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Efficient All Top-k Computation—A Unified
Solution for All Top-k, Reverse Top-k

and Top-m Influential Queries
Shen Ge, Leong Hou U, Nikos Mamoulis, and David W. Cheung

Abstract—Given a set of objects P and a set of ranking functions F over P , an interesting problem is to compute the top ranked

objects for all functions. Evaluation of multiple top-k queries finds application in systems, where there is a heavy workload of ranking

queries (e.g., online search engines and product recommendation systems). The simple solution of evaluating the top-k queries one-

by-one does not scale well; instead, the system can make use of the fact that similar queries share common results to accelerate

search. This paper is the first, to our knowledge, thorough study of this problem. We propose methods that compute all top-k queries in

batch. Our first solution applies the block indexed nested loops paradigm, while our second technique is a view-based algorithm. We

propose appropriate optimization techniques for the two approaches and demonstrate experimentally that the second approach is

consistently the best. Our approach facilitates evaluation of other complex queries that depend on the computation of multiple top-k

queries, such as reverse top-k and top-m influential queries. We show that our batch processing technique for these complex queries

outperform the state-of-the-art by orders of magnitude.

Index Terms—All top-k queries, view-based index

Ç

1 INTRODUCTION

MANY real life applications support ranking of products
according to user preference functions. For example,

consider an online store (e.g., Amazon), which ranks blu-
ray discs according to the preferences of customers.
Preferences could be explicitly expressed by each user, or
implicitly derived from user purchase records. Preferences
are typically defined on some product features. For
example, blu-ray discs could be ranked based on their
movie cast and release date; recent movies having a good cast
rank higher than others. To simplify illustration and
analysis, in the rest of the paper, we assume that product
features take values from a normalized numerical domain;
e.g., the quality of casting takes a score from 0 (worst) to 1
(best). This way, the products can be modeled by multi-
dimensional points; e.g., points p1; p2; p3, and p4 are used to
represent four products respectively in Fig. 1. Modeling
objects in such a multidimensional space is common for
diverse types of queries, such as top-k queries [1], [2], [3],
skyline queries [4], [5], and market analysis queries [6], [7].

Given a preference function f , we can rank the products
p 2 P according to fðpÞ. Fig. 1 shows three linear functions
fa; fb, and fc which create three object rankings as shown in
the right part of the figure. Each function is of the form

f½x�xþ f ½y�y, such that 0 � f ½x�; f ½y� � 1 and f ½x� þ f½y� ¼ 1.
The functions are represented as vectors in the space that
contains the points. The object ranking for a specific
function f can be determined by the order of the points
are met if we sweep a line perpendicular to the vector of f
from point ð1; 1Þ towards point ð0; 0Þ. Different customers
may have completely different preferences. For instance, fb
represents the preferences of a customer, ub, who is
concerned more about the quality of casting than the
release date. Accordingly, p2 is the best product according
to ub’s preferences. Without loss of generality, we assume
that all preference functions f are linear and the coefficients
of them are normalized; the score fðpÞ of an object p is
computed by the inner product

Pd
i¼1ðf½i� � p½i�Þ of f’s

weights vector with p’s feature vector.
Generally speaking, users are more interested in top

ranked products. Given a constant k, in addition with a
ranking function f , a top-k query [1], [2], [3] returns the k
highest ranked objects according to f . For example, consider
the four products in Fig. 1. For k ¼ 3 and user ua, whose
preferences are captured by the linear function fa ¼
0:5xþ 0:5y, the result of the top-k query is TOP 3ðfaÞ ¼
fp3; p2; p1g.

Many applications have millions of users and numerous
top-k queries may have to be evaluated simultaneously.
Recommendation systems of online stores are such an
application (i.e., recommendations to numerous users
currently online). As another example, consider a second-
hand cars company, which recommends cars to customers
before the summer season; the company issues multiple top-
k queries, one for each customer (depending on his/her
individual preferences), simultaneously. The result can be
computed by issuing an individual top-k query for each user,
TOPkðfiÞ. This iterative approach becomes too expensive
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when a large number of queries have to be evaluated over a
large number of products. Thus, developing specialized
techniques for processing multiple top-k queries is an
important problem that has been overlooked in past
research. We call this problem the all top-k query, ATOPk.

To the best of our knowledge, there is no efficient
approach to compute multiple top-k queries simulta-
neously. In this paper, we study two batch processing

techniques for this problem. The first is a batch indexed

nested loops approach and the second is a view-based threshold

algorithm. We also propose several novel optimization
techniques for these methods.

Besides products recommendation, other tasks, such as
product promotion analysis [8] and identifying the most
influential products [9], can benefit from an efficient
approach for computing multiple top-k queries simulta-
neously, as we discuss in Section 3. We demonstrate the
utility of our result in these complex analysis tasks; when
ATOPk is used as a search module for reverse top-k [8] and
top-m influential [9] queries, the evaluation cost of these
queries greatly decrease.

The rest of the paper is organized as follows: we provide
formal definitions and review preliminary concepts in
Section 2. The applicability of ATOPk in the evaluation of
related queries is discussed in Section 3. An intuitive batch
processing technique is introduced in Section 4. In Section 5,
we present an alternative batch processing approach which
extends the view-based threshold algorithm [10] and fully
optimize it. Section 6 discusses how we can use our
techniques to support related queries, including reverse
top-k and top-m influential queries. In Section 7, we
experimentally evaluate our methods using synthetic and
real data. Section 8 discusses related work. Finally, Section 9
concludes the paper.

2 PRELIMINARIES

This section includes all formal definitions and preliminary
concepts, based on which we build our solutions. We begin
by defining top-k and all top-k queries.

Definition 1 (Top-k query, TOPkðfÞ). Given a set of products

P , a preference function f , and a positive integer k, the top-k

query TOPkðfÞ returns a subset of k products from P , such

that fðpiÞ � fðpjÞ; 8pi 2 TOPkðfÞ; pj 2 PnTOPkðfÞ.
Definition 2 (All top-k query, ATOPk). Given a set of

products P , a set of preference functions F , and a positive

integer k, the all top-k query ATOPk returns TOPkðfÞ for

every function f 2 F .

The reverse top-k query [8] is a derived concept. Given a
product pi and a set of user preferences, a reverse top-k
query, RTOPkðpiÞ, returns the users who have pi in their
top-k results (Definition 3). For example, for the data in
Fig. 1, RTOP 2ðp2Þ returns functions fa and fb since p2 is
ranked 2nd and 1st by fa and fb, respectively. Product
promotion is an application of RTOPkðpiÞ. Assume that a
property agent is promoting a new building to customers
via web advertisements. To minimize cost, the agent should
advertise the building only to those customers who are
potentially interested in it; in other words, product pi
should be advertised to users who would highly rank pi,
based on their known preferences.

