
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2015

Answering Why-not Questions on Reverse Top-k
Queries
Yunjun GAO
Zhejiang University

Qing LIU
Zhejiang University

Gang CHEN
Zhejiang University

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Linlin ZHOU
Zhejiang University

DOI: https://doi.org/10.14778/2752939.2752943

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
GAO, Yunjun; LIU, Qing; CHEN, Gang; ZHENG, Baihua; and ZHOU, Linlin. Answering Why-not Questions on Reverse Top-k
Queries. (2015). Proceedings of the VLDB Endowment: 41st VLDB 2015, August 31 - September 4, Kohala Coast, Hawaii. 8, (7), 738-749.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/2895

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/35456675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.14778/2752939.2752943
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F2895&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Answering Why-not Questions on Reverse Top-k Queries
Yunjun Gao

†,
 * Qing Liu

† Gang Chen
† Baihua Zheng

‡ Linlin Zhou
†

†
 College of Computer Science, Zhejiang University, Hangzhou, China

* Innovation Joint Research Center for Cyber-Physical-Society System, Zhejiang University, Hangzhou, China
‡

 School of Information Systems, Singapore Management University, Singapore
†

 {gaoyj, liuq, cg, zlinlin}@zju.edu.cn ‡
 bhzheng@smu.edu.sg

ABSTRACT
Why-not questions, which aim to seek clarifications on the miss-
ing tuples for query results, have recently received considerable
attention from the database community. In this paper, we system-
atically explore why-not questions on reverse top-k queries, ow-
ing to its importance in multi-criteria decision making. Given an
initial reverse top-k query and a missing/why-not weighting vec-
tor set Wm that is absent from the query result, why-not questions
on reverse top-k queries explain why Wm does not appear in the
query result and provide suggestions on how to refine the initial
query with minimum penalty to include Wm in the refined query
result. We first formalize why-not questions on reverse top-k que-
ries and reveal their semantics, and then propose a unified frame-
work called WQRTQ to answer why-not questions on both mono-
chromatic and bichromatic reverse top-k queries. Our framework
offers three solutions, namely, (i) modifying a query point q, (ii)
modifying a why-not weighting vector set Wm and a parameter k,
and (iii) modifying q, Wm, and k simultaneously, to cater for dif-
ferent application scenarios. Extensive experimental evaluation
using both real and synthetic data sets verifies the effectiveness
and efficiency of the presented algorithms.

1. INTRODUCTION
In the past decades, the capability of database has been

significantly improved, which enables us to process a variety of
complex queries on heterogeneous and humongous datasets.
However, the usability of database is far from meeting user needs.
As pointed out by Jagadish et al. [22], failing to produce expected
results without any explanation is one of the pain points of current
database systems that frustrate many users. If a user encounters
such cases, intuitively, he/she may pose a why-not question to
find out why his/her expected tuples do not appear in the query
result. If the database system can provide such clarifications, it
helps the users understand initial query better and know how to
change the query, hence improving the usability of database.

Since the concept of “why-not” was first proposed by Chapman
and Jagadish [8], many efforts have been made to answer why-not
questions on different queries. Existing work can be classified
into three categories. The first category finds the manipulations
which are responsible for excluding users’ desired tuples. The
typical examples include answering users’ why-not questions on
Select-Project-Join (SPJ) queries [8] and Select-Project-Join-Union-

Dell AppleHP Sony AcerIBM ASUS NECcomputer p1

price
heat

2
1

p2

6
3

p3

1
9

p4

9
3

p5

7
5

p6

5
8

p7

3
7

q

4
4

costomer

Julia ()
Tony ()
Anna ()
Kevin ()

w[price] w[heat]

0.9
0.5
0.3
0.1

0.1
0.5
0.7
0.9

(a) The information of computers (b) The customer preferences

computer id p1

score for Kevin 1.1
p2 p3 p4 p5 p6 p7 q

score for Julia
score for Tony
score for Anna

1.9
1.5
1.3

3.3

5.7
4.5
3.9

8.2

1.8
5

6.6
3.6

8.4
6

4.8
5.2

6.8
6

5.6
7.7

5.3
6.5
7.1

6.6

3.4
5

5.8
4

4
4
4

(c) The scores of computers

Figure 1: Example of reverse top-k queries

Aggregation (SPJUA) queries [5]. The second category provides a
set of data modifications (e.g., insertion, update, etc.) so that the
missing tuples can present in the query result. This category also
mainly focuses on SPJ queries [20, 38] and SPJUA queries [16,
17]. The third category revises the initial query to generate a
refined query whose result contains the user specified missing
tuples. Why-not questions on Select-Project-Join-Aggregation
(SPJA) queries [30], top-k queries [14], reverse skyline queries
[21], and image search [4] all belong to this category. Nonetheless,
why-not questions are query-dependent, and none of existing
work can answer why-not questions on reverse top-k queries,
which is an important and essential building block for multi-
criteria decision making. Therefore, in this paper, we study the
problem of answering why-not questions on reverse top-k queries
by following the third category.

Before presenting the reverse top-k query, we first introduce
the top-k query. Given a dataset P, a positive integer k, and a
preference function f, a top-k query retrieves the k points in P
with the best scores based on f. The points returned by the top-k
query match users’ preferences best and help users to avoid
receiving an overwhelming result set. Based on the top-k query,
Vlachou et al. [31] propose the reverse top-k query from the
manufacturers’ perspective, which has a wide range of
applications such as market analysis [24, 31, 33, 34] and location-
based services [32]. Given a dataset P, a positive integer k, a
preference function set W (in terms of weighting vectors), and a
query point q, a reverse top-k query returns the preference
functions in W whose top-k query results contain q. Figure 1
illustrates an example of reverse top-k queries. Figure 1(a) records
the price and heat production for each computer brand (e.g.,
Apple, DELL, etc.), and Figure 1(b) lists the customer preferences
in terms of weighting vectors by assigning a weight to every
attribute. Without loss of generality, we adopt a linear preference
function, i.e., f(, p) = w[heat]  p.heat + w[price]  p.price, to
compute the score of a point p w.r.t. a weighting vector . Figure
1(c) depicts the score of every computer for different customers,
and we assume that smaller values are more preferable. Based on
Figure 1(c), if Apple issues a reverse top-3 (k = 3) query at a

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain permis-
sion prior to any use beyond those covered by the license. Contact copyright
holder by emailing info@vldb.org. Articles from this volume were invited to
present their results at the 41st International Conference on Very Large Data
Bases, August 31st – September 4th 2015, Kohala Coast, Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 2150-8097/15/03.

738

query point/computer q, Anna and Tony are retrieved as they rank
the query computer q as one of their top-3 options. In other words,
reverse top-k queries can help Apple to identify the potential
customers who are more likely to be interested in its product(s),
and thus to assess the impact of product(s) in the market.

Unfortunately, reverse top-k queries only return query results to
users without any explanation. If the query result does not contain
some expected tuples, it may disappoint users. Consider the
aforementioned example again. Suppose Kevin and Julia are
Apple’s existing customers, however, they are not in the result of
the reverse top-3 query of q. Apple may feel frustrated and ask
“Why Kevin and Julia do not take Apple as one of their choices?
What actions should be taken to win them back?” If the database
system can offer such clarifications, it will help Apple to retain
existing customers as well as to attract more new customers, and
hence to increase/maintain its market share. In view of this, for
the first time, we explore why-not questions on reverse top-k
queries, which could be an important and useful tool for market
analysis. Given an original reverse top-k query and a why-not
weighting vector set Wm that is missing from the query result,
why-not questions on reverse top-k queries explain why Wm is not
in the query result, and suggest how to refine the original query
with minimum penalty to include Wm in the refined query result.

In order to win back missing customers, Apple might (i) change
the computer’s parameters; (ii) influence and convince the
customers to change their preferences; and (iii) change both the
computer’s parameters and the customers’ preferences.
Correspondingly, in this paper, we develop a unified framework
called WQRTQ, which provides three solutions to cater for
different application scenarios, to answer why-not questions on
reverse top-k queries. Specifically, the first solution is to modify a
query point q using the quadratic programming. The second
solution is a sampling based method, which modifies a weighting
vector set Wm and a parameter k. The third solution is to modify q,
Wm, and k simultaneously, which integrates the quadratic
programming, sampling method, and reuse technique. It is worth
mentioning that all three solutions can return the refined query
with minimum penalty, and can support why-not questions on
both monochromatic and bichromatic reverse top-k queries.
Extensive experiments using both real and synthetic datasets
show that our proposed algorithms can produce clarifications and
suggest changes efficiently. To sum up, the key contributions of
this paper are summarized as follows.
 We solve why-not questions on reverse top-k queries. To

our knowledge, there is no prior work on this problem.
 We present a unified framework WQRTQ, including three

different approaches, to answer why-not questions on both
monochromatic and bichromatic reverse top-k queries.

 We conduct extensive experiments with both real and syn-
thetic datasets to demonstrate the effectiveness and effi-
ciency of our proposed algorithms.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 presents problem formulation. Section 4
describes our framework and solutions to answer why-not ques-
tions on reverse top-k queries. Section 5 reports experimental re-
sults and our findings. Finally, Section 6 concludes the paper with
some directions for future work.

2. RELATED WORK
In this Section, we review previous work on top-k queries,

reverse top-k queries, data provenance, and why-not questions.

Top-k queries. Top-k query has received much attention in the
database community due to its usefulness. Existing algorithms
include convex hull based algorithm Onion [7], view based
algorithms LPTA [11] and PREFER [18, 19], layered index based
algorithm AppIR [36], branch-and-bound algorithm BRS [29],
dominant graph based top-k query algorithm [39], and top-k query
algorithms using cache [35]. It is worth mentioning that, BRS is
I/O optimal.

