the linear settling time 140 s, while at a high amplitude input, 

the settling time is much less than 140 s. In other words, increasing the input's amplitude 

reduces the settling time. Recall Equation (4.25), the steady value as a function of input 

amplitude is AVSS = 471.6A£rt -289.5A<$£ ft/s. 

For a specific response example, assume an input excitation A<5,/,=15% with Stho = 

43% and Seo = -11.07 deg. Figure 4.27 shows the response of each nonlinear component. 

Assembling the two nonlinear components along with the linear term provides the overall 

estimated response as shown in Figure 4.28. Both nonlinear and linear responses start 

with the same slope or velocity (quadratic state and bilinear terms do not change the 

initial rate due to time lag). At time t = 15 s, the linear model deviates from the nonlinear 

one. This time is the quadratic time lag. The linear-based model has a steady value 

=300 + 471.6A£,/J|ols =371 ft/s, while the Volterra-based model has a steady 

value Fjolteria =300+ (471 .6A^-289 .5A^) o ] 5 =364.3 ft/s. The nonlinear simulation 

has a steady value 365 ft/s. This result shows how the quadratic component has a 

significant influence on the steady value. The quadratic component in this model 

represents the second derivative of the X axis total force with velocity, which is the drag 

and thrust variation with the velocity squared. The required time to achieve the steady 

values in the case of the linear model is r'.'near -- r'v =4 / | a |=140 s. In the case of the 

Volterra model, by recalling Equation (4.24) and noting the Volterra steady state 

response is 2% below that of the linear steady state response, the estimated settling time 

is then r™terra = ln(0.02 + 0.02)/ a = 3.2 l\a\ = 113 s. The nonlinear simulation has a total 

settling time of 118 s, which is much less than the linear settling time and the Volterra 

settling time well approximates here because of the negative sign of the quadratic 

position component. 
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In the case of roll motion, the only source of nonlinearity is the bilinear 

component as listed in Table 4.2. The nominal rolling condition corresponds to po = 1 

rad/s, po = -5 deg, <5eo = 1.04 deg, Sao = -1.3 deg, 3ro = 0 deg, and <5th0 = 28%. Consider the 

step response as a more specific case, the contribution of the nonlinear component pb
2

s' 

can be described using the previous analysis: lag time rbJ' = 0.2/|a| = 0.192 s, the settling 

time = 5.8/|a| = 5.6 s, and a steady value p^' = A2kmku/a2 = 

1.5 XlO"3Aa2 rad/s (see Equation (4.25)). Note the bilinear component response is always 

positive regardless of the input direction while the linear component response depends on 

the input direction. For the positive input excitation, the settling time is expected to be 

more than for the linear system and vice versa. 

For an input amplitude A a = -6 deg, while a0 = 10 deg, the response of ph
2 is 

shown in Figure 4.29. Adding the nonlinear component pbsl to the linear term pt 

provides the estimated Volterra model shown in Figure 4. 30. The three responses: 

nonlinear, Volterra, and linear start at the same initial value with the same rate. The 

deviation between nonlinear and linear responses occurs earlier than in the previous surge 

example, since the bilinear lag time is only r*/' = 0.2 s. Using Equation (4.25), the three 

models settle at different steady values: 0.69 rad/s (nonlinear), 0.68 rad/s (Volterra), and 

0.62 rad/s (linear), indicating 10% error in the prediction of the linear model and 1.5% 

error in the prediction of the Volterra model. The increment in steady state roll rate due to 

nonlinear aerodynamics is predictable from Equation (4.25), specifically the term 

A2ko\k\\la2. The required time to settle each model to its steady value is computed to be 

3.3 s (nonlinear), 3.2 s (Volterra), and 3.8 s (linear). 

The pitch motion example is considered at an altitude H0 = 40 kft and total 

velocity V0 = 530 ft/s. For a rectilinear motion, the computed trimming variables are 60 = 

a 0 = 15.6 deg, <5eo = -2.6 deg, and <5tho = 98.8%. Using the finite difference technique, the 

reduced pitch equations of motion, equivalent to Equation (4.104), are 
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A9 = Aq 

Aq = z0^hdzQMhqz2A5hSe + LO5A02 + QA6AGAq + O29A0ASe-0.0014A<?(
2 (4.109 ) 

4,00 *010 *001 *200 10 4101 t002 

In Equation (4.109), the quadratic rate coefficient &020 = 0 and the bilinear rate-input 

coefficient &011 = 0- Thus, both plunge force and pitch moment coefficients are linear 

related to the pitch rate q with a zero correlation to the elevator deflection de. The pitch 

motion model has a damping ratio £*= 0.2, damping factor a = 0.18 1/s, undamped natural 

frequency a>„ = 0.89 rad/s, and damped natural frequency a>d = 0.87 rad/s. The first kernel 

starts at zero with a negative slope and keeps oscillating with a frequency cod = 0.87 rad/s. 

The amplitude of this oscillation decreases with time and settles inside a 2% band of the 

gain |&ooi/ £on| = 3.54 at time r'h = 4/1 cr |= 22.2 s. The second kernel has four 

components. The influence of each component on the total second kernel, from highest to 

lowest, is: quadratic state component /zf (with a weight k200k^0] / 2cod = 9.05), bilinear 

state-rate component f^sr (with a weight kuokln = 1.19), bilinear state-input 

component (with a weight kunka0] / 2o)d = -0.59), and quadratic input component /zf 

(with a weight k002 1 0)d= -0.0016). Although the nonlinear coefficients in Equation 

(4.109) are in the same range, the analysis based on the Volterra model shows that some 

nonlinearities dominate the others because of the operating frequency and damping ratio. 

