3,322 research outputs found

    Efficient All Top-k Computation - A Unified Solution for All Top-k, Reverse Top-k and Top-m Influential Queries

    Get PDF
    published_or_final_versio

    Location Analytics for Location-Based Social Networks

    Get PDF

    Reverse k-Ranks Queries on Large Graphs

    Get PDF
    published_or_final_versio

    PRSim: Sublinear Time SimRank Computation on Large Power-Law Graphs

    Full text link
    {\it SimRank} is a classic measure of the similarities of nodes in a graph. Given a node uu in graph G=(V,E)G =(V, E), a {\em single-source SimRank query} returns the SimRank similarities s(u,v)s(u, v) between node uu and each node vVv \in V. This type of queries has numerous applications in web search and social networks analysis, such as link prediction, web mining, and spam detection. Existing methods for single-source SimRank queries, however, incur query cost at least linear to the number of nodes nn, which renders them inapplicable for real-time and interactive analysis. { This paper proposes \prsim, an algorithm that exploits the structure of graphs to efficiently answer single-source SimRank queries. \prsim uses an index of size O(m)O(m), where mm is the number of edges in the graph, and guarantees a query time that depends on the {\em reverse PageRank} distribution of the input graph. In particular, we prove that \prsim runs in sub-linear time if the degree distribution of the input graph follows the power-law distribution, a property possessed by many real-world graphs. Based on the theoretical analysis, we show that the empirical query time of all existing SimRank algorithms also depends on the reverse PageRank distribution of the graph.} Finally, we present the first experimental study that evaluates the absolute errors of various SimRank algorithms on large graphs, and we show that \prsim outperforms the state of the art in terms of query time, accuracy, index size, and scalability.Comment: ACM SIGMOD 201

    Ranking spatial data by quality preferences

    Get PDF
    A spatial preference query ranks objects based on the qualities of features in their spatial neighborhood. For example, using a real estate agency database of flats for lease, a customer may want to rank the flats with respect to the appropriateness of their location, defined after aggregating the qualities of other features (e.g., restaurants, cafes, hospital, market, etc.) within their spatial neighborhood. Such a neighborhood concept can be specified by the user via different functions. It can be an explicit circular region within a given distance from the flat. Another intuitive definition is to assign higher weights to the features based on their proximity to the flat. In this paper, we formally define spatial preference queries and propose appropriate indexing techniques and search algorithms for them. Extensive evaluation of our methods on both real and synthetic data reveals that an optimized branch-and-bound solution is efficient and robust with respect to different parameters. © 2006 IEEE.published_or_final_versio

    Reverse Thinking in Spatial Queries

    Full text link
    In recent years, an increasing number of researches are conducted on spatial queries regarding the influence of query objects. Among these queries, reverse k nearest neighbors (RkNN) query is the one studied the most extensively. Reverse k furthest neighbors (RkFN) queries is the natural complement of RkNN queries. RkNN query is introduced to reflect the influence of the query object. Since this representation is intuitive, RkNN query has attracted significant attention among the database community. Later, reverse top-k queries was introduced, and also used extensively to represent influence. In many scenarios, when we consider the influence of an spatial object, reverse thinking is involved. That is, whether an object is influential to another object is depending on how the other object assess this object, other than how this object considers the other object. In this thesis, we study three problems involves reverse thinking. We first study the problem of efficiently computing RkFN queries. We are the first to propose a solution for arbitrary value of k. Based on several interesting observations, we present an efficient algorithm to process the RkFN queries. We also present a rigorous theoretical analysis to study various important aspects of the problem and our algorithm. An extensive experimental study demonstrates that our algorithm outperforms the state-of-the-art algorithm even for k=1. The accuracy of our theoretical analysis is also verified. We then study the problem of selecting set of representative products considering both diversity and coverage based on reverse top-k queries. Since this problem is NP-hard, we employ a greedy algorithm. We adopt MinHash and KMV Synopses to assist set operations. Our experimental study demonstrates the performance of the proposed algorithm. We also study the problem of maximizing spatial influence of facility bundle based on RkNN queries. We are the first to study this problem. We prove its NP-hardness, and propose a branch-and-bound best first search algorithm that greedily select the currently best facility until we get the required number of facilities. We introduce the concept of kNN region. It allows us to avoid redundant calculation with dynamic programming technique. Experiments show that our algorithm is orders of magnitudes better than our baseline algorithm

    PAUSANIAS: Final activity report

    Get PDF
    Search engines, such as Google and Yahoo!, provide efficient retrieval and ranking of web pages based on queries consisting of a set of given keywords. Recent studies show that 20% of all Web queries also have location constraints, i.e., also refer to the location of a geotagged web page. An increasing number of applications support location-based keyword search, including Google Maps, Bing Maps, Yahoo! Local, and Yelp. Such applications depict points of interest on the map and combine their location with the keywords provided by the associated document(s). The posed queries consist of two conditions: a set of keywords and a spatial location. The goal is to find points of interest with these keywords close to the location. We refer to such a query as spatial-keyword query. Moreover, mobile devices nowadays are enhanced with built-in GPS receivers, which permits applications (such as search engines or yellow page services) to acquire the location of the user implicitly, and provide location-based services. For instance, Google Mobile App provides a simple search service for smartphones where the location of the user is automatically captured and employed to retrieve results relevant to her current location. As an example, a search for pizza results in a list of pizza restaurants nearby the user. In this research project, we studied how preference queries can be extended for supporting also keywords. To this end we first studied preference queries in order to establish techniques that can be extended for supporting keywords (Chapter 1). Moreover, we proposed Top-k Spatio-Textual Preference Queries and proposed a novel indexing scheme and two algorithms for supporting efficient query processing (Chapter 2). We also studied the problem of maximizing the influence of spatio-textual objects based on reverse top-k queries and keyword selection (Chapter 3). Finally, we analyze the properties of geotagged photos of Flickr, and propose novel location-aware tag recommendation methods (Chapter 4)
    corecore