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Abstract Why-not and why questions can be posed by data-

base users to seek clarifications on unexpected query re-

sults. Specifically, why-not questions aim to explain why

certain expected tuples are absent from the query results

while why questions try to clarify why certain unexpected

tuples are present in the query results. This paper systemati-

cally explores the why-not and why questions on reverse top-

k queries, owing to its importance in multi-criteria decision

making. We first formalize why-not questions on reverse

top-k queries, which try to include the missing objects in the

reverse top-k query results, and then, we propose a unified

framework called WQRTQ to answer why-not questions on

reverse top-k queries. Our framework offers three solutions

to cater for different application scenarios. Furthermore, we

study why questions on reverse top-k queries, which aim to

exclude the undesirable objects from the reverse top-k query

results, and extend the framework WQRTQ to efficiently an-

swer why questions on reverse top-k queries, which demon-

strates the flexibility of our proposed algorithms. Extensive

experimental evaluation with both real and synthetic data

sets verifies the effectiveness and efficiency of the presented

algorithms under various experimental settings.

Keywords Reverse top-k query · Why-not question · Why

question · Result explanation · Algorithm
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1 Introduction

The capability and usability of database are two research di-

rections in database community. Specifically, the capability

of database mainly focuses on the performance and func-

tionality of database systems, which have been significantly

improved in the past decades. However, the usability of

database is far from meeting user needs due to many charac-

teristics stemming from the users’ expectations for interact-

ing with databases [34]. As pointed out in [42], the explain

capability, which provides users the explanations for unex-

pected query results, is one of the important and essential

features that is missing from today’s database systems. In

reality, users always expect the precise and complete results

from the database query. Unfortunately, the database query

sometimes returns results that are different from users’ ex-

pectation, e.g., some expected tuples are missing or some

unexpected tuples are present. If a user encounters such cases,

intuitively, she wants to pose a why-not question to figure

out why her expected tuples are not returned or a why ques-

tion to find out why her unexpected tuples are returned. If

the database system can offer such clarifications, it helps

the users understand initial query better and know how to

change the query until the satisfactory results are found,

hence improving the usability of database.

Currently, there are three categories of methods to an-

swer why-not questions. The first category of methods finds

the manipulations which are responsible for excluding users’

desired tuples. The typical examples include answering users’

why-not questions on Select-Project-Join (SPJ) queries [13]

and Select-Project-Join-Union-Aggregation (SPJUA)

queries [6]. The second category of approaches provides

a set of data modifications (e.g., insertion, update, etc.) so

that the missing tuples can present in the query result. This

category also mostly focuses on SPJ queries [31,50] and

SPJUA queries [27,28]. The third category revises the initial
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query to generate a refined query whose result contains the

user specified missing tuples. Why-not questions on Select-

Project-Join-Aggregation (SPJA) queries [42], top-k queries

[24,25], reverse skyline queries [33], to name but a few,

all belong to this category. Moreover, the existing prove-

nance techniques, such as non-annotation method [9,19],

and annotation approach [4,18], can be employed to address

why questions. Nonetheless, both why-not and why ques-

tions are query-dependent, and none of existing work can

answer why-not and why questions on reverse top-k queries,

which is an important and essential building block for multi-

criteria decision making. Therefore, in this paper, we study

the problem of answering why-not and why questions on re-

verse top-k queries.

Before presenting the reverse top-k query, we first intro-

duce the top-k query. Given a dataset P , a positive integer

k, and a preference function f , a top-k query retrieves the

k points in P with the best scores based on f . The points

returned by the top-k query match users’ preferences best,

and help users to avoid receiving an overwhelming result

set. Based on the top-k query, Vlachou et al. [43] propose

the reverse top-k query from the manufacturers’ perspec-

tive, which has a wide range of applications such as mar-

ket analysis [36,43,45,46] and location-based services [44].

Given a dataset P , a positive integer k, a preference func-

tion set W (in terms of weighting vectors), and a query point

q, a reverse top-k query returns the preference functions in

W whose top-k query results contain q. Figure 1 illustrates

an example of reverse top-k queries. Figure 1(a) records the

price and heat production for each computer brand (e.g., Ap-

ple, DELL, etc.), and Figure 1(b) lists the customer prefer-

ences in terms of weighting vectors by assigning a weight

to every attribute. Without loss of generality, we adopt a lin-

ear preference function, i.e., f (−→w , p) = w[heat] × p.heat +

w[price] × p.price, to compute the score of a point p w.r.t.

a weighting vector −→w . Figure 1(c) depicts the score of ev-

ery computer for different customers, and we assume that

smaller values are more preferable. Based on Figure 1(c),

if Apple issues a reverse top-3 (k = 3) query at a query

point/computer q, Anna and Tony are retrieved as they rank

the query computer q as one of their top-3 options. In other

words, reverse top-k queries can help Apple to identify the

potential customers who are more likely to be interested in

its product(s), and thus to assess the impact of product(s) in

the market.

Unfortunately, reverse top-k queries only return query

results to users without any explanation. If the query result

does not contain some expected tuples, it may disappoint

users. Consider the aforementioned example again. Suppose

Kevin and Julia are Apple’s existing customers, however,

they are not in the result of the reverse top-3 query of q. Ap-

ple may feel frustrated, and ask ”Why Kevin and Julia do

not take Apple as one of their choices? What actions should

be taken to win them back?” If the database system can of-

fer such clarifications, it will help Apple to retain existing

customers as well as to attract more new customers, and

hence to increase/maintain its market share. In view of this,

for the first time, we explore why-not questions on reverse

top-k queries, which could be an important and useful tool

for market analysis. Given an original reverse top-k query q

and a why-not weighting vector set Wm that is missing from

the query result, why-not questions on reverse top-k queries

suggest how to refine the original query via changing q to

q′ and/or changing Wm and k to W ′
m and k′ such that i)

W ′
m (that might be equivalent to Wm) does present in the

query result of top-k′ query q′; and ii) the penalty caused

by changing (q, Wm, k) to (q′, W ′
m, k′) is minimum. Note,

the penalty is evaluated by the penalty models proposed in

Section 3 to quantify the changes.

In addition to why-not questions on reverse top-k queries,

we also explore why questions on reverse top-k queries in

this work, which also has a large application base. Back to

the above example in Figure 1. Assume that the query com-

puter q is designed for professional developers. After issuing

a reverse top-3 query, Apple finds that Tony, a high school

student, is also interested in the computer q. It may puz-

zle Apple ”Why does Tony also like this computer? Are the

configurations of q appealing to not only professional devel-

opers but also students? What actions should be taken such

that only the professional developers will choose this com-

puter?” If the database system can offer answers to these

questions, it can help Apple to design products that capture

the real preferences and requirements of their target cus-

tomers better. Towards this, in this paper, we study why

questions on reverse top-k queries. Specifically, given an

original reverse top-k query and a why weighting vector set

Wp that is unexpected but present in the query result, why

questions on reverse top-k queries suggest how to refine the

original query with minimum penalty such that Wp is ex-

cluded from the refined query result. Note that the penalty

models used to quantify the modification of the refined re-

verse top-k query for why questions are proposed in Sec-

tion 4.

In this paper, we present a unified framework called

WQRTQ, which provides three solutions to answer why-

not questions on reverse top-k queries to cater for differ-

ent application scenarios. The first solution is to modify a

query point q using the quadratic programming (e.g., Apple

changes the configurations of the computer as a solution to

win back certain customers). The second solution adopts a

sampling based method, which modifies a weighting vector

set Wm and a parameter k (e.g., Apple can employ proper

marketing strategies to influence the customers’ preferences

so that the new computer launched by Apple will appear in

their wish-list). The third solution is to modify q, Wm, and

k simultaneously, which integrates the quadratic program-
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Fig. 1 Example of reverse top-k queries

ming, sampling method, and reuse technique. This is a com-

bination of previous two solutions, which means both the

customers’ preferences need to be changed and the settings

of the computer will be modified to attract those customers

back. In addition, we extend WQRTQ to efficiently answer

why questions on reverse top-k queries, which demonstrates

the flexibility of our proposed algorithms. Extensive exper-

iments using both real and synthetic datasets show that our

proposed algorithms can produce clarifications and suggest

changes efficiently.

In brief, the key contributions of this paper are summa-

rized as follows:

– We solve why-not questions on reverse top-k queries. To

our knowledge, there is no prior work on this problem.

– We present a unified framework WQRTQ, including three

different approaches, to answer why-not questions on re-

verse top-k queries.

– We study a complimentary problem to why-not ques-

tions on reverse top-k queries, namely, why questions on

reverse top-k queries, and extend our WQRTQ frame-

work with new algorithms to tackle it.

– We conduct extensive experimental evaluation using both

real and synthetic datasets to demonstrate the effective-

ness and efficiency of the proposed algorithms under a

variety of experimental settings.

A preliminary version of this work has been published

in [21]. As an extension, we make following fresh contribu-

tions in the paper, which include (i) why questions on re-

verse top-k queries (Section 4); (ii) enhanced experimental

evaluation that incorporates the new class of problem (Sec-

tion 5); and (iii) more comprehensive related work (in Sec-

tion 6). In addition, we have further improved the presenta-

tion and organization of the paper.

The rest of this paper is organized as follows. Section 2

presents problem formulation. Section 3 elaborates our frame-

work and solutions to answer why-not questions on reverse

top-k queries. Section 4 describes our algorithms to answer

why questions on reverse top-k queries. Section 5 reports

experimental results and our findings. Finally, Section 6 re-

views related work, and Section 7 concludes the paper with

some directions for future work.

Table 1 Symbols and description

Notation Description

f(−→w , p) The score of a point p w.r.t. a weighting vec-

tor −→w

Wm/Wp The why-not/why weighting vector set

TOPk(−→w ) The set of top-k points w.r.t. a weighting vec-

tor −→w

H(−→w , p) The hyperplane that is perpendicular to −→w
and contains the point p

SR(q) The safe region of q

IR(q) The invalid region of q

EIR(q) The enhanced invalid region of q

HS(−→w, p) /

HS(−→w , p)
The half space/complementary half space

formed by −→w and p

I A point set that contains all the points incom-

parable with q

D A point set that contains all the points domi-

nating q

2 Problem Formulation

In this section, we first introduce the concept of reverse top-

k queries, and then provide the formal definition of why-not

and why questions on reverse top-k queries, respectively. Ta-

ble 1 summarizes the notations used throughout this paper.

2.1 Reverse Top-k Queries

Given a d-dimensional dataset P , a point p ∈ P is rep-

resented in the form of p = {p[1], · · · , p[d]}, where p[i]

refers to the i-th dimensional value of P . The top-k query

ranks the points based on the user specified scoring func-

tion f that aggregates the individual score of a point into an

overall scoring value. In this paper, we utilize a linear scor-

ing function (or weighted sum function) that is commonly

used in the literature [24,25,43,46]. Specifically, within a

data space, each dimension i is assigned a weight w[i] indi-

cating the relative importance of the i-th dimension for the

query. The weights for all dimensions can be denoted as a

weighting vector −→w = {w[1], · · · , w[d]}, in which w[i] ≥ 0

(1 ≤ i ≤ d) and
∑d

i=1
w[i] = 1. Then, the aggregated score

of any data point p (∈ P ) with respect to −→w is f(−→w , p) =
∑d

i=1
(w[i] × p[i]). Without loss of generality, we assume

that smaller scoring values are preferable in this paper. Be-

low, we formally define the top-k query.

Definition 2.1 (Top-k query). Given a d-dimensional data

set P , a positive integer k, and a weighting vector−→w , a top-k

query (TOPk) returns a set of points, denoted as TOPk(−→w ),
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such that (i) TOPk(−→w ) ⊆ P ; (ii) |TOPk(−→w )| = k; and

(iii) ∀p1 ∈ TOPk(−→w ), ∀p2 ∈ P −TOPk(−→w ), it holds that

f(−→w , p1) ≤ f(−→w , p2).

Take the dataset P depicted in Figure 1 as an exam-

ple. In Figure 1(c), it is observed that the three smallest

scores for −→w 1 are f(−→w 1, p1) = 1.1, f(−→w 1, p2) = 3.3, and

f(−→w 1, p4) = 3.6. Hence, we haveTOP3(−→w1) = {p1, p2, p4}.

It is worth mentioning that, if the points share the same

score at ranking k-th, only one of them is randomly returned.

Based on the definition of the top-k query, we formulate re-

verse top-k queries by following [43].

Definition 2.2 (Reverse Top-k Query). Given a d-

dimensional dataset P , a d-dimensional weighting vector set

W, a query point q, and a positive integer k, a reverse top-k

(RTOPk) query retrieves a set of weighting vectors, denoted

as RTOPk(q), such that (i) RTOPk(q) ⊆ W , and (ii) for

every −→wi ∈ RTOPk(q), it holds that q ∈ TOPk(−→wi).

