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ABSTRACT 
Why-not questions, which aim to seek clarifications on the miss-
ing tuples for query results, have recently received considerable 
attention from the database community. In this paper, we system-
atically explore why-not questions on reverse top-k queries, ow-
ing to its importance in multi-criteria decision making. Given an 
initial reverse top-k query and a missing/why-not weighting vec-
tor set Wm that is absent from the query result, why-not questions 
on reverse top-k queries explain why Wm does not appear in the 
query result and provide suggestions on how to refine the initial 
query with minimum penalty to include Wm in the refined query 
result. We first formalize why-not questions on reverse top-k que-
ries and reveal their semantics, and then propose a unified frame-
work called WQRTQ to answer why-not questions on both mono-
chromatic and bichromatic reverse top-k queries. Our framework 
offers three solutions, namely, (i) modifying a query point q, (ii) 
modifying a why-not weighting vector set Wm and a parameter k, 
and (iii) modifying q, Wm, and k simultaneously, to cater for dif-
ferent application scenarios. Extensive experimental evaluation 
using both real and synthetic data sets verifies the effectiveness 
and efficiency of the presented algorithms.  

1. INTRODUCTION  
In the past decades, the capability of database has been 

significantly improved, which enables us to process a variety of 
complex queries on heterogeneous and humongous datasets. 
However, the usability of database is far from meeting user needs. 
As pointed out by Jagadish et al. [22], failing to produce expected 
results without any explanation is one of the pain points of current 
database systems that frustrate many users. If a user encounters 
such cases, intuitively, he/she may pose a why-not question to 
find out why his/her expected tuples do not appear in the query 
result. If the database system can provide such clarifications, it 
helps the users understand initial query better and know how to 
change the query, hence improving the usability of database.  

Since the concept of “why-not” was first proposed by Chapman 
and Jagadish [8], many efforts have been made to answer why-not 
questions on different queries. Existing work can be classified 
into three categories. The first category finds the manipulations 
which are responsible for excluding users’ desired tuples. The 
typical examples include answering users’ why-not questions on 
Select-Project-Join (SPJ) queries [8] and Select-Project-Join-Union-  
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Figure 1: Example of reverse top-k queries  

Aggregation (SPJUA) queries [5]. The second category provides a 
set of data modifications (e.g., insertion, update, etc.) so that the 
missing tuples can present in the query result. This category also 
mainly focuses on SPJ queries [20, 38] and SPJUA queries [16, 
17]. The third category revises the initial query to generate a 
refined query whose result contains the user specified missing 
tuples. Why-not questions on Select-Project-Join-Aggregation 
(SPJA) queries [30], top-k queries [14], reverse skyline queries 
[21], and image search [4] all belong to this category. Nonetheless, 
why-not questions are query-dependent, and none of existing 
work can answer why-not questions on reverse top-k queries, 
which is an important and essential building block for multi-
criteria decision making. Therefore, in this paper, we study the 
problem of answering why-not questions on reverse top-k queries 
by following the third category.  

Before presenting the reverse top-k query, we first introduce 
the top-k query. Given a dataset P, a positive integer k, and a 
preference function f, a top-k query retrieves the k points in P 
with the best scores based on f. The points returned by the top-k 
query match users’ preferences best and help users to avoid 
receiving an overwhelming result set. Based on the top-k query, 
Vlachou et al. [31] propose the reverse top-k query from the 
manufacturers’ perspective, which has a wide range of 
applications such as market analysis [24, 31, 33, 34] and location-
based services [32]. Given a dataset P, a positive integer k, a 
preference function set W (in terms of weighting vectors), and a 
query point q, a reverse top-k query returns the preference 
functions in W whose top-k query results contain q. Figure 1 
illustrates an example of reverse top-k queries. Figure 1(a) records 
the price and heat production for each computer brand (e.g., 
Apple, DELL, etc.), and Figure 1(b) lists the customer preferences 
in terms of weighting vectors by assigning a weight to every 
attribute. Without loss of generality, we adopt a linear preference 
function, i.e., f( , p) = w[heat]  p.heat + w[price]  p.price, to 
compute the score of a point p w.r.t. a weighting vector . Figure 
1(c) depicts the score of every computer for different customers, 
and we assume that smaller values are more preferable. Based on 
Figure 1(c), if Apple issues a reverse top-3 (k = 3) query at a 
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query point/computer q, Anna and Tony are retrieved as they rank 
the query computer q as one of their top-3 options. In other words, 
reverse top-k queries can help Apple to identify the potential 
customers who are more likely to be interested in its product(s), 
and thus to assess the impact of product(s) in the market.  

Unfortunately, reverse top-k queries only return query results to 
users without any explanation. If the query result does not contain 
some expected tuples, it may disappoint users. Consider the 
aforementioned example again. Suppose Kevin and Julia are 
Apple’s existing customers, however, they are not in the result of 
the reverse top-3 query of q. Apple may feel frustrated and ask 
“Why Kevin and Julia do not take Apple as one of their choices? 
What actions should be taken to win them back?” If the database 
system can offer such clarifications, it will help Apple to retain 
existing customers as well as to attract more new customers, and 
hence to increase/maintain its market share. In view of this, for 
the first time, we explore why-not questions on reverse top-k 
queries, which could be an important and useful tool for market 
analysis. Given an original reverse top-k query and a why-not 
weighting vector set Wm that is missing from the query result, 
why-not questions on reverse top-k queries explain why Wm is not 
in the query result, and suggest how to refine the original query 
with minimum penalty to include Wm in the refined query result.  

In order to win back missing customers, Apple might (i) change 
the computer’s parameters; (ii) influence and convince the 
customers to change their preferences; and (iii) change both the 
computer’s parameters and the customers’ preferences. 
Correspondingly, in this paper, we develop a unified framework 
called WQRTQ, which provides three solutions to cater for 
different application scenarios, to answer why-not questions on 
reverse top-k queries. Specifically, the first solution is to modify a 
query point q using the quadratic programming. The second 
solution is a sampling based method, which modifies a weighting 
vector set Wm and a parameter k. The third solution is to modify q, 
Wm, and k simultaneously, which integrates the quadratic 
programming, sampling method, and reuse technique. It is worth 
mentioning that all three solutions can return the refined query 
with minimum penalty, and can support why-not questions on 
both monochromatic and bichromatic reverse top-k queries. 
Extensive experiments using both real and synthetic datasets 
show that our proposed algorithms can produce clarifications and 
suggest changes efficiently. To sum up, the key contributions of 
this paper are summarized as follows.  
 We solve why-not questions on reverse top-k queries. To 

our knowledge, there is no prior work on this problem.  
 We present a unified framework WQRTQ, including three 

different approaches, to answer why-not questions on both 
monochromatic and bichromatic reverse top-k queries.  

 We conduct extensive experiments with both real and syn-
thetic datasets to demonstrate the effectiveness and effi-
ciency of our proposed algorithms.  

The rest of this paper is organized as follows. Section 2 reviews 
related work. Section 3 presents problem formulation. Section 4 
describes our framework and solutions to answer why-not ques-
tions on reverse top-k queries. Section 5 reports experimental re-
sults and our findings. Finally, Section 6 concludes the paper with 
some directions for future work.  

2. RELATED WORK  
In this Section, we review previous work on top-k queries, 

reverse top-k queries, data provenance, and why-not questions.  

Top-k queries. Top-k query has received much attention in the 
database community due to its usefulness. Existing algorithms 
include convex hull based algorithm Onion [7], view based 
algorithms LPTA [11] and PREFER [18, 19], layered index based 
algorithm AppIR [36], branch-and-bound algorithm BRS [29], 
dominant graph based top-k query algorithm [39], and top-k query 
algorithms using cache [35]. It is worth mentioning that, BRS is 
I/O optimal.  

