88 research outputs found

    Elliptical Monogenic Wavelets for the analysis and processing of color images

    No full text
    International audienceThis paper studies and gives new algorithms for image processing based on monogenic wavelets. Existing greyscale monogenic filterbanks are reviewed and we reveal a lack of discussion about the synthesis part. The monogenic synthesis is therefore defined from the idea of wavelet modulation, and an innovative filterbank is constructed by using the Radon transform. The color extension is then investigated. First, the elliptical Fourier atom model is proposed to generalize theanalytic signal representation for vector-valued signals. Then a color Riesz-transform is defined so as to construct color elliptical monogenic wavelets. Our Radon-based monogenic filterbank can be easily extended to color according to this definition. The proposed wavelet representation provides efficient analysis of local features in terms of shape and color, thanks to the concepts of amplitude, phase, orientation, and ellipse parameters. The synthesis from local features is deeply studied. We conclude the article by defining the color local frequency, proposing an estimation algorithm

    Vector extension of monogenic wavelets for geometric representation of color images

    No full text
    14 pagesInternational audienceMonogenic wavelets offer a geometric representation of grayscale images through an AM/FM model allowing invariance of coefficients to translations and rotations. The underlying concept of local phase includes a fine contour analysis into a coherent unified framework. Starting from a link with structure tensors, we propose a non-trivial extension of the monogenic framework to vector-valued signals to carry out a non marginal color monogenic wavelet transform. We also give a practical study of this new wavelet transform in the contexts of sparse representations and invariant analysis, which helps to understand the physical interpretation of coefficients and validates the interest of our theoretical construction

    Color monogenic wavelet representation based on a tensor-like use of the riesz transform: application to image coding

    No full text
    11 pagesInternational audienceWe propose a new extension of monogenic analysis to multi-valued signals like color images. This generalization is based on an analogy between the Riesz transform and structure tensors and takes advantage of the well defined vector differential geometry. Our color wavelet transform is non-marginal and its coefficients - separated into amplitude, phase, orientation and local color axis - have interesting physical interpretation in terms of local energy, contour model, and colorimetric features. An image coding application is proposed as a practical study

    Mean Oriented Riesz Features for Micro Expression Classification

    Get PDF
    Micro-expressions are brief and subtle facial expressions that go on and off the face in a fraction of a second. This kind of facial expressions usually occurs in high stake situations and is considered to reflect a human's real intent. There has been some interest in micro-expression analysis, however, a great majority of the methods are based on classically established computer vision methods such as local binary patterns, histogram of gradients and optical flow. A novel methodology for micro-expression recognition using the Riesz pyramid, a multi-scale steerable Hilbert transform is presented. In fact, an image sequence is transformed with this tool, then the image phase variations are extracted and filtered as proxies for motion. Furthermore, the dominant orientation constancy from the Riesz transform is exploited to average the micro-expression sequence into an image pair. Based on that, the Mean Oriented Riesz Feature description is introduced. Finally the performance of our methods are tested in two spontaneous micro-expressions databases and compared to state-of-the-art methods

    Model-based learning of local image features for unsupervised texture segmentation

    Full text link
    Features that capture well the textural patterns of a certain class of images are crucial for the performance of texture segmentation methods. The manual selection of features or designing new ones can be a tedious task. Therefore, it is desirable to automatically adapt the features to a certain image or class of images. Typically, this requires a large set of training images with similar textures and ground truth segmentation. In this work, we propose a framework to learn features for texture segmentation when no such training data is available. The cost function for our learning process is constructed to match a commonly used segmentation model, the piecewise constant Mumford-Shah model. This means that the features are learned such that they provide an approximately piecewise constant feature image with a small jump set. Based on this idea, we develop a two-stage algorithm which first learns suitable convolutional features and then performs a segmentation. We note that the features can be learned from a small set of images, from a single image, or even from image patches. The proposed method achieves a competitive rank in the Prague texture segmentation benchmark, and it is effective for segmenting histological images

    High Performance Video Stream Analytics System for Object Detection and Classification