Reverse top-k queries. Vlachou et al. [31] firstly introduce the
reverse top-k query and consider its two variants, namely,
monochromatic and bichromatic versions. To efficiently answer
the monochromatic reverse top-k query, Vlachou et al. [31] and
Chester et al. [9] present several algorithms in a 2-dimensional
(2D) space. The bichromatic top-k query algorithms include RTA,
GRTA, and BBR [31, 34]. In addition, Yu et al. [37] develop a
dynamic index to support reverse top-k queries, and Ge et al. [12]
employ all top-k queries to boost the reverse top-k query. More
recently, reverse top-k queries are widely studied in market
analysis [24, 33], location-based services [32], and uncertain
circumstances [23]. It is worth noting that, all the current reverse
top-k queries only return the results without any explanation, and
thus, the existing techniques designed for reverse top-k queries
cannot answer corresponding why-not questions efficiently.

Data provenance. Data provenance explores the derivation of
a piece of data that is in a query result [28]. It can help users
understand why data tuples exist within a result set. Current ap-
proaches for computing data provenance include non-annotation
method [10] and annotation approach [3]. Nonetheless, it cannot
be applied to clarify the missing tuples in the query result set.

Why-not questions. Chapman and Jagadish [8] first propose
the concept of “why-not”. Since then, lots of efforts have been put
into answering why-not questions. The existing approaches can be
classified into three categories: (i) manipulation identification [5,
8], (ii) database modification [16, 17, 20, 38], and (iii) query
refinement [4, 14, 21, 30]. In addition, Herschel [15] tries to
identify hybrid why-not explanations for SQL queries, which
combines manipulation identification and query refinement.
Meliou et al. [25] aim to find the causality and responsibility for
the non-answers of the query. Here, causality is the cause of non-
answers to the query, and responsibility captures the notion of
degree of causality.

It is noteworthy that our work follows the query refinement
model to answer why-not questions on reverse top-k queries, i.e.,
we modify the parameter(s) and/or a query point and/or why-not
point(s) of an original query to include the missing tuples in a
refined query result. However, since why-not questions are query-
dependent, different queries require different query refinement,
which explains why existing query refinement techniques cannot
be applied directly in our problem and justifies our main
contribution, that is to design proper query refinement approaches
to support why-not questions on reverse top-k queries.

3. PROBLEM FORMULATION
In this section, we formalize why-not questions on reverse top-

k queries, including both monochromatic reverse top-k queries
and bichromatic reverse top-k queries. Given a d-dimensional
dataset P, a point p  P is represented in the form of d-tuple vec-
tor {p[1], …, p[d]}, where p[i] is the i-th dimensional value of p.
The top-k query ranks/orders the points based on a user specified
scoring function f that aggregates the individual score of a point

739

into an overall scoring value. In this paper, we utilize a linear
scoring function (or weighted sum function) as with [14, 31, 34].
Specifically, in a data space, each dimension i is assigned a
weight w[i] indicating the relative importance of the i-th dimen-
sion for the query, captured by a weighting vector = {w[1], …,

w[d]} in which w[i]  0 (1 ≤ i ≤ d) and . Then,

 captures the aggregated score of any

data point p ( P) with respect to . Without loss of generality,
we assume that smaller scoring values are preferable in this paper.
Next, we formally define the top-k query below.

DEFINITION 1 (TOP-K QUERY). Given a d-dimensional dataset
P, a positive integer k, and a weighting vector , a top-k query
returns a set of points, denoted as TOPk(), such that (i)
TOPk()  P; (ii) |TOPk()| = k; and (iii) p1  TOPk(), p2
 P TOPk(), it holds that f(, p1) ≤ f(, p2).

Take the dataset P shown in Figure 1 as an example. We have
TOP3() = {p1, p2, p4}. It is worth mentioning that, if the points
share the same score at ranking k-th, only one of them is ran-
domly returned. Based on the definition of the top-k query, we
formulate reverse top-k queries, for both monochromatic version
and bichromatic version by following [31].

DEFINITION 2 (MONOCHROMATIC REVERSE TOP-K QUERY)
[31]. Given a d-dimensional dataset P, a positive integer k, and a
query point q, a monochromatic reverse top-k (MRTOPk) query
retrieves a collection of d-dimensional weighting vectors, denoted
as MRTOPk(q), such that   MRTOPk(q), it holds that p 
TOPk(), f(, q) ≤ f(, p).

In other words, a MRTOPk query returns all the weighting vec-
tors whose top-k query results include q. For example, Figure 2(a)
is the corresponding data distribution of Figure 1(a) without con-
sidering the specified customer preferences. As observed, q is in-
side the top-3 query result for a weighting vector (1/6, 5/6)
since only p1 and p2 have smaller scoring values than q w.r.t. .
Similarly, q is also within the top-3 query result for a weighting
vector (3/4, 1/4). Hence, and are located in
MRTOP3(q). Actually, all the weighting vectors with the angles
between and (i.e., the segment BC in Figure 2(b)) be-
long to MRTOP3(q). Different from the MRTOPk query, the
bichromatic reverse top-k query takes two datasets into considera-
tion, which is formalized as follows.

DEFINITION 3 (BICHROMATIC REVERSE TOP-K QUERY) [31].
Given a d-dimensional dataset P, a d-dimensional weighting vec-
tor set W, a query point q, and a positive integer k, a bichromatic
reverse top-k (BRTOPk) query retrieves a set of weighting vectors,
denoted as BRTOPk(q), such that (i) BRTOPk(q)  W, and (ii) 

  BRTOPk(q), it holds that p TOPk(), f(, q) ≤ f(, p).

A BRTOPk query finds the weighting vectors in W whose top-k
query results contain q. Back to Figure 1 again. As TOP3() =
{p1, p2, q}, belongs to BRTOP3(q). Finally, we can obtain
BRTOP3(q) = { , }. It is worth noting that, the only differ-
ence between BRTOPk and MRTOPk queries is that the former
has the knowledge of user preferences, whereas the latter does not.
As mentioned earlier, why-not questions are query-dependent,
and thus, the solutions for why-not questions on different queries
are usually different. Consequently, based on Definition 2 and
Definition 3, we formulate why-not questions on MRTOPk and
BRTOPk queries, respectively.

q

2

108642

10

8

6

4

o price

heat

p1

p3

p2 p4

p5

p6
p7

1

w[price]

w[heat]

13/4

1/4

5/6

1/6

B(1/6, 5/6)

C(3/4, 1/4)
D(4/5, 1/5)

A(1/10, 9/10)

o

(a) The dataset distribution (b) The weighting space

Figure 2: Example of a monochromatic reverse top-k query

DEFINITION 4 (WHY-NOT QUESTIONS ON MRTOPK QUERIES).
Given an original MRTOPk query of a query point q on a dataset
P, and a why-not/missing weighting vector set Wm that is excluded
from MRTOPk(q), why-not questions on MRTOPk queries
(WQMQ) answer (i) why   Wm,  MRTOPk(q); and (ii)
how to refine the initial MRTOPk query with minimum penalty
such that   Wm,  MRTOPk(q).

DEFINITION 5 (WHY-NOT QUESTIONS ON BRTOPK QUERIES).
Given an original BRTOPk query of a query point q on a dataset
P and a weighting vector set W, and a why-not/missing weighting
vector set Wm  W  BRTOPk(q), why-not questions on BRTOPk
queries (WQBQ) answer (i) why   Wm,  BRTOPk(q);
and (ii) how to revise the initial BRTOPk query with minimum
penalty such that   Wm,  BRTOPk(q).

Note that, why-not weighting vectors for WQMQ might be any
weighting vector that is not inside MRTOPk(q), while why-not
weighting vectors for WQBQ only come from W  BRTOPk(q).
For instance, in Figure 2(b), weighting vectors (1/10, 9/10) and
(4/5, 1/5) do not appear in MRTOP3(q), and hence can be used as
why-not weighting vectors for why-not questions on MRTOP3
queries. On the other hand, in Figure 1, W  BRTOP3(q) = { ,

}, thus, we can issue why-not questions on BRTOP3 queries
only using and .

Based on Definition 4 and Definition 5, we need to answer
why-not questions on MRTOPk/BRTOPk queries from two as-
pects, i.e., (i) giving the explanations of why why-not weighting
vectors do not appear in the results of MRTOPk/BRTOPk queries,
and (ii) providing the suggestions on how to refine the original
MRTOPk/BRTOPk queries with minimum penalty for including
the why-not weighting vectors.

For the first aspect, if a why-not weighting vector does not
present in the result of the MRTOPk/BRTOPk query, there must
be more than k points whose scores are smaller than that of q. All
those points are responsible for excluding the why-not weighting
vector from the query result. Hence, they form the answer for
the first aspect. For example, for in Figure 1, there are three
points, i.e., p1, p2, and p4, with scores smaller than that of q, and
thus, is not inside the reverse top-3 query result. It is not hard
to derive the first aspect of answering why-not questions on
MRTOPk/BRTOPk queries as we only need to issue a top-k query
for every missing why-not weighting vector. We can use existing
progressive top-k query algorithms [19, 29, 39] or all top-k query
algorithms [12], which can report incrementally every ranking ob-
ject one-by-one. The process proceeds until the query point q is
contained in the result, and then returns the result to users.