Reverse top-k queries. Vlachou et al. [31] firstly introduce the 
reverse top-k query and consider its two variants, namely, 
monochromatic and bichromatic versions. To efficiently answer 
the monochromatic reverse top-k query, Vlachou et al. [31] and 
Chester et al. [9] present several algorithms in a 2-dimensional 
(2D) space. The bichromatic top-k query algorithms include RTA, 
GRTA, and BBR [31, 34]. In addition, Yu et al. [37] develop a 
dynamic index to support reverse top-k queries, and Ge et al. [12] 
employ all top-k queries to boost the reverse top-k query. More 
recently, reverse top-k queries are widely studied in market 
analysis [24, 33], location-based services [32], and uncertain 
circumstances [23]. It is worth noting that, all the current reverse 
top-k queries only return the results without any explanation, and 
thus, the existing techniques designed for reverse top-k queries 
cannot answer corresponding why-not questions efficiently.  

Data provenance. Data provenance explores the derivation of 
a piece of data that is in a query result [28]. It can help users 
understand why data tuples exist within a result set. Current ap-
proaches for computing data provenance include non-annotation 
method [10] and annotation approach [3]. Nonetheless, it cannot 
be applied to clarify the missing tuples in the query result set.  

Why-not questions. Chapman and Jagadish [8] first propose 
the concept of “why-not”. Since then, lots of efforts have been put 
into answering why-not questions. The existing approaches can be 
classified into three categories: (i) manipulation identification [5, 
8], (ii) database modification [16, 17, 20, 38], and (iii) query 
refinement [4, 14, 21, 30]. In addition, Herschel [15] tries to 
identify hybrid why-not explanations for SQL queries, which 
combines manipulation identification and query refinement. 
Meliou et al. [25] aim to find the causality and responsibility for 
the non-answers of the query. Here, causality is the cause of non-
answers to the query, and responsibility captures the notion of 
degree of causality.  

It is noteworthy that our work follows the query refinement 
model to answer why-not questions on reverse top-k queries, i.e., 
we modify the parameter(s) and/or a query point and/or why-not 
point(s) of an original query to include the missing tuples in a 
refined query result. However, since why-not questions are query-
dependent, different queries require different query refinement, 
which explains why existing query refinement techniques cannot 
be applied directly in our problem and justifies our main 
contribution, that is to design proper query refinement approaches 
to support why-not questions on reverse top-k queries.  

3. PROBLEM FORMULATION  
In this section, we formalize why-not questions on reverse top-

k queries, including both monochromatic reverse top-k queries 
and bichromatic reverse top-k queries. Given a d-dimensional 
dataset P, a point p  P is represented in the form of d-tuple vec-
tor {p[1], …, p[d]}, where p[i] is the i-th dimensional value of p. 
The top-k query ranks/orders the points based on a user specified 
scoring function f that aggregates the individual score of a point 
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into an overall scoring value. In this paper, we utilize a linear 
scoring function (or weighted sum function) as with [14, 31, 34]. 
Specifically, in a data space, each dimension i is assigned a 
weight w[i] indicating the relative importance of the i-th dimen-
sion for the query, captured by a weighting vector  = {w[1], …, 

w[d]} in which w[i]  0 (1 ≤ i ≤ d) and . Then, 

  captures the aggregated score of any 

data point p ( P) with respect to . Without loss of generality, 
we assume that smaller scoring values are preferable in this paper. 
Next, we formally define the top-k query below.  

DEFINITION 1 (TOP-K QUERY). Given a d-dimensional dataset 
P, a positive integer k, and a weighting vector , a top-k query 
returns a set of points, denoted as TOPk( ), such that (i) 
TOPk( )  P; (ii) |TOPk( )| = k; and (iii) p1  TOPk( ), p2 
 P TOPk( ), it holds that f( , p1) ≤ f( , p2).  

Take the dataset P shown in Figure 1 as an example. We have 
TOP3( ) = {p1, p2, p4}. It is worth mentioning that, if the points 
share the same score at ranking k-th, only one of them is ran-
domly returned. Based on the definition of the top-k query, we 
formulate reverse top-k queries, for both monochromatic version 
and bichromatic version by following [31].  

DEFINITION 2 (MONOCHROMATIC REVERSE TOP-K QUERY) 
[31]. Given a d-dimensional dataset P, a positive integer k, and a 
query point q, a monochromatic reverse top-k (MRTOPk) query 
retrieves a collection of d-dimensional weighting vectors, denoted 
as MRTOPk(q), such that    MRTOPk(q), it holds that p  
TOPk( ), f( , q) ≤ f( , p).  

In other words, a MRTOPk query returns all the weighting vec-
tors whose top-k query results include q. For example, Figure 2(a) 
is the corresponding data distribution of Figure 1(a) without con-
sidering the specified customer preferences. As observed, q is in-
side the top-3 query result for a weighting vector (1/6, 5/6) 
since only p1 and p2 have smaller scoring values than q w.r.t. . 
Similarly, q is also within the top-3 query result for a weighting 
vector (3/4, 1/4). Hence,  and  are located in 
MRTOP3(q). Actually, all the weighting vectors with the angles 
between  and  (i.e., the segment BC in Figure 2(b)) be-
long to MRTOP3(q). Different from the MRTOPk query, the 
bichromatic reverse top-k query takes two datasets into considera-
tion, which is formalized as follows.  

DEFINITION 3 (BICHROMATIC REVERSE TOP-K QUERY) [31]. 
Given a d-dimensional dataset P, a d-dimensional weighting vec-
tor set W, a query point q, and a positive integer k, a bichromatic 
reverse top-k (BRTOPk) query retrieves a set of weighting vectors, 
denoted as BRTOPk(q), such that (i) BRTOPk(q)  W, and (ii)  

  BRTOPk(q), it holds that p TOPk( ), f( , q) ≤ f( , p). 

A BRTOPk query finds the weighting vectors in W whose top-k 
query results contain q. Back to Figure 1 again. As TOP3( ) = 
{p1, p2, q},  belongs to BRTOP3(q). Finally, we can obtain 
BRTOP3(q) = { , }. It is worth noting that, the only differ-
ence between BRTOPk and MRTOPk queries is that the former 
has the knowledge of user preferences, whereas the latter does not. 
As mentioned earlier, why-not questions are query-dependent, 
and thus, the solutions for why-not questions on different queries 
are usually different. Consequently, based on Definition 2 and 
Definition 3, we formulate why-not questions on MRTOPk and 
BRTOPk queries, respectively.  
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Figure 2: Example of a monochromatic reverse top-k query  

DEFINITION 4 (WHY-NOT QUESTIONS ON MRTOPK QUERIES). 
Given an original MRTOPk query of a query point q on a dataset 
P, and a why-not/missing weighting vector set Wm that is excluded 
from MRTOPk(q), why-not questions on MRTOPk queries 
(WQMQ) answer (i) why    Wm,   MRTOPk(q); and (ii) 
how to refine the initial MRTOPk query with minimum penalty 
such that    Wm,   MRTOPk(q).  

DEFINITION 5 (WHY-NOT QUESTIONS ON BRTOPK QUERIES). 
Given an original BRTOPk query of a query point q on a dataset 
P and a weighting vector set W, and a why-not/missing weighting 
vector set Wm  W  BRTOPk(q), why-not questions on BRTOPk 
queries (WQBQ) answer (i) why    Wm,   BRTOPk(q); 
and (ii) how to revise the initial BRTOPk query with minimum 
penalty such that    Wm,   BRTOPk(q).  

Note that, why-not weighting vectors for WQMQ might be any 
weighting vector that is not inside MRTOPk(q), while why-not 
weighting vectors for WQBQ only come from W  BRTOPk(q). 
For instance, in Figure 2(b), weighting vectors (1/10, 9/10) and 
(4/5, 1/5) do not appear in MRTOP3(q), and hence can be used as 
why-not weighting vectors for why-not questions on MRTOP3 
queries. On the other hand, in Figure 1, W  BRTOP3(q) = { , 

}, thus, we can issue why-not questions on BRTOP3 queries 
only using  and .  

Based on Definition 4 and Definition 5, we need to answer 
why-not questions on MRTOPk/BRTOPk queries from two as-
pects, i.e., (i) giving the explanations of why why-not weighting 
vectors do not appear in the results of MRTOPk/BRTOPk queries, 
and (ii) providing the suggestions on how to refine the original 
MRTOPk/BRTOPk queries with minimum penalty for including 
the why-not weighting vectors.  