A RTOPk query finds the weighting vectors in W whose

top-k query results contain q. Back to Figure 1 again. As

TOP3(−→w2) = {p1, p2, q}, −→w2 belongs to RTOP3(q). Af-

ter exploring all the potential weighting vectors, we have

RTOP3(q) = {−→w2,
−→w3}. Based on the reverse top-k query,

we formally define why-not and why questions on reverse

top-k queries in Section 2.2 and Section 2.3, respectively.

2.2 Why-not Questions on Reverse Top-k Queries

In this subsection, we formalize the definition of why-not

questions on reverse top-k queries.

Definition 2.3 (Why-not Questions on RTOPk Queries).

Given a RTOPk query issued from a query point q on a

dataset P based on a weighting vector set W, and a why-

not weighting vector set Wm ⊆ W − RTOPk(q), the goal

of answering why-not questions on RTOPk queries is to

find (q′,W ′
m, k′) such that (i) ∀−→w ∈ RTOPk(q), −→w ∈

RTOPk′(q′); (ii) ∀
−→
w′

i ∈ W ′
m,

−→
w′

i ∈ RTOPk′(q′); and (iii)

the penalty of changing (q,Wm, k) to (q′,W ′
m, k′), as de-

fined in Equation (1), is minimum, and then to return the

result of RTOPk′(q′).

Penalty(q′,Wm
′, k′) = γPenalty(q′)+(1−γ)Penalty(W ′

m, k′)

(1)

In above definition, condition (i) is to guarantee all the

weighting vectors that are returned by original RTOPk query

at q shall be still returned even after the modification; con-

dition (ii) is to make sure the set of expected weighting vec-

tors that are missing in previous RTOPk query at q will be

returned by the modified RTOPk′ query (in the form of W ′
m

which is very close to Wm if not equivalent to Wm); and

condition (iii) is to guarantee that the recommended mod-

ification is optimal as quantified by Penalty. Our above

definition only guarantees RTOPk(q) ⊆ RTOPk′(q′), and

W ′
m ⊂ RTOPk′(q′), while RTOPk′(q′) - RTOPk(q) - W ′

m

might not be empty. This means the modification may also

return some weighting vectors −→w that do not belong to ei-

ther original result set or W ′
m. However, why-not questions

on reverse top-k queries mainly focus on how to include ex-

pected tuples Wm that are missing in the result set back to

the result set, and hence we do not consider RTOPk′(q′) -

RTOPk(q) - W ′
m in above definition.

In general, why-not question on RTOP (q) will be is-

sued when an expected weighting vector set Wm is not re-

turned by RTOP (q), and it provides an explanation on the

absence of Wm via a refinement (q′,W ′
m, k′). To be more

specific, it tries to include Wm back to the result set via

modifying the query point q which stands for the product

in our example and/or (Wm, k) which stands for the user

preferences in our example, with minimum penalty. In this

paper, we have proposed three different solutions to per-

form the modification. To be more specific, our first solu-

tion only changes q′ (i.e., W ′
m = Wm and k′ = k and hence

Penalty(W ′
m, k′) = 0) which is catered for the cases where

the missing tuples can be re-included by changing the query

point. Our second solution only changes Wm and k (i.e.,

q′ = q and hence Penalty(q′) = 0), which is catered for

the cases where the query point has been finalized and hence

cannot be changed but parameters Wm and k are flexible.

Our third solution changes all three parameters, catered for

the cases where the modifications suggested by previous two

solutions have their penalties above the limit set by manu-

facturers or customers. These three solutions will be detailed

in Section 3

According to Definition 2.3, for why-not questions on

RTOPk queries, the target is to find (q′,W ′
m, k′) such that

∀
−→
w′

i ∈ W ′
m,

−→
w′

i ∈ RTOPk′(q′). Based on Definition 2.2,
−→
w′

i ∈ RTOPk(q)−→ q ∈ TOPk(
−→
w′

i) and
−→
w′

i /∈ RTOPk(q)

−→ q /∈ TOPk(
−→
w′

i). Hence, why-not questions on RTOPk
queries can be re-phrased as: given a RTOPk query based

on (q,Wm, k) having ∀−→wi ∈ Wm, q /∈ TOPk(−→wi), how to

refine the RTOPk query (i.e., to find the tuple (q′,W ′
m, k′))

with minimum penalty such that ∀
−→
w′

i ∈ W ′
m, q′ ∈ TOPk′(

−→
w′

i),

as shown in Figure 2(a).

In addition, it is worth mentioning that the why-not ques-

tions on top-k queries and reverse top-k queries are two dif-

ferent problems. (i) If the why-not weighting vector set Wm

consists of only one weighting vector, our second solution,

i.e., modifying Wm and k, is identical with the approach of

why-not questions on top-k queries. However, we propose

another two new solutions to answer the why-not questions

on reverse top-k queries, i.e., modifying the query point q,

and modifying q, Wm and k. (ii) If Wm consists of more

than one weighting vector, the approach of why-not reverse

top-k queries cannot be applied to address our problem since
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(a) why-not questions

(b) why questions

Fig. 2 Transformation of why-not and why questions

the penalty of modified reverse top-k queries is not mini-

mum.

The transformed problem might look similar as the prob-

lem of why-not questions on top-k queries [24,25]. Note

that given a why-not point set Pm ⊆ P and a weighting vec-

tor −→w having ∀pi ∈ Pm, pi /∈ TOPk(−→w ), why-not ques-

tions on top-k queries find (w′, k′) with minimum penalty

such that ∀pi ∈ Pm, pi ∈ TOPk′(
−→
w′). However, we want

to highlight that these two problems are inherently different.

First, these two problems have totally different inputs. The

inputs of our problem contain a why-not weighting vector

set that captures the preferences of customers and a query

point q representing a product of the manufacturer, while

why-not questions on top-k queries take as inputs a why-not

point set that denotes the attributes of products and a weight-

ing vector representing a customer preference. Second, they

serve different purposes. Our problem tries to make the prod-

uct q as one of the top-k choices for the set of a given cus-

tomer preferences, but why-not questions on top-k queries

try to make all the specified products appear in the top-k

result of a given weighting vector.

2.3 Why Questions on Reverse Top-k Queries

In real life, users are interested in not only the missing tuples

that are absent from the query results, but also the undesir-

able tuples that are returned as part of the result but are not

expected to be present. In the following, we formally define

the why questions on reverse top-k queries.

Definition 2.4 (Why Questions on RTOPk Queries). Given

a RTOPk query issued from a query point q on a dataset P

and a weighting vector set W, and a why weighting vector set

Wp ⊆ RTOPk(q), why questions on RTOPk queries is to

find (q′,W ′
p, k

′) such that (i) ∀
−→
w′

i ∈ W ′
p,
−→
w′

i /∈ RTOPk′(q′);
and (iii) the penalty of (q′,W ′

p, k
′), defined in Equation (2),

is minimum, and to return the result of RTOPk′(q′).

Penalty(q′,Wp
′, k′) = γPenalty(q′)+(1−γ)Penalty(W ′

p, k
′)

(2)

Definition 2.4 looks similar as Definition 2.3, as why-not

questions on RTOPk queries are symmetric to why ques-

tions on RTOPk queries. However, we want to highlight that

why-not questions on RTOPk always suggest a modification

such that original results of RTOPk(q) are still present in the

new result of RTOPk′(q′), as guaranteed by condition (i) in

Definition 2.3; while why questions on RTOPk queries can-

not guarantee all the original results (excluding W ′
m) still

remain after we perform the modification. For why ques-

tions on RTOPk queries, if the solution exists by keeping all

the expected original query result, we will return the corre-

sponding solution with minimum penalty, otherwise we ac-

tually ignore the condition of keeping all previous expected

results. In our future, we want to study how to remain all the

original reverse top-k query results that are expected even

after modification.

The goal of answering why questions is to find (q′,W ′
p,

k′) with minimum penalties such that the specified why

weighting vector(s) will be excluded from the refined query

results. Similarly, based on Definition 2.2, why questions on

RTOPk queries can be re-phrased as: given a RTOPk query

based on (q,Wp, k) having ∀−→wi ∈ Wp, q ∈ TOPk(−→wi),
how to refine the original query (i.e., to find the tuple (q′,W ′

p,

k′)) with minimum penalty such that ∀
−→
w′

i ∈ W ′
p, q′ /∈

TOPk′(
−→
w′

i), as shown in Figure 2(b).

It is worth mentioning that the difference between why-

not question and why question is two-fold. First, why ques-

tion takes the objects in the original query result as inputs

while why-not question takes the non-answers as inputs. Sec-

ond, why-not and why question serves opposite purpose,

i.e., the goal of why question is to exclude the undesirable

objects from the query result while why-not question tries to

include the desirable objects in the query result.

3 Answering Why-not Questions

In this section, we propose a unified framework to answer

why-not questions on reverse top-k queries, and then detail

the framework, which contains three solutions based on the

modification of different parameters. Note that, in all our

proposed algorithms, we assume the dataset is indexed by

an R-tree [2].

3.1 Framework Overview

First, we present a unified framework called WQRTQ (i.e.,

Why-not Questions on Reverse Top-k Queries) to answer

why-not questions on reverse top-k queries. As illustrated

in Figure 3, WQRTQ takes as inputs an original reverse top-

k query and the corresponding why-not weighting vector set

Wm, and returns to the users the refined reverse top-k query

with minimum penalty. Specifically, it consists of the fol-

lowing three solutions.
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Modify why-not 

weighting vectors set 

Wm and parameter k

Modify query 

point q

Modify query point q,

why-not weighting vectors 

set Wm, and parameter k

Why-not weighting vectors set WmReverse top-k queries

W
Q
R
T
Q

In
p
u
ts

Refined Reverse Top-k Queries

Fig. 3 Framework of WQRTQ

(1) Modifying q. The first solution is to change query

point q only, from q to q′, which is to be detailed in Sec-

tion 3.2. To this end, we introduce the concept of safe region

(see Definition 3.2). As long as the query point q′ falls into

the safe region, the why-not weighting vector set Wm will

appear in the reverse top-k query result of q′. After getting

the safe region, we use the quadratic programming to get q′

with the minimum change as compared to q.

(2) Modifying Wm and k. The second solution, to be

presented in Section 3.3, is to modify a why-not weighting

vector set Wm and a parameter k into W ′
m and k′ respec-

tively, such that the modified W ′
m belongs to the result of

the reverse top-k′ query of q. Towards this, we present a

sampling-based method to obtain W ′
m and k′ with the min-

imum penalty. In particular, we sample a certain number of

weighting vectors that may contribute to the final result, and

then locate the optimal W ′
m and k′ according to the sample

weighting vectors.

(3) Modifying q, Wm, and k. Our third solution is to

modify a query point q, a why-not weighting vector set Wm,

and a parameter k simultaneously, as to be detailed in Sec-

tion 3.4. After refining, the modified weighting vector set

W ′
m is contained in the reverse top-k′ query result of q′. This

solution utilizes the techniques of quadratic programming,

sampling method, and reuse.

It is worth mentioning that all three solutions always re-

turn a non-empty result, i.e., a refinement can always be

identified. Specifically, the first solution can always find a

non-empty safe region within which a refinement can be lo-

cated; the second solution employs a sampling method to

refine the original query and it can locate the answer once

the sample weighting vectors are obtained; and above two

statements guarantee that the third solution, as a combina-

tion of the first solution and the second solution, will always

return a non-empty result.

3.2 Modifying q

Intuitively, if Apple finds some existing customers cs that are

not interested in its new computer, it can adjust some com-

puter parameters before putting it into production so that the

modified computer can re-appear in the lists of the top-k

options of those customers cs. In view of this, we propose

the first solution to refine the original reverse top-k query,

namely, modifying a query point q, as formally defined be-

low.

Definition 3.1 (Modifying q). Given a d-dimensional data

set P , a positive integer k, a query point q, and a why-not

weighting vector set Wm with ∀−→wi ∈ Wm, q /∈ TOPk(−→wi),

the modification of a query point q is to find q′ such that

(i) ∀−→wi ∈ Wm, q′ ∈ TOPk(−→wi); (ii) ∀−→wj ∈ RTOPk(q),
−→wj ∈ RTOPk(q′); and (iii) the penalty of q′, defined in

Equation (3), is minimum.

