8,448 research outputs found

    Calibration of Traffic Simulation Models using SPSA

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική

    A Framework for Developing and Integrating Effective Routing Strategies Within the Emergency Management Decision-Support System, Research Report 11-12

    Get PDF
    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San José, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would be effective in the event of a no-notice disaster. The modeled network required a large amount of data on network geometry, signal timings, signal coordination schemes, and turning-movement volumes. Turning-movement counts at intersections were used to validate the network with the empirical formula-based measure known as the GEH statistic. Once the base network was tested and validated, various scenarios were modeled to estimate evacuation and emergency vehicle arrival times. Based on these scenarios, a variety of emergency plans for San José’s downtown traffic circulation were tested and validated. The model could be used to evaluate scenarios in other communities by entering their community-specific data

    Developing Emergency Preparedness Plans For Orlando International Airport (MCO) Using Microscopic Simulator WATSim

    Get PDF
    Emergency preparedness typically involves the preparation of detailed plans that can be implemented in response to a variety of possible emergencies or disruptions to the transportation system. One shortcoming of past response plans was that they were based on only rudimentary traffic analysis or in many cases none at all. With the advances in traffic simulation during the last decade, it is now possible to model many traffic problems, such as emergency management, signal control and testing of Intelligent Transportation System technologies. These problems are difficult to solve using the traditional tools, which are based on analytical methods. Therefore, emergency preparedness planning can greatly benefit from the use of micro-simulation models to evaluate the impacts of natural and man-made incidents and assess the effectiveness of various responses. This simulation based study assessed hypothetical emergency preparedness plans and what geometric and/or operational improvements need to be done in response to emergency incidents. A detailed framework outlining the model building, calibration and validation of the model using microscopic traffic simulation model WATSim (academic version) is provided. The Roadway network data consists of geometric layout of the network, number of lanes, intersection description which include the turning bays, signal timings, phasing sequence, turning movement information etc. The network in and around the OIA region is coded into WATSim with 3 main signalized intersections, 180 nodes and 235 links. The travel demand data includes the vehicle counts in each link of the network and was modeled as percentage turning count movements. After the OIA network was coded into WATSim, the road network was calibrated and validated for the peak hour mostly obtained from ADT with 8% K factor by comparing the simulated and actual link counts at 15 different key locations in the network and visual verification done. Ranges of scenarios were tested that includes security checkpoint, route diversion incase of incident in or near the airport and increasing demand on the network. Travel time, maximum queue length and delay were used as measures of effectiveness and the results tabulated. This research demonstrates the potential benefits of using microscopic simulation models when developing emergency preparedness strategies. In all 4 main Events were modeled and analyzed. In Event 1, occurrence of 15 minutes traffic incident on a section of South Access road was simulated and its impact on the network operations was studied. The averaged travel time under the incident duration to Side A was more than doubled (29 minutes, more than a 100% increase) compared to the base case and similarly that of Side B two and a half times more (23 minutes, also more than a 100% increase). The overall network performance in terms of delay was found to be 231.09 sec/veh. and baseline 198.9 sec/veh. In Event 2, two cases with and without traffic diversions were assumed and evaluated under 15 minutes traffic incident modeled at the same link and spot as in Event 1. It was assumed that information about the traffic incident was disseminated upstream of the incident 2 minutes after the incident had occurred. This scenario study demonstrated that on the average, 17% (4 minutes) to 41% (12 minutes) per vehicle of travel time savings are achieved when real-time traffic information was provided to 26% percent of the drivers diverted. The overall network performance in delay for this event was also found to improve significantly (166.92 sec/veh). These findings led to the conclusion that investment in ITS technologies that support dissemination of traffic information (such as Changeable Message Signs, Highway Advisory Radio, etc) would provide a great advantage in traffic management under emergency situations and road diversion strategies. Event 3 simulated a Security Check point. It was observed that on the average, travel times to Sides A and B was 3 and 5 minutes more respectively compared to its baseline. Averaged queue length of 650 feet and 890 feet worst case was observed. Event 4 determined when and where the network breaks down when loaded. Among 10 sets of demand created, the network appeared to be breaking down at 30% increase based on the network-wide delay and at 15% based on Level of Service (LOS). The 90% increase appeared to have the most effect on the network with a total network-wide delay close to 620 seconds per vehicle which is 3 and a half times compared to the baseline. Conclusions and future scope were provided to ensure continued safe and efficient traffic operations inside and outside the Orlando International Airport region and to support efficient and informed decision making in the face of emergency situations

    A dynamic traffic assignment model for highly congested urban networks

    Get PDF
    The management of severe congestion in complex urban networks calls for dynamic traffic assignment (DTA) models that can replicate real traffic situations with long queues and spillbacks. DynaMIT-P, a mesoscopic traffic simulation system, was enhanced and calibrated to capture the traffic characteristics in a sub-area of Beijing, China. The network had 1698 nodes and 3180 directed links in an area of around 18 square miles. There were 2927 non-zero origin–destination (OD) pairs and around 630,000 vehicles were simulated over 4 h of the morning peak. All demand and supply parameters were calibrated simultaneously using sensor counts and floating car travel time data. Successful calibration was achieved with the Path-size Logit route choice model, which accounted for overlapping routes. Furthermore, explicit representations of lane groups were required to properly model traffic delays and queues. A modified treatment of acceptance capacity was required to model the large number of short links in the transportation network (close to the length of one vehicle). In addition, even though bicycles and pedestrians were not explicitly modeled, their impacts on auto traffic were captured by dynamic road segment capacities.Beijing Transportation Research Cente