For the first aspect, if a why-not weighting vector  does not 
present in the result of the MRTOPk/BRTOPk query, there must 
be more than k points whose scores are smaller than that of q. All 
those points are responsible for excluding the why-not weighting 
vector  from the query result. Hence, they form the answer for 
the first aspect. For example, for  in Figure 1, there are three 
points, i.e., p1, p2, and p4, with scores smaller than that of q, and 
thus,  is not inside the reverse top-3 query result. It is not hard 
to derive the first aspect of answering why-not questions on 
MRTOPk/BRTOPk queries as we only need to issue a top-k query 
for every missing why-not weighting vector. We can use existing 
progressive top-k query algorithms [19, 29, 39] or all top-k query 
algorithms [12], which can report incrementally every ranking ob-
ject one-by-one. The process proceeds until the query point q is 
contained in the result, and then returns the result to users.  

The second aspect of answering why-not questions is to revise 
the original queries with minimum penalties such that the refined  
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(a) why-not questions on MRTOPk queries

(b) why-not questions on BRTOPk queries  
Figure 3: Illustrations of why-not questions  

query results include the missing why-not weighting vector(s). 
We find that the essence of the second aspect of answering why-
not questions on MRTOPk and BRTOPk queries is identical. For 
why-not questions on MRTOPk queries, the target is to make 
every why-not weighting vector appear in MRTOPk(q), i.e.,   
Wm, MRTOPk(q). Based on Definition 2,  MRTOPk(q) 
→q  TOPk( ) and   MRTOPk(q) → q  TOPk( ). Hence, 
why-not questions on MRTOPk queries can be re-phrased as: for 
each why-not weighting vector  with q  TOPk( ), how to re-
fine the original query with minimum penalty such that q  
TOPk( ), as shown in Figure 3(a). Similarly, according to Defi-
nition 3, we can also re-phrase why-not questions on BRTOPk 
queries, as depicted in Figure 3(b). From Figure 3, it is observed 
that, these two problems can be transformed to a single problem, 
i.e.,    Wm having q  TOPk( ), how to refine the original 
query with minimum penalty such that q  TOPk( ).  

It is worth mentioning that the transformed problem is inher-
ently different from the problem of why-not questions on top-k 
queries [14], i.e., given a why-not point set Pm  P and a weight-
ing vector  having pi  Pm, pi  TOPk( ), how to refine the 
original query with minimum penalty such that pi  TOPk( ). 
The difference is two-fold. First, these two problems have totally 
different inputs. The inputs of our problem contain a why-not 
weighting vector set that captures the preferences of customers 
and a query point q representing a product of the manufacturer, 
while why-not questions on top-k queries take as inputs a why-not 
point set that denotes the attributes of products and a weighting 
vector representing a customer preference. Second, they serve dif-
ferent purposes. Our problem tries to make the product q as one of 
the top-k choices for the set of a given customer preferences, but 
why-not questions on top-k queries try to make all the specified 
products appear in the top-k result of a given weighting vector.  

A straightforward way to tackle our problem is to take q as a 
why-not point and take a why-not weighting vector as a specified 
weighting vector, and then use the algorithms for why-not ques-
tions on top-k queries to refine the query. After solving all the 
why-not weighting vectors, q can be contained in the top-k result 
of every why-not weighting vector. Nevertheless, although the 
penalty of each refining is minimized, the total penalty of this 
method might not be the minimum. This is because the refining of 
the query needs to modify why-not weighting vectors, which has 
an impact on each other, and thus, it cannot be refined separately. 
Therefore, the algorithms for why-not questions on top-k queries 
cannot be applied to handle our problem. Based on the above 
analysis, we develop a unified framework to answer why-not 
questions on both MRTOPk and BRTOPk queries. Moreover, this 
paper focuses only on the second aspect of answering why-not 
questions as it is computationally challenging.  
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Figure 4: Framework of WQRTQ  

4. ANSWERING WHY-NOT QUESTIONS  
In this section, we propose a unified framework to answer why-

not questions on reverse top-k queries, and then detail the frame-
work, which contains three solutions based on the modification of 
different parameters.  

4.1 Framework Overview  
Based on the analysis performed in Section 3, we present a uni-

fied framework called WQRTQ (i.e., Why-not Questions on Re-
verse Top-k Queries), which can answer why-not questions on 
both monochromatic and bichromatic reverse top-k queries. As il-
lustrated in Figure 4, WQRTQ takes as inputs an original mono-
chromatic/bichromatic reverse top-k query and the corresponding 
why-not weighting vector set Wm, and returns the refined reverse 
top-k query with minimum penalty to users. Specifically, it con-
sists of the following three solutions:  

(1) Modifying q. The first solution is to modify a query point q 
into q′, which is to be detailed in Section 4.2. To this end, we in-
troduce the concept of safe region (see Definition 7). As long as 
the query point q′ falls into the safe region, the why-not weighting 
vector set Wm will appear in the reverse top-k query result of q′. 
After getting the safe region, we use the quadratic programming 
to get q′ with the minimum change w.r.t. q.  

(2) Modifying Wm and k. The second solution, to be presented 
in Section 4.3, is to modify a why-not weighting vector set Wm 
and a parameter k into Wm′ and k′ respectively, such that the modi-
fied Wm′ belongs to the result of the reverse top-k′ query of q. To-
wards this, we present a sampling-based method to obtain Wm′ and 
k′ having the minimum penalty. In particular, we sample a certain 
number of weighting vectors that may contribute to the final re-
sult, and then, the optimal Wm′ and k′ are returned according to the 
sample weighting vectors.  

(3) Modifying q, Wm, and k. Our third solution is to modify a 
query point q, a why-not weighting vector set Wm, and a parame-
ter k simultaneously, as to be detailed in Section 4.4. After refin-
ing, the modified weighting vector set Wm′ is contained in the re-
verse top-k′ query result of q′. This solution utilizes the techniques 
of quadratic programming, sampling method, and reuse. To be 
more specific, we first fix the range of a query point and sample a 
certain number of query points. Then, for every sample query 
point, we employ the second solution to get corresponding opti-
mal (Wm′, k′). Finally, the tuple (q′, Wm′, k′) with the smallest pen-
alty is returned.  

4.2 Modifying q  
Intuitively, if Apple finds some customers are not interested in 

its new computer, it can adjust some computer parameters before 
putting it into production so that the modified computer becomes 
one of customers’ top-k options. In view of this, we propose the  
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(a) Illustration of Lemma 1                   (b) Illustration of Lemma 3  

Figure 5: Example of Lemma 1 and Lemma 3  

first solution to refine the original reverse top-k query, namely, 
modifying a query point q, as formally defined below.  

DEFINITION 6 (MODIFYING q). Given a d-dimensional dataset 
P, a positive integer k, a query point q, and a why-not weighting 
vector set Wm with    Wm, q  TOPk( ), the modification of 
a query point q is to find q′ such that (i)    Wm, q′  TOPk 
( ); (ii) i  [1, d], q′[i]  q[i]; and (iii) the penalty of q′, 
defined in Equation (1), is minimum.  

    (1) 

It is worth mentioning that, we use Equation (1) to quantify the 
modification of the product, which is also employed by Padma-
nabhan et al. [27] to measure quality distortation for the upgraded 
product. For example, in Figure 1, Kevin and Julia are not in the 
reverse top-3 result of q. If Apple modifies computer’s parameter 
q(4, 4) to q′(3, 2.5) or q′′(2.5, 3.5), the new computer q′ or q′′ be-
comes one of the top-3 options for both Kevin and Julia. 
According to Definition 6, q′′ is more preferable as Penalty(q′) = 
0.318 > Penalty(q′′) = 0.279. Note we only consider decreasing 
q[i]’s value. Since (i) the scoring function is monotonic, (ii) a 
smaller scoring value is ranked higher, and (iii) a smaller penalty 
is preferable, there is no need to increase q[i]’s value. As an 
example, assume that q(4, 4) in Figure 1 is modified to q′(5, 1). 
We can always find another query point (e.g., q′′(4, 1) in this case) 
that has smaller penalty and meanwhile generate smaller scoring 
value. In other words, the search space for q′ can be shrunk to [0, 
q]. Furthermore, to get a qualified q′, we find that it is possible to 
locate a region within [0, q], namely, q’s safe region, within 
which the modified query point q′ definitely falls.  