Penalty(q′) =
|q − q′|

|q|
=

√

∑d

i=1
(q[i]− q′[i])2

|q|
(3)

Assuming that the attributes of an object are independent

of each other for simplicity, we use Equation (3) to quan-

tify the modification of the product, which is also employed

by Padmanabhan et al. [39] to measure quality distortation

for the upgraded product. Note Equation (3) is equivalent to

Equation (1) for our first solution as Penalty(W ′
m, k′) ≡ 0

when W ′
m = Wm ∧ k′ = k. For example, in Figure 1,

Kevin and Julia are not in the reverse top-3 result of q. If

Apple modifies computer’s parameter q(4, 4) to q′(3, 2.5) or

q′′(2.5, 3.5), the new computer q′ or q′′ becomes one of the

top-3 options for both Kevin and Julia. According to Defi-

nition 3.1, q′′ is more preferable as Penalty(q′) = 0.318 >

Penalty(q′′) = 0.279. In some applications, the attributes

of an object may have several constraints. Under such cir-

cumstance, we can add the corresponding constraints to the

Equation (3). Our proposed approach is still applicable by

adding those constraints and can support other monotonic

functions.

Intuitively, the search space of the query point is the

whole data space. However, ensured by the following lemma,

we only consider decreasing q[i]’s value.

Lemma 3.1 Given a query point q, let q′ is the modified

query point with the minimum penalty having ∀−→wi ∈ Wm,

q′ ∈ TOPk(−→wi), then ∀i ∈ [1, d], q′[i] ≤ q[i].

Proof Assume that ∃j ∈ [1, d], q′[j] > q[j]. Then, we can

find another point q′′ = {q′′[i] | i = j, q′′[i] = q[i]; i 6=

j, q′′[i] = q′[i]}. Since (i) ∀−→wi ∈ Wm, q′ ∈ TOPk(−→wi)
and (ii) the scoring function is monotonic, it also holds that

∀−→wi ∈ Wm, q′′ ∈ TOPk(−→wi). In addition, Penalty(q′′) <

Penalty(q′). Therefore, q′ is not the qualified modified query

point with the minimum penalty, which contradicts the con-

dition of the lemma. Thus, our assumption is invalid and the

proof completes. ✷

As an example, assume that q(4, 4) in Figure 1 is mod-

ified to q′(5, 1). We can always find another query point

(e.g., q′′(4, 1) in this case) that has smaller scoring value

and meanwhile generate smaller penalty. In other words, the
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search space for q′ can be shrunk to [0, q]. Lemma 3.1 also

ensures that modifying query point doesn’t lose any original

reverse top-k query result. Specifically, let q′ be the modi-

fied query point, and −→w ∈ RTOPk(q) be any original re-

sult. As ∀i ∈ [1, d], q′[i] ≤ q[i], f(−→w , q′) ≤ f(−→w , q), and

hence q ∈ TOPk(−→w ) −→ q′ ∈ TOPk(−→w ).

Furthermore, to get a qualified q′, we find that it is possi-

ble to locate a region within [0, q], namely, q’s safe region as

defined in Definition 3.2, that definitely bounds the modified

query point q′.

Definition 3.2 (Safe Region). Given a d-dimensional data

set P , a positive integer k, a query point q, and a why-not

weighting vector set Wm, a region in the data space is said

to be safe for q (i.e., q’s safe region), denoted as SR(q), such

that ∀q′ ∈ SR(q) and ∀−→wi ∈ Wm, q′ ∈ TOPk(−→wi).

In other words, if q is modified to q′ by moving the query

point q anywhere within SR(q), all the why-not weighting

vectors will appear in a given reverse top-k query result. Ob-

viously, if we can identify such SR(q), our first solution

only needs to return the point in SR(q) that is closest to

q. In the sequel, we explain how to derive SR(q). In a d-

dimensional space, given a weighting vector −→w and a point

p, we can get a hyperplane, denoted as H(−→w , p), which is

perpendicular to −→w and contains the point p. Then, we have

the lemma below.

Lemma 3.2 Given a hyperplaneH(−→w , p) formed by −→w and

p, (i) if a point p′ lies on H(−→w , p), f(−→w , p′) = f(−→w, p); (ii)

if a point p′′ lies below H(−→w , p), f(−→w , p′′)< f(−→w , p); and

(iii) if a point p′′′ lies aboveH(−→w , p), f(−→w, p′′′)> f(−→w , p).

Proof The proof is straightforward and hence is omitted. ✷

According to Lemma 3.2, all the points lying on/below/

above the hyperplaneH(−→w , p) have the same/smaller/larger

scoring values, as compared with p w.r.t. −→w . Figure 4(a)

explains Lemma 3.2 in a 2D space, where the hyperplane

H(−→w3, p3) is formed by −→w3 and p3 in Figure 1. Given points

p1 below H(−→w3, p3), p5 above H(−→w3, p3), and p7 on H(−→w3,
p3), we have f(−→w3, p1)< f(−→w3, p3), f(

−→w3, p5)>f(−→w3, p3),

and f(−→w3, p7) = f(−→w3, p3). These findings are also consis-

tent with their scores listed in Figure 1(c). Based on Lemma 3.2,

the concept of half space is stated below.

Definition 3.3 (Half Space). Given a hyperplane H(−→w , p),
the half space formed by −→w and p, denoted as HS(−→w , p),

satisfies that ∀p′ ∈ HS(−→w, p), f(−→w , p′) ≤ f(−→w , p).

In other words, HS(−→w, p) includes all the points lying

on and below the hyperplane H(−→w , p). Figure 4(a) illus-

trates the half space HS(−→w3, p3) formed by −→w3 and p3, i.e.,

the shaded area in Figure 4(a). Based on Lemma 3.2 and

Definition 3.3, we present the following lemmas to explain

the construction of q’s safe region.

q
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(a) Illustration of Lemma 3.2
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q'
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B

(b) Illustration of Lemma 3.4

Fig. 4 Example of Lemma 3.2 and Lemma 3.4

Lemma 3.3 Given a weighting vector −→w , and a point p

which is the top k-th point of −→w , if q′ ∈ HS(−→w , p), q′ ∈

TOPk(−→w ).

Proof The proof is straightforward and hence omitted. ✷

Lemma 3.4 Given a why-not weighting vector set Wm =

{−→w1, −→w2, · · · , −→wn}, and a set Λ = {p1, p2, · · · , pn} of points

(∀pi ∈ Λ is the top k-th point w.r.t. its corresponding why-

not weighting vector −→wi ∈ Wm), the safe region of a query

point q refers to the common area covered by all the half

spaces formed by−→wi and pi, i.e.,SR(q) = ∩1≤i≤nHS(−→wi, pi).

Proof The proof is straightforward according to Lemma 3.3

and Definition 3.3. ✷

Figure 4(b) depicts an example of Lemma 3.4, which uti-

lizes the dataset shown in Figure 1. Assume that −→w1 and −→w4

are two why-not weighting vectors, and the corresponding

the 3-rd points with lowest scores for −→w1 and −→w4 are p4 and

p7, respectively. Therefore, the safe region of q w.r.t. {−→w1,
−→w4} is the overlapping of HS(−→w1, p4) and HS(−→w4, p7), i.e.,

the shaded area (i.e., quadrilateral AoBq′) highlighted in

Figure 4(b). Note that the safe region formed by the (k− 1)-

th points (denoted as SR′(q)) doesn’t contain the optimal

q′. This is because the hyperplane formed by the (k − 1)-th

points is always below the hyperplane formed by the k-th

points.

After getting the safe region of q, we need to find the

optimal query point q′ with the minimum cost w.r.t. q. Take

Figure 4(b) as an example again. Point q′ is the desirable re-

fined query point. However, a safe region is a convex poly-

gon bounded by hyper-planes. The above safe region com-

putation does not scale well with the dimensionality because

computing the intersection of half spaces becomes increas-

ingly complex and prohibitively expensive in high dimen-

sions [3]. Actually, finding the optimal query point q′ with

the minimum cost w.r.t. q is an optimization problem. More-

over, the penalty function of q′ defined in Equation (3) can

be seen as a quadratic function. In light of this, we employ

the quadratic programming to find the optimal q′ without

computing the exact safe region. Specifically, the quadratic
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programming can be represented in the following form:

min f(x) = 1

2
xTHx+ xT c

s.t.

{

Ax ≤ b
lb ≤ x ≤ ub

(4)

Equation (4) derives the optimal x that minimizes f(x)

under the constraints Ax ≤ b and lb ≤ x ≤ ub, in which

f(x) is an objective function; H and A are matrixes; x, c, b,

lb, and ub are vectors; and superscript T denotes transposi-

tion. Our problem is actually an optimization problem, with

the goal to obtain q′ having the smallest penalty. Hence, we

utilize the quadratic programming to obtain the optimal q′.

Since the denominator in Equation (1) is a positive constant,

for simplicity, in this paper, we assume that the objective

function for our problem is f(q′) =
∑d

i=1
(q[i]− q′[i])

2

= 1

2
(q′)THq′ + (q′)T c, where H = diag(2, 2, · · · , 2) is a

d × d diagonal matrix with all eigenvalues being 2, and c =

(−2q[1], −2q[2], · · · , −2q[d]) is a d-dimensional vector.

In addition, given a why-not weighting vector set Wm

= {−→w1, −→w2, · · · , −→wn} and a point set Λ = {p1, p2, · · · , pn}

(pi ∈ Λ is the top k-th point of −→wi ∈ Wm), the optimal

(modified) q′ falling within the safe region SR(q) must sat-

isfy that, ∀−→wi ∈ Wm and ∀pi ∈ Λ, f(−→wi, q
′) ≤ f(−→wi, pi)

according to Definition 3.2, which can be represented by

Aq′ ≤ b in Equation (4), where A defined below is a n× d
matrix and b = (f(−→w1, p1), f(

−→w2, p2), · · · , f(
−→wn, pn)). As

mentioned earlier, the varying range of q is [0, q]. Conse-

quently, 0 ≤ q′ ≤ q corresponds to lb ≤ x ≤ ub.

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

w1[1] w1[2] . . . w1[d]

w2[1] w2[2] . . . w2[d]
...

...
. . .

...

wn[1] wn[2] . . . wn[d]

∣

∣

∣

∣

∣

∣

∣

∣

∣

Based on the above analysis, we propose the algorithm

called MQP-I to modify the query point q, whose pseudo-

code is presented in Algorithm 1. First, we adopt the branch-

and-bound method to find the top k-th point for every why-

not weighting vector (lines 1-12). Then, we use the interior-

point quadratic programming algorithm QuadProg [38] to

get the optimal refined query point q′ (lines 13-14). In partic-

ular, QuadProg iteratively finds an approximate Newton di-

rection associated with the Karush-Kuhn-Tucker system of

equations which characterizes a solution of the logarithmic

barrier function problem. Totally, QuadProg finds an opti-

mal solution in O(d × L) iterations, where d is the dimen-

sionality, and L denotes the size of a quadratic programming

problem [38]. Specifically, L = ⌈log(d3 + 1)⌉ + ⌈log(θ +

1)⌉+ ⌈log(ω+1)⌉+⌈log(d+n)⌉ with ω = max(f(−→w1, p1),

f(−→w2, p2), · · · , f(−→wn, pn)) and θ = max(q[1], q[2], · · · ,

q[d]). Moreover, each iteration involves O(d2) arithmetic

operations. Hence, QuadProg solves problem in no more

than O(d3 × L) arithmetic operations. Assume |RT | is the

Algorithm 1 Modifying query point q (MQP-I)

Input: an R-tree RT on a set P of data points, a query point q,

a parameter k, a why-not weighting vector set Wm

Output: q′

/*HP is a min-heap; Λ is a set storing the top k-th point for each

why-not weighting vector; H and A are matrixes; c, b, lb, and ub
are vectors. */

1: for each weighting vector wi ∈ Wm do

2: initialize the min-heap HP with all root entries of RT ;

3: count← 0;

4: while HP is not empty do

5: de-heap the top entry e of HP ;

6: if e is a data point then

7: count← count+ 1;

8: if count = k then

9: add e to Λ; break

10: else //e is an intermediate (i.e., a non-leaf) node

11: for each child entry ei ∈ e do

12: insert ei into HP ;

13: set H, A, c, b, lb, and ub by using Wm, Λ, and q;

14: q′ ← QuadProg(H,A, c, b, lb, ub);
// interior-point quadratic programming algorithm in [38]

15: return q′;

cardinality of R-tree, we present the time complexity of MQP-

I in Theorem 3.1 below.

Theorem 3.1 The time complexity of MQP-I algorithm is

O( |RT | × |Wm|+ d3 × L).

Proof MQP-I algorithm consists of two phases. The first

phase is to find the top k-th point for each why-not weight-

ing vector. In the worst case, it needs to traverse the whole R-

tree |Wm| times, whose time complexity is O(|RT |×|Wm|).