Definition 3 (Reverse top-k query). Given a product p, a
positive integer k, a set of products P and a set of user
preferences F , the reverse top-k query RTOPkðpÞ returns a
subset of user preferences F , such that RTOPkðpÞ � F , and
fi 2 RTOPkðpÞ if and only if 9q 2 TOPkðfÞ such that
fðpÞ � fðqÞ.

The problem of finding the most influential products has
been recently studied by Vlachou et al. [9]. The influence
score IkðpiÞ of a product pi (Definition 4) is defined by the
number of customers who have pi in their top-k preferences.

Definition 4 (Influence score, Ik). Given product data set P ,
user preferences F , and a positive integer k, the influence score
of a product p is defined as IkðpÞ ¼ jF 0j, where F 0 � F and
F 0 ¼ RTOPkðpÞ.

Accordingly, the top-m influential query [9], ITOPm
k ,

finds the m most influential products (Definition 5).
Ranking is based on the influence scores Ik. ITOPm

k finds
products of significant impact in the market. Identifying
products of high influence in a large database (e.g., database
of houses, second-hand cars, etc.) can help companies to
assess the popularity of their current products and/or
design new ones with features similar to the most popular
products. For instance, the iPad is considered a good
product because it is ranked highly by many customers in a
survey [11]. Intuitively, the influence of a product in the
market is the number of customers who consider it
intriguing (i.e., rank it high in their preferences).

Definition 5 (Top-m influential query). Given a product data
set P , a set of users preferences F , and a positive integer k, the
top-m influential query ITOPm

k returns a subset ofm products
from P , such that ITOPm

k � P and jITOPm
k j ¼ m; IkðpiÞ �

IkðpjÞ; 8pi 2 ITOPm
k ; pj 2 PnITOPm

k .

For example, in Fig. 1, let k ¼ 3 and consider the three
user preference functions F ¼ ffa; fb; fcg. The four products
fp1; p2; p3; p4g have influence scores f3; 2; 3; 1g, respectively.
The score of p4 is only 1 because it appears in the top-3 set of
only one function (fc). Thus, ITOP 2

3 returns fp3; p1g.
In this paper, we study ATOPk and show how it can be

used as a module for efficient evaluation techniques for
RTOPkðpÞ and ITOPm

k . Table 1 summarizes the notation
used throughout the paper. Our solution builds on methods
for top-k queries using materialized ranking views [10]. A
materialized ranking view is simply the result of a top-k
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query. Das et al. [10] proposed a Linear Programming
adaptation of the Threshold Algorithm (LPTA), which
extends the Threshold Algorithm (TA) [2] to apply on
views. LPTA sequentially accesses the results of two or
more materialized object rankings, based on different
views, in order to compute the top-k objects of a new
function. When an object p is accessed from view vi, a
random access is performed at each of the other views to
calculate the aggregate feature score of object p. LPTA keeps
track of the k objects with the highest scores seen so far.
These k objects become the final top-k result if they have
better scores than the maximum possible score for all unseen
objects. The maximum possible score is computed by linear
programming in [10]. We illustrate this process by an
example in Section 5.

3 APPLICATIONS OF ATOPk AS A MODULE

Besides its direct applications (e.g., in recommender
systems), discussed in the Section 1, ATOPk can also be
used as a processing module of other queries. We note that
the solution for reverse top-k problem proposed in [8] does
not scale well, because every reverse top-k query is
answered by issuing a set of essential top-k queries. If
multiple reverse top-k queries are issued (e.g., multiple
products are to be promoted at a holiday season), some of
these top-k queries might even have to be executed multiple
times. Also in [9], the object influence scores are calculated
by reverse top-k queries, therefore the proposed solution
does not scale well according to our discussion above.

In Fig. 2, we briefly summarize the relationship between
the all top-k (ATOPk) query that we study in this paper and
RTOPkðfÞ=ITOPm

k . In [8], a reverse top-k query RTOPkðfÞ
is computed by a set of top-k queries; however, not all these
queries need to be evaluated due to the use of pruning
strategies. In addition, according to [9], the influence score
of a product IkðpÞ is equivalent to the size of the reverse top-
k result. Given a set of products and a set of preference
functions, the top-m influential query ITOPm

k is evaluated
using the influence scores of the products. Therefore, a large
number of top-k queries are implicitly involved in a top-m
influential query. Although pruning strategies and fine-
tuned execution ordering are employed in the state-of-the-
art solutions for RTOPkðfÞ and ITOPm

k queries in [8] and

[9], respectively, neither solution optimizes the core ATOPk

module of these queries. In other words, an efficient
evaluation technique for all top-k queries (ATOPk) would
greatly benefit the evaluation of RTOPkðfÞ=ITOPm

k queries.

4 BATCH TOP-k PROCESSING

Top-k queries are extensively studied in the literature [1],
[2], [3], [10]. The state-of-the-art techniques aim at mini-
mizing the cost of a single top-k query with the use of
thresholding and/or indexing structures. However, there is
a lack of research on multiple top-k evaluation. Motivated
by this, in this section, we propose a batch processing
technique that indexes not only the objects but also the
functions, to support all top-k computation.

This method can be considered as the counterpart of
block indexed nested-loops in relational databases and
spatial join queries in spatial databases [12]. Suppose that
the objects are indexed by a multidimensional index, e.g.,
R*-tree [13], and the functions are also partitioned in
groups. To group the functions, we can first order them
according to their position on the Hilbert curve [14] that
indexes the space of function coefficients. Then, we split the
curve into subintervals, each defining a group, such that
each group contains no more than a ratio � of the functions.
Intuitively, a group contains a small number of similar
functions that would share a number of results. Processing
the functions in the group simultaneously would be faster
than executing the queries individually, as some search cost
would be shared among the functions in the group. In
Section 7, we study the choice of � and evaluate alternative
grouping strategies.

Let Fg be a group of functions; the group maximum score
s
Fg
maxðpÞ of an object p computed by the functions of the

group is s
Fg
maxðpÞ ¼

Pd
i¼1 maxfg2Fgfg½i�p½i�. For a given Fg, we

traverse the nodes and objects in the R*-tree (e.g., Fig. 3a) in
descending order of the group maximum score. We first
load the root of the R*-tree, calculating s

Fg
max of all entries in

it (i.e., for each minimum bounding rectangle (MBR)). The
maximum possible score s

Fg
maxðmÞ of an MBR m is the

maximum score of any possible object inside m. If higher
values are preferred in each dimension, the corner point of
an MBR with the largest values in all dimensions is the
point with the maximum score. We put all accessed R*-tree
entries and their maximum scores into a priority queue and
access them in descending maximum score order. Each time
an entry e is de-heaped, if e is a nonleaf entry (e.g., Ma in
Fig. 3a), we calculate the maximum scores for all its children
and insert them into the priority queue. If e is a leaf MBR
(e.g., mb in Fig. 3a), then all functions in Fg are computed
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against all the points in that leaf node and the candidate

lists of those functions in Fg are updated accordingly. As an

optimization (see Lemma 1 below), we avoid processing an

MBR m for a function f 2 F if the upper bound fðmÞ
(computed using the best corner of m) is worse than the

k best scores of f computed so far. We name this batch

processing technique as Batch Indexed Nested Loops

algorithm (BINL). We list the pseudocode for BINL in

Algorithm 1.