DEFINITION 7 (SAFE REGION). Given a d-dimensional dataset 
P, a positive integer k, a query point q, and a why-not weighting 
vector set Wm, a region in the data space is said to be safe for q 
(i.e., q’s safe region), denoted as SR(q), such that q′  SR(q) 
and    Wm, q′  TOPk( ).  

In other words, if q is modified to q' by moving the query point 
q anywhere within SR(q), all the why-not weighting vectors will 
appear in a given reverse top-k query result. It is straightforward 
that, if we can obtain such SR(q), the answer of our first solution 
is just the point in SR(q) that is closest to q. In the sequel, we ex-
plain how to get SR(q). In a d-dimensional space, given a weight-
ing vector  and a point p, we can get a hyperplane, denoted as 
H( , p), which is perpendicular to  and contains the point p. 
Then, we have the lemma below.  

LEMMA 1. Given a hyperplane H( , p) formed by  and p, (i) 
if a point p' lies on H( , p), f( , p′) = f( , p); (ii) if a point p'' 

lies below H( , p), f( , p'′) < f( , p); and (iii) if a point p''' lies 
above H( , p), f( , p''′) > f( , p).  

PROOF. The proof is intuitive, and thus, it is skipped because of 
space limitation.                                                                            

According to Lemma 1, all the points lying on/below/above the 
hyperplane H( , p) have the same/smaller/bigger scoring value 
as/than p w.r.t. . Figure 5(a) explains Lemma 1 in a 2D space, 
where the hyperplane H( , p3) is formed by  and p3 in Figure 
1. Given points p1 below H( , p3), p5 above H( , p3) and p7 on 
H( , p3), we have f( , p1) < f( , p3), f( , p5) > f( , p3), and 
f( , p7) = f( , p3). These findings are also consistent with the 
data listed in Figure 1(c). Based on Lemma 1, the concept of half 
space is stated below.  

DEFINITION 8 (HALF SPACE). Given a hyperplane H( , p), the 
half space formed by  and p, denoted as HS( , p), satisfies that 
p′  HS( , p), f( , p′) ≤ f( , p).  

In other words, HS( , p) includes all the points lying on and 
below the hyperplane H( , p). Figure 5(a) illustrates the half 
space HS( , p3) formed by  and p3, i.e., the shaded area in 
Figure 5(a). Based on Lemma 1 and Definition 8, we present the 
following lemmas to explain the construction of q’s safe region.  

LEMMA 2. Given a weighting vector , and a point p which is 
the top k-th point of , if q′  HS( , p), q′  TOPk( ).  

PROOF. If q′  HS( , p), f( , q′) ≤ f( , p) according to 
Definition 8. Since p is the top k-th point of , q′  TOPk( ) 
based on Definition 1. The proof completes.                                

LEMMA 3. Given a why-not weighting vector set Wm = { , 
, …, }, and a set  = {p1, p2, …, pn} of points (pi   is 

the top k-th point w.r.t. its corresponding why-not weighting 
vector   Wm), the safe region of a query point q is the over-
lapping of all the half spaces formed by  and pi, i.e., SR(q) = ∩1 

 i  n HS( , pi).  

PROOF. The proof is straightforward according to Lemma 2 
and Definition 8, and hence, it is omitted for space saving.          

Figure 5(b) depicts an example of Lemma 3, which utilizes the 
dataset shown in Figure 1. Assume that  and  are two why-
not weighting vectors, the corresponding top 3-rd points for  
and  are p4 and p7, respectively. Therefore, the safe region of q 
is the overlapping of HS( , p4) and HS( , p7), i.e., the shaded 
area (i.e., quadrilateral AoBq′) in Figure 5(b).  

It is worth mentioning that the safe region formed by top (k1)-
th points (denoted as SR'(q)) is a subset of SR(q), but SR'(q) does 
not contain the optimal q'. This is because the hyperplane formed 
by top (k1)-th points is always below the hyperplane formed by 
top k-th points, and hence, SR'(q) is further to q than SR(q). As 
shown in Figure 5(b), SR'(q) is the corresponding safe region 
formed by top 2-nd points of  and , i.e., p2 and p1. Obvi-
ously, SR'(q) does not contain q'.  

After getting the safe region of q, we can find the optimal query 
point q′ with the minimum cost w.r.t. q. Take Figure 5(b) as an 
example again, point q′ is the desirable refined query point. How-
ever, it is found that the safe region is a convex polygon bounded 
by hyperplanes. Thus, the above safe region computation does not 
scale well with the dimensionality because computing the inter-
section of half spaces becomes increasingly complex and prohibi-
tively expensive in high dimensions [2]. Actually, finding the op-
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timal query point q′ with the minimum cost w.r.t. q is an optimi-
zation problem. Moreover, the penalty function of q′ (i.e., Equa-
tion (1)) can be seen as a quadratic function. In light of this, we 
employ the quadric programming to find the optimal q′ without 
computing the exact safe region. Specifically, the quadric pro-
gramming can be represented in the following form:  

                                       (2) 

It derives the optimal x that minimizes f(x) under the 
constraints  and , in which f(x) is an objective 
function; H and A are matrixes; x, c, b, lb, and ub are vectors; and 
superscript T denotes transposition. Our problem is actually an 
optimization problem, as the goal is to obtain q' with the smallest 
penalty. Hence, we utilize the quadric programming to obtain the 
optimal q'. For simplicity, in this paper, we assume that the 
objective function for our problem is   

, where H = diag(2, 2, …, 2) is a d  d 
diagonal matrix with all eigenvalues being 2, and c = (-2q[1], -
2q[2], …, -2q[d]) is a d-dimensional vector.  

In addition, given a why-not weighting vector set Wm = { , 
, …, } and a point set  = {p1, p2, …, pn} (pi   is the top 

k-th point of   Wm), the optimal (modified) q′ falling into the 
safe region must satisfy that,    Wm and  pi  , f( , q′)  
f( , pi) according to Definition 7, which can be represented by 

 in Equation (2), where A defined below is a n  d matrix 
and . As mentioned 
earlier, the varying range of q is [0, q]. Consequently,  
corresponds to .  

  

Based on the above analysis, we propose the algorithm called 
MQP to modify the query point q, whose pseudo-code is 
presented in Algorithm 1. First, we adopt the branch-and-bound 
method to find the top k-th point for every why-not weighting 
vector (lines 1-12). Then, we use the interior-point quadratic 
programming algorithm QuadProg [26], which is based on a 
logarithmic barrier function method, to get the optimal refined 
query point q′ (lines 13-14). In particular, QuadProg iteratively 
finds an approximate Newton direction associated with the 
Karush-Kuhn-Tucker system of equations which characterizes a 
solution of the logarithmic barrier function problem. Due to space 
limitation, the details of QuadProg are omitted here. The time 
complexity of MQP is given in Theorem 1 below.  

THEOREM 1. The time complexity of MQP algorithm is O(|RT| 
 |Wm| + d3  L), in which |RT| is the cardinality of R-tree, d is the 
dimensionality, and   

 with  = max(f( , p1), f( , p2), …, f( , pn)) and 
 = max(q[1], q[2], …, q[d]).  