The second phase is the quadratic programming, whose time

complexity is O(d3×L) . Therefore, the total time complex-

ity of MQP-I is O(|RT | × |Wm|+ d3 × L). ✷

3.3 Modifying Wm and k

Imagine that, if the computer q in Figure 1 has been put into

production, changing attribute values might not be feasi-

ble. Fortunately, as pointed out by Carpenter and Nakamoto

[10], consumer preferences could be actually influenced by

proper marketing strategies, such as advertising, which is

proved by the example of Wal-Mart [1]. Hence, alternatively,

Apple can adopt proper marketing strategies to influence

their customers to change their preferences, such that the

new computer q re-appears in customers’ wish list again.

Moreover, some of the existing works [24] and [33] also an-

swer the why-not questions via modifying the preferences.

To this end, we develop the second solution to refine the

original reverse top-k query by modifying the customers’

preferences. Since customers’ preferences are application-

dependent and the reverse top-k query studied in this pa-

per involves two types of customers’ preferences, i.e., Wm

and k, our second solution is to modify a why-not weighting
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vector set Wm and a parameter k. In reality, the change of

Wm can be achieved by proper marketing strategies as men-

tioned above and the modification of k can be achieved by

controlling the information exposed to the users.

Firstly, we introduce the penalty model to quantify the

total changes of Wm and k. We use ∆Wm and ∆k to mea-

sure the cost of the modification of Wm and k respectively,

as defined in Equation (5).

{

∆k = max(0, k′ − k)

∆Wm =
∑|Wm|

i=1

√

∑d

j=0
(wi[j]− w′

i[j])
2

(5)

It is worth noting that, there is a possibility that the modi-

fied k′ value may be smaller than the original k value. In this

case, we set ∆k to 0. For example, assume that (Wm, k = 6)

is modified to (W ′
m, k′ = 3). Since q belongs to the top-3

query result of every refined why-not weighting vector, it

must also be in the corresponding top-6 query result. Conse-

quently, it is unnecessary to change the value of original k.

In other words, k′ > k. Note that the condition k′ > k can

not be used to avoid the exploration of the ”invalid search

space”. It is because the weighting vectors whose rank of

q is lower than k also can contribute to the final results. In

addition, ∆Wm refers to the sum of every why-not weight-

ing vector penalty. In a word, we utilize the sum of ∆Wm

and ∆k to capture the total change of customer preferences.

Given the fact that the customers’ tolerances to the changes

of Wm and k are different, we utilize a non-negative param-

eter α (≤ 1) to capture customers’ relative tolerance to the

changes of k. Then, a normalized penalty model is defined in

Equation (6). Note that, the larger the value of α is, the big-

ger the role that ∆k plays in determining the penalty. Again

Equation (6) is equivalent to Equation (1) for this solution

as Penalty(q′) ≡ 0 when q′ = q.

Penalty(Wm
′, k′) = α

∆k

∆kmax

+(1−α)
∆Wm

(∆Wm)max

(6)

Here, ∆kmax refers to the maximum value of ∆k which is

set to (k′max−k) with k′max calculated by Lemma 3.5 below.

Lemma 3.5 Given a set R = {r1, r2, · · · , rn}, where ri ∈

R is the actual ranking of a query point q under the corre-

sponding why-not weighting vector −→wi ∈ Wm, then k′max

= max(r1, r2, · · · , rn).

Proof Assume that we have a refinedW ′
m and k′ with∆W ′

m

= 0, the corresponding k′ = max(r1, r2, · · · , rn). Any

other possible refined W ′′
m and k′′ with ∆W ′′

m > 0 must

have its k′′ < max(r1, r2, · · · , rn) or it cannot be the op-

timal result. Consequently, k′max = max(r1, r2, · · · , rn),

and the proof completes. ✷

As shown in Figure 1, the actual rankings of q under

why-not weighting vectors −→w1 and −→w4 are 4 and 4 respec-

tively, and thus, k′max = 4.

Similarly, (∆Wm)max refers to the maximum value of

(∆Wm), and it has been proven in [24] that ∆−→wi ≤
√

1 +
∑d

j=1
(wi[j])2. As ∆Wm =

∑|Wm|
i=1

(∆−→wi) ≤
∑|Wm|

i=1

√

1 +
∑d

j=1
(wi[j])2, we have (∆Wm)max =

∑|Wm|
i=1

√

1 +
∑d

j=1
(wi[j])2. Based on the above analysis,

we re-form the normalized penalty model below.

Penalty(Wm
′, k′) =

α ·max(0, k′ − k)

max(r1, r2, · · · , rn)− k

+
(1− α) ·

∑|Wm|
i=1

√

∑d

j=1
(wi[j]− w′

i[j])
2

∑|Wm|
i=1

√

1 +
∑d

j=1
(wi[j])2

(7)

Given the fact that customer preferences are application-

dependent, Equation (7) provides a reasonable estimation of

the differences between customer preferences in terms of the

reverse top-k query. Based on Equation (7), we formally de-

fine the problem of modifying Wm and k as follows.

Definition 3.4 (Modifying Wm and k). Given a d-

dimensional dataset P , a positive integer k, a query point

q, and a why-not weighting vector set Wm = {−→w1,
−→w2, · · · ,

−→wn} (∀−→wi ∈ Wm, q /∈ TOPk(−→wi)), the modification of Wm

and k is to find W ′
m = {

−→
w′

1
,
−→
w′

2
, · · · ,

−→
w′

n} and k′, such that

(i) ∀
−→
w′

i ∈ W ′
m, q ∈ TOPk′(

−→
w′

i); (ii) ∀−→wj ∈ RTOPk(q),
−→wj ∈ RTOPk′(q), and (iii) the Penalty(W ′

m, k′) is mini-

mized.

Take Figure 1 as an example again and assume that α =

0.5 for simplicity. If we modify Kevin’s and Julia’s weight-

ing vectors to
−→
w′

1 = (0.18, 0.82) and
−→
w′

4 = (0.75, 0.25) respec-

tively, Kevin and Julia will appear in the reverse top-3 query

result of q with Penalty = 0.121. Alternatively, we can mod-

ify k to k′ = 4 and remain the weighting vectors unchanged,

Kevin and Julia will also appear in the reverse top-4 query

result of q with Penalty = 0.5. Based on Definition 3.4, the

first modification is better. It is worth mentioning that since

(i) k′ > k and (ii) the query point q is not changed, the

modification of Wm and k doesn’t influence the original

query result and hence the condition ∀−→wj ∈ RTOPk(q),
−→wj ∈ RTOPk′(q) is guaranteed.

Since the functionPenalty(W ′
m, k′) is not differentiable

when k′ = k, it is impossible to use a gradient descent

based method to compute (W ′
m, k′) with minimal cost. An-

other straightforward way is to find the optimal (W ′
m, k′) by

evaluating all the candidates. Although the total number of

candidate (W ′
m, k′) is infinite in an infinite weighting vec-

tor space, it is certain that only tuples (W ′
m, k′) satisfying

Lemma 3.6 are the candidate tuples for the final result.

Lemma 3.6 Given a why-not weighting vector set Wm =

{−→w1,
−→w2, · · · ,

−→wn}, a refined W ′
m = {

−→
w′

1
,
−→
w′

2
, · · · ,

−→
w′

n} and
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k′, and a set R′ = {r′
1
, r′

2
, · · · , r′n} (r′i ∈ R′ is the ac-

tual ranking of q under
−→
w′

i ∈ W ′
m), if a tuple (W ′

m, k′) is a

candidate tuple, it holds that (i) k′ = max(r′
1
, r′

2
, · · · , r′n);

and (ii) ∀r′i ∈ R′ (1 ≤ i ≤ n), there does not exist another

weighting vector
−→
w′′

n under which the ranking of q is r′i and

|
−→
w′′

i −−→wi| < |
−→
w′

i −
−→wi|.

Proof First, assume that the statement (i) is not valid, i.e.,

an answer tuple (W ′
m, k′) has k′ > max(r′1, r

′
2, · · · , r

′
n) or

k′ < max(r′1, r
′
2, · · · , r

′
n). If k′ > max(r′1, r

′
2, · · · , r

′
n) =

k′′, Penalty(W ′
m, k′) > Penalty(W ′

m, k′′), and hence, it

cannot be the optimal answer. If k′ < max(r′
1
, r′

2
, · · · , r′n),

then ∃
−→
w′

i ∈ W ′
m, q /∈ TOPk′(

−→
w′

i), which contradicts with

the statement (i) of Definition 3.4. Thus, our assumption is

invalid and the statement (i) is true. Second, assume that

statement (ii) is invalid, i.e., for an answer tuple (W ′
m, k′),

there is a
−→
w′′

i with |
−→
w′′

i −
−→wi| < |

−→
w′

i−
−→wi| and meanwhile the

actual ranking of q under
−→
w′′

i being r′i. If |
−→
w′′

i −
−→wi| < |

−→
w′

i −
−→wi| , then (∆W ′

m) is not minimal. Therefore,Penalty(W ′
m,

k′) is not minimum, and (W ′
m, k′) cannot be the final result,

which contradicts with the condition of Lemma 3.6. Hence,

our assumption is invalid, and the statement (ii) must be true.

The proof completes. ✷

According to Lemma 3.6, the qualified candidates W ′
m

and k′ interact with each other, which can facilitate their

search process. If we fix one parameter, the other one can be

computed accordingly. Since the weighting vector space for

W ′
m is infinite, it is impossible to fix W ′

m. Consequently, we

try to fix k′. Given a specified dataset and a query point,

the range of k′ can be determined by the number of the

points incomparable with q and the number of the points

dominating q. Specifically, if a point p1 dominates another

point p2, it holds that, for every i ∈ [1, d], p1[i] ≤ p2[i]
and there exists at least one j ∈ [1, d], p1[j] < p2[j]. If

p1 neither dominates p2 nor is dominated by p2, we say

that p1 is incomparable with p2. For instance, in Figure ??,

the query point q is dominated by p1, and it is incompara-

ble with p3. Given a d-dimensional dataset P and a query

point q, we can find all the points that dominate q and all

the points that are incomparable with q, preserved in sets D

and I respectively. Thus, a possible ranking of q could be

Rq = {(|D|+1), (|D|+2), · · · , (|D|+ |I|+1)}, which is

also the range of k′.

If we fix the query point q’s ranking ri with ri ∈ Rq ,

for every why-not weighting vector −→wi, we can find its cor-

responding
−→
w′

i with the minimal |
−→
w′

i −
−→
w′′

i | by using the

quadratic programming. After finding all these weighting

vectors for each ri ∈ Rq , we can get the optimal W ′
m and

k′. However, for a single why-not weighting vector, if all

rankings of q have to be considered, there are in total 2|I|

quadratic programming problems in the worst case, as proved

in [24]. Totally, for the entire why-not weighting vector set

Wm, it needs to solve |Wm| × 2|I| quadratic programming

problems, which is very costly. Nonetheless, if we can find
−→
w′′

i that approximates the minimum |
−→
w′

i −
−→wi|, it would save

the search significantly even though it is not the exact an-

swer. Hence, in the second solution, we trade the quality

of the answer with the running time, and propose a sam-

pling based algorithm, which finds an approximate optimal

answer.

The basic idea of the sampling-based algorithm is as fol-

lows. We first sample a certain number of weighting vec-

tors from the sample space, and then, we use these sample

weighting vectors to find (W ′
m, k′) with minimum penalty.

In particular, there are three issues we have to address: (i)

how to get high quality sample weighting vectors; (ii) how

to decide a proper sample size SW ; and (iii) how to use the

sample weighting vectors to obtain (W ′
m, k′) with minimum

penalty. Next, we discuss the three issues in detail.

First, how can we get the high quality sample weight-

ing vectors as the quality of sample weighting vectors im-

pacts that of the final answer? It is worth noting that, the

full d-dimensional weighting vector space is the hyperplane
∑d

i=1
w[i] = 1 in which w[i] ≥ 0 (1 ≤ i ≤ d). However, if

we take the whole weighting vector space as a sample space,

the penalty of the modified why-not weighting vectors may

be big. Hence, we have to narrow down the sample space.

According to the statement (ii) of Lemma 3.6, for a fixed

k′, the modified weighting vector
−→
w′

i ∈ W ′
m has the mini-

mum |
−→
w′

i −
−→wi| w.r.t. ∀−→wi ∈ Wm. Thus, we should sample

the weighting vector that can approximate to the minimum

|
−→
w′

i −
−→wi|. As proved in [24], for a fixed k′, the weighting

vector
−→
w′

i, which has the minimum |
−→
w′

i−
−→wi| w.r.t. −→wi, exists

in one of the hyperplanes formed by I and q. Specifically,

for a point p ∈ I , the hyperplane formed by p and q is:

(−→p −−→q ) · −→w = 0. Therefore, all the hyperplanes intersect-

ing with
∑d

i=1
w[i] = 1 constitute the sample space.