    Get PDF
    Due to the recent advances in cameras, cell phones and camcorders, particularly the resolution at which they can record an image/video, large amounts of data are generated daily. This video data is often so large that manually inspecting it for object detection and classification can be time consuming and error prone, thereby it requires automated analysis to extract useful information and meta-data. The automated analysis from video streams also comes with numerous challenges such as blur content and variation in illumination conditions and poses. We investigate an automated video analytics system in this thesis which takes into account the characteristics from both shallow and deep learning domains. We propose fusion of features from spatial frequency domain to perform highly accurate blur and illumination invariant object classification using deep learning networks. We also propose the tuning of hyper-parameters associated with the deep learning network through a mathematical model. The mathematical model used to support hyper-parameter tuning improved the performance of the proposed system during training. The outcomes of various hyper-parameters on system's performance are compared. The parameters that contribute towards the most optimal performance are selected for the video object classification. The proposed video analytics system has been demonstrated to process a large number of video streams and the underlying infrastructure is able to scale based on the number and size of the video stream(s) being processed. The extensive experimentation on publicly available image and video datasets reveal that the proposed system is significantly more accurate and scalable and can be used as a general purpose video analytics system.N/

    Face recognition via edge-based Gabor feature representation for plastic surgery-altered images

    Get PDF
    Plastic surgery procedures on the face introduce skin texture variations between images of the same person (intra-subject), thereby making the task of face recognition more difficult than in normal scenario. Usually, in contemporary face recognition systems, the original gray-level face image is used as input to the Gabor descriptor, which translates to encoding some texture properties of the face image. The texture-encoding process significantly degrades the performance of such systems in the case of plastic surgery due to the presence of surgically induced intra-subject variations. Based on the proposition that the shape of significant facial components such as eyes, nose, eyebrow, and mouth remains unchanged after plastic surgery, this paper employs an edge-based Gabor feature representation approach for the recognition of surgically altered face images. We use the edge information, which is dependent on the shapes of the significant facial components, to address the plastic surgery-induced texture variation problems. To ensure that the significant facial components represent useful edge information with little or no false edges, a simple illumination normalization technique is proposed for preprocessing. Gabor wavelet is applied to the edge image to accentuate on the uniqueness of the significant facial components for discriminating among different subjects. The performance of the proposed method is evaluated on the Georgia Tech (GT) and the Labeled Faces in the Wild (LFW) databases with illumination and expression problems, and the plastic surgery database with texture changes. Results show that the proposed edge-based Gabor feature representation approach is robust against plastic surgery-induced face variations amidst expression and illumination problems and outperforms the existing plastic surgery face recognition methods reported in the literature

    AM-FM methods for image and video processing

    Get PDF
    This dissertation is focused on the development of robust and efficient Amplitude-Modulation Frequency-Modulation (AM-FM) demodulation methods for image and video processing (there is currently a patent pending that covers the AM-FM methods and applications described in this dissertation). The motivation for this research lies in the wide number of image and video processing applications that can significantly benefit from this research. A number of potential applications are developed in the dissertation. First, a new, robust and efficient formulation for the instantaneous frequency (IF) estimation: a variable spacing, local quadratic phase method (VS-LQP) is presented. VS-LQP produces much more accurate results than current AM-FM methods. At significant noise levels (SNR \u3c 30dB), for single component images, the VS-LQP method produces better IF estimation results than methods using a multi-scale filterbank. At low noise levels (SNR \u3e 50dB), VS-LQP performs better when used in combination with a multi-scale filterbank. In all cases, VS-LQP outperforms the Quasi-Eigen Approximation algorithm by significant amounts (up to 20dB). New least squares reconstructions using AM-FM components from the input signal (image or video) are also presented. Three different reconstruction approaches are developed: (i) using AM-FM harmonics, (ii) using AM-FM components extracted from different scales and (iii) using AM-FM harmonics with the output of a low-pass filter. The image reconstruction methods provide perceptually lossless results with image quality index values bigger than 0.7 on average. The video reconstructions produced image quality index values, frame by frame, up to more than 0.7 using AM-FM components extracted from different scales. An application of the AM-FM method to retinal image analysis is also shown. This approach uses the instantaneous frequency magnitude and the instantaneous amplitude (IA) information to provide image features. The new AM-FM approach produced ROC area of 0.984 in classifying Risk 0 versus Risk 1, 0.95 in classifying Risk 0 versus Risk 2, 0.973 in classifying Risk 0 versus Risk 3 and 0.95 in classifying Risk 0 versus all images with any sign of Diabetic Retinopathy. An extension of the 2D AM-FM demodulation methods to three dimensions is also presented. New AM-FM methods for motion estimation are developed. The new motion estimation method provides three motion estimation equations per channel filter (AM, IF motion equations and a continuity equation). Applications of the method in motion tracking, trajectory estimation and for continuous-scale video searching are demonstrated. For each application, we discuss the advantages of the AM-FM methods over current approaches
    corecore