The contribution of the quadratic input term is almost zero and can be removed from the 

model. Since the quadratic state component has the highest weight with a big difference 

compared to the other components, the total second kernel is expected to be close in 

shape to the quadratic state component h%s . The individual settling time of each 

component i s r f = 19.47 s, r b J = 19.34 s, and =z£'= 22.23 s. Since the quadratic 

state component is dominant, the expected overall settling time is roughly close to T™'erra 

~ 19.47 s. 

The developed first and second kernels of the pitch motion provide the structure 

to predict and understand the system behavior of any input. The step response analysis in 



121 

Section 4.4 is now recalled and used. The step response of each component can be 

specified by the following characteristics: 

1- Time lags of each component in Equation (4.71) as zq
rl
s = 1.41 s, Th

rf = 1.22 s, rbf = 

0.98 s, and T9J= 0 S. 

2- Settling times in Equation (4.80) as r% = 41.9 s , r£ '= 37.1 s, r*f = 37.9 s, and tq
r' = 

22.2 s. 

3- Steady values in Equation (4.81) = 20.96 A£„2 rad, = OA8] rad, Qb
rf = -1.44 

A8] rad, and 9fs = -0.0017 A8] rad, where A8e is in rad. 

The linear response, on the other hand, has a settling time rl
rs = 22.2 s and a steady value 

0 l
r= -3.98 ASe rad. As a test case, the response of each nonlinear component is shown in 

Figure 4.31 for an input of A8e = 0.75 deg. Figure 4.32 shows the result of assembling the 

linear term to the nonlinear components in a comparison with the linear response, while 

the nonlinear simulation is the benchmark. The three responses (linear, Volterra, and 

nonlinear) start at 15.6 deg heading downward. The linear model deviates from both the 

nonlinear simulation and Volterra-based model at t ~ 1.5 s (almost equal to ), when the 

nonlinear components start to be energetic. 

There is a difference in the times of the peak overshoot and undershoot between 

the linear and nonlinear simulation. Based on the Volterra model, this difference in time 

traces back to the xf and xbs' components, which lead by At = x/2/eoi = 1.8 s from the 

linear simulation. However, the xb
2
sl component does not really contribute in such a time 

difference as well as the xb
2
sr component because of its low strength. Volterra model is 

consistent with the nonlinear simulation and provides accurate times of the first three 

overshoot peaks at 6.76 s, 13.67 s, and 20.47 s. The linear model, on the other hand, 

provides these times at 7.22 s, 14.43 s, and 21.64 s. It is clear how the time difference 

propagates with time to reach a phase shift 90 deg by the third cycle. The equivalent 

percentage maximum overshoots at these times are 7.5%, 3.2%, and 1.5% based on the 

linear model and 8.0%, 3.9%, and 2.1% based on the Volterra model, which is the same 
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as the nonlinear simulation. The differences in estimating the maximum overshoot values 

and their equivalent times emphasize that developed analytical models based on Volterra 

theory provides a better tool in predicting the transient response of the aircraft especially 

for tracking applications when these differences are a matter of concern. The developed 

analytical Volterra model not only proves the capability to render the transient response 

but also the steady response as 0vfe r r a = 12.79 deg compared to 0'j"ear = 12.6 deg from 

the linear model with an error 7%. The estimated settling time to reach this value is 

T l ; r r = 19.4 s and tm , e r r a = 24.6 s. 

The operating condition of the yaw motion is considered at V0 = 1000 ft/s, H0 = 5 

kft, a0 = 10 deg, Seo = -1.4 deg, <5tho = 55%. The resultant equations of motion are 

Ay/ = Ar 
IAr = z 3 ^ A y / z Q M ^ z Q ^ A S r Z 0 : m 9 A y / A d r (4.110) 

0̂01 0̂10 0̂01 1̂01 

The model in Equation (4.110) has a damping ratio of C = 0.072, undamped natural 

frequency con = 6.02 rad/s, and damped natural frequency a>d = 6 rad/s. Because the model 

has a relatively high frequency and low input bilinear strength, the nonlinearity has 

almost no effect on the steady value and the settling time. Figure 4.33 shows the 

contribution of the bilinear state-input nonlinearity for an input signal A3r = -10 deg, 

while the overall response is shown in Figure 4.34. The nonlinearity here is insignificant. 

The only signature of the nonlinearity appears as shift in the times of maximum peak 

points, especially after the linear part settles down. Thus, the input bilinear term has 

minimum and maximum peaks at times {An + 5)n12/cod and (4n + 121 cod 

respectively, while the linear term has these peaks at times 2(n + \)n / 0)d and 

(in + \)nI(Ddrespectively, where n = 0,1,2,.... The difference in peak times between 

linear and input bilinear traces produces such shift. The results from this model and the 

previous ones show the necessity for counting the high order stability and control 

derivatives to characterize aircraft behavior near outlying regions of the flight envelope, 
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or anywhere nonlinearity is significant. The analytically developed Volterra-based 

models efficiently employ these high order derivatives and trace their influence on the 

system behavior. Such mechanism would not be accessible in linear analyses. 