The second aspect of answering why-not questions is to revise
the original queries with minimum penalties such that the refined

740

(a) why-not questions on MRTOPk queries

(b) why-not questions on BRTOPk queries
Figure 3: Illustrations of why-not questions

query results include the missing why-not weighting vector(s).
We find that the essence of the second aspect of answering why-
not questions on MRTOPk and BRTOPk queries is identical. For
why-not questions on MRTOPk queries, the target is to make
every why-not weighting vector appear in MRTOPk(q), i.e., 
Wm, MRTOPk(q). Based on Definition 2, MRTOPk(q)
→q  TOPk() and  MRTOPk(q) → q  TOPk(). Hence,
why-not questions on MRTOPk queries can be re-phrased as: for
each why-not weighting vector with q  TOPk(), how to re-
fine the original query with minimum penalty such that q 
TOPk(), as shown in Figure 3(a). Similarly, according to Defi-
nition 3, we can also re-phrase why-not questions on BRTOPk
queries, as depicted in Figure 3(b). From Figure 3, it is observed
that, these two problems can be transformed to a single problem,
i.e.,   Wm having q  TOPk(), how to refine the original
query with minimum penalty such that q  TOPk().

It is worth mentioning that the transformed problem is inher-
ently different from the problem of why-not questions on top-k
queries [14], i.e., given a why-not point set Pm  P and a weight-
ing vector having pi  Pm, pi  TOPk(), how to refine the
original query with minimum penalty such that pi  TOPk().
The difference is two-fold. First, these two problems have totally
different inputs. The inputs of our problem contain a why-not
weighting vector set that captures the preferences of customers
and a query point q representing a product of the manufacturer,
while why-not questions on top-k queries take as inputs a why-not
point set that denotes the attributes of products and a weighting
vector representing a customer preference. Second, they serve dif-
ferent purposes. Our problem tries to make the product q as one of
the top-k choices for the set of a given customer preferences, but
why-not questions on top-k queries try to make all the specified
products appear in the top-k result of a given weighting vector.

A straightforward way to tackle our problem is to take q as a
why-not point and take a why-not weighting vector as a specified
weighting vector, and then use the algorithms for why-not ques-
tions on top-k queries to refine the query. After solving all the
why-not weighting vectors, q can be contained in the top-k result
of every why-not weighting vector. Nevertheless, although the
penalty of each refining is minimized, the total penalty of this
method might not be the minimum. This is because the refining of
the query needs to modify why-not weighting vectors, which has
an impact on each other, and thus, it cannot be refined separately.
Therefore, the algorithms for why-not questions on top-k queries
cannot be applied to handle our problem. Based on the above
analysis, we develop a unified framework to answer why-not
questions on both MRTOPk and BRTOPk queries. Moreover, this
paper focuses only on the second aspect of answering why-not
questions as it is computationally challenging.

Modify why-not
weighting vectors set
Wm and parameter k

Modify query
point q

Modify query point q,
why-not weighting vectors

set Wm, and parameter k

Refined Reverse Top-k Queries

Why-not weighting
vectors set Wm

Monochromatic reverse top-k queries
 or Bichromatic reverse top-k queries

W
Q

R
TQ

In
pu

ts

Figure 4: Framework of WQRTQ

4. ANSWERING WHY-NOT QUESTIONS
In this section, we propose a unified framework to answer why-

not questions on reverse top-k queries, and then detail the frame-
work, which contains three solutions based on the modification of
different parameters.

4.1 Framework Overview
Based on the analysis performed in Section 3, we present a uni-

fied framework called WQRTQ (i.e., Why-not Questions on Re-
verse Top-k Queries), which can answer why-not questions on
both monochromatic and bichromatic reverse top-k queries. As il-
lustrated in Figure 4, WQRTQ takes as inputs an original mono-
chromatic/bichromatic reverse top-k query and the corresponding
why-not weighting vector set Wm, and returns the refined reverse
top-k query with minimum penalty to users. Specifically, it con-
sists of the following three solutions:

(1) Modifying q. The first solution is to modify a query point q
into q′, which is to be detailed in Section 4.2. To this end, we in-
troduce the concept of safe region (see Definition 7). As long as
the query point q′ falls into the safe region, the why-not weighting
vector set Wm will appear in the reverse top-k query result of q′.
After getting the safe region, we use the quadratic programming
to get q′ with the minimum change w.r.t. q.

(2) Modifying Wm and k. The second solution, to be presented
in Section 4.3, is to modify a why-not weighting vector set Wm
and a parameter k into Wm′ and k′ respectively, such that the modi-
fied Wm′ belongs to the result of the reverse top-k′ query of q. To-
wards this, we present a sampling-based method to obtain Wm′ and
k′ having the minimum penalty. In particular, we sample a certain
number of weighting vectors that may contribute to the final re-
sult, and then, the optimal Wm′ and k′ are returned according to the
sample weighting vectors.

(3) Modifying q, Wm, and k. Our third solution is to modify a
query point q, a why-not weighting vector set Wm, and a parame-
ter k simultaneously, as to be detailed in Section 4.4. After refin-
ing, the modified weighting vector set Wm′ is contained in the re-
verse top-k′ query result of q′. This solution utilizes the techniques
of quadratic programming, sampling method, and reuse. To be
more specific, we first fix the range of a query point and sample a
certain number of query points. Then, for every sample query
point, we employ the second solution to get corresponding opti-
mal (Wm′, k′). Finally, the tuple (q′, Wm′, k′) with the smallest pen-
alty is returned.

4.2 Modifying q
Intuitively, if Apple finds some customers are not interested in

its new computer, it can adjust some computer parameters before
putting it into production so that the modified computer becomes
one of customers’ top-k options. In view of this, we propose the

741

q

2

108642

10

8

6

4

o
p1

p3

p2 p4

p5

p6
p7

heat

price

q

2

108642

10

8

6

4

o
p1

p3

p2

p4

p5

p6p7

SR(q)

q'

q''

SR'(q)

heat

price

A

B

(a) Illustration of Lemma 1 (b) Illustration of Lemma 3

Figure 5: Example of Lemma 1 and Lemma 3

first solution to refine the original reverse top-k query, namely,
modifying a query point q, as formally defined below.

DEFINITION 6 (MODIFYING q). Given a d-dimensional dataset
P, a positive integer k, a query point q, and a why-not weighting
vector set Wm with   Wm, q  TOPk(), the modification of
a query point q is to find q′ such that (i)   Wm, q′  TOPk
(); (ii) i  [1, d], q′[i]  q[i]; and (iii) the penalty of q′,
defined in Equation (1), is minimum.

 (1)

It is worth mentioning that, we use Equation (1) to quantify the
modification of the product, which is also employed by Padma-
nabhan et al. [27] to measure quality distortation for the upgraded
product. For example, in Figure 1, Kevin and Julia are not in the
reverse top-3 result of q. If Apple modifies computer’s parameter
q(4, 4) to q′(3, 2.5) or q′′(2.5, 3.5), the new computer q′ or q′′ be-
comes one of the top-3 options for both Kevin and Julia.
According to Definition 6, q′′ is more preferable as Penalty(q′) =
0.318 > Penalty(q′′) = 0.279. Note we only consider decreasing
q[i]’s value. Since (i) the scoring function is monotonic, (ii) a
smaller scoring value is ranked higher, and (iii) a smaller penalty
is preferable, there is no need to increase q[i]’s value. As an
example, assume that q(4, 4) in Figure 1 is modified to q′(5, 1).
We can always find another query point (e.g., q′′(4, 1) in this case)
that has smaller penalty and meanwhile generate smaller scoring
value. In other words, the search space for q′ can be shrunk to [0,
q]. Furthermore, to get a qualified q′, we find that it is possible to
locate a region within [0, q], namely, q’s safe region, within
which the modified query point q′ definitely falls.

DEFINITION 7 (SAFE REGION). Given a d-dimensional dataset
P, a positive integer k, a query point q, and a why-not weighting
vector set Wm, a region in the data space is said to be safe for q
(i.e., q’s safe region), denoted as SR(q), such that q′  SR(q)
and   Wm, q′  TOPk().

In other words, if q is modified to q' by moving the query point
q anywhere within SR(q), all the why-not weighting vectors will
appear in a given reverse top-k query result. It is straightforward
that, if we can obtain such SR(q), the answer of our first solution
is just the point in SR(q) that is closest to q. In the sequel, we ex-
plain how to get SR(q). In a d-dimensional space, given a weight-
ing vector and a point p, we can get a hyperplane, denoted as
H(, p), which is perpendicular to and contains the point p.
Then, we have the lemma below.

LEMMA 1. Given a hyperplane H(, p) formed by and p, (i)
if a point p' lies on H(, p), f(, p′) = f(, p); (ii) if a point p''

lies below H(, p), f(, p'′) < f(, p); and (iii) if a point p''' lies
above H(, p), f(, p''′) > f(, p).

PROOF. The proof is intuitive, and thus, it is skipped because of
space limitation. 

According to Lemma 1, all the points lying on/below/above the
hyperplane H(, p) have the same/smaller/bigger scoring value
as/than p w.r.t. . Figure 5(a) explains Lemma 1 in a 2D space,
where the hyperplane H(, p3) is formed by and p3 in Figure
1. Given points p1 below H(, p3), p5 above H(, p3) and p7 on
H(, p3), we have f(, p1) < f(, p3), f(, p5) > f(, p3), and
f(, p7) = f(, p3). These findings are also consistent with the
data listed in Figure 1(c). Based on Lemma 1, the concept of half
space is stated below.

DEFINITION 8 (HALF SPACE). Given a hyperplane H(, p), the
half space formed by and p, denoted as HS(, p), satisfies that
p′  HS(, p), f(, p′) ≤ f(, p).

