170 research outputs found

    Application-level Fault Tolerance and Resilience in HPC Applications

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] As necesidades computacionais das distintas ramas da ciencia medraron enormemente nos últimos anos, o que provocou un gran crecemento no rendemento proporcionado polos supercomputadores. Cada vez constrúense sistemas de computación de altas prestacións de maior tamaño, con máis recursos hardware de distintos tipos, o que fai que as taxas de fallo destes sistemas tamén medren. Polo tanto, o estudo de técnicas de tolerancia a fallos eficientes é indispensábel para garantires que os programas científicos poidan completar a súa execución, evitando ademais que se dispare o consumo de enerxía. O checkpoint/restart é unha das técnicas máis populares. Sen embargo, a maioría da investigación levada a cabo nas últimas décadas céntrase en estratexias stop-and-restart para aplicacións de memoria distribuída tralo acontecemento dun fallo-parada. Esta tese propón técnicas checkpoint/restart a nivel de aplicación para os modelos de programación paralela roáis populares en supercomputación. Implementáronse protocolos de checkpointing para aplicacións híbridas MPI-OpenMP e aplicacións heteroxéneas baseadas en OpenCL, en ámbolos dous casos prestando especial coidado á portabilidade e maleabilidade da solución. En canto a aplicacións de memoria distribuída, proponse unha solución de resiliencia que pode ser empregada de forma xenérica en aplicacións MPI SPMD, permitindo detectar e reaccionar a fallos-parada sen abortar a execución. Neste caso, os procesos fallidos vólvense a lanzar e o estado da aplicación recupérase cunha volta atrás global. A maiores, esta solución de resiliencia optimizouse implementando unha volta atrás local, na que só os procesos fallidos volven atrás, empregando un protocolo de almacenaxe de mensaxes para garantires a consistencia e o progreso da execución. Por último, propónse a extensión dunha librería de checkpointing para facilitares a implementación de estratexias de recuperación ad hoc ante conupcións de memoria. En moitas ocasións, estos erros poden ser xestionados a nivel de aplicación, evitando desencadear un fallo-parada e permitindo unha recuperación máis eficiente.[Resumen] El rápido aumento de las necesidades de cómputo de distintas ramas de la ciencia ha provocado un gran crecimiento en el rendimiento ofrecido por los supercomputadores. Cada vez se construyen sistemas de computación de altas prestaciones mayores, con más recursos hardware de distintos tipos, lo que hace que las tasas de fallo del sistema aumenten. Por tanto, el estudio de técnicas de tolerancia a fallos eficientes resulta indispensable para garantizar que los programas científicos puedan completar su ejecución, evitando además que se dispare el consumo de energía. La técnica checkpoint/restart es una de las más populares. Sin embargo, la mayor parte de la investigación en este campo se ha centrado en estrategias stop-and-restart para aplicaciones de memoria distribuida tras la ocurrencia de fallos-parada. Esta tesis propone técnicas checkpoint/restart a nivel de aplicación para los modelos de programación paralela más populares en supercomputación. Se han implementado protocolos de checkpointing para aplicaciones híbridas MPI-OpenMP y aplicaciones heterogéneas basadas en OpenCL, prestando en ambos casos especial atención a la portabilidad y la maleabilidad de la solución. Con respecto a aplicaciones de memoria distribuida, se propone una solución de resiliencia que puede ser usada de forma genérica en aplicaciones MPI SPMD, permitiendo detectar y reaccionar a fallosparada sin abortar la ejecución. En su lugar, se vuelven a lanzar los procesos fallidos y se recupera el estado de la aplicación con una vuelta atrás global. A mayores, esta solución de resiliencia ha sido optimizada implementando una vuelta atrás local, en la que solo los procesos fallidos vuelven atrás, empleando un protocolo de almacenaje de mensajes para garantizar la consistencia y el progreso de la ejecución. Por último, se propone una extensión de una librería de checkpointing para facilitar la implementación de estrategias de recuperación ad hoc ante corrupciones de memoria. Muchas veces, este tipo de errores puede gestionarse a nivel de aplicación, evitando desencadenar un fallo-parada y permitiendo una recuperación más eficiente.[Abstract] The rapid increase in the computational demands of science has lead to a pronounced growth in the performance offered by supercomputers. As High Performance Computing (HPC) systems grow larger, including more hardware components of different types, the system's failure rate becomes higher. Efficient fault tolerance techniques are essential not only to ensure the execution completion but also to save energy. Checkpoint/restart is one of the most popular fault tolerance techniques. However, most of the research in this field is focused on stop-and-restart strategies for distributed-memory applications in the event of fail-stop failures. Thís thesis focuses on the implementation of application-level checkpoint/restart solutions for the most popular parallel programming models used in HPC. Hence, we have implemented checkpointing solutions to cope with fail-stop failures in hybrid MPI-OpenMP applications and OpenCL-based programs. Both strategies maximize the restart portability and malleability, ie., the recovery can take place on machines with different CPU / accelerator architectures, and/ or operating systems, and can be adapted to the available resources (number of cores/accelerators). Regarding distributed-memory applications, we propose a resilience solution that can be generally applied to SPMD MPI programs. Resilient applications can detect and react to failures without aborting their execution upon fail-stop failures. Instead, failed processes are re-spawned, and the application state is recovered through a global rollback. Moreover, we have optimized this resilience proposal by implementing a local rollback protocol, in which only failed processes rollback to a previous state, while message logging enables global consistency and further progress of the computation. Finally, we have extended a checkpointing library to facilitate the implementation of ad hoc recovery strategies in the event of soft errors) caused by memory corruptions. Many times, these errors can be handled at the software-Ievel, tIms, avoiding fail-stop failures and enabling a more efficient recovery