Second, how shall we decide an appropriate sample size

SW ? It is well known that, the bigger the sample size, the

higher the quality of the result. Nonetheless, it is impossible

to sample an infinite number of weighting vectors since a

larger sample size increases the cost. In this paper, we em-

ploy a general equation 1− (1− T%)S ≥ Pr to help users

decide the sample size as with [24]. Specifically, if we hope

the probability of at least one refined query to be the best-

T% refined query is no smaller than a certain threshold Pr,

then the sample size should be S ≥ log(1 − Pr)/ log(1 −

T%). In this paper, we take the sample size SW as a user

specified parameter, which can better meet users’ require-

ments. Alternatively, it is also a good and useful solution

to consider a time-based heuristic that takes an input time

threshold to compute a good solution within the threshold.

We would study this in our future works.
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Third, how to use the sample weighting vectors to get

(W ′
m, k′) with the minimal penalty? There are two possible

solutions. The first solution is, for every why-not weighting

vector −→wi ∈ Wm, to find a sample weighting vector −→ws ∈

Ws with minimum |−→wi −
−→ws|, and then replace −→wi ∈ Wi

with −→ws ∈ Ws. After replacing all why-not weighting vec-

tors, we can obtain a refined W ′
m. The corresponding k′ can

be computed according to statement (i) of Lemma 3.6. The

second method is to select randomly |Wm| sample weight-

ing vectors to replace Wm, and we then can get a candidate

refined tuple (W ′
m, k′). The optimal (W ′

m, k′) can be found

from the entire candidates. For the first solution, we can en-

sure that the refined W ′
m is optimal, while the total penalty

of W ′
m and k′ may not be the minimum. For the second solu-

tion, if all candidate tuples are considered, there are in total

|S||Wm| instances, whose computation cost could be very

expensive. Thus, we present an efficient approach that only

examines up to |S| instances, supported by Lemma 3.7.

Lemma 3.7 Given a candidate tuple (W ′
m, k′), and a weight-

ing vector −→w (the ranking of q under −→w is bigger than k′), if

∃
−→
w′

i ∈ W ′
m such that |−→wi −

−→w | < |
−→
w′

i −
−→wi| (

−→wi is the orig-

inal why-not weighting vector w.r.t.
−→
w′

i), there exist another

candidate tuple (W ′′
m, k′′), where W ′′

m contains −→w .

Proof If ∃
−→
w′

i ∈ W ′
m such that |−→wi −

−→w | < |
−→
w′

i −
−→wi|,

we can obtain a new W ′′
m from W ′

m by replacing all these
−→
w′

i with −→wi, and its corresponding k′′. Although k′′ > k′,

∆W ′′
m < ∆W ′

m. Thus, (W ′′
m, k′′) is a candidate tuple for

the final result including −→w . ✷

According to Lemma 3.7, we can get the optimal refined

Wm and k by examining the sample weighting vectors one

by one. To be more specific, for every sample weighting

vector, we compute its corresponding ranking of q. We also

sort the whole sample weighting vectors in ascending or-

der of the ranking of q. Next, we initialize a candidate tuple

(W ′
m, k′) to the first sample weighting vector and its corre-

sponding ranking of q. For each remaining sample weight-

ing vector −→s , we examine whether it can contribute to the

final result. Based on Lemma 3.7, if ∃
−→
w′

i ∈ W ′
m, |−→wi −

−→s | < |
−→
w′

i −
−→wi|, we replace all such −→wi with −→s and get

a new (W ′′
m, k′′). Thereafter, we obtain some candidate tu-

ples (W ′
m, k′), and the one with the minimal penalty is the

final answer.

Based on the above discussion, we propose our sampling

based algorithm called MWK-I to modify Wm and k, with

its pseudo-code shown in Algorithm 2. Initially, MWK-I in-

vokes a function FindIncom that follows the branch-and-

bound traversal to form the set I of points incomparable with

q and the set D of points dominating q (line 2). It traverses

the nodes of R-tree based on breadth-first order. If a node

is dominated by q, it is discarded; otherwise, it is expanded.

Algorithm 2 Modifying Wm and k (MWK-I)

Input: an R-tree RT on a set P of data points, a query point q, a

parameter k, a why-not weighting vector set Wm, a sample

size |S|
Output: W ′

m and k′

/*HP is a min-heap; D is the set of points dominating q; I is the set

of points incomparable with q; k′max is the maximal value of k′;
S is the set of sample weighting vectors; CW is a candidate W ′

m;

Pmin is the penalty of current optimal candidates W ′
m and k′. */

1: k′max ←∞, HP ← ∅
2: FindIncom(RT , q, HP , D, I)

3: sample |S| weighting vectors from the hyperplanes formed by I
and q, maintained by S

4: for each weighting vector −→si ∈ S do

5: compute the ranking rsi of q based on D and I

6: sort vectors in S based on ascending order of rsi values

7: for each weighting vector −→wi ∈ Wm do

8: compute the ranking ri of q based on D and I

9: k′max ← max∀wi∈Wm
(ri)

10: CW ← the first sample weighting vector in S
11: W ′

m ←Wm, k′ ← k′max, Pmin ← Penalty(W ′
m, k′)

12: for each remaining −→si ∈ S and its corresponding rsi do

13: if k′max < rsi then break

14: for each (−→cwi,
−→wi) ∈ CW ×Wm do //updates CW using −→si

15: if |−→si −
−→wi| < |

−→cwi −
−→ci | then

16: −→cwi ←
−→si

17: if CW is updated then

18: if (pe← Penalty(CW, rsi)) < Pmin then

19: W ′
m ← CW, k′ ← max(k, rsi), Pmin ← pe

20: return W ′
m and k′

The set D preserves all the points dominating q, and the set I

stores all the points that are incomparable to q. Then, the al-

gorithm samples |S| weighting vectors from the hyperplanes

formed by I and q, maintained by S (line 3). For every sam-

ple weighting vector −→si , it computes the ranking rsi of q,

and then sorts vectors −→si in S based on ascending order of

rsi (lines 4-6). Thereafter, the maximum value of k′ is ob-

tained (lines 7-9) for pruning later. Next, MWK-I examines,

for each sample weighting vector −→si , whether −→si can con-

tribute to the final result based on Lemma 3.7, and then gets

the tuple (W ′
m, k′) with the minimum penalty (lines 12-19).

Theorem 3.2 presents the time complexity of MWK-I.

Theorem 3.2 The time complexity of MWK-I algorithm is

O(|RT |+ |S| × |Wm|), with |S| the cardinality of a sample

weighting vector set and |Wm| the cardinality of a why-not

weighting vector set.

Proof The time complexity of MWK-I is mainly determined

by the computation of D and I as well as using the sample

weighting vectors to get the optimal result. In the worst case,

FindIncom has to traverse the whole R-tree RT to form

sets D and I , with time complexity O(|RT |). In addition,

the time complexity of using the sample weighting vectors

to get the optimal results is determined by the cardinality of

the why-not weighting vector set and the sample size, i.e.,
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O(|S| × |Wm|). Thus, the total time complexity of MWK-I

is O(|RT |+ |S| × |Wm|), and the proof completes. ✷

3.4 Modifying q, Wm, and k

The two solutions proposed above can return the refined

query with the minimum penalty, but there might be some

cases where the returned penalty is still beyond the manufac-

turers’ or customers’ limits of acceptability. Therefore, man-

ufacturers (e.g., Apple) might want to reach a compromise

between what customers want and they can offer. In other

words, both manufacturers and customers should change their

preferences to narrow down the gap, which can be addressed

through bargaining, e.g., manufacturers and customers col-

laborate in finding an optimal solution [23]. Hence, in this

subsection, we propose the third solution to refine the re-

verse top-k query by modifying both manufacturers’ prod-

uct (i.e., q) and customers’ preferences (i.e., Wm and k).

First, we present the penalty model to quantify the modi-

fications of q,Wm, and k. As defined in Equation (1), penalty

Penalty(q′,Wm
′, k′) considers both Penalty(q′) defined

in Equation (3) andPenalty(Wm
′, k′) defined in Equation (7).

Weighting parameter γ is introduced to capture a user’s rel-

ative tolerance to the change of q, as compared with that

of (Wm, k). Both Penalty(q′) and Penalty(Wm
′, k′) have

the values in the range of (0,1], and thus, there is no need

to normalize them and Penalty(q′,Wm
′, k′) is also in the

range of (0,1].

Note that, similar penalty functions have been used in in-

dustry, e.g., joint outcome that is the sum score of the manu-

facturers and the customers for the final agreement is used to

measure the bargaining solution [23]. This further justifies

that our penalty function is practical. For example, in Fig-

ure 1, if we modify q,−→w1, and −→w4 to q′(3.8, 3.8),
−→
w′

1
(0.135,

0.865), and
−→
w′

4
(0.8, 0.2) respectively,

−→
w′

1
and

−→
w′

4
become

the reverse top-3 query result of q′ with penalty = 0.06

(γ = 0.5). Based on Equation (1), we formulate the prob-

lem of modifying q,Wm, and k as follows.

Definition 3.5 (Modifying q, Wm, and k). Given a d-

dimensional dataset P , a positive integer k, a query point q,

and a why-not weighting vector set Wm = {−→w1,
−→w2, · · · ,

−→wn}

with ∀−→wi ∈ Wm, q /∈ TOPk(−→wi), the modification of q,

Wm, and k is to find q′, W ′
m = {

−→
w′

1
,
−→
w′

2
, · · · ,

−→
w′

n}, and k′,

such that (i) ∀
−→
w′

i ∈ W ′
m, q′ ∈ TOPk′(

−→
w′

i); (ii) ∀−→wj ∈

RTOPk(q),−→wj ∈ RTOPk′(q′), and (iii) thePenalty(q′,W ′
m, k′)

is minimized.

For the third solution, we need to get a new tuple (q′,

W ′
m, k′) whose penalty is minimized. There are two poten-

tial approaches. The first one is to locate (W ′
m, k′) first and

then determine the corresponding q′. The second method is

to find the candidate q′ and then the corresponding (W ′
m, k′).

From MWK-I algorithm presented in Section 3.3, we know

q

2

108642
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6

4

o
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p3
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p6p7

qmin

SP(q)

heat

price

Fig. 5 Example of the sample space of q

that the optimal (W ′
m, k′) can be obtained only when the

query point q is fixed. This is because the set I used for

the sampling is dependent on q. Thus, we adopt the second

method in our third solution. Since there are infinite candi-

date query points, it is impossible to evaluate all the potential

candidates (q′,W ′
m, k′). Hence, we again employ the sam-

pling technique to modify q, Wm, and k. The basic idea is

as follows. We first sample a set of candidate query points.

For every sample query point q′, we use MWK-I algorithm

to find the optimal (W ′
m, k′). Finally, the tuple (q′,W ′

m, k′)

with the smallest penalty is returned. In the sequel, we ex-

plain (i) how to sample query points, and (ii) how to invoke

MWK-I repeatedly.

For the first issue, we need to find out the sample space

of q and its sample size Sq . Recall that, according to Defini-

tion 3.2, if the query point falls into the safe region of q, the

why-not weighting vectors must appear in the reverse top-

k query result. Thus, if we sample a query point (e.g., q′ )

from the safe region, there is no need to modify (Wm and k),

and the penalty of (q′,Wm, k) will not be smaller than that

of (qmin,Wm, k), in which qmin is the result returned by

the first solution (i.e., modifying q presented in Section 3.2).

Therefore, (q′,Wm, k) cannot be the final result, and we

should sample the query point from the space that is out

of the safe region. Furthermore, if we sample a query point

(e.g., q′′) out of the safe region, the corresponding refined tu-

ple (q′′,W ′′
m, k′′) must satisfy the condition ∆(W ′′

m, k′′) >

0. The tuple (q′′,W ′′
m, k′′) is the optimal result only when

|q′′ − q| < |qmin − q|; otherwise, Penalty(q′′,W ′′
m, k′′) >

Penalty(qmin,Wm, k), and hence, it cannot be the final re-

sult. Therefore, we know that only the query points falling

within the range [qmin, q] could be qualified sample query

points. Thus, the sample space of q, denoted as SP (q), is

{q′|qmin < q′ < q}. Take Figure 5 as an example, qmin

is returned by the first solution (i.e., modifying q presented

in Section 3.2), and the shaded area formed by qmin and q

is the sample space of q. In addition, we also suppose the

sample size Sq of query points is specified by users.

The second issue is the iterative call of MWK-I algo-

rithm. Recall that, the first step of MWK-I algorithm is to

find the points that are incomparable with the query point.

