4,425 research outputs found

    Efficient C-space and cost function updates in 3D for unmanned aerial vehicles

    Full text link

    Mobile Unmanned Aerial Vehicles (UAVs) for Energy-Efficient Internet of Things Communications

    Get PDF
    In this paper, the efficient deployment and mobility of multiple unmanned aerial vehicles (UAVs), used as aerial base stations to collect data from ground Internet of Things (IoT) devices, is investigated. In particular, to enable reliable uplink communications for IoT devices with a minimum total transmit power, a novel framework is proposed for jointly optimizing the three-dimensional (3D) placement and mobility of the UAVs, device-UAV association, and uplink power control. First, given the locations of active IoT devices at each time instant, the optimal UAVs' locations and associations are determined. Next, to dynamically serve the IoT devices in a time-varying network, the optimal mobility patterns of the UAVs are analyzed. To this end, based on the activation process of the IoT devices, the time instances at which the UAVs must update their locations are derived. Moreover, the optimal 3D trajectory of each UAV is obtained in a way that the total energy used for the mobility of the UAVs is minimized while serving the IoT devices. Simulation results show that, using the proposed approach, the total transmit power of the IoT devices is reduced by 45% compared to a case in which stationary aerial base stations are deployed. In addition, the proposed approach can yield a maximum of 28% enhanced system reliability compared to the stationary case. The results also reveal an inherent tradeoff between the number of update times, the mobility of the UAVs, and the transmit power of the IoT devices. In essence, a higher number of updates can lead to lower transmit powers for the IoT devices at the cost of an increased mobility for the UAVs.Comment: Accepted in IEEE Transactions on Wireless Communications, Sept. 201

    Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search

    Full text link
    Target search with unmanned aerial vehicles (UAVs) is relevant problem to many scenarios, e.g., search and rescue (SaR). However, a key challenge is planning paths for maximal search efficiency given flight time constraints. To address this, we propose the Obstacle-aware Adaptive Informative Path Planning (OA-IPP) algorithm for target search in cluttered environments using UAVs. Our approach leverages a layered planning strategy using a Gaussian Process (GP)-based model of target occupancy to generate informative paths in continuous 3D space. Within this framework, we introduce an adaptive replanning scheme which allows us to trade off between information gain, field coverage, sensor performance, and collision avoidance for efficient target detection. Extensive simulations show that our OA-IPP method performs better than state-of-the-art planners, and we demonstrate its application in a realistic urban SaR scenario.Comment: Paper accepted for International Conference on Robotics and Automation (ICRA-2019) to be held at Montreal, Canad

    A Distributed Approach for Networked Flying Platform Association with Small Cells in 5G+ Networks

    Get PDF
    The densification of small-cell base stations in a 5G architecture is a promising approach to enhance the coverage area and facilitate the ever increasing capacity demand of end users. However, the bottleneck is an intelligent management of a backhaul/fronthaul network for these small-cell base stations. This involves efficient association and placement of the backhaul hubs that connects these small-cells with the core network. Terrestrial hubs suffer from an inefficient non line of sight link limitations and unavailability of a proper infrastructure in an urban area. Seeing the popularity of flying platforms, we employ here an idea of using networked flying platform (NFP) such as unmanned aerial vehicles (UAVs), drones, unmanned balloons flying at different altitudes, as aerial backhaul hubs. The association problem of these NFP-hubs and small-cell base stations is formulated considering backhaul link and NFP related limitations such as maximum number of supported links and bandwidth. Then, this paper presents an efficient and distributed solution of the designed problem, which performs a greedy search in order to maximize the sum rate of the overall network. A favorable performance is observed via a numerical comparison of our proposed method with optimal exhaustive search algorithm in terms of sum rate and run-time speed.Comment: Submitted to IEEE GLOBECOM 2017, 7 pages and 4 figure
    corecore