    Optimizing the Performance of Parallel and Concurrent Applications Based on Asynchronous Many-Task Runtimes

    Get PDF
    Nowadays, High-performance Computing (HPC) scientific applications often face per- formance challenges when running on heterogeneous supercomputers, so do scalability, portability, and efficiency issues. For years, supercomputer architectures have been rapidly changing and becoming more complex, and this challenge will become even more com- plicated as we enter the exascale era, where computers will exceed one quintillion cal- culations per second. Software adaption and optimization are needed to address these challenges. Asynchronous many-task (AMT) systems show promise against the exascale challenge as they combine advantages of multi-core architectures with light-weight threads, asynchronous executions, smart scheduling, and portability across diverse architectures. In this research, we optimize the performance of a highly scalable scientific application using HPX, an AMT runtime system, and address its performance bottlenecks on super- computers. We use DCA++ (Dynamical Cluster Approximation) as a research vehicle for studying the performance bottlenecks in parallel and concurrent applications. DCA++ is a high-performance research software application that provides a modern C++ imple- mentation to solve quantum many-body problems with a Quantum Monte Carlo (QMC) kernel. QMC solver applications are widely used and are mission-critical across the US Department of Energy’s (DOE’s) application landscape. Throughout the research, we implement several optimization techniques. Firstly, we add HPX threading backend support to DCA++ and achieve significant performance speedup. Secondly, we solve a memory-bound challenge in DCA++ and develop ring- based communication algorithms using GPU RDMA technology that allow much larger scientific simulation cases. Thirdly, we explore a methodology for using LLVM-based tools to tune the DCA++ that targets the new ARM A64Fx processor. We profile all imple- mentations in-depth and observe significant performance improvement throughout all the implementations

    Improving programmability and performance for scientific applications

    Get PDF
    With modern advancements in hardware and software technology scaling towards new limits, our compute machines are reaching new potentials to tackle more challenging problems. While the size and complexity of both the problems and solutions increases, the programming methodologies must remain at a level that can be understood by programmers and scientists alike. In our work, this problem is encountered when developing an optimized framework to best exploit the semantic properties of a finite-element solver. In efforts to address this problem, we explore programming and runtime models which decouple algorithmic complexity, parallelism concerns, and hardware mapping. We build upon these frameworks to exploit domain-specific semantics using high-level transformations and modifications to obtain performance through algorithmic and runtime optimizations. We first discusses optimizations performed on a computational mechanics solver using a novel coupling technique for multi-time scale methods for discrete finite element domains. We exploit domain semantics using a high-level dynamic runtime scheme to reorder and balance workloads to greatly improve runtime performance. The framework presented automatically chooses a near-optimal coupling solution and runs a work-stealing parallel executor to run effectively on multi-core systems. In my latter work, I focus on the parallel programming model, Concurrent Collections (CnC), to seamlessly bridge the gap between performance and programmability. Because challenging problems in various domains, not limited to computation mechanics, requires both domain expertise and programming prowess, there is a need for ways to separate those concerns. This thesis describes methods and techniques to obtain scalable performance using CnC programming while limiting the burden of programming. These high level techniques are presented for two high-performance applications corresponding to hydrodynamics and multi-grid solvers