    Microsimulation of urban land use

    Get PDF
    The project ILUMASS (Integrated Land-Use Modelling and Transportation System Simulation) aims at embedding a microscopic dynamic simulation model of urban traffic flows into a comprehensive model system incorporating both changes of land use and the resulting changes in transport demand. The land-use component of ILUMASS will be based on the land-use parts of an existing urban simulation model, but is to be microscopic like the transport parts of ILUMASS. Microsimulation modules will include models of demographic development, household formation, firm lifecycles, residential and non-residential construction, labour mobility on the regional labour market and household mobility on the regional housing market. These modules will be closely linked with the models of daily activity patterns and travel and goods movements modelled in the transport parts of ILUMASS developed by other partners of the project team. The design of the land use model takes into account that the collection of individual micro data (i.e. data which because of their micro location can be associated with individual buildings or small groups of buildings) or the retrieval of individual micro data from administrative registers for planning purposes is neither possible nor, for privacy reasons, desirable. The land use model therefore works with synthetic micro data which can be retrieved from generally accessible public data. ILUMASS is a group project of institutes of the universities of Aachen, Bamberg, Dortmund, Cologne and Wuppertal under the co-ordination of the Transport Research Institute of the German Aerospace Centre (DLR). Study region for tests and first applications of the model is the urban region of Dortmund. The common database will be compiled in co-operation with the City of Dortmund. After its completion the integrated model is to be used for assessing the impacts of potential transport and land use policies for the new land use plan of the city. The paper will focus on the land-use parts of the ILUMASS model. It will present the underlying behavioural theories and how they are made operational in the model design, explain how the synthetic population is generated, show first model results and demonstrate the potential usefulness of the model for the planning process.

    Transportation modelling for environmental impact assessment : Porto metropolitan area case study

    Get PDF
    Tese de mestrado. Transportes. Faculdade de Engenharia. Universidade do Porto. Departamento de Engenharia Mecânica. Universidade de Aveiro. 200

    Development of a hardware-in-the-loop analysis framework for advanced ITS applications

    Get PDF
    As Intelligent Transportation Systems (ITS) become more prevalent, there is a need for a system capable of the rigorous evaluation of new ITS strategies for a wide variety of applications. Pre-deployment testing and fine-tuning of the system, performance evaluation, and alternatives analysis are all potential benefits that could be gained through the evaluation of ITS. Simulation, an increasingly popular tool for transportation analysis, would seem an ideal solution to this problem as it allows for the consideration of many scenarios that may be improbable or impossible to observe in the field. Also, simulation provides a framework that allows for the application of rigorous analysis techniques to the output data, providing an accurate and statistically significant conclusion. The difficulty is that many ITS strategies are difficult or impossible to implement in a simulated environment. The rapid nature of technology development and the complicated nature of many ITS solutions are difficult to emulate in simulation models. Furthermore, the emulation of a particular ITS solution is not guaranteed to provide the same result that the physical system would, were it subject to the same inputs. This study seeks to establish a framework for the analysis of advanced ITS applications through the use of Hardware-in-the-Loop Simulation (HILS), which provides a procedure for interfacing simulation models with real-world hardware to conduct analysis. This solution provides the benefits of both advanced ITS evaluation and simulation for powerful and accurate analysis. A framework is established that includes all the steps of the modeling process including construction, validation, calibration, and output analysis. This ensures that the process surrounding the HILS implementation is valid so that the results of the evaluation are accurate and defendable. Finally, a case study of the application of the developed framework to the evaluation, a real-world implementation of an advanced ITS application (SCATS in this case) is considered. The effectiveness of the framework in creating and evaluating a corridor using a simulation model wed to real-world hardware is shown. The results of the analysis show the power of this method when correctly applied and demonstrate where further analysis could expand upon the proposed procedure.M.S.Committee Chair: Dr. Michael Hunter; Committee Member: Dr. Jiawen Yang; Committee Member: Dr. Jorge Laval; Committee Member: Dr. Michael Rodger

    Operational Impact of Shadow Evacuation on Regional Road Networks During Short-Notice Emergency Evacuations

    Get PDF
    As part of evacuation planning, development of effective tactical and operational strategies are essential to safely and efficiently mobilize the public away from the threat. Evacuations are classified by the time between notification and the anticipated arrival of the threat which can be categorized as short, or no-notice emergencies. Emergencies involve the computation of the time required to evacuate the area of risk, which is the time to clear a radius of up to about 10-miles around the nuclear power plant, known as the emergency planning zone (EPZ). These evacuation time estimates (ETE) also account for the evacuation of the public outside the defined area of risk. Typically, this area extends five miles outside the EPZ boundary and it is commonly referred to as the shadow evacuation region. Although shadow evacuation could create significant traffic congestion that affects the EPZ clearance process, there is limited research quantifying this effect. The objective of this research was to study the impacts of shadow evacuation to the overall EPZ clearance process. To accomplish this, the research used microscopic traffic simulation to assess the effect of different shadow participation rates for three hypothetical nuclear power plants with distinct population sizes surrounding the plant (small, medium, and large) and roadway characteristics. The guidance in NUREG/CR-7002 for ETE studies recommends a 20 percent participation rate that was based on previous studies, research related to ETE demographics, public response, and other contributing factors. However, the 20 percent recommendation may be conservative. The results suggested that small population sites are not impacted significantly by varying the shadow participation rates. However, medium and large population sites showed a noticeable effect, particularly in those corridors with less capacity. If the shadow evacuation participation rate is increased to 40 percent, the ETE to evacuate 90 percent of the population is increased by up to 10 percent in medium-sized areas, and up to 19 percent in large areas. Under the same conditions, the ETE to evacuate 100 percent of the population increases by less than 5 percent for medium-sized areas and less than 3 percent for large areas

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor
    corecore