Algorithm 1. BINL Algorithm

Algorithm BINLðR;F; kÞ
R is the R*-tree index of the set of objects P

1: partition F into g groups fF1; . . . ; Fgg by Hilbert curve

2: for all Fi 2 fF1; . . . ; Fgg do

3: en-heap ðR:root; 0Þ into PQ

4: while PQ is not empty do

5: de-heap the top element m from PQ

6: if m is an non-leaf MBR then

7: for all mi 2 m do

8: compute the maximum possible score

sFimaxðmiÞ to mi

9: en-heap ðmi; s
Fi
maxðmiÞÞ into PQ

10: else if m is a leaf MBR then

11: for all fi 2 Fi do

12: if fiðmiÞ is better than k-th candidate of

fi then

13: evaluate fi for all objects in mi

14: update the candidate list of fi

Lemma 1 (MBR pruning). An MBR m needs not be evaluated

by a function f if fðmÞ is no better than the kth score for the

objects seen so far, where fðmÞ is the maximum score of

function f for any point in m.

Fig. 3b illustrates an example for BINL. Assume that we

are processing the group of functions Fg ¼ ffa; fbg. The

accessing order based on s
Fg
max can be conceptually captured

by the order a perpendicular plane to the dashed arrow in

the figure crosses the MBRs. Suppose that k ¼ 2 and we

have already accessed four MBRs, M;Ma;mb, and Mb; p2

and p3 have already been seen by fa and fb and we have

fmd;ma;mcg in the priority queue. Next, we get md from

the priority queue, which is a leaf MBR, therefore its

contents are evaluated using the functions in Fg. Note that

only fb evaluates the objects in md while fa prunes md

because faðmdÞ < faðp2Þ < faðp3Þ.

Discussion. Techniques similar to BINL have been
proposed before for All Nearest Neighbors Queries (ANNs)
in spatial databases [12]. We note that BINL does not
support early termination, because the group traversing
order is generally different from the early termination order
of every single user preference function in that group,
which means that we have to traverse the R*-tree once for
every group of functions.

5 A VIEW-BASED APPROACH

In this section, we investigate an alternative, more efficient
approach than BINL. A well-accepted general paradigm for
efficient query processing, for different data and query
types, is to take advantage of materialized views with
precomputed results [15]. As discussed in Section 2, LPTA
[10] can be used to compute top-k queries using views.
Here, we demonstrate LPTA by an example in Fig. 4a. In
this example, we use the same objects set from Fig. 1 and
construct two views, v1 and v2. Assuming that v1 and v2

have been accessed two times, respectively, the regions
being accessed are shaded in the figure. Note that the
unseen region must be convex if all view functions are
linear. Given a linear function, the maximum score of any
objects in the convex unseen region must be smaller than or
equal to the scores of the convex points (of the unseen
region), which can be computed by linear programming.

After two sorted accesses from each view, only three
objects, p2; p3, and p4, are seen so far and the preference
function fa keeps p3 as the top-1 candidate. LPTA returns p3

for fa since the current maximum possible score smaxðfaÞ
(computed by linear programming) is already worse than
the candidate’s score, faðp3Þ.

To support batch processing, when an object p is
accessed from a view, we can evaluate its scores for
multiple top-k queries. For every top-k query being
evaluated, we update the current result set if necessary. A
function is marked as stopped if its kth candidate score is no
worse than the maximum possible score. Based on this idea,
we can answer multiple top-k queries by traversing each
view once. We call this method Batched Linear Program-
ming adaptation of the Threshold Algorithm (BLPTA). The
pseudo code of BLPTA can be found in Algorithm 2.

Algorithm 2. BLPTA Algorithm

Algorithm BLPTAðV ; P ; F ; kÞ
1: for all f 2 F do

2: TOPkðfÞ  ; and mark f as running

3: while F is not empty do
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4: for all v 2 V do . access in round-robin fashion.
5: fetch next object p from v and update accessed

regions

6: for all f 2 F not marked as stopped do

7: if fðpÞ is better than k-th object TOPkðfÞ then

8: remove k-th object and insert p into

TOPkðfÞ
9: compute maximum possible score smaxðfÞ

10: if k-th object in TOPkðfÞ is better than
smaxðfÞ then

11: mark f as stopped and remove f from F

At every iteration of BLPTA, we fetch the next object p

from one of the views in a round-robin fashion and update

the top-k candidates for each of the running functions. In

Fig. 4b, the top-1 candidates of fa; fb, and fc are p3; p2, and

p3, respectively, after 2 accesses from each of the views. The

maximum possible scores, smax, of the functions are shown by

three different lines in Fig. 4b. In this example, all functions

are marked as stopped after the second access from each

view since the corresponding smax score is no better than the

candidate score. Therefore, BLPTA exits the while-loop and

returns the all top-k result.
BLPTA terminates early if all functions are marked as

stopped. However, this method is costly since 1) the

maximum possible scores are computed by linear program-

ming, 2) functions are not partitioned into groups, and

3) every object being accessed from views is unavoidably

evaluated. In the remainder of this section, we discuss and

resolve these three issues and propose an optimized version

of the algorithm.

5.1 Avoiding Linear Programming

Given a set of precomputed views V , BLPTA (and LPTA as

well) can compute the top-k queries using a subset of V and

the selection can be determined by the cost estimation

technique suggested in [10]. However, the maximum

possible score is still computed by linear programming.

Considering the fact that this computation will be carried

out for all running preference functions against all accessed

objects, it easily becomes the bottleneck. Motivated by this,

we first redesign our method to avoid linear programming

computation. Instead of using a subset of precomputed

views, we construct the views based on some constraints,

such that the maximum possible score can be derived from

the cross point of d hyperplanes (technique to be discussed

shortly). We now introduce the constraints that we impose

when constructing views (Definition 6).

Definition 6 (d-Bounding views). A preference function f is

bounded by d views fv1; . . . ; vbg if and only if there exists a d-

dimensional vector r, such that 8ri; ri � 0 and
Pd

i¼1 rivi ¼ f .

Intuitively, a preference function f being bounded by

d views means that the direction of f is enclosed by the

directions of d views. Fig. 5a demonstrates an example.

Suppose that fa ¼ 1
2xþ 1

2 y and consider two views, v1 ¼
2
3 xþ 1

3 y and v2 ¼ 4
9xþ 5

9 y, in the system. There exists a

vector r ¼ ð14 ; 3
4Þ that makes r1v1 þ r2v2 ¼ fa. Therefore, we

say that views v1 and v2 are a set of d-bounding views for fa.