    ADEPT Runtime/Scalability Predictor in support of Adaptive Scheduling

    Get PDF
    A job scheduler determines the order and duration of the allocation of resources, e.g. CPU, to the tasks waiting to run on a computer. Round-Robin and First-Come-First-Serve are examples of algorithms for making such resource allocation decisions. Parallel job schedulers make resource allocation decisions for applications that need multiple CPU cores, on computers consisting of many CPU cores connected by different interconnects. An adaptive parallel scheduler is a parallel scheduler that is capable of adjusting its resource allocation decisions based on the current resource usage and demand. Adaptive parallel schedulers that decide the numbers of CPU cores to allocate to a parallel job provide more flexibility and potentially improve performance significantly for both local and grid job scheduling compared to non-adaptive schedulers. A major reason why adaptive schedulers are not yet used practically is due to lack of knowledge of the scalability curves of the applications, and high cost of existing white-box approaches for scalability prediction. We show that a runtime and scalability prediction tool can be developed with 3 requirements: accuracy comparable to white-box methods, applicability, and robustness. Applicability depends only on knowledge feasible to gain in a production environment. Robustness addresses anomalous behaviour and unreliable predictions. We present ADEPT, a speedup and runtime prediction tool that satisfies all criteria for both single problem size and across different problem sizes of a parallel application. ADEPT is also capable of handling anomalies and judging reliability of its predictions. We demonstrate these using experiments with MPI and OpenMP implementations of NAS benchmarks and seven real applications

    Parallel Pairwise Epistasis Detection on Heterogeneous Computing Architectures

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in IEEE Transactions on Parallel and Distributed Systems. The final authenticated version is available online at: http://dx.doi.org/10.1109/TPDS.2015.2460247.[Abstract] Development of new methods to detect pairwise epistasis, such as SNP-SNP interactions, in Genome-Wide Association Studies is an important task in bioinformatics as they can help to explain genetic influences on diseases. As these studies are time consuming operations, some tools exploit the characteristics of different hardware accelerators (such as GPUs and Xeon Phi coprocessors) to reduce the runtime. Nevertheless, all these approaches are not able to efficiently exploit the whole computational capacity of modern clusters that contain both GPUs and Xeon Phi coprocessors. In this paper we investigate approaches to map pairwise epistasic detection on heterogeneous clusters using both types of accelerators. The runtimes to analyze the well-known WTCCC dataset consisting of about 500 K SNPs and 5 K samples on one and two NVIDIA K20m are reduced by 27 percent thanks to the use of a hybrid approach with one additional single Xeon Phi coprocessor.Wellcome Trust; 076113Wellcome Trust; 085475Ministerio de Ecnomía y Competitividad; TIN2013-42148-

    A Linux kernel scheduler extension for multi-core systems

    Get PDF
    ©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The Linux kernel is mostly designed for multi-programed environments, but high-performance applications have other requirements. Such applications are run standalone, and usually rely on runtime systems to distribute the application's workload on worker threads, one per core. However, due to current OSes limitations, it is not feasible to track whether workers are actually running or blocked due to, for instance, a requested resource. For I/O intensive applications, this leads to a significant performance degradation given that the core of a blocked thread becomes idle until it is able to run again. In this paper, we present the proof-of-concept of a Linux kernel extension denoted User-Monitored Threads (UMT) which tackles this problem. Our extension allows a user-space process to be notified of when the selected threads become blocked or unblocked, making it possible for a runtime to schedule additional work on the idle core. We implemented the extension on the Linux Kernel 5.1 and adapted the Nanos6 runtime of the OmpSs-2 programming model to take advantage of it. The whole prototype was tested on two applications which, on the tested hardware and the appropriate conditions, reported speedups of almost 2x.This project is supported by the European Union’s Horizon 2021 research and innovation programme under the grant agreement No 754304 (DEEP-EST), the Ministry of Economy of Spain through the Severo Ochoa Center of Excellence Program (SEV-2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P) and by the Generalitat de Catalunya (2017-SGR-1481).Peer ReviewedPostprint (author's final draft

    A Linux Kernel Scheduler Extension for Multi-core Systems

    Full text link
    The Linux kernel is mostly designed for multi-programed environments, but high-performance applications have other requirements. Such applications are run standalone, and usually rely on runtime systems to distribute the application's workload on worker threads, one per core. However, due to current OSes limitations, it is not feasible to track whether workers are actually running or blocked due to, for instance, a requested resource. For I/O intensive applications, this leads to a significant performance degradation given that the core of a blocked thread becomes idle until it is able to run again. In this paper, we present the proof-of-concept of a Linux kernel extension denoted User-Monitored Threads (UMT) which tackles this problem. Our extension allows a user-space process to be notified of when the selected threads become blocked or unblocked, making it possible for a runtime to schedule additional work on the idle core. We implemented the extension on the Linux Kernel 5.1 and adapted the Nanos6 runtime of the OmpSs-2 programming model to take advantage of it. The whole prototype was tested on two applications which, on the tested hardware and the appropriate conditions, reported speedups of almost 2x.Comment: 10 pages, 5 figures, conferenc
    corecore