Figure 4.27 Surge Motion Nonlinear Step Response Components for ASth = 15% 

t ( s ) 

Figure 4.34 Yaw Motion Step Response for ASr = -10 deg 
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0.06 

Figure 4.29 Roll Motion Nonlinear Step Response Components for A a = -6 deg 

Figure 4. 30 Roll Motion Step Response for A a = -6 deg 
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Figure 4.31 Pitch Motion Nonlinear Step Response Components for ASe = 0.75 deg 

t (s ) 

Figure 4.32 Pitch Motion Step Response for ASe = 0.75 deg 
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t ( s ) 

Figure 4.33 Yaw Motion Nonlinear Step Response Component for ASr = -10 deg 

t (s ) 

Figure 4.34 Yaw Motion Step Response for ASr = -10 deg 
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CHAPTER 5 

VOLTERRA PARMETER-VARYING APPROACH 

The piecewise Volterra approach in Chapter 3 has been used as a demonstration tool 

to prove the universality of Volterra models. However, the approach requires a lot of 

mathematical manipulation and manual intervention. In this chapter, a more systematic 

and computationally efficient approach is introduced. This methodology is called the 

volterra parameter-varying (VPV) approach, which is considered an extension for the 

linear parameter-varying (LPV) approach. Throughout this chapter the F-16 longitudinal 

motion is used to assess the proposed approach. The approach starts by generating a local 

differential Volterra sub-model at a specific operating condition based on variable 

expansion as shown in Section 5.1. In Section 5.2, the local Volterra kernels based on the 

differential sub-model are analytically developed. Such analytical expression provides an 

understanding for the aircraft dynamics. Finally, in Section 5.3, the VPV model is 

assembled. Many interpolation techniques are investigated to select the proper one 

followed by some test cases to compare the VPV to LPV, while the nonlinear simulation 

is used as a benchmark. Characterizing the aircraft dynamics over the entire flight 

envelope is visualized throughout the variation of Volterra kernels with total speed and 

altitude. 

5.1 Local Differential Model 

In this section, the local VPV model in the form of a power series of the motion 

function derivatives is developed for the longitudinal motion of an F-16 model. This 

model has been previously discussed in Chapter 4. Recall the symmetric longitudinal 

motion, developed in that chapter. 

2m -—' „ 1—< m f5.n 
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a = q + ~pSV(CZTCa - Cx Sa)-^-Sa+f Ce_a = f2(V, a,q,0,Se) 2m >—i „ : < mV V (5.2) 
-c, 

. pSc 
q = 

2 / v 
V2CMT =f,(v,a,q,e,se) (5.3) 

e = q = f4{V,a,q,e,de) (5.4) 

Here the thrust is considered constant and the throttle is assumed fixed, thus functions f\, 

72,73, and f\ show no explicit dependence on 8th. Replace the state vector and input vector 

by the expanded forms. 

'V v„ V2 

a a > a. ffi, 
— + A + A2 

q qx q2 

e 0o e2 

+ . 
(5.5) 

8, = 8 +18 

Substituting into the nonlinear state space model in Equations (5.1-5.4), expanding 

nonlinearities with Taylor theory, and equating the coefficients of X and I2 leads to the 

following VPV local differential model 

(5.6) 

x2 = A(S}2 + BXX (4,[2] + BXU + Buu (e^ 

Applying the Kronecker operator directly to the vector x/ = [V a q 0\x leads to 

x(2) = [F2 y a yq y g a y a 2 a q a Q q y q a g2 qQ Qy Qa Qq 0 2 J 

, which has many redundant elements in addition that terms q2, qd, and 02 do not 

influence the dynamics. By eliminating this redundancy and the terms q2, qd, and Q2, a 

reduced Kronecker product denoted with a square-bracket superscript 

x\2] = [v2 Va Vq V6 a2 aq a6\ is used herein. Dimension of five matrices in 

Equation (5.6) are A e RM, B e RM, Bxx e R4x7, Bxu e R4x4, and Buu e 7?4xl. The 

parameters dependency vector is denoted by 6 = \H0 F0J indicating the operating 

condition. The structure of these five matrices A, B, Bxx, Bxu, and Buu are 
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' fw f\a A\q f\& f\s. Awse A\aSe 0 0 

A = fiv f2a f2q f2B B = A25, fl = 
A2V5e AlaSe 0 0 

Av A a A q 0 As, 
xu 

Awsl: AiaS, 0 0 
0 0 1 0 0 0 0 0 0 

B„ = B,... = 

- f A (5-7) 
2 V 1 
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I f 
2 ? 

0 

The derivatives fy, where i = {1, 2, 3} and j = {V,a,q,0,V2,Va,Vq,V0,a2,aq, 

a6, Se, S2}, are correlated to the aerodynamic and propulsive coefficients and their 

derivatives as 

1 f 
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(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 
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The aerodynamic dataC X t ,C Z t , and CM[ are given as look-up tables with enough 

resolution to capture the nonlinear behavior of the aerodynamic force and moment 

coefficients. In Reference 114, these aerodynamic coefficients have been modeled by the 

so-called "multivariate orthogonal functions". This orthogonality feature has the ability 

to decouple the computed regression coefficient of one function from the other functions 

presented in the model. Such decoupling removes any aliasing effect while qualifying 

each function's contribution to the overall regression model. Building the structure of this 

regression model was an optimization problem to minimize the so-called predicted 

squared error. The predicted squared error is a sum of the mean square fit error and a 

term proportional to the number of terms in the model. After building such a model, one 

can then expand these orthogonal functions into an ordinary multivariate polynomial 

where the total dependent aerodynamic coefficients are expressed in terms of angle of 

attack, sideslip angle, and control surface deflections as a finite multivariate power series 

as 

CXR =CX{A,SE)+^-C(A)= ± A^A S> 
cq 

2V ij=o 2V /=o 
I "lja'SJ J'O 

4 
I * /=0 cA 1 -

\ 

' P )2 

.57.3J 

1=0 

Z / a ' /=0 
1 -

157.3 J 

(5.48) 

f £ \ ^ 
- 0 . 1 9 

25 
+ (a) 

4 

2 > ' (5.49) 

I 25 J 2F,to 

CMT =Cm(a,SE)+CZT(xcgr - x j +^Cmq{a) 
2, 3 I mua'Sl *j=o 

5 
(5.50) 

2,3 
= E m 

>j=o 
a'Sj+Cz (x^-xJ+^Xn.a' 

cq 5 

2V~o 

The values of the regression coefficients are given in Reference 114. Unlike the look-up 

table structure, the multivariate orthogonal functions provide an analytical structure, 
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which reduce numerical errors in computing the stability and control derivatives from the 

aerodynamic coefficients. This polynomial formulation is used in the computation. 