In other words, HS(, p) includes all the points lying on and
below the hyperplane H(, p). Figure 5(a) illustrates the half
space HS(, p3) formed by and p3, i.e., the shaded area in
Figure 5(a). Based on Lemma 1 and Definition 8, we present the
following lemmas to explain the construction of q’s safe region.

LEMMA 2. Given a weighting vector , and a point p which is
the top k-th point of , if q′  HS(, p), q′  TOPk().

PROOF. If q′  HS(, p), f(, q′) ≤ f(, p) according to
Definition 8. Since p is the top k-th point of , q′  TOPk()
based on Definition 1. The proof completes. 

LEMMA 3. Given a why-not weighting vector set Wm = { ,
, …, }, and a set  = {p1, p2, …, pn} of points (pi   is

the top k-th point w.r.t. its corresponding why-not weighting
vector  Wm), the safe region of a query point q is the over-
lapping of all the half spaces formed by and pi, i.e., SR(q) = ∩1

 i  n HS(, pi).

PROOF. The proof is straightforward according to Lemma 2
and Definition 8, and hence, it is omitted for space saving. 

Figure 5(b) depicts an example of Lemma 3, which utilizes the
dataset shown in Figure 1. Assume that and are two why-
not weighting vectors, the corresponding top 3-rd points for
and are p4 and p7, respectively. Therefore, the safe region of q
is the overlapping of HS(, p4) and HS(, p7), i.e., the shaded
area (i.e., quadrilateral AoBq′) in Figure 5(b).

It is worth mentioning that the safe region formed by top (k1)-
th points (denoted as SR'(q)) is a subset of SR(q), but SR'(q) does
not contain the optimal q'. This is because the hyperplane formed
by top (k1)-th points is always below the hyperplane formed by
top k-th points, and hence, SR'(q) is further to q than SR(q). As
shown in Figure 5(b), SR'(q) is the corresponding safe region
formed by top 2-nd points of and , i.e., p2 and p1. Obvi-
ously, SR'(q) does not contain q'.

After getting the safe region of q, we can find the optimal query
point q′ with the minimum cost w.r.t. q. Take Figure 5(b) as an
example again, point q′ is the desirable refined query point. How-
ever, it is found that the safe region is a convex polygon bounded
by hyperplanes. Thus, the above safe region computation does not
scale well with the dimensionality because computing the inter-
section of half spaces becomes increasingly complex and prohibi-
tively expensive in high dimensions [2]. Actually, finding the op-

742

timal query point q′ with the minimum cost w.r.t. q is an optimi-
zation problem. Moreover, the penalty function of q′ (i.e., Equa-
tion (1)) can be seen as a quadratic function. In light of this, we
employ the quadric programming to find the optimal q′ without
computing the exact safe region. Specifically, the quadric pro-
gramming can be represented in the following form:

 (2)

It derives the optimal x that minimizes f(x) under the
constraints and , in which f(x) is an objective
function; H and A are matrixes; x, c, b, lb, and ub are vectors; and
superscript T denotes transposition. Our problem is actually an
optimization problem, as the goal is to obtain q' with the smallest
penalty. Hence, we utilize the quadric programming to obtain the
optimal q'. For simplicity, in this paper, we assume that the
objective function for our problem is

, where H = diag(2, 2, …, 2) is a d  d
diagonal matrix with all eigenvalues being 2, and c = (-2q[1], -
2q[2], …, -2q[d]) is a d-dimensional vector.

In addition, given a why-not weighting vector set Wm = { ,
, …, } and a point set  = {p1, p2, …, pn} (pi   is the top

k-th point of  Wm), the optimal (modified) q′ falling into the
safe region must satisfy that,   Wm and  pi  , f(, q′) 
f(, pi) according to Definition 7, which can be represented by

 in Equation (2), where A defined below is a n  d matrix
and . As mentioned
earlier, the varying range of q is [0, q]. Consequently,
corresponds to .

Based on the above analysis, we propose the algorithm called
MQP to modify the query point q, whose pseudo-code is
presented in Algorithm 1. First, we adopt the branch-and-bound
method to find the top k-th point for every why-not weighting
vector (lines 1-12). Then, we use the interior-point quadratic
programming algorithm QuadProg [26], which is based on a
logarithmic barrier function method, to get the optimal refined
query point q′ (lines 13-14). In particular, QuadProg iteratively
finds an approximate Newton direction associated with the
Karush-Kuhn-Tucker system of equations which characterizes a
solution of the logarithmic barrier function problem. Due to space
limitation, the details of QuadProg are omitted here. The time
complexity of MQP is given in Theorem 1 below.

THEOREM 1. The time complexity of MQP algorithm is O(|RT|
 |Wm| + d3  L), in which |RT| is the cardinality of R-tree, d is the
dimensionality, and

 with  = max(f(, p1), f(, p2), …, f(, pn)) and
 = max(q[1], q[2], …, q[d]).

PROOF. MQP algorithm consists of two phases. The first phase
is to find the top k-th point for each why-not weighting vector. In
the worst case, it needs to traverse the whole R-tree |Wm| times,
whose time complexity is O(|RT|  |Wm|). The second phase is the

Algorithm 1 Modifying query point q (MQP)
 Input: an R-tree RT on a set P of data points, a query point q,

a parameter k, a why-not weighting vector set Wm
 Output: q′
 /* HP is a min-heap;  is a set storing the top k-th point for each why-not

weighting vector; H and A are matrixes; c, b, lb, and ub are vectors. */
 1: for each weighting vector wi  Wm do
 2: initialize the min-heap HP with all root entries of RT and count = 0
 3: while HP   do
 4: de-heap the top entry e of HP
 5: if e is a data point then
 6: count ++
 7: if count = k then
 8: add e to 
 9: break
10: else // e is an intermediate (i.e., a non-leaf) node
11: for each child entry ei  e do
12: insert ei into HP
13: set H, A, c, b, lb, and ub by using Wm, , and q
14: q′ = QuadProg(H, A, c, b, lb, ub) // interior-point quadratic

programming algorithm in [26]
15: return q′

quadratic programming, whose time complexity is O(d3  L) [26].
Therefore, the total time complexity of MQP is O(|RT|  |Wm| + d3
 L). The proof completes. 

4.3 Modifying Wm and k
Imagine that, if the computer q in Figure 1 has been put into

production, changing attribute values might not be the best solu-
tion. Fortunately, as pointed out by Carpenter and Nakamoto [6],
consumer preferences may actually be influenced by proper mar-
keting strategies, such as advertising, which is proved by the ex-
ample of Wal-Mart [1]. Hence, alternatively, Apple can influence
customer to change their preferences, such that the computer q
appears in customers’ wish list. To this end, we develop the sec-
ond solution to refine the original reverse top-k query by modify-
ing the customers’ preferences. Since customers’ preferences are
application-dependent and the reverse top-k query studied in this
paper involves two types of customers’ preferences, i.e., Wm and k,
our second solution is to modify a why-not weighting vector set
Wm and a parameter k.

Firstly, we give the penalty model to quantify the total changes
of Wm and k. We use ΔWm and Δk to measure the cost of the
modification of Wm and k respectively, where

 (3)

It is worth noting that, there is a possibility that the modified k′
value may be smaller than the original k value. In this case, we set
Δk to 0. For example, assume that (Wm, k = 6) is modified to (Wm',
k' = 3). Since q belongs to the top-3 query result of every refined
why-not weighting vector, it must also be in the corresponding
top-6 query result. Consequently, it is unnecessary to increase the
original k. In addition, ΔWm is just the sum of every why-not
weighting vector penalty. In a word, we utilize the sum of ΔWm
and Δk to capture the total change of customer preferences. Given
the fact that the customers’ tolerances to the changes of Wm and k
are different, we utilize two non-negative parameters, namely, α
and β with (α + β = 1), to capture customers’ tolerance to the
changes of k and Wm, respectively. Then, a normalized penalty
model is defined as follows.

743

Here, Δkmax refers to the maximum value of Δk which can be
derived by (k′max − k) with k′max calculated by Lemma 4 below.

LEMMA 4. Given a set R = {r1, r2, …, rn}, where ri  R is the
actual ranking of a query point q under the corresponding why-
not weighting vector  Wm , then k′max = max(r1, r2,…, rn).

PROOF. Assume that we have a refined Wm′ and k′ with Wm′ =
0, the corresponding k′ = max(r1, r2,…, rn). Any other possible
refined Wm′′ and k′′ with Wm′′ > 0 must have its k′′ < max(r1,
r2,…, rn) or it cannot be the optimal result. Consequently, k′max =
max(r1, r2,…, rn), and the proof completes. 

As shown in Figure 1, the actual rankings of q under why-not
weighting vectors and are 4 and 4 respectively, and thus,
k′max = 4.

Similarly, refers to the maximum value of ΔWm,

and it has been proven in [13] that . As

, we have

 . Based on the above

analysis, we re-form the normalized penalty model below.

 (4)

Given the fact that customer preferences are application-
dependent, Equation (4) provides a reasonable estimation of the
differences between customer preferences in terms of the reverse
top-k query. Based on Equation (4), we formally define the
problem of modifying Wm and k as follows.

DEFINITION 9 (MODIFYING WM AND K). Given a d-dimensional
dataset P, a positive integer k, a query point q, and a why-not
weighting vector set Wm = { , , …, } (  Wm, q 
TOPk()), the modification of Wm and k is to find Wm′ = { ,

, …, } and k′, such that (i)   Wm′, q  TOPk′(); and
(ii) the Penalty(Wm′, k′) is minimized.