Our third solution needs to invoke MWK-I for each sam-

ple query point to find the candidate (q′,W ′
m, k′), which re-

quires traversing the R-tree |Q| times with high cost. Thus,
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Algorithm 3 Modifying q,Wm, and k (MQWK-I)

Input: an R-tree RT on a set P of data points, a query point q,

a parameter k, a why-not weighting vector set Wm, sample

sizes |S| and |Q| for the sample weighting vector and the

sample query point

Output: q′, W ′
m, q′

/*Q is a set of sample query points; MinPenalty is the penalty of the

current optimal candidates q′,W ′
m, and k′. */

1: Q← ∅, MinPenalty←∞
2: qmin ←MQP-I(RT, q, k,Wm)

3: Q←|Q| query points sampled from the space determined by qmin

and q
4: for each each query point qi ∈ Q do

5: (W ′′
m, k′′)←MWK-I(RT, qi, k,Wm, |S|)

6: if Penalty(qi,W ′′
m, k) < MinPenalty then

7: q′ ← qi, W ′
m ←W ′′

m, k′ ← k′′

8: MinPenalty← Penalty(q′,W ′
m, k′)

9: return q′, W ′
m, k′

we employ the reuse technique to avoid repeated traversal

of the R-tree. To this end, we use a heap to store the visited

nodes for reusing unless they are expanded. Correspond-

ingly, the FindIncom function needs to be revised as well.

In particular, when FindIncom encounters a data point or

an intermediate node dominated by q, it has to be preserved

for the reuse later.

Based on the above discussion, we propose the algo-

rithm called MQWK-I to modify q,Wm, and k. The pseudo-

code of the algorithm is listed in Algorithm 3. First of all,

MQWK-I invokes MQP-I algorithm to get the minimal qmin

(line 2). Next, it samples |Q| query points from the sam-

ple space determined by qmin and q, preserved by the set Q
(line 3). Then, for every sample query point q′, MQWK-I

derives the corresponding optimal (W ′
m, k′) using MWK-I

algorithm (line 5). Finally, the tuple (q′,W ′
m, k′) with the

minimum penalty is returned (line 9). Note that MQWK-I

doesn’t lose the existing reverse top-k query result. It is be-

cause q′ < q and MWK-I algorithm also doesn’t lose the

existing reverse top-k query result. The time complexity of

MQWK-I algorithm is presented in Theorem 3.3.

Theorem 3.3 The time complexity of MQWK-I algorithm is

O(|RT | × |Wm|+ d3 × L+ |Q| × (|RT |+ |S| × |Wm|)).

Proof The time complexity of MQWK-I consists of the com-

putation of qmin and the iterative call of MWK-I. The time

complexity of qmin computation is equal to that of MQP-I,

i.e., O(|RT | × |Wm| + d3 × L). The iterative call MWK-I

takes O(|Q| × (|RT | + |S| × |Wm|)). Therefore, the total

time complexity of MQWK-I is O(|RT |× |Wm|+d3×L+

|Q| × (|RT |+ |S| × |Wm|)). The proof completes. ✷

4 Answering Why Questions

In this section, we extend the framework WQRTQ to an-

swer why questions on reverse top-k queries. Similarly, we

first give an overview of the framework and then detail the

algorithms.

4.1 Framework Overview

We extend WQRTQ shown in Figure 3 to answer why ques-

tions on reverse top-k queries. Specifically, it takes as inputs

an original reverse top-k query and the corresponding why

weighting vector set Wp, and returns the refined reverse top-

k query with minimum penalty as the result, by using one

of the three solutions proposed. Specifically, the presented

three solutions include:

(1) Modifying q. The first solution is to change a query

point q into q′ such that the why weighting vectors are ex-

cluded from the reverse top-k result of q′. For this solution,

we introduce the concept of the invalid region of q, within

which if the query point falls, the why weighting vectors do

not appear in the reverse top-k query result. Because of the

complexity of the construction of invalid regions, we also

employ quadratic programming to find optimal refined q.

However, the inputs of the quadratic programming are dif-

ferent from the first solution of why-not questions.

(2) Modifying Wp and k. The second solution is to

modify a why weighting vector set Wp and a parameter k

into W ′
p and k′ respectively. After the modification, W ′

p is

excluded from the result of the reverse top-k′ query result

of q. Our second solution is also a sampling-based method,

which is to be detailed in Section 4.3. Note that the sam-

pling technique used to support why question is very differ-

ent from that used to support why-not questions

(3) Modifying q, Wp, and k. Our third solution is to

modify a query point q, a why weighting vector set Wp,

and a parameter k, such that the modified weighting vec-

tor set W ′
p is excluded from the reverse top-k′ query result

of q′. The tuple (q′, W ′
p, k′) with the smallest penalty is re-

turned by using the techniques of quadratic programming,

sampling method, and reuse. Note that, modifying q, Wp,

and k to support why questions is different from that to sup-

port why-not questions, because they have different sample

spaces of q, and they invoke modifying Wp, and k that are

different too.

Note that, all the above three approaches may retain the

existing result set, although it is not guaranteed. We would

like to study how to retain the original results before the

modification for why questions on RTOPk queries in our

future work.

4.2 Modifying q

If the computer designed for professional developers ap-

pears in the wish list of many high school/college students,

there must be some mismatches between the target market
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and the real market, meaning that the design of the com-

puter might not be proper. As a solution, Apple might want

to change certain specifications/settings of the computer so

that it could meet the requirements from its target users bet-

ter. After modifying, although the modified computer may

be less popular for the non-target users, it will be more pop-

ular among the target users. Hence, it can help the manu-

facturer to design more appropriate products that meet the

requirements from their target users better and hence they

are able to attract more target users. Accordingly, our first

solution is to modify the query point q so that unexpected

data points do not appear in the result set.

Definition 4.1 (Modifying q). Given a d-dimensional data

set P , a positive integer k, a query point q, and a why weight-

ing vector set Wp with ∀−→wi ∈ Wp, q ∈ TOPk(−→wi), the

modification of a query point q is to find q′ such that (i)∀−→wi ∈

Wp, q′ /∈ TOPk(−→wi); and (ii) the penalty of q′, as defined

in Equation (3), is minimized.

Note that we still use Equation (3) to quantify the dis-

tortion of the product after modification. The smaller the

penalty is, the better the solution is as manufacturers prefer

a smaller modification, as justified in [39].

If we exclude a why weighting vector −→wi ∈ Wp from

the reverse top-k query result, the rank of q w.r.t −→wi must

be bigger than k. Recall that the scoring function is mono-

tonic, and a smaller scoring value is ranked higher. If for

∀i ∈ [1, d], the condition q′[i] ≤ q[i] is satisfied, the score

of q′ must be smaller than that of q, indicating that −→wi can-

not be excluded from the reverse top-k query result. For in-

stance, assume that q(4, 4) in Figure 1 is modified to q′(3,

3), and then the why weighting vector −→w3 ∈ Wp will still

be in the reverse top-3 query result of q′. This observation

implies that, for the modified q′, there must be at least one

dimension i such that q′[i] is bigger than q[i]. Therefore, the

search space for q′ can be shrunk to Ω − {q′|0 ≤ q′ ≤ q},

where Ω represents the whole data space. In order to find a

new p′ satisfying the conditions listed in Definition 4.1, we

introduce a new concept, termed as invalid region.

Definition 4.2 (Invalid Region). Given a d-dimensional

dataset P , a positive integer k, a query point q, and a why

weighting vector set Wp, a region in the data space is de-

fined as the invalid region of q, denoted as IR(q), such that

∀q′ ∈ IR(q) and ∀−→wi ∈ Wp, q′ /∈ TOPk(−→wi).

If q is modified to q′ by moving the query point q any-

where within IR(q) w.r.t. a why weighting vector set Wp,

all the why weighting vectors in Wp will be excluded from

a specified reverse top-k query result. If we can obtain such

IR(q), the answer of our first solution for the why questions

will be the point in IR(q) that is closest to q. In order to fa-

cilitate the formation of invalid region, we introduce the con-

cept of complementary half space. Specifically, a comple-

mentary half space w.r.t. −→w and p, denoted as HS(−→w , p), is

formed by all the points lying above the hyperplaneH(−→w , p)

such that ∀p′ ∈ HS(−→w , p), f(−→w , p′) > f(−→w , p). For ex-

ample, in Figure 6(a), the shaded area is the complementary

half space HS(−→w3, p7) formed by −→w3 and p7. If we move the

query point q within the complementary half space formed

by a why weighting vector and its corresponding the k-th

point, the why weighting vector will be absent from the re-

verse top-k query result of q. With the help of complemen-

tary half space, the invalid region of q can be formed eas-

ily. Given a why weighting vector set Wp = {−→w1, −→w2, · · · ,
−→wm}, and a set Λ = {p1, p2, · · · , pm} of points (∀pi ∈ Λ is

the k-th point w.r.t. its corresponding why weighting vector
−→wi ∈ Wp), the invalid region of a query point q, i.e., IR(q),

is the common area covered by all the complementary half

spaces formed by −→wi and pi, formally, IR(q) = ∩1≤i≤m

HS(−→wi, pi). Figure 6(b) illustrates an example of the con-

struction of q’s invalid region, in which we employ the data

set depicted in Figure 1 as P and suppose Wp = {−→w2,
−→w3}.

The corresponding 3-rd points with smallest scores for −→w2

and −→w3 are p3 and p7, respectively. The shaded area in Fig-

ure 6(b) represents the final invalid region of q.

After getting the invalid region of q by computing the

intersection of all the complementary half spaces, we can

find the optimal query point q′ with the minimum cost w.r.t.

q. Take Figure 6(b) as an example again. Point qmin is the

desirable refined query point. However, we find that some

query points in the invalid region of q may invalidate certain

existing reverse top-k query results, which is undesirable in

real applications. Back to the Figure 6(b). Assume that Wp

contains only one why weighting vector−→w3, and −→w2 is an ex-

isting reverse top-k query result. Then, IR(q) = HS(−→w3, p7)

and qmin remains as the desirable refined query point. How-

ever, qmin is above the hyperplaneH(−→w2, p3) (p3 is the 3-rd

point for −→w2 ), meaning f(−→w2, p3) ≤ f(−→w2, qmin). There-

fore, if the query point q is changed to qmin, the weighting

vector −→w2 will also be excluded from the result, and the re-

verse top-k query result of qmin will be empty. In order to

tackle this issue, we propose the enhanced invalid region of

q, as defined in Definition 4.3, to exclude only unexpected

results Wp but retain all other existing results Γ . We also de-

rive Lemma 4.1 to facilitate the formation of the enhanced

invalid region of q.

Definition 4.3 (Enhanced Invalid Region). Given a d-

dimensional dataset P , a positive integer k, a query point q,

a why weighting vector set Wp, and a sub-result set Γ of a

reverse top-k query that is still desirable (i.e., Wp ∩ Γ = ∅

and ∀−→wi ∈ Γ ∪ Wp, q ∈ TOPk(−→wi)), the enhanced in-

valid region of q, denoted as EIR(q), refers to a region in

the data space such that ∀q′ ∈ EIR(q), (i) ∀−→wi ∈ Wp,

q′ /∈ TOPk(−→wi); and (ii) ∀−→wj ∈ Γ , q′ ∈ TOPk(−→wj).

Lemma 4.1 Given a why weighting vector set Wp = {−→w1,
−→w2, · · · , −→wm}, and its corresponding data point set Λw =

{pw1, pw2, · · · , pwm} that preserves the top k-th point w.r.t.
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Fig. 6 Example of modifying q for why questions

−→wi ∈ Wp, let area Ap refer to the common area covered by

all the complementary half spaces formed by −→wi ∈ Wp and

pwi ∈ Λw, i.e., Ap = ∩1≤i≤mHS(−→wi, pwi). Given a sub-

result set Γ ={−→v1, −→v2 , · · · , −→vl } of a reverse top-k query that

is still desirable (i.e., Wp ∩ Γ = ∅ and ∀−→wi ∈ Γ ∪ Wp,

q ∈ TOPk(−→wi)) and its corresponding data point set ΛΓ

= {pv1, pv2, · · · , pvl} that preserves the top k-th point w.r.t.
−→wj ∈ Γ , let area AΓ refer to the common area covered by all

the half spaces formed by −→vj ∈ Γ and pvj ∈ ΛΓ , i.e., AΓ =

∩1≤j≤lHS(−→vj , pvj). Then, we have EIR(q) = Ap ∩ AΓ .

Proof The proof is straightforward and hence omitted. ✷

For instance, in Figure 6(c), assume that we have Wp =

{−→w3} and Γ = {−→w2}. Then, the shaded area in Figure 6(c)

is the enhanced invalid region of q, and the point p7 is the

optimal refined query point since it is the closest point in

EIR(q) to q. Obviously, EIR(q) provides an easy solution

to locate the optimal refined query point. Nonetheless, we

also notice that EIR(q) could be empty. Take Figure 6(c)

as an example again. If we have Wp = {−→w3} and Γ =

{−→w2,
−→w5}, EIR(q) = HS(−→w3, p7)∩HS(−→w2, p3)∩HS(−→w5,

p4) = ∅. Consequently, in the case where EIR(q) = ∅, we

still employ the invalid region of q to find the optimal refined

query point. In addition, it is worth mentioning that, for the

monochromatic reverse top-k query, its result is a set of in-

tervals, which contains infinite weighting vectors. Hence, it

is impossible to form the enhanced invalid region of q. In

this case, we also utilize the invalid region of q to find the

optimal modified query point.