PROOF. MQP algorithm consists of two phases. The first phase 
is to find the top k-th point for each why-not weighting vector. In 
the worst case, it needs to traverse the whole R-tree |Wm| times, 
whose time complexity is O(|RT|  |Wm|). The second phase is the  

Algorithm 1 Modifying query point q (MQP)  
  Input: an R-tree RT on a set P of data points, a query point q,  

a parameter k, a why-not weighting vector set Wm  
  Output: q′  
  /* HP is a min-heap;  is a set storing the top k-th point for each why-not 

weighting vector; H and A are matrixes; c, b, lb, and ub are vectors. */ 
  1:  for each weighting vector wi  Wm do 
  2:     initialize the min-heap HP with all root entries of RT and count = 0  
  3:     while HP   do  
  4:        de-heap the top entry e of HP  
  5:        if e is a data point then 
  6:           count ++  
  7:           if count = k then 
  8:              add e to   
  9:              break  
10:        else   // e is an intermediate (i.e., a non-leaf) node  
11:           for each child entry ei  e do  
12:              insert ei into HP 
13:  set H, A, c, b, lb, and ub by using Wm, , and q  
14:  q′ = QuadProg(H, A, c, b, lb, ub)   // interior-point quadratic  

programming algorithm in [26]  
15:  return q′  

 

quadratic programming, whose time complexity is O(d3  L) [26]. 
Therefore, the total time complexity of MQP is O(|RT|  |Wm| + d3 
 L). The proof completes.                                                            

4.3 Modifying Wm and k  
Imagine that, if the computer q in Figure 1 has been put into 

production, changing attribute values might not be the best solu-
tion. Fortunately, as pointed out by Carpenter and Nakamoto [6], 
consumer preferences may actually be influenced by proper mar-
keting strategies, such as advertising, which is proved by the ex-
ample of Wal-Mart [1]. Hence, alternatively, Apple can influence 
customer to change their preferences, such that the computer q 
appears in customers’ wish list. To this end, we develop the sec-
ond solution to refine the original reverse top-k query by modify-
ing the customers’ preferences. Since customers’ preferences are 
application-dependent and the reverse top-k query studied in this 
paper involves two types of customers’ preferences, i.e., Wm and k, 
our second solution is to modify a why-not weighting vector set 
Wm and a parameter k.  

Firstly, we give the penalty model to quantify the total changes 
of Wm and k. We use ΔWm and Δk to measure the cost of the 
modification of Wm and k respectively, where  

            (3) 

It is worth noting that, there is a possibility that the modified k′ 
value may be smaller than the original k value. In this case, we set 
Δk to 0. For example, assume that (Wm, k = 6) is modified to (Wm', 
k' = 3). Since q belongs to the top-3 query result of every refined 
why-not weighting vector, it must also be in the corresponding 
top-6 query result. Consequently, it is unnecessary to increase the 
original k. In addition, ΔWm is just the sum of every why-not 
weighting vector penalty. In a word, we utilize the sum of ΔWm 
and Δk to capture the total change of customer preferences. Given 
the fact that the customers’ tolerances to the changes of Wm and k 
are different, we utilize two non-negative parameters, namely, α 
and β with (α + β = 1), to capture customers’ tolerance to the 
changes of k and Wm, respectively. Then, a normalized penalty 
model is defined as follows.  
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Here, Δkmax refers to the maximum value of Δk which can be 
derived by (k′max − k) with k′max calculated by Lemma 4 below.  

LEMMA 4. Given a set R = {r1, r2, …, rn}, where ri  R is the 
actual ranking of a query point q under the corresponding why-
not weighting vector   Wm , then k′max = max(r1, r2,…, rn).  

PROOF. Assume that we have a refined Wm′ and k′ with Wm′ = 
0, the corresponding k′ = max(r1, r2,…, rn). Any other possible 
refined Wm′′ and k′′ with Wm′′ > 0 must have its k′′ < max(r1, 
r2,…, rn) or it cannot be the optimal result. Consequently, k′max = 
max(r1, r2,…, rn), and the proof completes.                                  

As shown in Figure 1, the actual rankings of q under why-not 
weighting vectors  and  are 4 and 4 respectively, and thus, 
k′max = 4.  

Similarly,  refers to the maximum value of ΔWm, 

and it has been proven in [13] that . As 

, we have 

 . Based on the above 

analysis, we re-form the normalized penalty model below.  

     (4) 

Given the fact that customer preferences are application-
dependent, Equation (4) provides a reasonable estimation of the 
differences between customer preferences in terms of the reverse 
top-k query. Based on Equation (4), we formally define the 
problem of modifying Wm and k as follows.  

DEFINITION 9 (MODIFYING WM AND K). Given a d-dimensional 
dataset P, a positive integer k, a query point q, and a why-not 
weighting vector set Wm = { , , …, } (   Wm, q  
TOPk( )), the modification of Wm and k is to find Wm′ = { , 

, …, } and k′, such that (i)    Wm′, q  TOPk′( ); and 
(ii) the Penalty(Wm′, k′) is minimized.  

Take Figure 1 as an example again and assume that α = β = 0.5 
for simplicity. If we modify Kevin’s and Julia’s weighting vectors 
to  = (0.18, 0.82) and  = (0.75, 0.25) respectively, Kevin and 
Julia will appear in the reverse top-3 query result of q with 
Penalty = 0.121. Alternatively, we can modify k to k′ = 4 and 
remain the weighting vectors unchanged, Kevin and Julia will 
also appear in the reverse top-4 query result of q with Penalty = 
0.5. Based on Definition 9, the first modification is better.  

Since the function Penalty(Wm′, k') is not differentiable when k'  
= k, it is impossible to use a gradient descent based method to 
compute (Wm′, k′) with minimal cost. Another straightforward 
way is to find the optimal (Wm′, k′) from all the candidates. 
Although the total number of candidate (Wm′, k′) is infinite in an 
infinite weighting vector space, it is certain that only tuples (Wm′, 
k′) satisfying Lemma 5 are the candidate tuples for the final result.  

LEMMA 5. Given a why-not weighting vector set Wm = { , 
, …, }, a refined Wm′ = { , , …, } and k′, and a set 

R′ = {r1′, r2′, …, rn′} (ri′  R′ is the actual ranking of q under  
Wm′), if a tuple (Wm′, k′) is a candidate tuple, it holds that: (i) k′ = 
max(r1′, r2′, …, rn′); and (ii)  ri′  R′ (1  i  n ), there does not 
exist another weighting vector  under which the real ranking 
of q is ri′ and |   | < |   |.  

PROOF. First, assume that the statement (i) is not valid, i.e., an 
answer tuple (Wm′, k′) has k′ > max(r1′, r2′, …, rn′) or k′ < max(r1′, 
r2′, …, rn′). If k′ > max(r1′, r2′, …, rn′) = k′′, Penalty(Wm′, k′) > 
Penalty(Wm′, k′′), and hence, it cannot be the optimal answer. If k′ 
< max(r1′, r2′, …, rn′), then    Wm′, q  TOPk′( ), which 
contradicts with the statement (i) of Definition 9. Thus, our 
assumption is invalid. Second, assume that statement (ii) is 
invalid, i.e., for an answer tuple (Wm′, k′), there is a  with |   

| < |   | and meanwhile the actual ranking of q under  
being ri′. If |   | < |   |, then ΔWm′ is not minimal. 
Therefore, Penalty(Wm′, k′) is not minimum, and (Wm′, k′)  cannot 
be the final result, which contradicts with the condition of Lemma 
5. Hence, our assumption is invalid. The proof completes.            

According to Lemma 5, the qualified candidates Wm′ and k′ 
interact with each other, which can facilitate their search process. 
If we fix one parameter, the other one can be computed 
accordingly. Since the weighting vector space for Wm′ is infinite, 
it is impossible to fix Wm′. Consequently, we try to fix k′. Given a 
specified dataset and a query point, the range of k′ can be 
determined by the number of the points incomparable with q and 
the number of the points dominating q. Specifically, if a point p1 
dominates another point p2, it holds that, for every i  [1, …, d], 
p1[i] ≤ p2[i] and there exists at least one j  [1, …, d], p1[j] < p2[j]. 
If p1 neither dominates p2 nor is dominated by p2, we say that p1 is 
incomparable with p2. For instance, in Figure 2(a), the query point 
q is dominated by p1, and it is incomparable with p3. Given a d-
dimensional dataset P and a query point q, we can find all the 
points (denoted as D) that dominate q and all the points (denoted 
as I) that are incomparable with q. Thus, a possible ranking of q 
could be Rq = {(|D| + 1), (|D| + 2), …, (|D| + |I| + 1)}, which is 
also the range of k′.  