Take Figure 1 as an example again and assume that α = β = 0.5
for simplicity. If we modify Kevin’s and Julia’s weighting vectors
to = (0.18, 0.82) and = (0.75, 0.25) respectively, Kevin and
Julia will appear in the reverse top-3 query result of q with
Penalty = 0.121. Alternatively, we can modify k to k′ = 4 and
remain the weighting vectors unchanged, Kevin and Julia will
also appear in the reverse top-4 query result of q with Penalty =
0.5. Based on Definition 9, the first modification is better.

Since the function Penalty(Wm′, k') is not differentiable when k'
= k, it is impossible to use a gradient descent based method to
compute (Wm′, k′) with minimal cost. Another straightforward
way is to find the optimal (Wm′, k′) from all the candidates.
Although the total number of candidate (Wm′, k′) is infinite in an
infinite weighting vector space, it is certain that only tuples (Wm′,
k′) satisfying Lemma 5 are the candidate tuples for the final result.

LEMMA 5. Given a why-not weighting vector set Wm = { ,
, …, }, a refined Wm′ = { , , …, } and k′, and a set

R′ = {r1′, r2′, …, rn′} (ri′  R′ is the actual ranking of q under 
Wm′), if a tuple (Wm′, k′) is a candidate tuple, it holds that: (i) k′ =
max(r1′, r2′, …, rn′); and (ii)  ri′  R′ (1  i  n), there does not
exist another weighting vector under which the real ranking
of q is ri′ and |  | < |  |.

PROOF. First, assume that the statement (i) is not valid, i.e., an
answer tuple (Wm′, k′) has k′ > max(r1′, r2′, …, rn′) or k′ < max(r1′,
r2′, …, rn′). If k′ > max(r1′, r2′, …, rn′) = k′′, Penalty(Wm′, k′) >
Penalty(Wm′, k′′), and hence, it cannot be the optimal answer. If k′
< max(r1′, r2′, …, rn′), then   Wm′, q  TOPk′(), which
contradicts with the statement (i) of Definition 9. Thus, our
assumption is invalid. Second, assume that statement (ii) is
invalid, i.e., for an answer tuple (Wm′, k′), there is a with | 

| < |  | and meanwhile the actual ranking of q under
being ri′. If |  | < |  |, then ΔWm′ is not minimal.
Therefore, Penalty(Wm′, k′) is not minimum, and (Wm′, k′) cannot
be the final result, which contradicts with the condition of Lemma
5. Hence, our assumption is invalid. The proof completes. 

According to Lemma 5, the qualified candidates Wm′ and k′
interact with each other, which can facilitate their search process.
If we fix one parameter, the other one can be computed
accordingly. Since the weighting vector space for Wm′ is infinite,
it is impossible to fix Wm′. Consequently, we try to fix k′. Given a
specified dataset and a query point, the range of k′ can be
determined by the number of the points incomparable with q and
the number of the points dominating q. Specifically, if a point p1
dominates another point p2, it holds that, for every i  [1, …, d],
p1[i] ≤ p2[i] and there exists at least one j  [1, …, d], p1[j] < p2[j].
If p1 neither dominates p2 nor is dominated by p2, we say that p1 is
incomparable with p2. For instance, in Figure 2(a), the query point
q is dominated by p1, and it is incomparable with p3. Given a d-
dimensional dataset P and a query point q, we can find all the
points (denoted as D) that dominate q and all the points (denoted
as I) that are incomparable with q. Thus, a possible ranking of q
could be Rq = {(|D| + 1), (|D| + 2), …, (|D| + |I| + 1)}, which is
also the range of k′.

If we fix the query point q’s ranking ri with ri  Rq, for every
why-not weighting vector , we can find its corresponding
with the minimal |  | by utilizing the quadratic
programming. After finding all these weighting vectors for each ri
 Rq, we can get the optimal Wm′ and k′. However, for a single
why-not weighting vector, if all rankings of q have to be
considered, there are in total 2|I| quadratic programming problems
in the worst case, as proved in [14]. Totally, for the entire why-
not weighting vector set Wm, it needs to solve |Wm|  2|I| quadratic
programming problems, which is costly. Nonetheless, if we can
find that approximates the minimum |  |, it would save
the search significantly even though it is not the exact answer.
Hence, in the second solution, we trade the quality of the answer
with the running time, and propose a sampling based algorithm,
which finds an approximate optimal answer.

The basic idea of the sampling-based algorithm is as follows.
We first sample a certain number of weighting vectors from the
sample space, and then, we use these sample weighting vectors to
find (Wm′, k′) with minimum penalty. In particular, there are three
issues we have to address: (i) how to get the high quality sample
weighting vectors; (ii) how to decide a proper sample size; and (iii)
how to use the sample weighting vectors to obtain (Wm′, k′) with
minimum penalty. Next, we discuss the three issues in detail.

744

First, how can we get the high quality sample weighting vectors
that have a direct impact on the quality of the final answer? It is
worth noting that, the full d-dimensional weighting vector space
is the hyperplane in which (1 ≤ i ≤ d).
However, if we take the whole weighting vector space, which is
very big, as a sample space, the quality of sample weighting
vectors may not be desirable. Hence, we have to narrow down the
sample space. According to the statement (ii) of Lemma 5, for a
fixed k′, the modified weighting vector  Wm′ has the mini-
mum |  | w.r.t.  Wm. Thus, we should sample the
weighting vector that can approximate to the minimum |  |.
As proved in [14], for a fixed k′, the weighting vector , which
has the minimum |  | w.r.t. , exists in one of the
hyperplanes formed by I and q. Specifically, for a point p  I, the
hyperplane formed by p and q is: . Consequently,

all the hyperplanes intersecting with constitute the
sample space.

Second, how shall we decide an appropriate sample size? It is
well known that, the bigger the sample size, the higher the quality
of the result. Nonetheless, it is impossible to sample an infinite
number of weighting vectors. A larger sample size increases the
cost. Hence, in this paper, we take the sample size |S| as a user
specified parameter, which can better meet users’ requirements.

Third, how to use the sample weighting vectors to get (Wm′, k′)
with the minimal penalty? There are two possible solutions. The
first solution is, for every why-not weighting vector  Wm, to
find a sample weighting vector with minimum |  |, and
then replace with . After replacing all why-not weighting
vectors, we can obtain a refined Wm′. The corresponding k′ can be
computed according to Lemma 5(i). The second method is to
select randomly |Wm| sample weighting vectors to replace Wm, and
we then can get a candidate refined tuple (Wm′, k′). The optimal
(Wm′, k′) can be found from the entire candidates.

For the first solution, we can ensure that the refined Wm′ is
optimal, while the total penalty of Wm′ and k′ may not be the
minimum. For the second solution, if all candidate tuples are
considered, there are in total instances, whose
computation cost could be very expensive. Thus, we present an
efficient approach that only examines up to |S| instances,
supported by Lemma 6.

LEMMA 6. Given a candidate tuple (Wm′, k′), and a weighting
vector (the ranking of q under is bigger than k′), if  
Wm′ such that | | < | | (is the original why-not
weighting vector w.r.t.), there exist another candidate tuple
(Wm′′, k′′), where Wm′′ contains .

PROOF. If  Wm′ such that | | < | |, we can
obtain a new Wm′′ from Wm′ by replacing all these with , and
its corresponding k′′. Although k′′ > k′, Wm′′ < Wm′. Thus, (Wm′′,
k′′) is a candidate tuple for the final result including . 

According to Lemma 6, we can get the optimal refined Wm and
k by examining the sample weighting vectors one by one. To be
more specific, for every sample weighting vector, we compute its
corresponding ranking of q. We also sort the whole sample
weighting vectors in ascending order of the ranking of q. Next, we
initialize a candidate tuple (Wm′, k′) to the first sample weighting
vector and its corresponding ranking of q. For each remaining
sample weighting vector , we examine whether it can contribute

Algorithm 2 Modifying Wm and k (MWK)
 Input: an R-tree RT on a set P of data points, a query point q, a

parameter k, a why-not weighting vector set Wm, a sample size |S|
 Output: Wm′ and k′
 /* D is the set of points that dominate q; I is the set of points that are

incomparable with q; HP is a min-heap; k′max is the maximal value of k′;
S is the set of sample weighting vectors; CW is a candidate Wm′; Pmin is
the penalty of the current optimal candidates Wm′ and k′. */

 1: initialize k′max =  and a min-heap HP = 
 2: FindIncom (RT, q, HP, D, I)
 3: sample |S| weighting vectors from the hyperplanes formed by I and q,

and add them to S
 4: for each  S do
 5: compute the ranking rsi of q based on D and I
 6: sort S in ascending order of rsi values
 7: for each weighting vector  Wm do
 8: compute the ranking ri of q based on D and I
 9: if k′max < ri then k′max = ri
10: initialize the CW with the first sample weighting vector in S
11: initialize Wm′ = Wm, k′ = k′max, and Pmin = Penalty(Wm′, k′)
12: for each remaining  S and its corresponding rsi do
13: if k′max < rsi then break // Lemma 4
14: for each  CW and  Wm do
15: if |  | < |  | then = //updates CW using
16: if CW is updated then
17: if Penalty (CW, rsi) < Pmin then
18: Wm′ = CW, k′ = max(k, rsi), and Pmin = Penalty(Wm′, rsi)
19: return Wm′ and k′

Function FindIncom (RT, q, HP, D, I)
 Input: an R-tree RT on a dataset P, a query point q, a min-heap HP,

two point sets D and I
20: initialize sets D = I =  and a min-heap HP = 
21: insert all root entries of RT into HP
22: while HP   do
23: de-heap the top entry e of HP
24: if e is a data point then
25: if e dominates q then add e to D
26: else if e is not dominated by q then add e to I
27: else // e is an intermediate node
28: for each child entry ei  e do
29: if ei is not dominated by q then insert ei into HP

to the final result. Based on Lemma 6, if   Wm′, | | <
| |, we replace all such with and get a new (Wm′′, k′′).
Thereafter, we obtain some candidate tuples (Wm′, k′), and the one
with the minimal penalty is the final answer.