5.2 Local Kernel Generation 

The PLTI system in Equation (5.6) provides an analytical solution for the kernels 

using successive substitution. Assume the velocity to be the output, then an output 

matrix coefficient is defined as C = [1 0 0 0]. The first PLTI system has a solution 

The characteristic equation of the longitudinal motion has two sets of conjugate complex 

roots. The first set represents the phugoid motion, which operates at a low frequency. 

This motion is also called long period motion. The second set represents the short period 

motion, which operates at a relatively high frequency. Total velocity and pitch angle are 

the significant variables with phugoid motion, while angle of attack and pitch rate are the 

dominant variables with short period motion. A fair assumption, therefore, is to present 

the total velocity or pitch angle by phugoid motion and angle of attack or pitch rate by 

short period motion. 

By substituting, the generalized convolution solution of the total velocity is given 

as 

(5.51) 

where 
d>(t-T) = eA(t~T) (5.52) 

o 

(5.53) 

o 
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where subscripts "ph" and "sp" denote phugoid and short period . Note only the phugoid 

contribution is retained to compute V\ (t). The same procedure gives the generalized 

convolution solution of angle of attack as 

n 

i n L + K 
(5.54) 

0 

The first kernels for both V and a are thus 

K { r ) = K a e - ^ h m { c o d v ( r ) + < ) 
(5.55) 

The second kernels are calculated by adding term-by-term from the nonlinear 

matrices Bxx, Bm, and Buu. Many of these matrices' elements are not significant and can be 

ignored. For example, for the second velocity second kernel, two elements f l a , and f)g2 

are significant compared to the others. Thus, the rate of velocity change is correlated to 

the drag coefficient, which has a quadratic form with angle of attack and elevator 

deflection. The drag quadratic function has a significant curvature making first order 

derivatives insufficient to fully describe the system. Numerical investigation of this point 

is discussed in detail in the next section. Assuming the two terms / ^ and / j are the 

only sources of nonlinearity, the second kernel of the velocity is 

^ W = f j \ C®(t ~ r)Bax (r)a, (r)dr + f ^ J C<b{t - z)BSe (r& (r]dr 
o o ( 5 . 5 6 ) 

* V. ' * v ' 

By substituting from Equation (4.55) 
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v ? ( 0 = j e ^ ( ' - r ) S i n ( ^ (t - r)+(pv
ph )x 

o 0 

J { r " r ' 1 s i n ( ^ p ( r - r , ) + <p%))se(r,)a(t-r,)Jr, x (5.57) 
0 0 

sin (r - r2)+ - r 2 f c (r 2 ) d r 2 d r 

0 

By rearranging the integration limits in the order d z x d r t x d z 2 , the multiplication 

of the two operators A(r-Ti)A(T-T2) can be replaced by setting the lower limit of the 

internal integration by max(ti, xi) instead of 0, where the operator max(x, y) refers to the 

maximum values between x and y . The operator A(t-Xj) also allows setting the upper 

limits of the external integrations by t instead of x . The integration in Equation (5.57) 

yields to 
I I 

(5.58) 
0 0 

where 

(5.59) 

By integrating Equation (5.59), the second kernel due to a 2 is 
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0) 
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The contribution of the / 2 term to the second kernel is 

(5.60) 

= ^2 < Jsp -Cptf + 6 ) j p h ) 2 , COs(^)=2(T°CPh ( 5 " 6 1 > 

V? (t) = \e-°'J'-T) sm(cod> (t - r) + ^ ( r ) r f r 
0 

= KVp]\e-aAl-tl] sin[codph (t - r,) + - r2 )Se (r, )Se (r2 ]dr,dr2 (5.62) 
0 0 

I 1 
= J j Ks: (' ~ ri'' ~ r2 K (ri K fo dT2 

0 0 

where <5(ti -T2) is the impulse function. Note Kv is the normalized value of Kv with 

respect to elevator deflection. 

The total velocity second kernel is 

K fc ^2) = Ka> (T1' r2 ) + C 2 t l ' T2 ) (5-63) 
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The second kernel has two terms: angle of attack quadratic kernel and 

elevator quadratic kernel hv
lgl ( r , , z2) . Each kernel is a two dimensional surface as a 

function of x/ and X2• The expression of the angle of attack quadratic kernel has the short 

period damped frequency eod and the phugoid damped frequency cod k . The elevator 

quadratic kernel is an impulsive sheet over the diagonal kernel line. The boundary of this 

sheet has the same shape as the first order kernel. 

5.3 Results and Discussion 

A routine has been developed to emulate the dynamic behavior of the aircraft 

based on the nonlinear simulation using the Runge-Kutta 4th order logic. This routine 

includes many subroutines to compute: 1) trim conditions, 2) local linear model, and 3) 

local Volterra model. The trim condition subroutine receives the nature of the maneuver 

and the flight conditions (altitude, velocity, and initial angular velocities), while linear 

and angular acceleration are zero. Depending on the nature of the excited motion 

(rectilinear, pull-over, level turn, etc.), the subroutine sets some variables to specific 

values. For example, in the rectilinear motion, the flight path angle is zero (y = 8-a = 0), 

the symmetric flight is assumed (/? = 0 and v = 0) and all angular velocities are zero (p = 

q = r = 0). Consequently, the trim problem involves searching for the values of a, Se, and 

<5th to match the derivatives of dV/dt, da!dt. and dq/dt to zero. 

5.3.1 Local Linear and Volterra Models 

Both local linear and Volterra model subroutines receive the trimming values and 

compute the equivalent matrices A, B, Bxx, Bxu, and Buu at the equivalent trimmed states. 

