419 research outputs found

    A Multi-Game Framework for Harmonized LTE-U and WiFi Coexistence over Unlicensed Bands

    Full text link
    The introduction of LTE over unlicensed bands (LTE-U) will enable LTE base stations (BSs) to boost their capacity and offload their traffic by exploiting the underused unlicensed bands. However, to reap the benefits of LTE-U, it is necessary to address various new challenges associated with LTE-U and WiFi coexistence. In particular, new resource management techniques must be developed to optimize the usage of the network resources while handling the interdependence between WiFi and LTE users and ensuring that WiFi users are not jeopardized. To this end, in this paper, a new game theoretic tool, dubbed as \emph{multi-game} framework is proposed as a promising approach for modeling resource allocation problems in LTE-U. In such a framework, multiple, co-existing and coupled games across heterogeneous channels can be formulated to capture the specific characteristics of LTE-U. Such games can be of different properties and types but their outcomes are largely interdependent. After introducing the basics of the multi-game framework, two classes of algorithms are outlined to achieve the new solution concepts of multi-games. Simulation results are then conducted to show how such a multi-game can effectively capture the specific properties of LTE-U and make of it a "friendly" neighbor to WiFi.Comment: Accepted for publication at IEEE Wireless Communications Magazine, Special Issue on LTE in Unlicensed Spectru

    LTE and Wi-Fi Coexistence in Unlicensed Spectrum with Application to Smart Grid: A Review

    Full text link
    Long Term Evolution (LTE) is expanding its utilization in unlicensed band by deploying LTE Unlicensed (LTEU) and Licensed Assisted Access LTE (LTE-LAA) technology. Smart Grid can take the advantages of unlicensed bands for achieving two-way communication between smart meters and utility data centers by using LTE-U/LTE-LAA. However, both schemes must co-exist with the incumbent Wi-Fi system. In this paper, several co-existence schemes of Wi-Fi and LTE technology is comprehensively reviewed. The challenges of deploying LTE and Wi-Fi in the same band are clearly addressed based on the papers reviewed. Solution procedures and techniques to resolve the challenging issues are discussed in a short manner. The performance of various network architectures such as listenbefore- talk (LBT) based LTE, carrier sense multiple access with collision avoidance (CSMA/CA) based Wi-Fi is briefly compared. Finally, an attempt is made to implement these proposed LTEWi- Fi models in smart grid technology.Comment: submitted in 2018 IEEE PES T&

    Ruin Theory for Dynamic Spectrum Allocation in LTE-U Networks

    Full text link
    LTE in the unlicensed band (LTE-U) is a promising solution to overcome the scarcity of the wireless spectrum. However, to reap the benefits of LTE-U, it is essential to maintain its effective coexistence with WiFi systems. Such a coexistence, hence, constitutes a major challenge for LTE-U deployment. In this paper, the problem of unlicensed spectrum sharing among WiFi and LTE-U system is studied. In particular, a fair time sharing model based on \emph{ruin theory} is proposed to share redundant spectral resources from the unlicensed band with LTE-U without jeopardizing the performance of the WiFi system. Fairness among both WiFi and LTE-U is maintained by applying the concept of the probability of ruin. In particular, the probability of ruin is used to perform efficient duty-cycle allocation in LTE-U, so as to provide fairness to the WiFi system and maintain certain WiFi performance. Simulation results show that the proposed ruin-based algorithm provides better fairness to the WiFi system as compared to equal duty-cycle sharing among WiFi and LTE-U.Comment: Accepted in IEEE Communications Letters (09-Dec 2018
    • …
    corecore