Besides, we define as the scanning hyperplane of a view v,
the hyperplane which is perpendicular to v’s vector and
intersects the last object seen in v. The dashed lines
(orthogonal to the preferences vectors) in Fig. 5 illustrate
scanning hyperplanes. Formally, if s is the last score seen in
v, the scanning hyperplane of v is defined by the set of
points x which satisfy v½1�x½1� þ � � � þ v½d�x½d� ¼ s.

By basic geometry, we can easily show that there is only
one cross point � being intersected by d hyperplanes in the d
dimensional space. We illustrate the cross point � in Fig. 5a.
Assume that all user preferences in the system are bounded
by d views. Theorem 1 shows that the cross point � is the
point x that maximizes the score of any unseen objects
(proofs of all theorems are in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2012.34).For
completeness, we show in Fig. 5b that if f is not bounded by
the views, then fð�Þ is no longer the maximum possible
score (i.e., smaxðfaÞ > fað�Þ).
Theorem 1. For a set of user preferences F being bounded by d-

bounding views (v1; . . . ; vb), fð�Þ is no worse than the score of
any unseen objects, where � is the cross point of the scanning
hyperplanes of the d-bounding views.

According to Theorem 1, fð�Þ can be viewed as the
maximum possible score smaxðfÞ in BLPTA. Clearly, we can
mark a function as stopped if f is bounded by the correspond-
ing d-bounding views and the value of fð�Þ is not better than
the kth candidate score. The remaining problem is to
calculate the cross point � of d scanning hyperplanes. For
every view vi and its last seen score si, we have

vi½1��½1� þ � � � þ vi½d��½d� ¼ si:

Since we have d different equations in total, � can be found
by solving a simple linear system, � ¼ A�1B, where A is the
set of d views and B is the set of last seen scores. Formally,

� ¼
v1½1� . . . v1½d�

..

. ..
. ..

.

vd½1� . . . vd½d�

0
B@

1
CA
�1

s1

..

.

sd

0
B@

1
CA:

Discussion. The views based computation can stop early
if the preferences functions are bounded tightly by the
views. For instance, we can mark fa as stopped after
accessing one object from each of views in Fig. 5a; while
we need to access three objects in total from the views in
Fig. 4a. However, finding the tightest d-bounding views is
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equivalent to a problem of finding minimum volume
enclosing simplices [16], which is NP-hard. The most loose
d-bounding views are the base views (e.g., v1 ¼ x; v2 ¼ y,
and v3 ¼ z in the 3D space). In the next section, we study
how to tighten these views by a partitioning technique.

5.2 View-Based Partitioning

We can take advantage of partitioning the functions into
groups instead of processing them one-by-one. Before we
introduce the partitioning process, we show how to
construct a ðd� 1Þ-simplex by intersecting the vectors of
d-bounding views to a hyperplaneHP (i.e., HPðXÞ ¼ x½1� þ
� � � þ x½d� ¼ 1). For a set of d-bounding views, we can find
their corresponding point using a linear system. For
instance, pv1

and pv2
are the corresponding points of v1

and v2, respectively, in Fig. 6a. These d corresponding
points construct a ðd� 1Þ-simplex, �d�1, [17] on hyperplane
HP, that is a ðd� 1Þ-dimensional generalization of a
2D triangle or a 3D tetrahedron. In Fig. 6, we illustrate
two such simplices in 2D and 3D spaces (the 1-simplex �1 is
a line segment and the 2-simplex �2 is a 2D triangle).

A simplex can easily be partitioned by a point inside it
(see Definition 7). In Fig. 7, for example, we have three basic
bounding views and four functions in the 3D space. On the
hyperplane, we create a �2 based on the corresponding
points from v1; v2, and v3. We can partition the �2 into three
sub-simplices (i.e., �2

1;�
2
2, and �2

3) by adding view v4 (see
Fig. 7b).

Definition 7 (Simplex partitioning). Given a �d�1 and a point
p inside the simplex, �d�1 can be partitioned into d isolated
�d�1 s being split from p towards the vertices of the simplex.

Theorem 2 shows that the function fa passes through
point pfa in the interior of �d�1 ¼ fpv1

; . . . ; pvbg if and only if
f is bounded by fv1; . . . ; vbg. In Fig. 7b, the corresponding
d-bounding views of �2

1;�
2
2, and �2

3 are fv1; v2; v4g; fv1;
v3; v4g, and fv2; v3; v4g, which bound functions ffa; fbg; ffdg,
and ffcg, respectively.

Theorem 2. A function (or a view) is bounded by a set of
d-bounding views if and only if it passes through the interior of
the ðd� 1Þ-simplex defined by the d-bounding views.

Note that simplex partitioning creates new sets of
d-bounding views that are tighter than the original
d-bounding views. This makes computation more efficient
as discussed in Section 5.1. For instance, finding the top-k
result of fb using fv1; v3; v4g is faster than using fv1; v2; v3g.

For the sake of generating tighter boundings, we can
recursively partition the simplex. On the other hand, this
might create a large amount of views. Therefore, there is a
tradeoff between achieved tightness and the number of
views, which should be considered in the process.

Accordingly, we propose an algorithm that recursively
partitions the initial simplex. After each partitioning, we
assign each function to the subsimplex where its projection
falls. We use a parameter � to control the number of views
being created during this process. We do not further split a
simplex if the number of functions being bounded by it is
less than a ratio � of the total.

The partitioning procedure is described by Algorithm 3.
We first construct the simplex �d�1 based on the d-bounding
views V (e.g., v1; v2, and v3 in Fig. 7) and assign the entire set
of preferences functions to �d�1:F (�d�1:F denotes the
associated preference function set F of the simplex �d�1).
Lines 3-12 describe an iterative process that recursively
partitions the simplex. Given a point inside a simplex (e.g.,
the average point of all vertices, vavg), we partition the
simplex �d�1 into d sub-simplices using Definition 7 (line 5).
Every bounding function f of �d�1 is assigned to one of the
d subsimplices. Clearly, the simplex is not tight enough if it
bounds many functions. Therefore, we further partition a
subsimplex if the number of bounding functions is larger
than a threshold (controlled by parameter �).