Many of the matrix elements require aerodynamic derivatives such as dC Mr Ida • These 

aerodynamic derivatives can be computed using a finite difference technique or analytical 

expressions based on the "multivariate orthogonal functions." Use of the finite difference 

technique may lead to round-off error at a low derivative step size or lost precision at a 
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high derivative step size. These types of error are more significant in the second order 

derivatives than the first order derivatives. In order to avoid any numerical error 

propagation, the analytical technique is used. For example, the generated linear and 

Volterra model at V= 1500 ft/s and H= 30,000 ft in a rectilinear motion is 

-9 .93x 10"3 87.22 0.87 -32.17 ' 9.13 

-4 .30xl0~ 5 -1.02 0.95 0 
, B = 

-0 .11 
A = 

-4 .30xl0~ 5 

, B = 
0 -9 .94 -1.53 0 -36.82 

0 0 1 0 0 

= 

B„. = 

-3 .31xl0" 6 

9.55 xl0~9 

0 
0 

1.22xl0~2 

-1.39xl0~4 

-4.71xl0~2 

0 

7.33xl0"2 0 0 -1.29xlOJ 

-6 .77x10 
-1.33xl0~2 

0 

2.31xl02 

-6.44xl0"3 

-7 .50 
0 

0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 

1.14 
13.96 

0 

B„„ = 

-29.08 
-4.18x10 

- 1 . 2 2 

0 

-1 .04x l0 2 

-2.85xl0~2 

3.19xl02 

0 

- 2 

(5.64) 

Note all dimensions are in feet and radians. As a nature of the rectilinear motion, some of 

these matrix elements are constant or zero, as an example fie = -gCg.a = -g. There are 40 

nonzero elements, however, there are 31 varying elements left in these matrices, which 

change as the flight conditions change. 

Figure 5.1 shows the time responses when a perturbed elevator deflection of 

Se] = ASe = 1.5 deg excites both linear and Volterra models at the specific flight 

condition indicated. In the case of the nonlinear simulation, this perturbed deflection is 

added to the trim elevator deflection Seo = -2.39 deg. It is observed that there is a small 

lag in the position of maximum/minimum peaks between linear and nonlinear responses. 

On top of that, there is a noticeable difference in the steady angle of attack between linear 

and nonlinear. As previously shown in Chapter 4, the significant quadratic terms are 

responsible for producing such differences. However, qualitatively speaking, both linear 
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and Volterra models follow quite closely the nonlinear model in the case of angle of 

attack a, pitch rate q, and pitch angle d. 

In the case of the total speed V, the linear model not only fails to capture the 

response's amplitude, but also fails to capture the shape of response. At time t = 0.2 s, the 

linear model heads downward by a much less rate than the nonlinear simulation's rate. 

This rate keeps decreasing in the case of the linear simulation up to time t = 1.8 s, then 

the linear behavior heads upward; completely deviating from the nonlinear simulation. 

The Volterra model, on the other hand, shows a consistent behavior along with the 

nonlinear simulation. By the time t = 5 s, the deviation from the nonlinear simulation is 

-37 ft/s in the case of the linear model and -3 ft/s in the case of Volterra model, while the 

total perturbed velocity is -26 ft/s. The source of difference between the linear and 

Volterra models can be traced back to specific terms in the PLTI matrices' elements. 

Considering the difference in amplitude of the perturbation states, it becomes clear that 

the value 0 .5 / 2 = -1.29 x 103 and 0.5 f l = -1.04 xlO2 are the most effective J 1 a J l S; 

nonlinearities and all other terms can be neglected with respect to them. Figure 5.2 shows 

the simulation based on the complete or total Volterra model and the two term 

approximate Volterra model (only f]al and fxgl are nonzero). 

As listed in Equation (5.63), the second kernel of the total speed has two terms. 

The first term is the total velocity's second kernel due to the quadratic angle of attack 

hv
2a2 (r,, r 2 ) , which is shown in Figure 5.3. For this second kernel term, the signature of 

the phugoid motion appears through the diagonal line, while the signature of the short 

period motion appears through the cross-diagonal lines. The surface in Figure 5.3 is an 

oscillatory surface with (od ( = 0.035 rad/s and £ph = 0.143 over the diagonal line, which 

has perpendicular frequency <od = 3.06 rad/s and damping ratio £sp = 0.385 in the 

cross-diagonal direction. The second term is the total velocity's second kernel due to the 

quadratic elevator defelection (r,, r 2 ) , which has an impulsive surface over the 

diagonal. The boundary of this sheet has the same shape as the total velocity's first kernel 
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multiplied by / 2 = - 1.04 x 102. Both terms have negative amplitudes, which is the main 

reason that the velocity response based on the Volterra model heads downward, 

consistent with the nonlinear simulation, while the velocity response based on the linear 

model heads upward (see Figure 5.1). Although the short period motion's frequency and 

damping ratio appear in the second kernel, they have almost no influence on the response. 

Thus, the influence of the short period motion's frequency and damping ratio characterize 

the cross-diagonal lines only, which scales the volume between the surface and the 

t, - r2 plane. The main shape of the surface is given through the diagonal line (phugoid 

motion). Figure 5.4 shows the response for the same input excitation at V0 = 500 ft/s and 

H0 = 5 kft. As it appears, there is no significant difference between the Volterra and linear 

models to duplicate the nonlinear simulation. This observation indicates that the strength 

of the nonlinearity is a function of the operating condition. 