If we fix the query point q’s ranking ri with ri  Rq, for every 
why-not weighting vector , we can find its corresponding  
with the minimal |   | by utilizing the quadratic 
programming. After finding all these weighting vectors for each ri 
 Rq, we can get the optimal Wm′ and k′. However, for a single 
why-not weighting vector, if all rankings of q have to be 
considered, there are in total 2|I| quadratic programming problems 
in the worst case, as proved in [14]. Totally, for the entire why-
not weighting vector set Wm, it needs to solve |Wm|  2|I| quadratic 
programming problems, which is costly. Nonetheless, if we can 
find  that approximates the minimum |   |, it would save 
the search significantly even though it is not the exact answer. 
Hence, in the second solution, we trade the quality of the answer 
with the running time, and propose a sampling based algorithm, 
which finds an approximate optimal answer.  

The basic idea of the sampling-based algorithm is as follows. 
We first sample a certain number of weighting vectors from the 
sample space, and then, we use these sample weighting vectors to 
find (Wm′, k′) with minimum penalty. In particular, there are three 
issues we have to address: (i) how to get the high quality sample 
weighting vectors; (ii) how to decide a proper sample size; and (iii) 
how to use the sample weighting vectors to obtain (Wm′, k′) with 
minimum  penalty. Next, we discuss the three issues in detail.  
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First, how can we get the high quality sample weighting vectors 
that have a direct impact on the quality of the final answer? It is 
worth noting that, the full d-dimensional weighting vector space 
is the hyperplane  in which  (1 ≤ i ≤ d). 
However, if we take the whole weighting vector space, which is 
very big, as a sample space, the quality of sample weighting 
vectors may not be desirable. Hence, we have to narrow down the 
sample space. According to the statement (ii) of Lemma 5, for a 
fixed k′, the modified weighting vector   Wm′ has the mini-
mum |   | w.r.t.  Wm. Thus, we should sample the 
weighting vector that can approximate to the minimum |   |. 
As proved in [14], for a fixed k′, the weighting vector , which 
has the minimum |   | w.r.t. , exists in one of the 
hyperplanes formed by I and q. Specifically, for a point p  I, the 
hyperplane formed by p and q is: . Consequently, 

all the hyperplanes intersecting with  constitute the 
sample space.  

Second, how shall we decide an appropriate sample size? It is 
well known that, the bigger the sample size, the higher the quality 
of the result. Nonetheless, it is impossible to sample an infinite 
number of weighting vectors. A larger sample size increases the 
cost. Hence, in this paper, we take the sample size |S| as a user 
specified parameter, which can better meet users’ requirements.  

Third, how to use the sample weighting vectors to get (Wm′, k′) 
with the minimal penalty? There are two possible solutions. The 
first solution is, for every why-not weighting vector   Wm, to 
find a sample weighting vector  with minimum |   |, and 
then replace  with . After replacing all why-not weighting 
vectors, we can obtain a refined Wm′. The corresponding k′ can be 
computed according to Lemma 5(i). The second method is to 
select randomly |Wm| sample weighting vectors to replace Wm, and 
we then can get a candidate refined tuple (Wm′, k′). The optimal 
(Wm′, k′) can be found from the entire candidates.  

For the first solution, we can ensure that the refined Wm′ is 
optimal, while the total penalty of Wm′ and k′ may not be the 
minimum. For the second solution, if all candidate tuples are 
considered, there are in total  instances, whose 
computation cost could be very expensive. Thus, we present an 
efficient approach that only examines up to |S| instances, 
supported by Lemma 6.  

LEMMA 6. Given a candidate tuple (Wm′, k′), and a weighting 
vector  (the ranking of q under  is bigger than k′), if    
Wm′ such that | | < | | (  is the original why-not 
weighting vector w.r.t. ), there exist another candidate tuple 
(Wm′′, k′′), where Wm′′ contains .  

PROOF. If   Wm′ such that | | < | |, we can 
obtain a new Wm′′ from Wm′ by replacing all these  with , and 
its corresponding k′′. Although k′′ > k′, Wm′′ < Wm′. Thus, (Wm′′, 
k′′) is a candidate tuple for the final result including .                

According to Lemma 6, we can get the optimal refined Wm and 
k by examining the sample weighting vectors one by one. To be 
more specific, for every sample weighting vector, we compute its 
corresponding ranking of q. We also sort the whole sample 
weighting vectors in ascending order of the ranking of q. Next, we 
initialize a candidate tuple (Wm′, k′) to the first sample weighting 
vector and its corresponding ranking of q. For each remaining 
sample weighting vector , we examine whether it can contribute  

Algorithm 2 Modifying Wm and k (MWK) 
  Input: an R-tree RT on a set P of data points, a query point q, a  

parameter k, a why-not weighting vector set Wm, a sample size |S|  
  Output: Wm′ and k′  
  /* D is the set of points that dominate q; I is the set of points that are 

incomparable with q; HP is a min-heap; k′max is the maximal value of k′; 
S is the set of sample weighting vectors; CW is a candidate Wm′; Pmin is 
the penalty of the current optimal candidates Wm′ and k′. */  

  1:  initialize k′max =  and a min-heap HP =   
  2:  FindIncom (RT, q, HP, D, I)  
  3:  sample |S| weighting vectors from the hyperplanes formed by I and q, 

and add them to S 
  4:  for each   S do 
  5:     compute the ranking rsi of q based on D and I 
  6:  sort S in ascending order of rsi values  
  7:  for each weighting vector   Wm do 
  8:     compute the ranking ri of q based on D and I 
  9:     if k′max < ri then k′max = ri 
10:  initialize the CW with the first sample weighting vector in S  
11:  initialize Wm′ = Wm, k′ = k′max, and Pmin = Penalty(Wm′, k′)  
12:  for each remaining   S and its corresponding rsi do 
13:     if k′max < rsi then break   // Lemma 4  
14:     for each   CW and   Wm do  
15:        if |   | < |   | then  =   //updates CW using  
16:     if CW is updated then  
17:        if Penalty (CW, rsi) < Pmin then 
18:           Wm′ = CW, k′ = max(k, rsi), and Pmin = Penalty(Wm′, rsi)  
19:  return Wm′ and k′  
 

Function FindIncom (RT, q, HP, D, I)  
  Input: an R-tree RT on a dataset P, a query point q, a min-heap HP,  

two point sets D and I  
20:  initialize sets D = I =  and a min-heap HP =  
21:  insert all root entries of RT into HP  
22:  while HP   do 
23:     de-heap the top entry e of HP  
24:     if e is a data point then 
25:        if e dominates q then add e to D 
26:        else if e is not dominated by q then add e to I 
27:     else   // e is an intermediate node  
28:        for each child entry ei  e do 
29:           if ei is not dominated by q then insert ei into HP 

 

to the final result. Based on Lemma 6, if    Wm′, | | < 
| |, we replace all such  with  and get a new (Wm′′, k′′). 
Thereafter, we obtain some candidate tuples (Wm′, k′), and the one 
with the minimal penalty is the final answer.  

Based on the above discussion, we present our sampling based 
algorithm called MWK to modify Wm and k. The pseudo-code of 
MWK is shown in Algorithm 2. Initially, MWK invokes a 
function FindIncom that follows the branch-and-bound traversal 
to find the data point sets D and I (line 2), with its details depicted 
in lines 20-29 of Algorithm 2. Then, we sample |S| weighting 
vectors from the hyperplanes formed by I and q, maintained by S 
(line 3). For every sample weighting vector , the algorithm 
computes the ranking rsi of q, and then sorts vectors  in S based 
on ascending order of rsi (lines 4-6). Thereafter, the maximum 
value of k' is obtained (lines 7-9) for pruning later. MWK then 
examines, for each sample weighting vector , whether  can 
contribute to the final result based on Lemma 6, and then gets the 
tuple (Wm′, k′) with the minimum penalty (lines 12-18). Theorem 
2 below presents the time complexity of MWK algorithm.  