Algorithm 3. d-bounding views partitioning

Algorithm partitioningðV ; F ; �Þ
1: construct �d�1 for V and set �d�1:F :¼ F
2: push �d�1 into a queue Q

3: while Q is not empty do

4: �d�1 :¼ Q:popðÞ
5: partition �d�1 into f�d�1

1 ; . . . ;�d�1
b g using

vavg :¼ AVGvi 2 V
6: for all f 2 �d�1:F do

7: assign f to �d�1
i if f is in the interior of �d�1

i

8: for all �d�1
i 2 f�d�1

1 ; . . . ;�d�1
b g do

9: if sizeð�d�1
i :F Þ � � � sizeðF Þ then

10: push �d�1
i into Q . further partition �d�1

i

11: else

12: �G :¼ �G [ f�d�1
i g

13: return �G

5.3 Simplex Execution Order

Even through the simplices (generated by Algorithm 3) can
be evaluated independently at any order, the memory
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usage can be controlled better if the execution order is well
designed. According to our partitioning approach, each
simplex contains d views and each view is used by
multiple simplices. A view can be removed from memory
after all relevant simplices have been evaluated. To
minimize the total memory usage, we should define an
execution order such that the maximum number of views
kept in memory is minimized. Finding the optimal order is
a combinatorial problem, therefore we adopt a greedy
approach, where the next simplex is decided by the views
kept in memory. Intuitively, a view vmin should be cleaned
up first if vmin is used by the fewest simplices among all
views in memory. In other words, we first evaluate all
simplices that use vmin, in order to remove vmin from
memory as early as possible. The effectiveness of this
approach is demonstrated in our experiments.

5.4 Accessing Multiple Objects from Views

Recall that whenever a leaf MBR m is accessed by BINL,
every function fg in Fg first examines whether m can be
pruned by the candidate set of fg, according to Lemma 1
(see Section 4). However, the objects being accessed from
views are unavoidably evaluated by the functions in
BLPTA. For the sake of batch pruning, we fetch a set of
objects from a view instead of one object at each access. In
order to have stable performance at different data distribu-
tions, we stop fetching objects from a view if the volume of
the accessed objects’ MBR is larger than a threshold !. In
addition, we apply the same pruning idea as BINL, i.e., not
every object is necessarily evaluated by the functions,
improving pruning effectiveness.

5.5 Putting All Together

We are now ready to present our ETA algorithm (Efficient
adaptation of the Threshold Algorithm), which integrates
all techniques been discussed. ETA first partitions the
functions into groups; each of group is bounded by a
corresponding set of d-bounding views (see Section 5.2).
Given the execution order of the groups (see Section 5.3), we
evaluate the functions in batch using the corresponding
d-bounding views. At every iteration, for each group, we
access the views in a round-robin fashion. At each access,
we fetch multiple objects from the views, until the MBR m
of them has a larger volume than ! (see Section 5.4).
Subsequently, we update the cross point � of d scanning
hyperplanes (see Section 5.1).

In the next step, we examine whether the objects
belonging to m should be examined by a function using
the MBR pruning technique (see Lemma 1 in Section 4).
Moreover, the result of a function f is confirmed by the
condition whether fð�Þ is no better than the candidate set of
f , and f is marked as stopped in this case (see Section 5.1).
The all top-k results of a group are found as soon as all
functions in the group are marked as stopped. Algorithm 4 is
a detailed pseudocode for ETA.

Algorithm 4. ETA Algorithm

Algorithm ETAðV ; P; F ; k; !; �Þ
1: for all f 2 F do

2: TOPkðfÞ  ; and mark f as running

3: �G :¼ partitioningðV ; F ; �Þ . Section 5.2

4: while �G is not empty do

5: �d�1
i :¼ selectð�GÞ; �G :¼ �G � f�d�1

i g
. Section 5.3

6: while �d�1
i :F is not empty do

7: for all v 2 �d�1:V do

8: fetch objects until their MBR volume

Vm � ! . Section 5.4

9: compute cross point � using d-scan

hyperplanes . Section 5.1
10: for all f 2 �d�1

i :F do

11: if fðmÞ is better than k-th score in TOPkðfÞ
then

12: for all p 2 m do

13: if fðpÞ is better than k-th score in

TOPkðfÞ then

14: remove k-th object and insert p into

TOPkðfÞ
15: if fð�Þ is no better than k-th score in

TOPkðfÞ then

16: mark f as stopped and remove f from

�d�1
i :F

In our implementation for ETA, we assume that the set of
objects is indexed by a multidimensional access method and
that the views are not precomputed and materialized. A
view is computed on-demand using an off-the-shelf top-k
computation algorithm (e.g., BRS [3]). In order to reduce
memory consumption of computed view rank lists, the
memory held for a view is released after the view is no
longer needed.

5.5.1 Cost Simulation Analysis

We observe that the benefit of tightening the views (i.e.,
minimizing �) drops proportionally to the size of simplices
in ETA. To demonstrate this, we propose a model that
simulates the accessing cost for different view settings
(i.e., represented by their angles) using 2D data. In Fig. 8a,
we illustrate two different views (v1 and v2) where their
angles to the top horizontal line are �1 and �2, respectively.
For the sake of analysis, we assume that the objects are
uniformly distributed in the domain area. Based on this
assumption, the scanned area aðmÞ of accessing a specific
number of objects (i.e., m objects) is the same for any view/
function (i.e., a1ðmÞ ¼ a2ðmÞ).

Given the scanned area aðmÞ, the cross point � of the
scanning hyperplanes (computed by aðmÞ), and a bounded
user preference function �, we can calculate the minimum
accessed distance DminðaðmÞ; �; �Þ of the user preference in
the unseen region by LPTA. Besides, given the angle � and
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the scanned area k=N of a view/function, we can compute

the accessed distance, Dðk=N; �Þ, by simple geometry.
To determine the cost for a specific user function f (i.e.,

represented by �), we need to count the number of accessed

objects m from each view such that the top-k score is not

worse than maximum possible score (i.e., minimum

accessed distance). This can be modeled by DminðaðmÞ;
�; �Þ � Dðk=N; �), where m can be calculated given the

values of k; �, and �.
Fig. 8b shows our simulation result as a function of �

where the value of � and � can be derived by � and k is set

to 20. The relative cost decreases as � decreases; however,

when � is smaller than 0.02, the benefit of further

partitioning of the simplices is not significant. On the other

hand, we have to compute more views if we decompose

more simplices. It is clear that we should stop our simplex

partitioning at some point by considering the tradeoff

between these two factors. In this work, we set � to 0.02

based on both numerical and experimental analyses (see

Section 7).

6 EFFICIENT REVERSE TOP-K AND TOP-M
INFLUENTIAL COMPUTATION

In this section, we show how we can use our ATOPk

algorithms to facilitate the evaluation of reverse top-k

RTOPkðpÞ and top-m influential ITOPm
k queries. First, we

briefly review the state-of-the-art solutions to these pro-

blems from [8] and [9].

6.1 State-of-the-Art RTOPk Solution

Given a set of objects P and a set of preference functions F ,

the reverse top-k query of an object p 2 P returns the subset

of F that contains p in their top-k result. A naı̈ve method

computes a reverse top-k query by evaluating the pre-

ference functions one by one. Vlachou et al. [8] proposed

evaluating the functions in a given order. Intuitively, the

top-k results are similar (or exactly the same) if two

functions, fi and fj, are very close1. In other words, if fi
does not have p in its top-k result, then most probably p is

not in fj’s top-k either. Therefore, we can skip the

evaluation of fj if fjðpÞ < maxpi2TOPkðfiÞfjðpiÞ since p is

ranked worse than at least k other objects. This method is

termed Reverse top-k Threshold Algorithm (RTA) in [8].