Figure 5.1 Local Linear and Volterra Models for ASe =1.5 deg at 
Va= 1500 ft/s and H0 = 30 kft 
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Figure 5.2 Approximate Volterra Model for A<5e= 1.5 deg 
at V„ = 1500 ft/s and H0 = 30 kft 

Figure 5.3 Quadratic Angle of Attack Second Order Kernel of Total Velocity 
at V0 = 1500 ft/s and H0 = 30 kft 
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Figure 5.4 Local Linear and Volterra Models for Ade =1.5 deg 
at V0 = 500 ft/s and H0 = 5 kft 

5.3.2 Global Volterra Model 

Two factors, total velocity V and altitude H or the varying parameter vector 

0 = jy / / ] ' , are selected to capture the variation over the flight envelope for the 

rectilinear trim motion. Note, in the rectilinear motion, specifying two variables is 

enough to find the rest of the trimming values. The varying parameter 0 = [Vg Ho] has 

velocity as one of the states, which means that the developed VPV model is quasi steady. 

The model is called quasi steady if the varying parameter vector includes any subset of 

the state vector. The high and low level of each element in the varying parameter vector 

0 is set as 500 ft/s < V0 < 1500 ft/s and 5,000 ft < H0 < 30,000 ft. 

To build a VPV model, as well as LPV model, the common technique is to 

generate the LPV/VPV matrices at different points over the entire flight envelope and 
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schedule their equivalent elements with the operating condition parameters. The choice of 

grid resolution, interpolation technique, and simulation step size are then a matter of 

concern. A grid with a high resolution yields better results, while the main disadvantage 

is then the consumed memory and computational cost arising from using such high-

resolution tables in addition to leading to a round-off error. Using different time steps in 

the nonlinear simulation, there is no significant difference in the produced response for 

time step less than At = 0.1 s. The same time step is used for both LPV and VPV 

simulations. For grid resolution and interpolation techniques, an investigation is 

conducted using the input in Figures 5.5 at flight condition V0 = 800 ft/s and H0 = 20 kft. 

Three different resolutions with three different interpolation techniques have been tested 

as listed in Table 5.1. The results based on these grids are shown in Figures 5.6-5.8. The 

results show that the accuracy of the VPV model is almost the same for a grid of AVx NH 

= 5 x 5 or higher where Ny and NH denote the number of grid points for variables V and H, 

respectively. 

Table 5.1 Investigated Interpolation Techniques and Grid Resolutions 

Nyx NH = 5 x 5 Nyx NH = 25 x 25 Nyx NH= 50x50 

Linear Interpolation Grid 1 Grid 4 Grid 7 

Spline Interpolation Grid 2 Grid 5 Grid 8 

Mixed Interpolation Grid 3 Grid 6 Grid 9 

It is clear that linear interpolation doesn't accurately capture the variation in short 

period motion. For example, in cases of angle of attack and pitch rate responses, the 

linear interpolation provides less maximum and minimum peak overshoot than the 

nonlinear simulation. Such initial errors over time move the VPV propagation away from 
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the nonlinear simulation. In phugoid motion, the linear interpolation allows the VPV 

propagation to have the same qualitative response as the nonlinear simulation with a 

quantitative error as a consequence of the initial errors in the short period motion. The 

spline interpolation precisely renders the variation in the short period motion, but fails to 

render the phugoid motion for both V and 6. This observation concludes that spline 

interpolation is well suited for short period motion and linear interpolation is well suited 

for phugoid motion. Taking advantage of this conclusion, a mixed interpolation technique 

is developed. This mixed interpolation employs linear interpolation for phugoid motion, 

which is presented by the total velocity and pitch rate equations, while it employs spline 

interpolation for the short period equation or angle of attack equation. This mixed 

technique solves the trade-off between the two interpolation techniques delivering a 

better match for the nonlinear simulation. Based on this investigation, mixed 

interpolation with resolution AVx NH = 25 x 25 (Grid 6) is used throughout this chapter. 

Figure 5.5 Perturbed Input I 
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Figure 5.6 Responses of Grids 1, 2, and 3 
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Figure 5.7 Responses of Grids 4, 5, and 6 
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Figure 5.8 Responses of Grids 7, 8, and 9 

5.3.3 Comparison to Global Linear Model 

The input signal in Figure 5.5 is used to compare the LPV, VPV, and nonlinear 

simulations at the operating condition V0 = 800 ft/s and H0 = 20 kft. The input is designed 

to have a fast smooth change from 0 deg to -4.5 deg within 2 s. The input returns back to 

0 deg by t = 5 s. This input moves the aircraft over the flight envelope as shown in Figure 

5.9. At the first 5 seconds, this input excites the short period mode of the aircraft 

producing an oscillatory change in both angle of attack (Aamax ~ 20 deg) and pitch rate 

(A<7max ~ 20 deg/sec). Consequently, the pitch angle increases by A(9max ~ 40 deg 

producing a high rate of decrease in the kinetic energy (total speed), while the altitude is 

almost constant. When the input signal settles down to zero again, both angle of attack a 

and pitch rate q settle to their initial trimming value. The total speed V and pitch angle 6 

start then to oscillate slowly interchanging between kinetic and potential energy that 

occurs when the aircraft attempts to reestablish the equilibrium balance between lift, 
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weight, thrust, and drag (see Figure 5.10). Since the operating condition (V0 = 800 ft/s 

and H0 = 20 kft) has a stable phugoid mode, the generated trajectory is a slowly shrinking 

helix; heading toward this operating condition. 

The linear model shows a significant inability to capture total velocity response 

during the input excitation period. The velocity response based on the LPV simulation 

indicates that velocity is almost constant at the first 3 s, while the VPV and nonlinear 

simulation show a high drop in the velocity within the same period. The parametric 

variation of the drag and lift coefficients (Co and C/J with angle of attack, shown in 

Figure 5.11 for the first 3 seconds, explains why LPV modeling is not enough to capture 

the dynamics. The LPV technique considers the local slope at t = 0 s, relatively low, to 

launch the simulation. Such a low initial drag coefficient rate of change induces a 

velocity with almost zero rate of change. Over time, this slope is then updated by the 

parameter varying process and a correction to the velocity and altitude response 

eventually happens, which is the reason that the LPV approach is still able to capture the 

behavior. The error propagation, however, because of using first derivatives only, makes 

the LPV simulation shift from the nonlinear simulation by At = 11 s for the first 

minimum peak overshoot. Unlike the LPV approach, the VPV model uses a second order 

approximation, which is well suited for the drag variation with the angle of attack a (see 

Figure 5.11). The variation in the lift coefficient Ci with the angle of attack a, on the 

other hand, can be fairly well approximated by a linear model. For this reason, there is no 

significant difference between LPV and VPV responses with the nonlinear simulation for 

the angle of attack's response. 