Based on the above discussion, we understand that mod-

ifying q can be achieved as soon as we form IR(q) orEIR(q).

Unfortunately, IR(q) and EIR(q) are convex polygons

bounded by hyperplanes with high computation cost and

poor scalability [3]. Therefore, we employ the quadratic pro-

gramming algorithm to find the optimal modified query point.

The initialization of the parameters for the quadratic pro-

gramming algorithm is similar as that for why-not questions

presented in Section 3.2, and thus, we skip details to avoid

redundancy and to save space.

In summary, we propose an algorithm called MQP-II

to modify the query point q for why questions on reverse

top-k queries, with its pseudo-code listed in Algorithm 4.

Algorithm 4 Modifying query point q (MQP-II)

Input: an R-tree RT on a set P of data points, a query point q,

a parameter k, a why weighting vector set Wp, an existing

reverse top-k results set Γ
Output: q′

/*Λw and ΛΓ are two sets storing the top k-th point for why weigh-

ting vectors and existing reverse top-k results. */

1: for each weighting vector −→wi ∈ Wp do

2: find the top k-th point and add it to Λw

3: for each weighting vector −→vj ∈ Γ do

4: find the top k-th point and add it to ΛΓ

5: set H, A, c, b, lb, and ub based on Wp, Λw, Γ , ΛΓ , and q
6: q′ ← QuadProg(H,A, c, b, lb, ub) // finding q′ in EIR(q)
7: if q′ = ∅ then // EIR(q) = ∅

8: set H, A, c, b, lb, and ub based on Wp, Λw , and q
9: q′ ← QuadProg(H,A, c, b, lb, ub) // finding q′ in IR(q)

10: return q′

First, we adopt the branch-and-bound method to find the k-

th point for every why weighting vector and the existing re-

verse top-k results (lines 1-4). Specifically, the branch-and-

bound method is the same as that (i.e., lines 2-12) in Algo-

rithm 1. Then, we use the interior-point quadratic program-

ming algorithm QuadProg [38] to get the optimal refined

query point q′ (lines 5-9). Otherwise (i.e., EIR(q) 6= ∅),

we get the optimal refined query point in EIR(q) (lines 5-

6). If EIR(q) = ∅, we get the optimal refined query point

in IR(q) (lines 7-9).

Theorem 4.1 The time complexity of MQP-II algorithm is

O(|RT | × (|Wp| + |Γ |) + 2 × d3 × L), in which L is the

same as the one in Theorem 3.1.

Proof MQP-II algorithm consists of two phases. The first

phase is to find the k-th point for every why weighting vec-

tor and the existing reverse top-k results. In the worst case,

it needs to traverse the whole R-tree (|Wp| + |Γ |) times,

whose time complexity is O(|RT |×(|Wp|+ |Γ |)). The sec-

ond phase is the quadratic programming. In the worst case, it

needs to invoke the quadratic programming algorithm twice.

Since the time complexity of quadratic programming algo-

rithm is O(d3 × L) [38], the time complexity of the second

phases is O(2× d3 ×L). Therefore, the total time complex-

ity of MQP-II is O(|RT |× (|Wp|+ |Γ |)+ 2× d3×L). The

proof completes. ✷
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4.3 Modifying Wp and k

As mentioned in Section 3.2, manufacturers can modify q

(e.g., Apple changes the design of a computer) in order to

exclude certain unexpected customers from the result set.

However, we would like to highlight that this is not the only

option. Back to the previous example. The unexpected users

of the computer that is newly designed for professional de-

velopers are some high school/college students. As we know,

the customer’s preferences of products are usually formed

by their knowledge of the products and their prior experi-

ences. Nonetheless, most, if not all, customers initially have

very limited knowledge about a new product, and they grad-

ually become knowledgeable after an exposure or experi-

ence with the product. In other words, those high school

students show interests in the new computer because of their

limited knowledge about the product and the preference they

assume might not reflect their real preference. Consequently,

Apple could educate customers in terms of how to set proper

preference or influence them to change their preferences through

proper marketing strategies (e.g., advertising or marketing

campaign). To this end, we develop the second solution to

answer why questions on reverse top-k queries by modify-

ing customer’s preferences, i.e., the why weighting vector

set Wp and the parameter k.

In Section 3.3, we propose Equation (6) to estimate the

changes between the original customer preferences and the

modified customer preferences w.r.t. the reverse top-k query.

For the second solution of why questions on reverse top-k
queries, we still employ Equation (6) to quantify the dif-

ference between the modified customer preferences and the

original customer preferences, and we still assume that the

smaller the difference is, the better the modification is.

In order to utilize Equation (6) in our solution, we need

to derive the values for both ∆kmax and (∆Wp)max. Here,

∆kmax represents the maximum change of k’s value. Unlike

why-not questions on reverse top-k queries, for why ques-

tions on reverse top-k queries, we only need to decrease the

value of k. In the following, we use an example to explain

why only decrease, but not increase, in k value is possible.

Assume that (Wp, k = 6) is modified to (W ′
p, k

′ = 10). If

q does not belong to the top-10 query result of every refined

why weighting vector
−→
w′

i ∈ W ′
p, it definitely will not be

in the corresponding top-6 query result. Consequently, there

is no need to increase the original k value. As soon as we

can get the possible minimum value of the modified k′, i.e.,

k′min, ∆kmax will be set to ∆kmax = k− k′min. Below, we

present Lemma 4.2 to facilitate the computation of k′min.

Lemma 4.2 Given a query point q, a why weighting vector

set Wp = {−→w1, −→w2, · · · , −→wm}, a set Rp = {r1, r2, · · · , rm},

where ri ∈ Rp is the actual ranking of q under the cor-

responding why weighting vector −→wi ∈ Wp , then k′min =

min∀ri∈Rp
(ri)− 1.

Proof Assume that we have a refined W ′
p and k′ with ∆W ′

p

= 0 and k′ = min∀ri∈Rp
(ri) − 1. Any other possible re-

fined W ′′
p and k′′ with ∆W ′′

p > 0 must have its k′′ >

min∀ri∈Rp
(ri) − 1, otherwise W ′′

p and k′′ cannot be the

optimal result as Penalty(W ′
p, k

′) < Penalty(W ′′
p , k

′′).
On the other hand, min∀ri∈Rp

(ri) − 1 has its minimum

value 0. Given the fact that k′min shall be a non-negative

integer, min∀ri∈Rp
(ri) − 1 already reaches the minimum

value of k′min, and it cannot be further reduced. Therefore,

k′min = min∀ri∈Rp
(ri)− 1, and the proof completes. ✷

For example, in Figure 6(c), suppose we have Wp =

{−→w2,
−→w3}. As depicted in Figure 1(c), we understand the ac-

tual ranking of the query point q under −→w2 and −→w3 are 3

and 2 respectively, i.e., Rp = {3, 2}. Accordingly, k′min =

min(2, 3)− 1 = 1. Unfortunately, the range of [k′min, k) is

still very loose and some k′ ∈ [k′min, k) may exclude cer-

tain existing reverse top-k query results that we would like

to retain in the result set. Back to Figure 6(c). Assume that

there is another weighting vector −→w5, which is one of the ex-

isting reverse top-3 query result of q. From Figure 6(c), we

know that the actual ranking of the query point q under −→w5

is 3. If we set k′ to 1, −→w5 will be excluded from the reverse

top-3 query result of q. In order to make sure all the desir-

able results are still retained in the result set, we propose

Lemma 4.3 to guide the approximation of k′min value.

Lemma 4.3 Given a reverse top-k query issued at a query

point q, a why weighting vector set Wp = {−→w1, −→w2, · · · ,
−→wm}, a sub-set Γ = {−→v1 , −→v2 , · · · ,−→vl } of the result that we

would like to retain in the result set even after we modify Wp

and k with Wp ∩ Γ = ∅, a set RΓ = {rv1, rv2, · · · , rvl},

where rvj ∈ RΓ is the actual ranking of q under the corre-

sponding existing reverse top-k result −→vj ∈ Γ , then k′min =

max∀rvj∈RΓ
(rvj).

Proof If the existing reverse top-k result −→vj ∈ Γ is retained

in the modified query result, the modified value of k′ should

not be smaller than the actual ranking of a query point q

under −→vj . Consequently, if the whole existing reverse top-k

result set is retained in the modified query result, the modi-

fied value of k′ should not be smaller than the maximal value

of the actual ranking of the query point q under existing re-

verse top-k result set. Hence, k′min = max∀rvj∈RΓ
(rvj).

The proof completes. ✷

As an example, in Figure 6(c), suppose Γ = {−→w5},

k′min = 3. It is worth mentioning that Γ may be empty if the

reverse top-k query result only contains the why weighting

vectors. In addition, for why questions on monochromatic

reverse top-k queries, we set k′min = min∀ri∈Rp
(ri) − 1

since the monochromatic reverse top-k query result is infi-

nite, and thus, it is impossible to compute the maximal value

of actual ranking of a query point q under existing reverse

top-k query result. In this case, we assume that Γ is also an
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empty set. Recall that we have already stated in Section 3.3

that (∆Wp)max =
∑|Wp|

i=1

√

1 +
∑d

j=1
(wi[j])2. Based on

the above discussion, we present the penalty model to quan-

tify the modification of Wp and k in Equation (8).

Penalty(Wp
′, k′) = α ·

max(0, k − k′)

k − k′min

+(1− α) ·

∑|Wp|
i=1

√

∑d

j=1
(wi[j]− w′

i[j])
2

∑|Wp|
i=1

√

1 +
∑d

j=1
(wi[j])2

(8)

where

k′min =

{

min∀ri∈Rp
(ri)− 1 Γ = ∅

max∀rvj∈RΓ
(rvj) Γ 6= ∅

(9)

Accordingly, based on the cost function, we formulate

the problem of modifying Wp and k for why questions on

reverse top-k queries in Definition 4.4.

Definition 4.4 (Modifying Wp and k). Given a d-

dimensional dataset P , a positive integer k, a query point

q, and a why weighting vector set Wp = {−→w1,
−→w2, · · · ,

−→wm}

(∀−→wi ∈ Wp, q ∈ TOPk(−→wi)), the modification of Wp and k
for why questions on reverse top-k queries is to find W ′

p =

{
−→
w′

1
,
−→
w′

2
, · · · ,

−→
w′

m} and k′, such that (i) ∀
−→
w′

i ∈ W ′
p, q /∈

TOPk′(
−→
w′

i); and (ii) the Penalty(W ′
p, k

′) is minimized.

As mentioned earlier, the possible ranking of q can be

determined according to the set D of points dominating q

and the set I of points incomparable with q. Then, for every

possible ranking of q, we can employ the quadratic program-

ming algorithm to find the
−→
w′

i such that |
−→
w′

i −
−→wi| is mini-

mum, for −→wi ∈ Wp. If the
−→
w′

is under all possible rankings

of q are found, we can get the optimal W ′
p and k′. However,

this brute-force approach suffers from high time complex-

ity, i.e., it needs to solve |Wp|× 2|I| quadratic programming

problem. To address this efficiency issue, we again employ

the sampling based algorithm to modify Wp and k.

The basic idea is to first sample a certain number of

weighting vectors from the sample space and then use these

sample weighting vectors to find (W ′
p, k

′) with minimum

penalty. In particular, the sample space is also the same as

that of MWK-I algorithm. This is because for
−→
w′

i ∈ W ′
p,

|
−→
w′

i −
−→wi| must be minimal. Otherwise, ∆W ′

p is not mini-

mal. As proved in [24], the qualified weighting vectors exist

in the hyperplanes formed by I and q. That is to say, for any

point p ∈ I , the hyperplane formed by p and q w.r.t. a why

weighting vector −→wi ∈ Wp is (−→p −−→q ) ·−→w i = 0; and all the

hyperplanes intersecting with
∑d

i=1
w[i] = 1 constitute the

sample space. In addition, we also assume that the sample

size SW is specified by the user.

After getting the sample weighting vectors, we try to find

the (W ′
p, k

′) with minimal penalty according to Lemma 3.7.

To be more specific, assume that we have a candidate tuple

(W ′
p, k′), for a sample weighting vector −→s with the ranking

of q under −→s being smaller than k′. If ∃
−→
w′

i ∈ W ′
p, |−→wi −

−→s | < |−→wi −
−→
w′

i|, we replace all such −→wi with −→s , and get a

new candidate (W ′′
p , k

′′), where k′′ equals to the ranking of

q under −→s . Although ∆k′′ > ∆k′, we have ∆W ′′
p < ∆W ′

p.