However, this process might evaluate all functions, in the

worst case.
We demonstrate the reverse top-k computation in Fig. 9a.

Given the execution order based on cosine similarity (i.e.,

fc; fa; fb) and k ¼ 3, we want to answer RTOPkðp5Þ.
According to the given order, we first evaluate fc where

the top-k result is fp3; p1; p4g and find that fc is not in the

reverse top-k set of p5. Before we evaluate next function fa,

we first apply fa on fc’s top-k set and compute a threshold

� ¼ max ffaðp3Þ; faðp1Þ; faðp4Þg. In this example, faðp5Þ < �,

which indicates that fa is not the reverse top-k of p5 and

needs not be evaluated. On the other hand, fbðp5Þ � �,
therefore fb has to be evaluated.

6.2 State-of-the-Art ITOPm
k Solution

Given a set of objects P , a set of functions F , and k, the top-
m influential query returns the m objects that have the
highest influence scores, defined by the size of RTOPkðpÞ.
A straightforward solution is to evaluate a reverse top-k
query for each object. Note that each reverse top-k query is
evaluated by multiple top-k queries. The cost becomes too
high if F and P are large. In [9], a technique that estimates
the maximum possible influence score UðqÞ of an object q is
proposed. This can be computed by

UðqÞ ¼ j \8pi2CDSðqÞ RTOPkðpiÞj;

where CDSðqÞ is the constrained dynamic skyline of q (see
Definition 8).

Definition 8 (Constrained dynamic skyline set). Given a set
of objects P and an object q, we denote as Pc � P the set of all
objects pi, such that 8di¼1 : q½j� � pi½j�. An object pi 2 Pc
belongs to the constrained dynamic skyline set CDSðqÞ of
object q, if it is not dynamically dominated with respect to q by
any other point p0 2 Pc.

CDSðqÞ finds a set of dynamic skyline objects in the
region being constrained by q; this region is bounded from q

towards the best point ð1; . . . ; 1Þ. In the example of Fig. 9b,
suppose k is set to 3, CDSðp5Þ contains p1; p2 and Uðp5Þ ¼ 2
ð¼ jffa; fbg \ ffa; fb; fcgj).

Assuming that P is indexed by a multidimensional access
method, we can traverse the objects pi 2 P in decreasing
order of UðpiÞ. Similar to other branch-and-bound (BB)
processing techniques (e.g., [3]), the first m deheaped objects
are the result of the query. This BB algorithm is the best
approach in [9] and it is much faster than the straightfor-
ward solution. However, BB essentially executes a large
amount of top-k queries indirectly, since every reverse top-k
query is evaluated by a set of top-k queries.

6.3 Using All Top-k Computation

In this section, we study how we can use ATOPk to
evaluate RTOPk and ITOPm

k . We also discuss why our
approach is superior to the state-of-the-art solutions.

RTOPk using ATOPk. After having computed an ATOPk,
we have the top-k results of all functions. For the objects
and functions of Fig. 9, the ATOPk results are shown in
Fig. 10a. By “inverting” this table, as shown in Fig. 10b we
can obtain the reverse top-k sets of all objects. Thus, any
RTOPk query can be answered easily by fetching a row in
the inverted table. The space requirement is only OðjF j � kÞ.
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1. Closeness can be measured by a cosine function.



ITOPm
k using ATOPk. Having computed the inverted

table, which lists the reverse top-k set of each object, we can
easily find the influence score of any object by accessing the
corresponding row. In fact, for an ITOPm

k query, we only
need the cardinality of each list; our objective is to find the
m lists with the largest cardinality. Thus, even if we do not
have the inverted table, we can simply scan the all top-k
result and find the objects with the largest influence scores.
The details are listed in Algorithm 5.

Algorithm 5. Top-m influential query using ATOPk

Algorithm ITOP �ATOP ðV ; P ; F ; k; �Þ
1: for 8p2P IkðpÞ  0 . Initialize influence scores

2: ATOPk  run all top-k computation

3: for all f 2 F do

4: for all p 2 ATOPk½f � do .ATOPk½f� � TOPkðfÞ
5: IkðpÞ  IkðpÞ þ 1

6: return the top-m objects p with respect to IkðpÞ
Discussion. In [8] and [9], many top-k queries are

evaluated if F and P are large, while in [9] multiple reverse
top-k queries are executed and some of them may even
share the same top-k queries, which are evaluated multiple
times in this case. For a fair comparison, we implemented
an optimized version of BB, named Optimized Branch-and-
Bound algorithm (OBB), which caches the results of
previously issued top-k queries and reuses them if
necessary. Still, as we show in Section 7, OBB is much
slower than our “ITOPm

k using ATOPk” approach.

7 EXPERIMENTAL EVALUATION

According to the methodology in [4], we generated three
types of data sets, independent (IND), correlated (COR),
anticorrelated (ANT). In IND data sets, the feature values
are generated uniformly and independently. COR data
sets contain objects whose values are correlated in all
dimensions. ANT data sets contain objects whose values

are good in one dimension and tend to be poor in other
dimensions. In addition, we generate clustered (CLU) data
sets by randomly selecting C independent objects, and
treat them as cluster centers. Each cluster object is
generated by a Gaussian distribution with mean at the
selected cluster center and standard deviation 5 percent of
each dimension domain range. We set C to 10 by default.

In addition, we experimented with two real data sets,
NBA [18] and Household [19]. NBA contains 12,278 statis-
tics from regular seasons during 1973-2008, each of which
corresponds to the statistics of an NBA player’s perfor-
mance in 6 aspects (minutes played, points, rebounds,
assists, steals, and blocks). Household consists of
3.6M records during 2003-2006, each representing the
percentage of an American family’s annual expenses on
four types of expenditures (electricity, water, gas, and
property insurance).

All methods were implemented in C++ and the experi-
ments were performed on an Intel Core2Duo 2.66 GHz CPU
machine with 8 GBytes memory, running Ubuntu 11.04.
Table 2 shows the ranges of the investigated parameters. In
each experiment, we vary a single parameter, while setting
the others to their default values (shown in bold in Table 2).
Our system uses a 4 KB page size. In order to measure the
exact I/O cost, we assume no memory buffer is available.

Parameter sensitivity experiments. We first study the
effect of various tuning factors on the algorithms, BINL and
ETA. We investigate the effect of � (grouping ratio in BINL),
the effect of different grouping strategies for BINL, �
(splitting ratio in ETA), and ! (size of accessed objects’ MBR
in ETA).