THEOREM 2. The time complexity of MWK algorithm is O(|RT| 
+ |S|  |Wm|), with |S| the cardinality of a sample weighting vector 
set and |Wm| the cardinality of a why-not weighting vector set.  
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PROOF. The time complexity of MWK is mainly determined by 
the computation of D and I as well as using the sample weighting 
vectors to get the optimal result. In the worst case, FindIncom 
has to traverse the whole R-tree RT to get D and I, with time 
complexity O(|RT|). In addition, the time complexity of using the 
sample weighting vectors to get the optimal results is determined 
by the cardinality of the why-not weighting vector set and the 
sample size, i.e., O(|S|  |Wm|). Hence, the total time complexity of 
MWK is O(|RT| + |S|  |Wm|), and the proof completes.                 

4.4 Modifying q, Wm, and k  
The two solutions proposed above can return the refined query 

with the minimum penalty, but there might be some cases where 
the returned penalty is still beyond the manufacturers’ or custom-
ers’ limits of acceptability. Therefore, manufacturers (e.g., Apple) 
need to reach a compromise between what customers want and 
they can offer. In other words, both manufacturers and customers 
should change their preferences to narrow the gap, which can be 
addressed through bargaining, e.g., manufacturers and customers 
collaborate in finding an optimal solution [13]. Hence, in this sub-
section, we propose the third solution to refine the reverse top-k 
query by modifying both manufacturers’ product (i.e., q) and cus-
tomers’ preferences (i.e., Wm and k).  

Firstly, we present the penalty model to quantify the modifica-
tions of q, Wm, and k. We use Δq defined in Equation (1) and 
Δ(Wm, k) defined in Equation (4) to measure the cost of modifying 
q and (Wm, k). Weighting parameters γ and λ (with γ + λ = 1) are 
introduced to capture a user’s tolerance to the changes of q and 
(Wm, k), respectively. Formally, the penalty model is defined in 
Equation (5), which is the sum of Penalty(k) and Penalty(Wm′, k') 
representing the penalty of manufactures and that of customers re-
spectively. Both Δq and Δ(Wm, k) have the values in the range of 
(0,1], and thus, there is no need to normalize them.  

(5) 

Note that, similar penalty functions have been used in industry, 
e.g., the sum score of the manufacturers and the customers for the 
final agreement, namely, joint outcome, is used to measure the 
bargaining solution [13], which further demonstrates that our pen-
alty function is practical. For example, in Figure 1, if we modify q, 

, and  to q′(3.8, 3.8), (0.135, 0.865), and (0.8, 0.2) re-
spectively,  and  become the reverse top-3 query result of q′ 
with penalty = 0.06 (γ = λ = 0.5). Based on Equation (5), we for-
mulate the problem of modifying q, Wm, and k as follows.  

DEFINITION 10 (MODIFYING q, WM, AND K). Given a d-
dimensional dataset P, a positive integer k, a query point q, and a 
why-not weighting vector set Wm = { , , …, } with    
Wm, q  TOPk( ), the modification of q, Wm, and k is to find q′, 
Wm′ = { , , …, }, and k′, such that (i)    Wm′, q′  
TOPk′( ), and (ii) Penalty(q′, Wm′, k′) is minimized.  

For the third solution, we need to get a new tuple (q′, Wm′, k′) 
whose penalty is minimized. There are two potential approaches. 
The first one is to find (Wm′, k′) and then determine the corre-
sponding q′. The second method is to find the candidate q′ and 
then the corresponding (Wm′, k′). From MWK algorithm presented 
in section 4.3, we know that the optimal (Wm′, k′) can be obtained 
only when the query point q is fixed. This is because the set I 
which is used for the sampling is dependent on q. Thus, we adopt 
the second approach in our third solution. Since there are infinite  
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Figure 6: Example of the sample space of q  

Algorithm 3 Modifying q, Wm, and k (MQWK)  
  Input: an R-tree RT on a set P of data points, a query point q,  

a parameter k, a why-not weighting vector set Wm,  sample sizes 
|S| and |Q| for the sample weighting vector and the sample query 
point  

  Output: q′, Wm′, and k′  
  /* Q is a set of sample query points; MinPenalty is the penalty of the  
      current optimal candidates q′, Wm′, and k′. */  
  1:  initialize a set Q =   
  2:  qmin = MQP(RT, q, k, Wm)  
  3:  Sample |Q| query points from the space determined by qmin and q,  
       and add them to Q  
  4:  initialize MinPenalty =  
  5:  for each query point qi  Q do  
  6:     (Wm′′, k′′) = MWK(RT, qi, k, Wm, |S|)  
  7:     if Penalty(qi, Wm′′, k′′) < MinPenalty then 
  8:        q′ = qi, Wm′ = Wm′′, and k′ = k′′  
  9:        MinPenalty = Penalty(q′, Wm′, k′)  
10:  return q′, Wm′, and k′  

 

candidate query points, it is impossible to evaluate all the poten-
tial candidates (q′, Wm′, k′). Hence, we again employ the sampling 
technique to modify q, Wm, and k. The basic idea is as follows. 
We first sample a set of candidate query points. For every sample 
query point q′, we use MWK algorithm to find the optimal (Wm′, 
k′). Finally, the tuple (q′, Wm′, k′) with the smallest penalty is re-
turned. In the sequel, we address issues: (i) how to sample query 
points, and (ii) how to invoke MWK repeatedly.  

For the first issue, we need to find out the sample space of q 
and its sample size. Recall that, according to Definition 7, if the 
query point falls into the safe region of q, the why-not weighting 
vectors must appear in the reverse top-k query result. Thus, if we 
sample a query point (e.g., q′) from the safe region, there is no 
need to modify (Wm, k), and the penalty of (q′, Wm, k) must be lar-
ger than that of (qmin, Wm, k), in which qmin is the result returned 
by the first solution. Therefore, (q′, Wm, k) cannot be the final re-
sult, and we should sample the query point out of the safe region. 
Furthermore, if we sample a query point (e.g., q′′) out of the safe 
region, the corresponding refined tuple (q′′, Wm′′, k′′) must satisfy 
Δ(Wm′′, k′′) > 0. The tuple (q′′, Wm′′, k′′) can be the optimal result 
only when |q′′  q| < |qmin  q|; otherwise, Penalty(q′′, Wm′′, k′′) > 
Penalty(qmin, Wm, k), and hence, it cannot be the final result. 
Therefore, we know that only the query point falling into the 
range [qmin, q] is the qualified sample query point. Thus, the sam-
ple space of q is SP(q) = {q′ | qmin < q′ < q}. Take Figure 6 as an 
example, qmin is returned by the first solution, and the shaded area 
formed by qmin and q is the sample space of q. In addition, the 
sample size of query points |Q| is also specified by users. For sim-
plicity, we assume that the sample sizes of weighting vectors 
(used in MWK) and |Q| are identical in our experiments.  

The second issue is the iterative call of MWK algorithm. Recall 
that, the first step of MWK algorithm is to find the points that are 
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incomparable with the query point. Our third solution needs to 
call MWK for each sample query point to get the candidate (q′, 
Wm′, k′), which requires traversing the R-tree |Q| times and hence 
incurs high cost accordingly. Thus, we employ the reuse tech-
nique to avoid repeated traversal of the R-tree. To this end, we 
use a heap to store the visited nodes for reusing unless they are 
expanded. Correspondingly, the function FindIncom needs to be 
revised as well. In particular, when FindIncom encounters a data 
point (lines 24-26 of Algorithm 2) or an intermediate node domi-
nated by q (lines 27-29 of Algorithm 2), it has to be preserved for 
the reuse later.  

Based on the above discussion, we present the algorithm called 
MQWK to modify q, Wm, and k. The pseudo-code of the algo-
rithm is depicted in Algorithm 3. First of all, MQWK uses MQP 
algorithm to get the minimal qmin (line 2). Then, it samples |Q| 
query points from the sample space determined by qmin and q, and 
adds them to the set Q (line 3). Next, for every sample query 
point q′, MQWK computes the corresponding optimal (Wm′, k′) 
using MWK algorithm (line 6). Finally, the tuple (q′, Wm′, k′) with 
the minimal penalty is returned (lines 7-10).  

Next, we analyze the time complexity of MQWK algorithm.  

THEOREM 3. The time complexity of MQWK algorithm is 
O(|RT|  |Wm| + d3  L + |Q|  (|RT| + |S|  |Wm|)).  