The input in Figure 5.12 moves the aircraft over the track shown in Figure 5.13 

with the trim condition being V0 = 1000 ft/s and H0 = 17.5 kft. The variation of this input 

is sharper than the variation in input I. The response based on this input signal is shown 

in Figure 5.14 indicating that the LPV model delivers a close result to the VPV model, 

which means that the waveform of the input signal has an influence on the strength of the 
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nonlinearity. The amplitude of the input II is less than the amplitude of the input I during 

the first five seconds. This fact indicates that the quadratic elevator nonlinearity's 

contribution is much less in case of input II. The quadratic angle of attack nonlinearity, 

on the other hand, is proportional to the short period motion, and this amplitude for input 

II is less than that for input I. In this way, VPV methodology has a capability to increase 

or decrease the nonlinearity impact with the input's waveform. 
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Figure 5.9 Aircraft Trajectory of Input I 
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Figure 5.10 Aircraft Response of Input I 
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Figure 5.11 Parametric Variation of Drag and Lift Coefficients with Angle of Attack 
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5.3.4 Global Kernels 

Analysis of flight vehicle dynamic behavior, based on the Volterra model kernels, 

is addressed in this subsection. Although a differential form of Volterra theory using 

mixed interpolation was implemented for simulation accuracy purposes, the integral form 

can also be used in creating the global model. The primary intent here is dynamic 

analysis based on the analytical kernel framework. For that reason, the analytical 

expression of the first and second Volterra kernels (see Equations (5.55) and (5.63)) are 

computed at each operating condition. In this way, new dimensions are added to the 

series kernels. For example, the first kernels will have three arguments, hi(t,V0, H0), 

instead of one, hi(t), where V„ and H0 represent the operating point around which the sub-

model is constructed. The hyper-surface representing the first kernels h^{t,V0,H0) and 



152 

Jf(t,V0,H0)can not be fully plotted in three dimensions. For visualization, a set of slices 

is shown in Figures 5.15-5.18. These slices are taken to be at the middle of the selected 

operating space (500 ft/s < V Q < 1500 ft/s and 5 kft < H0 < 30 kft). 

The waveforms of (t, Vn, Ha= 17.5 kft) in Figure 5.15 and 

h"{t,V0,H0 =17.5kft) in Figure 5.16 capture the variation of the first kernels with 

velocity. In the case of the total velocity's first kernel/af, up to altitude H0 = 22 kft, 

increasing the velocity makes the system less oscillatory (decreasing cod ) with more 

damping (increasing £"ph )• When the altitude is more than H0 = 22 kft, increasing the 

velocity increases a>d and reduces Cph up to a critical speed (~ 600 ft/s) followed by an 

opposite variation. After this critical velocity, increasing the velocity reduces cod and 

increases Cph- The amplitude of increases with velocity, which means the velocity 

responds more sensitively to the elevator deflection at a high velocity. On the other hand, 

increasing the velocity makes the angle of attack's first kernel hlf more oscillatory 

(increasing a>d ) with a slight reduction in the damping (<fsp is almost constant). The 

amplitude of angle of attack first kernel Itf decreases with the operating velocity, 

indicating less sensitivity to the elevator deflection. 

Figures 5.17 and 5.18 show the influences of altitude variation on tf and//," at V0 

= 1000 ft/s. For the total velocity's first kernel/zf, up to V0 = 700 ft/s, increasing the 

altitude reduces the damping (decreasing £*sp ) and slightly increases the co, up to a 
^ sp 

critical altitude 25 kft) followed by opposite influences. The amplitude of total 

velocity's first kernel tf increases with altitude indicating more sensitivity to the 

elevator deflection. When the velocity is more than V - 700 ft/s, increasing the altitude 

slightly increases o)d and reduces <fsp. The angle of attack first kernel Jtf, on the other 

hand, receives reductions in the damping Csp and frequency cod associated with a slight 

reduction in the amplitude as H0 increases. 

The global second kernel of the total velocity, as an example, includes two 

components h^ (r,, r2, Vn, Hn) and (r,, r2 , V0, Ha) . Both terms have a four-
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dimensional space. Figures 5.19-5.24 show the contour plots of different slices of the 

hyper-surface of hv
2al (r,, t2 , Vo, Ht>) describing its variation with the operating velocity V0 

and altitude H0. The variation of the surface hv
la2(rx,T2,V0,H0) at constant V0 and H0 has 

a low frequency cod ( waveform with a damping ratio £*ph over the diagonal line. The 

surface has an orthogonal waveform with a relatively high frequency co , and high .5p 

damping ratio <fsp- Combining the two waveforms constructs the surface, which can be 

described through a set of primary convex and concave signatures over the diagonal line 

(n = T2) and a set of the secondary convex and concave signatures over the off-diagonal 

lines (ti = T2 + tc and rc ^ 0). Because the cross-diagonal waveform has a relatively high 

damping ratio, the primary convex and concave set is the most significant part of the 

surface. Consider the first concave signature, which has an elliptical projection over the 

T1-T2 plane (see Figures 5.19-5.24). The semi-major axis of this T1-T2 projected ellipse lies 

over the diagonal line (n = T2) with a slope of 45 deg, while the semi-minor axis lies over 

the cross-diagonal line. The length of the semi-major axis is defined by the phugoid 

frequency at this operating condition to be 71/ a>d ( (half cycle) and the semi-minor axis is 

defined by the short period frequency at this operating condition to be 7t/ cod (half cycle). 