Based on the above discussion, we present our sampling based
algorithm called MWK to modify Wm and k. The pseudo-code of
MWK is shown in Algorithm 2. Initially, MWK invokes a
function FindIncom that follows the branch-and-bound traversal
to find the data point sets D and I (line 2), with its details depicted
in lines 20-29 of Algorithm 2. Then, we sample |S| weighting
vectors from the hyperplanes formed by I and q, maintained by S
(line 3). For every sample weighting vector , the algorithm
computes the ranking rsi of q, and then sorts vectors in S based
on ascending order of rsi (lines 4-6). Thereafter, the maximum
value of k' is obtained (lines 7-9) for pruning later. MWK then
examines, for each sample weighting vector , whether can
contribute to the final result based on Lemma 6, and then gets the
tuple (Wm′, k′) with the minimum penalty (lines 12-18). Theorem
2 below presents the time complexity of MWK algorithm.

THEOREM 2. The time complexity of MWK algorithm is O(|RT|
+ |S|  |Wm|), with |S| the cardinality of a sample weighting vector
set and |Wm| the cardinality of a why-not weighting vector set.

745

PROOF. The time complexity of MWK is mainly determined by
the computation of D and I as well as using the sample weighting
vectors to get the optimal result. In the worst case, FindIncom
has to traverse the whole R-tree RT to get D and I, with time
complexity O(|RT|). In addition, the time complexity of using the
sample weighting vectors to get the optimal results is determined
by the cardinality of the why-not weighting vector set and the
sample size, i.e., O(|S|  |Wm|). Hence, the total time complexity of
MWK is O(|RT| + |S|  |Wm|), and the proof completes. 

4.4 Modifying q, Wm, and k
The two solutions proposed above can return the refined query

with the minimum penalty, but there might be some cases where
the returned penalty is still beyond the manufacturers’ or custom-
ers’ limits of acceptability. Therefore, manufacturers (e.g., Apple)
need to reach a compromise between what customers want and
they can offer. In other words, both manufacturers and customers
should change their preferences to narrow the gap, which can be
addressed through bargaining, e.g., manufacturers and customers
collaborate in finding an optimal solution [13]. Hence, in this sub-
section, we propose the third solution to refine the reverse top-k
query by modifying both manufacturers’ product (i.e., q) and cus-
tomers’ preferences (i.e., Wm and k).

Firstly, we present the penalty model to quantify the modifica-
tions of q, Wm, and k. We use Δq defined in Equation (1) and
Δ(Wm, k) defined in Equation (4) to measure the cost of modifying
q and (Wm, k). Weighting parameters γ and λ (with γ + λ = 1) are
introduced to capture a user’s tolerance to the changes of q and
(Wm, k), respectively. Formally, the penalty model is defined in
Equation (5), which is the sum of Penalty(k) and Penalty(Wm′, k')
representing the penalty of manufactures and that of customers re-
spectively. Both Δq and Δ(Wm, k) have the values in the range of
(0,1], and thus, there is no need to normalize them.

(5)

Note that, similar penalty functions have been used in industry,
e.g., the sum score of the manufacturers and the customers for the
final agreement, namely, joint outcome, is used to measure the
bargaining solution [13], which further demonstrates that our pen-
alty function is practical. For example, in Figure 1, if we modify q,

, and to q′(3.8, 3.8), (0.135, 0.865), and (0.8, 0.2) re-
spectively, and become the reverse top-3 query result of q′
with penalty = 0.06 (γ = λ = 0.5). Based on Equation (5), we for-
mulate the problem of modifying q, Wm, and k as follows.

DEFINITION 10 (MODIFYING q, WM, AND K). Given a d-
dimensional dataset P, a positive integer k, a query point q, and a
why-not weighting vector set Wm = { , , …, } with  
Wm, q  TOPk(), the modification of q, Wm, and k is to find q′,
Wm′ = { , , …, }, and k′, such that (i)   Wm′, q′ 
TOPk′(), and (ii) Penalty(q′, Wm′, k′) is minimized.

For the third solution, we need to get a new tuple (q′, Wm′, k′)
whose penalty is minimized. There are two potential approaches.
The first one is to find (Wm′, k′) and then determine the corre-
sponding q′. The second method is to find the candidate q′ and
then the corresponding (Wm′, k′). From MWK algorithm presented
in section 4.3, we know that the optimal (Wm′, k′) can be obtained
only when the query point q is fixed. This is because the set I
which is used for the sampling is dependent on q. Thus, we adopt
the second approach in our third solution. Since there are infinite

q

2

108642

10

8

6

4

o
p1

p3

p2 p4

p5

p6p7

qmin

SP(q)

heat

price

Figure 6: Example of the sample space of q

Algorithm 3 Modifying q, Wm, and k (MQWK)
 Input: an R-tree RT on a set P of data points, a query point q,

a parameter k, a why-not weighting vector set Wm, sample sizes
|S| and |Q| for the sample weighting vector and the sample query
point

 Output: q′, Wm′, and k′
 /* Q is a set of sample query points; MinPenalty is the penalty of the
 current optimal candidates q′, Wm′, and k′. */
 1: initialize a set Q = 
 2: qmin = MQP(RT, q, k, Wm)
 3: Sample |Q| query points from the space determined by qmin and q,
 and add them to Q
 4: initialize MinPenalty =
 5: for each query point qi  Q do
 6: (Wm′′, k′′) = MWK(RT, qi, k, Wm, |S|)
 7: if Penalty(qi, Wm′′, k′′) < MinPenalty then
 8: q′ = qi, Wm′ = Wm′′, and k′ = k′′
 9: MinPenalty = Penalty(q′, Wm′, k′)
10: return q′, Wm′, and k′

candidate query points, it is impossible to evaluate all the poten-
tial candidates (q′, Wm′, k′). Hence, we again employ the sampling
technique to modify q, Wm, and k. The basic idea is as follows.
We first sample a set of candidate query points. For every sample
query point q′, we use MWK algorithm to find the optimal (Wm′,
k′). Finally, the tuple (q′, Wm′, k′) with the smallest penalty is re-
turned. In the sequel, we address issues: (i) how to sample query
points, and (ii) how to invoke MWK repeatedly.

For the first issue, we need to find out the sample space of q
and its sample size. Recall that, according to Definition 7, if the
query point falls into the safe region of q, the why-not weighting
vectors must appear in the reverse top-k query result. Thus, if we
sample a query point (e.g., q′) from the safe region, there is no
need to modify (Wm, k), and the penalty of (q′, Wm, k) must be lar-
ger than that of (qmin, Wm, k), in which qmin is the result returned
by the first solution. Therefore, (q′, Wm, k) cannot be the final re-
sult, and we should sample the query point out of the safe region.
Furthermore, if we sample a query point (e.g., q′′) out of the safe
region, the corresponding refined tuple (q′′, Wm′′, k′′) must satisfy
Δ(Wm′′, k′′) > 0. The tuple (q′′, Wm′′, k′′) can be the optimal result
only when |q′′  q| < |qmin  q|; otherwise, Penalty(q′′, Wm′′, k′′) >
Penalty(qmin, Wm, k), and hence, it cannot be the final result.
Therefore, we know that only the query point falling into the
range [qmin, q] is the qualified sample query point. Thus, the sam-
ple space of q is SP(q) = {q′ | qmin < q′ < q}. Take Figure 6 as an
example, qmin is returned by the first solution, and the shaded area
formed by qmin and q is the sample space of q. In addition, the
sample size of query points |Q| is also specified by users. For sim-
plicity, we assume that the sample sizes of weighting vectors
(used in MWK) and |Q| are identical in our experiments.

The second issue is the iterative call of MWK algorithm. Recall
that, the first step of MWK algorithm is to find the points that are

746

incomparable with the query point. Our third solution needs to
call MWK for each sample query point to get the candidate (q′,
Wm′, k′), which requires traversing the R-tree |Q| times and hence
incurs high cost accordingly. Thus, we employ the reuse tech-
nique to avoid repeated traversal of the R-tree. To this end, we
use a heap to store the visited nodes for reusing unless they are
expanded. Correspondingly, the function FindIncom needs to be
revised as well. In particular, when FindIncom encounters a data
point (lines 24-26 of Algorithm 2) or an intermediate node domi-
nated by q (lines 27-29 of Algorithm 2), it has to be preserved for
the reuse later.

Based on the above discussion, we present the algorithm called
MQWK to modify q, Wm, and k. The pseudo-code of the algo-
rithm is depicted in Algorithm 3. First of all, MQWK uses MQP
algorithm to get the minimal qmin (line 2). Then, it samples |Q|
query points from the sample space determined by qmin and q, and
adds them to the set Q (line 3). Next, for every sample query
point q′, MQWK computes the corresponding optimal (Wm′, k′)
using MWK algorithm (line 6). Finally, the tuple (q′, Wm′, k′) with
the minimal penalty is returned (lines 7-10).

Next, we analyze the time complexity of MQWK algorithm.