PROOF. The time complexity of MQWK consists of the 
computation of qmin and the iterative call of MWK. The time 
complexity of qmin computation is equal to that of MQP, i.e., 
O(|RT|  |Wm| + d3  L). The iterative call MWK takes O(|Q|  
(|RT| + |S|  |Wm|)). Therefore, the total time complexity of 
MQWK is O(|RT|  |Wm| + d3  L + |Q|  (|RT| + |S|  |Wm|)). The 
proof completes.                                                                            

5. EXPERIMENTAL EVALUATION  
In this section, we evaluate the effectiveness and efficiency of 

our proposed algorithms via extensive experiments, using both 
real and synthetic datasets.  

5.1 Experimental Setup  
In our experiments, we use two real datasets, i.e., NBA and 

Household. NBA contains 17K 13-dimensional points, where each 
point corresponds to the statistics of a NBA player in 13 
categories such as the number of points scored, rebounds, assists, 
etc. Household is a 127K 6-dimensional dataset. Each tuple of the 
dataset represents the percentage of an American family’s annual 
income spent on six types of expenditures (e.g., gas, electricity). 
We also create two synthetic datasets, i.e., Independent and Anti-
correlated. In Independent dataset, all attribute values are 
generated independently using a uniform distribution; and Anti-
correlated dataset denotes an environment in which points good 
in one dimension are bad in one or all of the other dimension(s).  

We study the performance of the presented algorithms under 
various parameters, including dimensionality, dataset cardinality, 
k, actual ranking of q under Wm, the cardinality |Wm| of a why-not 
weighting vector set, and the sample size. The ranges of the 
parameters and their default values are summarized in Table 1, 
which follows [14, 31]. Note that, in every experiment, only one 
factor varies, whereas others are fixed to their default values. The 
main performance metrics contain total running time (in seconds) 
and penalty. It is worth noting that, we fix α = β = γ = λ = 0.5 
when computing the penalty of the refined query. All experiments 
presented in this paper are conducted on a Windows PC with 2.8  

Table 1. Parameter ranges and default values  

 

GHz CPU and 4 GB main memory. Each dataset is indexed by an 
R-tree, where the page size is set to 4096 bytes. All algorithms 
proposed in the paper are implemented in C++.  

5.2 Performance Study 
First, we investigate the impact of dimensionality d on the 

algorithms. We utilize synthetic datasets, where k = 10, |P| = 
100K, |Wm| = 1, sample size is 800, actual ranking of q under Wm 
is 101 and d is in the range [2, 5], and report the efficiency of dif-
ferent algorithms in Figure 7, where each digit listed in every dia-
gram refers to the penalty of one corresponding algorithm at a 
particular setting. In general, the performance of three algorithms 
degrades with the growth of dimensionality. This is because all 
three algorithms need to traverse the R-tree that has a poor 
efficiency in a high dimensional space, resulting in the 
degradation of three algorithms. Moreover, for MQP and MQWK, 
the quadratic programming takes more time in finding the optimal 
q' as d grows, which also leads to the degradation of MQP and 
MQWK. It is also observed that, all three algorithms return the 
answers with small penalty. However, the penalty changes in a 
relatively unstable trend. The reason is that, the penalty is only 
affected by the sample size, and other parameters have no 
influence on it.  

Second, we vary the dataset cardinality |P| from 10K to 1000K, 
and verify its effect on the algorithms using synthetic datasets, as 
shown in Figure 8. As expected, the total running time of three 
algorithms ascends as |P| grows. Nevertheless, the penalties of 
MQP, MWK, and MQWK are small. This is because the larger 
the dataset cardinality is, the bigger the R-tree is. Thus, three 
algorithms need to traverse more R-tree nodes with the growth of 
|P|, incurring longer total running time. Hence, our algorithms 
might not be efficient for huge datasets.  

Third, we explore the influence of k on three algorithms, and 
report the results in Figure 9 using both real and synthetic datasets. 
It is observed that, all the algorithms degrade as k increases. The 
reason is that, k'max ascends as k grows, and thus, MWK takes 
more time in getting the optimal tuple (Wm′, k′) using sample 
weighting vectors, which results in the degradation of MWK. For 
MQP algorithm, if the value of k becomes larger, the cost of 
finding the k-th point also ascends, and hence, the performance 
degrades. Since MQWK integrates MQP and MWK, it degrades 
as well. Again, the penalties of three algorithms are still small.  

Then, we inspect the impact of actual ranking of q under the 
why-not weighting vector set Wm by fixing d at 3, |P| at 100K, 
sample size at 800, |Wm| = 1, and k = 10. Figure 10 depicts the 
results on both real and synthetic datasets. Clearly, the total 
running time of three algorithms increases while the penalties are 
small. For MWK algorithm, when the actual ranking of q under 
Wm grows, k'max also ascends, incurring longer total running time. 
For MQP algorithm, if the ranking of q is low, L (defined in 
Theorem 1) becomes larger, and thus, the quadratic programming 
takes more time in finding q'. Based on the above two reasons,  

Parameter Range Default
Dimensionality d 2, 3, 4, 5 3 
Dataset cardinality |P| 10K, 50K, 100K, 500K, 1000K 100K 
k 10, 20, 30, 40, 50 10 
Actual ranking of q under Wm 11, 101, 1001, 10001 101 
|Wm| 1, 2, 3, 4, 5 1 
Sample size 100, 200, 400, 800, 1600 800 
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Figure 7: WQRTQ cost vs. dimensionality                                   Figure 8: WQRTQ cost vs. dataset cardinality  
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Figure 9: WQRTQ cost vs. k  
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Figure 10: WQRTQ cost vs. actual ranking under Wm  

MQWK also degrades.  
Next, we explore the influence of the cardinality |Wm| of a why-

not weighting vector set on the algorithms, and Figure 11 plots 
the results. We observe that MQP, MWK, and MQWK can find 
the optimal solution with small penalty. Again, the total running 
time of all algorithms increases gradually when |Wm| ascends. The 
degradation of MWK is mainly caused by the second phase of the 
algorithm, i.e., using the sample weighting vectors to find the 
approximate optimal answer. The performance descent of MQP is 
due to the computation of the top k-th point for more why-not 
weighting vectors. Similarly, MQWK degrades as well.  

Finally, we evaluate the effect of sample size on the algorithms. 
To this end, we vary sample size from 100 to 1600 and fix other 
parameters to their default values. Figure 12 shows the results. 
The total running time of algorithms MQWK and MWK grows 
when sample size ascends, although the growth is relatively mild 
for MWK. This is because the algorithms take more time to 
examine the samples. Moreover, it is obvious that the penalty of 
algorithms MQWK and MWK drops as sample size grows. The 
reason behind is that the bigger the sample size, the higher the 
quality result. Note that, the penalty sometimes decreases very 
fast with increasing sample size, and sometimes it does not 
change. There are two potential reasons. First, it is caused by the 
randomness since the sample weighting vectors are randomly 
sampled from the sample space. Second, the different dataset 
distributions may also lead to this phenomenon. In addition, the 
total running time and the penalty of MQP algorithm do not 

change with the growth of sample size, because MQP dose not 
use the sampling technique.  

In summary, from all the experimental results, we can conclude 
that our proposed algorithms, viz., MQP, MWK, and MQWK, are 
efficient, and scale well under a variety of parameters.  

6. CONCLUSIONS  
In this paper, for the first time, we study the problem of why- 

not questions on reverse top-k queries, which aims at explaining 
why the why-not weighting vector(s) is/are not in the results of 
reverse top-k queries. We propose a unified framework called 
WQRTQ to answer why-not questions on both monochromatic 
and bichromatic reverse top-k queries. WQRTQ consists of three 
solutions, i.e., (i) modifying a query point q, (ii) modifying a 
why-not weighting vector set Wm and a parameter k, and (iii) 
modifying q, Wm, and k. Furthermore, we utilize the quadratic 
programming, sampling method, and reuse technique to boost the 
performance of our algorithms. Extensive experiments with both 
real and synthetic data sets demonstrate the effectiveness and 
efficiency of our presented algorithms. In the future, we would 
like to explore why-not questions on reverse top-k queries over 
larger datasets.  
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