Fig. 11a shows the effect of � on the cost of BINL for
different dimensionality values d. For very small � values,
the cost is high since forming either a single group or
many small groups is not beneficial for BINL. Therefore
we set � ¼ 0:02 by default; BINL performs well with this
value at any dimensionality. Regarding the function
grouping strategy in BINL, we compare Hilbert curve
ordering to cosine similarity based grouping (BINL-SG)
(proposed in [9]) and ETA bounding view partitioning
(BINL-EG) (proposed in this paper), in Fig. 11b. The result
shows that Hilbert grouping (BINL) outperforms the other
two methods for varying dimensionality d, justifying
grouping the function vectors by Hilbert curve ordering
in our implementation.
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ETA has two parameters, � and !, and its cost is affected
by both of them. We investigated how various values of
these parameters affect the cost. Here, we plot the cost of
ETA as a function of one parameter (� or !) while setting
the other to the default value. Based on the result, we
choose � ¼ 0:02 and ! ¼ 10�4 that show robust performance
at any dimensionality.

Scalability experiments. In this set of experiments, we
demonstrate the superiority of our all top-k methods, BINL
(Section 4) and ETA (Section 5.5) compared to the naı̈ve
approach and a simple skyline-based solution (Skyband).
The naı̈ve approach evaluates the top-k queries one-by-one
using BRS [3]. Skyband first collects the objects in the
k-skyband (using BBS [5]) and then evaluates the top-k
queries one-by-one over it.

Fig. 12a shows the response times of the four methods as
a function of dimensionality d, after setting all other
parameters to their default values. Cost grows exponentially
with d for all methods. ETA is at least 8, 2.5, and 1.5 times
faster than Naı̈ve, Skyband, and BINL, respectively, in all
experiments. The skyline-based approach does not scale
well with dimensionality due to the increasing number of

objects in the skyband. For large values of d, the gap
between BINL and ETA becomes smaller, because the MBRs
that group multiple accessed objects in ETA becomes too
large, reducing the effect of the MBR pruning technique.

Fig. 12b compares performance as a function of k. ETA is
at least 8.6, 3.48, 2.1 times faster than Naı̈ve, Skyband, and
BINL, respectively. All methods are sensitive to k since the
problem becomes harder as k increases.

The response times for different numbers of products jP j
are shown in Fig. 12c. The cost is not very sensitive to jP j
since the products are indexed and we only need to access a
small fraction of the data.

Fig. 12d shows the response time of all methods for
different numbers of functions jF j. The response time
increases linearly with jF j, since there are more top-k
queries being evaluated. Our ETA still performs the best,
followed by BINL, Skyband, and Naı̈ve.

Data distribution. As shown in Fig. 13a, ETA is at least
one order of magnitude faster than Naı̈ve and 2.6 times
faster than BINL for different data distributions of P and
independently distributed F . ANT distributed objects are
the hardest case since top-k computation becomes hard in
this case. Interestingly, the gap between ETA and the other
methods widens in this case. One of the reasons is that our
d-bounding views partitioning technique provides better
grouping than the Hilbert curve grouping. We also
evaluated our methods for the CLU F where we generate
the functions coefficients in clusters. As shown in Fig. 13b,
ETA is again the best method which is at least one order of
magnitude faster than Naı̈ve and 2.6 times faster than
BINL. We conclude that ETA is the best method for all
distribution combinations.

Fig. 13c plots the response time of all methods on the
NBA real data set. We instantiated P from this data set
(12,278 records) and set other parameters to their default
values. Again, ETA is consistently better than Naı̈ve and
BINL for all values of k. Summing up, ETA is the best
solution for ATOPk queries, typically being one order of
magnitude faster than Naı̈ve solution and 2-3 times faster
than BINL.
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In Fig. 13d, we demonstrate the response time of all
methods using another real data set, Household. We
instantiated P from the Household data set (including
3.6M records). We divided Household into four data sets
with 516K, 514K, 1.25M, and 1.35M records from years 2003,
2004, 2005, and 2006, respectively. The feature values in
Household are discrete, so there are some tuples having
the same feature values in all dimensions; in this case the
objects are grouped to a single capacitated object. The
number of different discrete objects are 242K, 250K, 520K,
and 542K, respectively, in the four years, while there are
1.55M different ones in total. We demonstrate the response
time of all three methods of the data in these four years as
well as the whole data in Fig. 13d. ETA again performs best
in all cases, being at least 36 and 4 times faster than Naı̈ve
and BINL, respectively. Even though the cardinality of the
entire data set (ALL) is several times larger than that of the
yearly data sets, the response time does not increase much,
being consistent with the trends in Fig. 12c.

I/O cost and peak memory usage. Figs. 14a and 14b
show the I/O cost and peak memory usage2 of all three
methods as a function of dimensionality d, after setting all
other parameters to their default values. The I/O costs of all
three methods (Naı̈ve, BINL, and ETA) grow exponentially
with the dimensionality. This result is consistent with the
corresponding response time experiment (Fig. 12a); ETA
accesses several times to two order of magnitude fewer
pages than other two methods. However, ETA may use
more memory than Naı̈ve and BINL since each view keeps
some data structures for incremental top-k computation;
still the required memory is not excessive. Also, if the
execution order is randomly selected (ETA-NoOrder), then
the execution consumes 3.89 times more memory than ETA
at d ¼ 6.

Reverse top-k and top-m influential computation. We
now demonstrate the use of ATOPk queries in the
computation of reverse top-k and top-m influential queries.
For these two problems, we compare the state-of-the-art
solutions [8], [9] to the ATOPk-based alternatives that we
introduced in Section 6.3.

For reverse top-k queries, we plot the response time of
ATOPk-based reverse top-k search using ETA versus the
average response time of RTOPk processing using RTA [8].
The queries are selected randomly from k-skyband objects
in order to avoid meaningless results (i.e., no user function
considers the query in their top-k result). As shown in
Fig. 15a, RTA is only 2.6 to 13.2 times faster than ETA when

dimensionality d varies from 2 to 6. However, ETA
computes the all top-k result which can be used to answer
any reverse top-k result (see Fig. 10b). In other words, if we
are to execute more than 13RTOPk queries in d ¼ 6, ETA
should be preferred to RTA, because the total response time
will be better in this case. Thus, RTA is not appropriate in
settings where multiple reverse top-k queries are to be
executed. Comparing the two queries for different values of
k (Fig. 15b) leads to similar conclusions.