THEOREM 3. The time complexity of MQWK algorithm is
O(|RT|  |Wm| + d3  L + |Q|  (|RT| + |S|  |Wm|)).

PROOF. The time complexity of MQWK consists of the
computation of qmin and the iterative call of MWK. The time
complexity of qmin computation is equal to that of MQP, i.e.,
O(|RT|  |Wm| + d3  L). The iterative call MWK takes O(|Q| 
(|RT| + |S|  |Wm|)). Therefore, the total time complexity of
MQWK is O(|RT|  |Wm| + d3  L + |Q|  (|RT| + |S|  |Wm|)). The
proof completes. 

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness and efficiency of

our proposed algorithms via extensive experiments, using both
real and synthetic datasets.

5.1 Experimental Setup
In our experiments, we use two real datasets, i.e., NBA and

Household. NBA contains 17K 13-dimensional points, where each
point corresponds to the statistics of a NBA player in 13
categories such as the number of points scored, rebounds, assists,
etc. Household is a 127K 6-dimensional dataset. Each tuple of the
dataset represents the percentage of an American family’s annual
income spent on six types of expenditures (e.g., gas, electricity).
We also create two synthetic datasets, i.e., Independent and Anti-
correlated. In Independent dataset, all attribute values are
generated independently using a uniform distribution; and Anti-
correlated dataset denotes an environment in which points good
in one dimension are bad in one or all of the other dimension(s).

We study the performance of the presented algorithms under
various parameters, including dimensionality, dataset cardinality,
k, actual ranking of q under Wm, the cardinality |Wm| of a why-not
weighting vector set, and the sample size. The ranges of the
parameters and their default values are summarized in Table 1,
which follows [14, 31]. Note that, in every experiment, only one
factor varies, whereas others are fixed to their default values. The
main performance metrics contain total running time (in seconds)
and penalty. It is worth noting that, we fix α = β = γ = λ = 0.5
when computing the penalty of the refined query. All experiments
presented in this paper are conducted on a Windows PC with 2.8

Table 1. Parameter ranges and default values

GHz CPU and 4 GB main memory. Each dataset is indexed by an
R-tree, where the page size is set to 4096 bytes. All algorithms
proposed in the paper are implemented in C++.

5.2 Performance Study
First, we investigate the impact of dimensionality d on the

algorithms. We utilize synthetic datasets, where k = 10, |P| =
100K, |Wm| = 1, sample size is 800, actual ranking of q under Wm
is 101 and d is in the range [2, 5], and report the efficiency of dif-
ferent algorithms in Figure 7, where each digit listed in every dia-
gram refers to the penalty of one corresponding algorithm at a
particular setting. In general, the performance of three algorithms
degrades with the growth of dimensionality. This is because all
three algorithms need to traverse the R-tree that has a poor
efficiency in a high dimensional space, resulting in the
degradation of three algorithms. Moreover, for MQP and MQWK,
the quadratic programming takes more time in finding the optimal
q' as d grows, which also leads to the degradation of MQP and
MQWK. It is also observed that, all three algorithms return the
answers with small penalty. However, the penalty changes in a
relatively unstable trend. The reason is that, the penalty is only
affected by the sample size, and other parameters have no
influence on it.

Second, we vary the dataset cardinality |P| from 10K to 1000K,
and verify its effect on the algorithms using synthetic datasets, as
shown in Figure 8. As expected, the total running time of three
algorithms ascends as |P| grows. Nevertheless, the penalties of
MQP, MWK, and MQWK are small. This is because the larger
the dataset cardinality is, the bigger the R-tree is. Thus, three
algorithms need to traverse more R-tree nodes with the growth of
|P|, incurring longer total running time. Hence, our algorithms
might not be efficient for huge datasets.

Third, we explore the influence of k on three algorithms, and
report the results in Figure 9 using both real and synthetic datasets.
It is observed that, all the algorithms degrade as k increases. The
reason is that, k'max ascends as k grows, and thus, MWK takes
more time in getting the optimal tuple (Wm′, k′) using sample
weighting vectors, which results in the degradation of MWK. For
MQP algorithm, if the value of k becomes larger, the cost of
finding the k-th point also ascends, and hence, the performance
degrades. Since MQWK integrates MQP and MWK, it degrades
as well. Again, the penalties of three algorithms are still small.

Then, we inspect the impact of actual ranking of q under the
why-not weighting vector set Wm by fixing d at 3, |P| at 100K,
sample size at 800, |Wm| = 1, and k = 10. Figure 10 depicts the
results on both real and synthetic datasets. Clearly, the total
running time of three algorithms increases while the penalties are
small. For MWK algorithm, when the actual ranking of q under
Wm grows, k'max also ascends, incurring longer total running time.
For MQP algorithm, if the ranking of q is low, L (defined in
Theorem 1) becomes larger, and thus, the quadratic programming
takes more time in finding q'. Based on the above two reasons,

Parameter Range Default
Dimensionality d 2, 3, 4, 5 3
Dataset cardinality |P| 10K, 50K, 100K, 500K, 1000K 100K
k 10, 20, 30, 40, 50 10
Actual ranking of q under Wm 11, 101, 1001, 10001 101
|Wm| 1, 2, 3, 4, 5 1
Sample size 100, 200, 400, 800, 1600 800

747

MWKMQP MQWK

10-1

100

101

102

103

104

2 3 4 5
dimensionality

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.358
0.257

0.301
0.319

0.287 0.185 0.102 0.031

0.116 0.049
0.051

0.018

penalty

10-1

100

101

102

103

104

2 3 4 5
dimensionality

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.296 0.197 0.237 0.277

0.125
0.134 0.160

0.174

0.055 0.062 0.071

0.079

10-1

100

101

102

103

104

10K 50K 100K 500K 1000K
cardinality

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.284

0.29 0.257
0.299 0.258

0.170

0.125 0.185 0.178 0.166

0.074 0.031 0.049
0.069

0.022

10-1

101

103

105

10K 50K 100K 500K 1000K
cardinality

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.164 0.15
0.197

0.214
0.267

0.186 0.181 0.134 0.132

0.153

0.069

0.057 0.062
0.051

0.031

MWKMQP MQWK

(a) Independent (b) Anti-correlated (a) Independent (b) Anti-correlated

Figure 7: WQRTQ cost vs. dimensionality Figure 8: WQRTQ cost vs. dataset cardinality

MWKMQP MQWK

100

101

102

103

104

10 20 30 40 50
k

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.117

0.088 0.099 0.09

0.115

0.116
0.093 0.114 0.156

0.144

0.035

0.032 0.019 0.033

0.046

100

101

102

103

104

10 20 30 40 50
k

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.119 0.115 0.096 0.109 0.11

0.121 0.113 0.093 0.1 0.108

0.051 0.049 0.034 0.037

0.043

10-1

100

101

102

103

104

10 20 30 40 50
k

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.257

0.273 0.274 0.265

0.289

0.185 0.2 0.159 0.181

0.14

0.049 0.097 0.062 0.077

0.058

10-1

100

101

102

103

104

10 20 30 40 50
k

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.197 0.235 0.197 0.135 0.33

0.134 0.182 0.134 0.15 0.175

0.062 0.061 0.062 0.07

0.087

(a) Household (b) NBA (c) Independent (d) Anti-correlated

Figure 9: WQRTQ cost vs. k

MWKMQP MQWK

100

101

102

103

104

11 101 501 1001
actual rank of q under Wm

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.12 0.117 0.139 0.157

0.129 0.116 0.133

0.131

0.052 0.035 0.056 0.056

100

101

102

103

11 101 501 1001
actual rank of q under Wm

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.11 0.1090.1020.119

0.032

0.1250.1210.094
0.124

0.0340.0470.051

10-1

100

101

102

103

104

11 101 501 1001
actual rank of q under Wm

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.048 0.049 0.101 0.101

0.273 0.257 0.279
0.34

0.122

0.185 0.217

0.255
10-1

100

101

102

103

104

11 101 501 1001
actual rank of q under Wm

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.235
0.220.3580.197

0.128
0.0760.1220.134

0.057 0.030.0570.062

(a) Household (b) NBA (c) Independent (d) Anti-correlated

Figure 10: WQRTQ cost vs. actual ranking under Wm

MQWK also degrades.
Next, we explore the influence of the cardinality |Wm| of a why-

not weighting vector set on the algorithms, and Figure 11 plots
the results. We observe that MQP, MWK, and MQWK can find
the optimal solution with small penalty. Again, the total running
time of all algorithms increases gradually when |Wm| ascends. The
degradation of MWK is mainly caused by the second phase of the
algorithm, i.e., using the sample weighting vectors to find the
approximate optimal answer. The performance descent of MQP is
due to the computation of the top k-th point for more why-not
weighting vectors. Similarly, MQWK degrades as well.

Finally, we evaluate the effect of sample size on the algorithms.
To this end, we vary sample size from 100 to 1600 and fix other
parameters to their default values. Figure 12 shows the results.
The total running time of algorithms MQWK and MWK grows
when sample size ascends, although the growth is relatively mild
for MWK. This is because the algorithms take more time to
examine the samples. Moreover, it is obvious that the penalty of
algorithms MQWK and MWK drops as sample size grows. The
reason behind is that the bigger the sample size, the higher the
quality result. Note that, the penalty sometimes decreases very
fast with increasing sample size, and sometimes it does not
change. There are two potential reasons. First, it is caused by the
randomness since the sample weighting vectors are randomly
sampled from the sample space. Second, the different dataset
distributions may also lead to this phenomenon. In addition, the
total running time and the penalty of MQP algorithm do not

change with the growth of sample size, because MQP dose not
use the sampling technique.