The variation of the hyper-surface (r,, r2, Vn, Hr>) with operating velocity and altitude 

could be described by the variation of the first concave signature. 

The surface of the quadratic elevator component / / 2 ( r , , r 2 , V n , H n ) is an Zoe 

impulsive hyper-surface over the diagonal line (ri = T2). Since it is hard to visualize such 

an impulsive surface, the gain of this quadratic elevator component is used herein to be 

an indication of the strength of the quadratic elevator nonlinearity. Figure 5.25 shows the 

variation of the quadratic elevator component's gain figlKVi with the flight condition. It 

is clear that increasing the altitude and decreasing the velocity increases the strength of 

the quadratic elevator nonlinearity. This conclusion also explains the difference between 

the aircraft responses in Figures 5.1 and 5.4. 
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Figure 5.15 Total Velocity First Kernel at H0 = 17.5 kft 

Figure 5.16 Angle of Attack First Kernel at H0 = 17.5 kft 
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Figure 5.19 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 17.5 kft and V0 = 500 ft/s 
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Figure 5.20 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 17.5 kft and V0 = 1000 ft/s 
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Figure 5.21 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 17.5 kft and V0 = 1500 ft/s 
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Figure 5.22 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 10 kft and V0 = 1000 ft/s 
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Figure 5.23 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 = 20 kft and V0 = 1000 ft/s 

x 10 

Figure 5.24 Quadratic Angle of Attack Second Kernel of Total Velocity 
at H0 - 30 kft and V0 = 1000 ft/s 



Figure 5.25 Variation of Quadratic Elevator Kernel's Gain of Total Velocity 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The objectives of this dissertation were 1) reducing the computational cost of 

applying Volterra theory for high strength nonlinearities as in the aircraft dynamics case, 

2) developing a nonlinear cause-and-effect parametric study for the low order 

atmospheric flight motions, that can be used as a foundation to qualify the high 

performance aircraft, and 3) constructing a global model, which has the capability to 

duplicate the aircraft nonlinear behavior across a wide array of operating conditions. 

Considerable efforts were focused on meeting these objectives and much success was 

achieved in all areas. The new techniques have been developed for constructing 

mathematical solutions from the governing relationships describing the aircraft dynamic 

behavior using Volterra theory. These techniques include the Piecewise Volterra 

Approach, the Nonlinear Cause-and-Effect Analysis, and the Volterra Parameter-Varying 

Approach. These methods were applied to low and high order atmospheric flight dynamic 

systems. Numerical and analytical solutions for such atmospheric flight dynamic systems 

show the capability of Volterra-based models to duplicate the aircraft's dynamic behavior. 

The solutions were used to obtain valuable insight and understanding to predict and 

analyze the aircraft dynamic behavior beyond that attainable by the linear theory or the 

nonlinear simulation. Overall, this dissertation has made significant and unique 

contributions to flight dynamics. 

The piecewise Volterra approach proves the universality of a Volterra model by 

decomposing the nonlinearity into weaker component nonlinearities appearing in several 

operational sub-regions, which only require a low order truncated series. The approach 

has successfully captured the limit cycle and amplitude hysteresis behavior when applied 
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to an approximate low order nonlinear pitch-plunge model. However, there is no 

systematic way to assemble all these sub-regions together. That requires a bio-logic 

interaction to define the range of each sub-region. The cause-and-effect analysis provides 

a procedure to analytically assemble the constituents of the dynamic response of simple 

low order nonlinear systems using the variational method. The procedure provides 

closed-form expressions for the convolution integral kernels, which in turn lead to 

expressions for the time response for a step input. The explicit nature of the relational 

expressions allows cause-and-effect insights between nonlinearities present in the state 

space model and corresponding response traits. Application to single state and dual state 

uniaxial aircraft motion exposed the source of differences between nonlinear and linear 

responses, specifically initial departure time, maximum and steady offsets, differences in 

settling times, and oscillation frequency and phase shifts. The procedure has only been 

developed for first and second order single degree of freedom systems. Volterra 

parameter-varying approach has been developed as a systematic procedure to model a 

computationally complex and large envelope airframe system. In a comparison with the 

global linear varying model, it can be inferred that the Volterra varying model approach 

has more capability to replicate the dynamic behavior of a particular system, because of 

its ability to render the inherent nonlinearities in the system. This systematic approach 

has less error during switching between different flights regimes. The technique was 

successfully applied to a nonlinear longitudinal motion model for the F-16. This 

technique can be extended and applied to more general dynamic system evolutions. 

The proposed approaches in this dissertation not only provide an acceptable 

accuracy level to duplicate the dynamic behavior, but also a theoretic framework by 

presenting the solution as a set of kernels. These kernels are a unique signature of the 

system and they can be used for understanding the way in which the change of basic 

parameter characteristics from one flight regime to another in the flight envelope can lead 

to significant change in system behavior. The proposed analytical Volterra-based model 



162 

offers an efficient nonlinear preliminary design tool in qualifying the aircraft responses 

before computer simulation is invoked or available. 

6.2 Recommendations 

Several extensions to this dissertation and its contents are recommended as future 

activities. Considerable work in this dissertation involves the flight mechanics application. 

Applying the same techniques to other dynamic systems could be an interesting topic for 

the nonlinear dynamics research community. The proposed procedures have been applied 

with time domain analysis. An extension to the Laplace domain or frequency response 

analysis may lead to the development of equivalent dynamics and control techniques for 

purposes of model reductions and control design. Also, an extension of this framework to 

multi-axis motions is of future interest. 
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