For top-m influential queries, we compare our ITOPm
k

using ATOPk (ITOP-ATOP) approach (see Section 6.3) to
the state-of-the-art solution BB and its optimized version
OBB (as discussed in Section 6.3). Fig. 16a shows the
response time for these methods as a function of k. As k
increases, OBB becomes much better than original BB since
OBB caches the results of previous top-k computations.
However, OBB is still 17 times slower than our ITOP-ATOP
approach, which performs an all top-k query and uses its
results to evaluate the ITOPm

k query. Fig. 16b shows how
the cost is affected by m. The response times of BB and OBB
are linearly increasing with m, because BB and OBB
unavoidably compute more maximum possible influence
scores when m becomes larger and this introduces addi-
tional reverse top-k queries. However, our approach is
completely insensitive to m since we have already collected
all necessary data for ITOPm

k by an ATOPk computation.
Fig. 17 shows some additional experiments on ITOPk

m

queries (varying dimensionality and data distribution). Our
ITOP-ATOP method consistently beat other methods by 1 to
2 orders of magnitude for various values of d. In addition,
for different distributions of P for IND F , our method
greatly outperforms BB and OBB, especially in the ANT
case where BB and OBB take 2,827 and 607 seconds,
respectively, while ITOP-ATOP runs in only 0.64 seconds.

In summary, running an all top-k query using our best
method ETA is a much better alternative that repetitive
executions of RTA if multiple reverse queries are to be
evaluated. In addition, evaluating an all top-k query
using ETA and using its result to evaluate an ITOPm

k
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Fig. 14. Extra experiments for ATOPk. Fig. 15. Response time of ETA over that of RTA.

Fig. 16. Comparison of different ITOPm
k approaches.

2. We get the peak memory usage by adding/substracting the memory
usage of data structures on their construction/destruction.



query is 1-2 orders of magnitude faster than the state-of-
the-art method proposed in [9], even if this method is
optimized to reuse cached results of top-k queries.

8 RELATED WORK

8.1 Top-k Queries

Top-k queries [1], [2], [3] provide a convenient way for
users to find important objects according to their prefer-
ences. In [2], a threshold algorithm has been proposed to
combine object ranks from different sorted lists with a help
of an aggregate function f . TA scans the lists sequentially,
in a round-robin fashion, and computes the aggregate score
of each encountered object, while maintaining the top-k set.
As soon as the aggregate scores of the remaining objects
cannot exceed the top-k scores found so far, TA terminates.
Due to its popularity, many variants of TA have been
proposed (e.g., [1]). Onion [20] and PREFER [21], [22] are
two top-k methods which rely on pre-processing techni-
ques. Onion [20] pre-computes convex hull layers of the
data and processes linear top-k queries by scanning objects
incrementally, from exterior layers to interior layers. Onion
stops when it is guaranteed that the remaining layers
cannot contain any other results. The high complexity of
convex hull computations (Oðnd=2Þ in d-dimensional space)
makes Onion too expensive to be used in practice. Also
Onion cannot be used when data set is frequently updated
because recomputations of convex hulls are needed in this
case. PREFER [21], [22] first generates materialized views; a
top-k query is answered by scanning the views with most
similar preferences to the query. An algorithm to determine
the best views to be materialized when top-k queries are
pipelined is proposed. However, as demonstrated in [22],
we need to materialized many views before we can ensure
satisfactory performance. In addition, similar to Onion,
PREFER is only suitable for static data. The performance of
Onion can be improved with the use of indexing [23];
however, building robust indexes is quite expensive.

BRS [3] is a branch-and-bound approach for answering
top-k queries over a set of objects that are indexed by an R*-
tree. BRS uses a heap to maintain candidate entries,
traversing the R*-tree in a top-down manner. At every
iteration, BRS fetches the best entry from the heap. If the
entry is a leaf entry of the R*-tree, then it is output as the
next result in the ranking; the algorithm stops if we have
enough results. If the entry is in an intermediate node, then
the corresponding node is accessed and for each of its
entries e a max score is computed and e is inserted into the
heap. As shown in [3], BRS is an I/O optimal algorithm,

meaning that it accesses only the tree nodes which may
contain the top-k results. Since max score is a general
concept, this algorithm can be applied to both monotone
and non-monotone preference functions.

Recently, a group recommendation problem has been
studied in [24]. Given a group of people, a consensus
relevance score function is used to model the interests and
preferences of all group members. The score of an object is
defined as a linear combination of group relevance and group
disagreement. Using the monotonicity of relevance and
disagreement, a TA-like algorithm is designed for top-k
processing. This paper shares the same intuition with our
paper to recommend products to a group of users. However,
we focus on providing different recommendations to
different users based on their individual preferences, while
the goal in [24] is to provide a consensus recommendation of
all users. Another technical difference is that our methods
are designed for computing multiple top-k queries simulta-
neously for a large number (	10K) of users, while the group
size in [24] is very small (<10). The proposed solution in [24]
is obviously inapplicable to our problem.

8.2 Other Related Queries

There is plenty of work on skyline evaluation (e.g., [4], [5],
[25]). The concept of skyline is based on the dominance
relationship. The objective is to find the objects that are not
dominated by others. The skyline operator was first
proposed in [4]. Papadias et al. [5] proposed an incremental
skyline algorithm that access a minimal number of nodes
from an R*-tree that indexes the data. An object-based space
partitioning method that provides efficient skyline compu-
tation in high dimensional spaces was proposed in [25].

Several novel types of queries have been proposed
recently to assist the analysis tasks of product manufac-
turers. Li et al. [26] was the first paper to use the concept of
dominance for business analysis from a microeconomic
perspective. A data cube model (DADA) is proposed to
summarize the dominance relationships between objects in
all combinations of dimensions. The space is modeled by
the grid (i.e., matrix) of dimensional value combinations
(assuming that features have small integer domains) and
each cell summarizes the dominance of products in it. In [6],
the problem of creating competitive products have been
studied. In [7], Wu et al. aim at finding the best subspace for
a query object where it is highly ranked. Miah et al. [27]
studied an optimization problem that selects a subset of
attributes of a product t such that t’s shortened version still
maximizes t’s visibility to potential customers.

9 CONCLUSION

In this paper, we studied the problem of batch evaluation of
numerous top-k queries. To our knowledge, this is the first
thorough study for this problem. We proposed two batch
processing techniques; the first is a batch indexed nested loops
approach and the second is a view-based threshold algorithm
with a set of optimization techniques, including d-bounding
views, simplex partitioning, and batch objects accessing. We
demonstrated that ATOPk queries can be used to boost the
performance of reverse top-k and top-m influential queries.
In the future, we plan to study alternative techniques for
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ATOPk queries that employ parallel processing. Moreover,
we intend to study additional queries that can make use of
ATOPk as a module.
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“Creating Competitive Products,” Proc. PVLDB Endowment, vol. 2,
no. 1, pp. 898-909, 2009.

[7] T. Wu, D. Xin, Q. Mei, and J. Han, “Promotion Analysis in Multi-
Dimensional Space,” Proc. PVLDB Endowment, vol. 2, no. 1,
pp. 109-120, 2009.

[8] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg,
“Monochromatic and Bichromatic Reverse Top-K Queries,”
IEEE Trans. Knowledge Data Eng., vol. 23, no. 8, pp. 1215-1229,
Aug. 2011.

[9] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Identify-
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