In summary, from all the experimental results, we can conclude
that our proposed algorithms, viz., MQP, MWK, and MQWK, are
efficient, and scale well under a variety of parameters.

6. CONCLUSIONS
In this paper, for the first time, we study the problem of why-

not questions on reverse top-k queries, which aims at explaining
why the why-not weighting vector(s) is/are not in the results of
reverse top-k queries. We propose a unified framework called
WQRTQ to answer why-not questions on both monochromatic
and bichromatic reverse top-k queries. WQRTQ consists of three
solutions, i.e., (i) modifying a query point q, (ii) modifying a
why-not weighting vector set Wm and a parameter k, and (iii)
modifying q, Wm, and k. Furthermore, we utilize the quadratic
programming, sampling method, and reuse technique to boost the
performance of our algorithms. Extensive experiments with both
real and synthetic data sets demonstrate the effectiveness and
efficiency of our presented algorithms. In the future, we would
like to explore why-not questions on reverse top-k queries over
larger datasets.

Acknowledgements. This work was supported in part by the
973 Program No. 2015CB352502 and 2015CB352503, NSFC
Grants No. 61379033 and 61472348, and the Fundamental
Research Funds for the Central Universities.

748

MWKMQP MQWK

100

101

102

103

104

1 2 3 4 5
|Wm|

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.117 0.105 0.118 0.116 0.09

0.116 0.098 0.122 0.119 0.125

0.035

0.033 0.05 0.051 0.04

100

101

102

103

1 2 3 4 5
|Wm|

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.119

0.139 0.189 0.1680.183

0.121
0.094

0.107 0.178
0.133

0.051 0.04 0.059 0.0660.048

10-1

100

101

102

103

104

1 2 3 4 5
|Wm|

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.257

0.29 0.161

0.198

0.194

0.185

0.209 0.215

0.173

0.208

0.049

0.101 0.067 0.074

0.075

10-1

100

101

102

103

104

1 2 3 4 5
|Wm|

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.197 0.2330.1360.228

0.134 0.2150.2160.197

0.062
0.0880.060.058

(a) Household (b) NBA (c) Independent (d) Anti-correlated

Figure 11: WQRTQ cost vs. |Wm|

MWKMQP MQWK

100

101

102

103

104

100 200 400 800 1600
sample size

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.201 0.175

0.106

0.1170.138

0.116 0.116

0.1160.1160.116

0.05
0.048

0.0210.043
0.035

100

101

102

103

104

100 200 400 800 1600
sample size

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.132 0.1090.1190.1230.124

0.121 0.121

0.121

0.1210.121

0.059

0.049
0.051

0.054
0.056

10-1

100

101

102

103

104

100 200 400 800 1600
sample size

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.27 0.263

0.191

0.2570.26

0.185 0.185

0.185 0.185 0.185

0.049 0.04
0.055

0.058
0.066

10-1

100

101

102

103

104

100 200 400 800 1600
sample size

to
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.307 0.271 0.1510.1970.214

0.134 0.134

0.134

0.062 0.055
0.065

0.067
0.067

0.134 0.134

(a) Household (b) NBA (c) Independent (d) Anti-correlated

Figure 12: WQRTQ cost vs. sample size

7. REFERENCES
[1] S. J. Arnold, J. Handelman, and D. J. Tigert. The impact of a market

spoiler on consumer preference structures (or, what happens when
Wal-Mart comes to town). J. Retailing and Consumer Services, 5(1):
1–13, 1998.

[2] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional geometry: Algorithms and applications. Springer, 1997.

[3] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An an-
notation management system for relational databases. VLDB J., 14(4):
373–396, 2005.

[4] S. S. Bhowmick, A. Sun, and B. Q. Truong. Why not, WINE?: To-
wards answering why-not questions in social image search. In: MM,
pages 917–926, 2013.

[5] N. Bidoit, M. Herschel, and K. Tzompanaki. Query-based why-not
provenance with NedExplain. In: EDBT, pages 145–156, 2014.

[6] G. S. Carpenter and K. Nakamoto. Consumer preference formation
and pioneering advantage. J. Marketing Research, 26(3): 285–298,
1989.

[7] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.
Smith. The onion technique: Indexing for linear optimization queries.
In: SIGMOD, pages 391–402, 2000.

[8] A. Chapman and H. V. Jagadish. Why not? In: SIGMOD, pages 523–
534, 2009.

[9] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Indexing re-
verse top-k queries in two dimensions. In: DASFAA, pages 201–208,
2013.

[10] Y. Cui and J. Widom. Lineage tracing for general data warehouse
transformations. VLDB J., 12(1): 41–58, 2003.

[11] G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis. Answering
top-k queries using views. In: VLDB, pages 451–462, 2006.

[12] S. Ge, L. H. U, N. Mamoulis, and D. W. Cheung. Efficient all top-k
computation: A unified solution for all top-k, reverse top-k and top-m
influential queries. TKDE, 25(5):1015–1027, 2013.

[13] K.-Y. Goh, H.-H. Teo, H. Wu, and K.-K. Wei. Computer-supported
negotiations: An experimental study of bargaining in electronic
commerce. In: ICIS, pages 104–116, 2000.

[14] Z. He and E. Lo. Answering why-not questions on top-k queries. In:
ICDE, pages 750–761, 2012.

[15] M. Herschel. Wondering why data are missing from query results?:
Ask conseil why-not. In: CIKM, 2213–2218, 2013.

[16] M. Herschel and M. Hernandez. Explaining missing answers to
SPJUA queries. In: VLDB, pages 185–196, 2010.

[17] M. Herschel, M. A. Hernandez, and W. C. Tan. Artemis: A system
for analyzing missing answers. In: VLDB, pages 1550–1553, 2009.

[18] V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A sys-
tem for the efficient execution of multi-parametric ranked queries. In:
SIGMOD, pages 259–270, 2001.

[19] V. Hristidis and Y. Papakonstantinou. Algorithms and applications
for answering ranked queries using ranked views. VLDB J., 13(1):
49–70, 2004.

[20] J. Huang, T. Chen, A. H. Doan, and J. F. Naughton. On the prove-
nance of non-answers to queries over extracted data. In: VLDB,
pages 736–747, 2008.

[21] M. S. Islam, R. Zhou, and C. Liu. On answering why-not questions
in reverse skyline queries. In: ICDE, pages 973–984, 2013.

[22] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A.
Nandi, and C. Yu. Making database systems usable. In: SIGMOD,
pages 13–24, 2007.

[23] C. Jin, R. Zhang, Q. Kang, Z. Zhang, and A. Zhou. Probabilistic re-
verse top-k queries. In: DASFAA, pages 406–419, 2014.

[24] J.-L. Koh, C.-Y. Lin, and A. L. P. Chen. Finding k most favorite prod-
ucts based on reverse top-t queries. VLDB J., 23(4): 541–564, 2014.

[25] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. WHY SO? or
WHY NO? Functional causality for explaining query answers. In:
MUD, pages 3-17, 2010.

[26] R. D. C. Monteiro and I. Adler. Interior path following primal-dual
algorithms, part ii: Convex quadratic programming. Math. Program.,
44(1–3): 43–66, 1989.

[27] V. Padmanabhan, S. Rajiv, and K. Srinivasan. New products, up-
grades, and new releases: A rationale for sequential product intro-
duction. J. Marketing Research, 34(4): 456–472, 1997.

[28] W. C. Tan. Provenance in databases: Past, current, and future. IEEE
Data Eng. Bull., 30(4): 3–12, 2007.

[29] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou. Branch-
and-bound processing of ranked queries. Inf. Syst., 32(3): 424–445,
2007.

[30] Q. T. Tran and C. Y. Chan. How to ConQueR why-not questions. In:
SIGMOD, pages 15–26, 2010.

[31] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag. Monochro-
matic and bichromatic reverse top-k queries. IEEE Trans. Knowl.
Data Eng., 23(8): 1215–1229, 2011.

[32] A. Vlachou, C. Doulkeridis, and K. Norvag. Monitoring reverse top-
k queries over mobile devices. In: MobiDE, pages 17–24, 2011.

[33] A. Vlachou, C. Doulkeridis, K. Norvag, and Y. Kotidis. Identifying
the most influential data objects with reverse top-k queries. In: VLDB,
pages 364–372, 2010.

[34] A. Vlachou, C. Doulkeridis, K. Norvag, and Y. Kotidis. Branch-and-
bound algorithm for reverse top-k queries. In: SIGMOD, pages 481–
492, 2013.

[35] M. Xie, L. V. S. Lakshmanan, and P. T. Wood. Efficient top-k query
answering using cached views. In: EDBT, pages 489–500, 2013.

[36] D. Xin, C. Chen, and J. Han. Towards robust indexing for ranked
queries. In: VLDB, pages 235–246, 2006.

[37] A. Yu, P. K. Agarwal, and J. Yang. Processing a large number of con-
tinuous preference top-k queries. In: SIGMOD, pages 397–408, 2012.

[38] C. Zong, X. Yang, B. Wang, and J. Zhang. Minimizing explanations
for missing answers to queries on databases. In: DASFAA, pages
254–268, 2013.

[39] L. Zou and L. Chen. Dominant graph: An efficient indexing structure
to answer top-k queries. In: ICDE, pages 536–545, 2008.

749

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2015

	Answering Why-not Questions on Reverse Top-k Queries
	Yunjun GAO
	Qing LIU
	Gang CHEN
	Baihua ZHENG
	Linlin ZHOU
	Citation

	tmp.1457934750.pdf.j7N9A