Thus, (W ′′
p , k

′′) is also a candidate tuple for the final result.

Thereafter, we obtain all candidate tuples (W ′
p, k

′), and the

one with the minimal penalty is the final answer.

Based on the above discussion, we present an algorithm

called MWK-II to modify Wp and k for why questions on

reverse top-k queries. Since MWK-II shares a similar logic

as MWK-I, i.e., Algorithm 2, we skip the pseudo-code of

MWK-II but only explain the differences. First, MWK-I sorts

the sample weighting vectors in ascending order of rsi val-

ues (line 6 of Algorithm 2) while MWK-II needs to sort the

sample weighting vectors in descending order of rsi. Sec-

ond, MWK-I needs to compute the value of k′max (lines 7-9

of Algorithm 2) while MWK-II needs to compute the value

of k′min based on Equation (9). Third, MWK-I terminates

the examination of sample weighting vectors if k′max < rsi
(line 13 of Algorithm 2) while the termination condition for

MWK-II is k′min > rsi. Similarly, the time complexity of

MWK-II algorithm is O(|RT | + |S| × |Wp|), where |S| is

the cardinality of a sample weighting vector set.

4.4 Modifying q, Wp, and k

The two solutions proposed above assume that only the prod-

ucts’ configurations or the customers’ preferences are im-

proper, and they propose ideas to change their setting(s) ac-

cordingly. However, in some circumstances, both the prod-

ucts’ configurations and the customers’ preferences could be

improved. In other words, both the product’s configuration

and the customers’ preferences shall be changed so that the

manufacturers can design the appropriate product for partic-

ular application better, and the customers find the products

that really suit their needs. Towards this, we present the third

solution to refine the reverse top-k query for why questions

by modifying both the product (i.e., q) and customers’ pref-

erences (i.e., Wp and k).

The penalty model, as presented in Equation (2), is to

measure the cost caused by modifying q, Wp and k to q′,
W ′

p, and k′ respectively, which is similar as the cost model

defined in Equation (1) for why-not questions. To be more

specific, again we use Penalty(q′) defined in Equation (3)

andPenalty(W ′
p, k

′) defined in Equation (8) to measure the

cost of modifying q and (Wp, k) respectively, and weighting

parameter γ (∈ [0, 1]) represents the relative tolerance to

the change of q. Based on Equation (2), we formalize the
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Fig. 7 Example of the sample space of q for why questions

problem of modifying (q, Wp) and k for why questions on

reverse top-k queries in Definition 4.5.

Definition 4.5 (Modifying q, Wp and k). Given a d-

dimensional dataset P , a positive integer k, a query point

q, and a why weighting vector set Wp = {−→w1,
−→w2, · · · ,

−→wm}
with ∀−→wi ∈ Wp, q ∈ TOPk(−→wi), the modification of q,

Wp, and k is to find q′, W ′
p = {

−→
w′

1
,
−→
w′

2
, · · · ,

−→
w′

m}, and k′,

such that (i) ∀
−→
w′

i ∈ W ′
p, q′ ∈ TOPk′(

−→
w′

i); and (ii) the

Penalty(q′,W ′
p, k

′) is minimized.

Because of the similarity between the third solution for

why-not questions on reverse top-k queries and that for why

questions on reverse top-k queries, we extend MQWK-I to

perform the modification for why questions on reverse top-

k queries. The basic idea consists of three steps: (i) sam-

pling a set of candidate query points; (ii) for every sample

query point q′, using MWK-II algorithm to find the opti-

mal (W ′
p, k

′); and (iii) returning the tuple (q′,W ′
p, k

′) with

the smallest penalty according to Equation (??). It is worth

mentioning that the sample space of q for why questions

on reverse top-k queries is different from that of why-not

questions on reverse top-k queries. If the query point lo-

cates inside IR(q) or EIR(q), the why weighting vectors

will definitely be excluded from the reverse top-k query re-

sult. Thus, if we sample a query point (e.g., q′) from the

invalid region IR(q) or enhanced invalid region EIR(q),

Penalty(W ′
p, k

′) = 0. Hence,Penalty(q′, W ′
p, k

′)≥Penalty(qmin,Wp, k)

(qmin is optimal refined query point). Therefore, (q′,W ′
p, k

′)
cannot be the final result, and we should sample the query

point out of the invalid region and the enhanced invalid re-

gion. Furthermore, given a refined tuple (q′′,W ′′
p , k

′′) where

q′′ is sampled out of both IR(q) andEIR(q), thenPenalty(W ′′
p ,

k′′) > 0. The tuple (q′′,W ′′
p , k

′′) becomes the optimal result

only if Penalty(q′′) < Penalty(qmin). Otherwise,

Penalty(q′′,W ′′
p , k

′′)≥ Penalty(qmin,Wp, k), and thus, it

cannot be the final result. As mentioned in Section 4.3, the

qualified search space of q is Ω − {q′|0 ≤ q′ ≤ q}. There-

fore, the sample space of q for why questions on reverse top-

k queries is: SP (q) = Rec(q, qmin)− {q′|0 ≤ q′ ≤ q}, in

which Rec(q, qmin) is an area centered at q and has the

coordinate-wise distance to qmin as its extent. Figure 7 de-

picts an example of q’s sample space for why questions,

where qmin is the optimal refined query point in Figure 6(b).

The shaded area is the sample space of q.

Based on the above discussion, we present an algorithm

called MQWK-II to modify q, Wp, and k. MQWK-II pro-

ceeds as follows. First, it invokes MQP-II algorithm to get

the minimal qmin. Second, it samples |Q| query points from

the sample space. For each sample query point q′, it em-

ploys MWK-II algorithm to compute the corresponding op-

timal (W ′
p, k

′) integrating the reuse technique. Finally, the

tuple (q′,W ′
p, k

′) with the minimal penalty will be returned

as the result. Since the logic of MQWK-II is similar as that

of MQWK-I, we skip the pseudo-code of MQWK-II for save

spacing. Based on the time complexity analysis of MQWK-I

presented in Section 3.4, we conclude that the time complex-

ity of MQWK-II is O(|RT | × (|Wp|+ |Γ |) + 2× d3 ×L+

|Q| × (|RT |+ |S| × |Wp|)).

5 Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency

of our proposed algorithms via extensive experiments, using

both real and synthetic datasets.

5.1 Experimental Settings

In our experiments, we use two real datasets, i.e., NBA and

Household. NBA (http://www.nba.com) contains 17K 13

-dimensional points, where each point corresponds to the

statistics of an NBA player in 13 categories such as the num-

ber of points scored, rebounds, assists, etc. Household

(http://www.ipums.org) is a 127K 6-dimensional dataset.

Each tuple in the dataset represents the percentage of an

American family’s annual income spent on six types of ex-

penditures (e.g., gas, electricity). We also create three syn-

thetic datasets, i.e., Independent, Correlated and Anti-

correlated. In Independent dataset, all attribute values are

generated independently using a uniform distribution; Cor-

related dataset denotes an environment in which points good

in one dimension are also good in one or all of the other

dimension(s); and Anti-correlated dataset denotes an envi-

ronment in which points good in one dimension are bad in

one or all of the other dimension(s). Since the experimental

results on anti-correlated and correlated are similar, we only

report the experimental results on anti-correlated data due to

the space limits. The why-not/why weighting vectors are se-

lected from the weighting vector sets that are generated by

following the independent distribution as with [24,25].

We study the performance of the presented algorithms

under various parameters, including dimensionality d, data-

set cardinality |P |, k, actual ranking of q under Wm/Wp, the

cardinality of a why-not (why) weighting vector set |Wm|
(|Wp|), the sample size SW and Sq , parametersα and γ. The

ranges of the parameters and their default values denoted

by bold are summarized in Table 2, which follows existing
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Table 2 Parameter ranges and default values

Parameter Setting

Dimensionality d 2, 3, 4, 5, 10

Dataset cardinality |P | 10K, 50K, 100K, 500K, 1000K

k 10, 20, 30, 40, 50

Actual ranking of q under Wm 11, 101, 1001, 10001

Actual ranking of q under Wp 9, 19, 29, 39, 49

|Wm| or |Wp| 1, 2, 3, 4, 5

SW or Sq 100, 200, 400, 800, 1600

α or γ 0.1, 0.5, 0.9

work [24,25,43,46]. In every experiment, only one parame-

ter is changed, whereas others are fixed to their default val-

ues. We adopt total running time (in seconds) and penalty

as the main performance metrics. All experiments presented

in this paper are implemented in C++, and conducted on a

Windows PC with 2.8 GHz CPU and 4 GB main memory.

Each dataset is indexed by an R-tree, where the page size is

set to 4096 bytes. Note that our algorithms are not memory-

based. Therefore, in our experiments, the R-tree is stored on

the disk and only a part of it is loaded to the buffer.

5.2 Evaluation of Why-not Questions Algorithms

In this section, we evaluate the algorithms for answering

why-not questions on reverse top-k queries, namely, MQP-

I, MWK-I, and MQWK-I. First, we investigate the impact

of dimensionality d on the algorithms. We utilize synthetic

datasets, and report the efficiency of different algorithms in

Figure 8. Note that, each numbers with three decimal points

listed in every diagram refers to the penalty of the corre-

sponding algorithm at a specific setting. In general, the per-

formance of three algorithms degrades with the growth of

dimensionality. This is because all three algorithms need to

traverse the R-tree that has a poor efficiency in a high di-

mensional space, resulting in the performance degradation

of three algorithms. Moreover, for MQP-I and MQWK-I,

the quadratic programming takes more time in finding the

optimal q′ as d grows, which also leads to the degradation

of MQP-I and MQWK-I. It is also observed that, all the al-

gorithms return the answers with small penalty. However,

the penalty neither increases nor decreases with the growth

of cardinality. The reason is that, the penalty is only affected

by the sample size, while other parameters have no influence

on it.

Second, we vary the dataset cardinality |P | from 104 to

106, and report its impact on the algorithms, as reported in

Figure 9. As expected, the total running time of three algo-

rithms ascends as |P | grows. Nevertheless, the penalties of

MQP-I, MWK-I, and MQWK-I are small. This is because

the larger the dataset cardinality is, the bigger the R-tree is.

Thus, three algorithms need to traverse more R-tree nodes

with the growth of |P |, incurring longer total running time.

It is observed that the runtime of independent dataset is very

different from that of anti-correlated dataset as shown in

Figure 9, which is caused by the datasets’ different distri-

butions.

Third, we explore the influence of k on three algorithms,

and report the results in Figure 10. It is observed that, all the

algorithms degrade their performances as k increases. The

reason is that, k′max ascends as k grows, and thus, MWK-I

takes more time in getting the optimal tuple (W ′
m, k′) using

sample weighting vectors, which results in the degradation

of MWK-I. For MQP-I algorithm, if the value of k becomes

larger, the cost of finding the k-th point also increases, and

hence, the performance degrades. Since MQWK-I integrates

MQP-I and MWK-I, it degrades as well. Again, the penalties

of three algorithms are still small.

Fourth, we inspect the impact of actual ranking of q un-

der the why-not weighting vector set Wm by fixing d at

3, |P | at 100K, sample size at 800, |Wm| = 1, and k =

10. Figure 11 depicts the results on both real and synthetic

datasets. Clearly, the total running time of three algorithms

increases while the penalties remain small. For MWK-I al-

gorithm, when the actual ranking of q under Wm ascends,

k′max also grows, incurring longer total running time. For

MQP-I algorithm, if the ranking of q is low, L (defined in

Theorem 3.1) becomes larger, and thus, the quadratic pro-

gramming takes more time to find q′. Based on the above

two reasons, MQWK-I also degrades its performance.

Next, we explore the influence of the cardinality |Wm|

of a why-not weighting vector set on the algorithms, and

Figure 12 plots the results. We observe that MQP-I, MWK-

I, and MQWK-I can find the optimal solution with small

penalty. Again, the total running time of all algorithms in-

creases gradually when |Wm| ascends. The degradation of

MWK-I is mainly caused by the second phase of the algo-

rithm, i.e., using the sample weighting vectors to find the

approximate optimal answer. The performance descent of

MQP-I is due to the computation of the k-th point for more

why-not weighting vectors. Similarly, MQWK-I degrades as

well. Moreover, it is observed that, in Figure 12(b), the per-

formance of MQP-I degrades rapidly and the performance

gap between MQP-I and MWK-I becomes smaller. It is be-

cause the increase of why-not weighting vectors under NBA

makes the size of the quadratic programming problem (i.e.,

L defined before Theorem 3.1 in section 3.2) grow rapidly,

resulting in the rapid degradation of MQP-I.

Then, we evaluate the effect of sample size SW and Sq

on the algorithms respectively. To this end, we vary sample

size from 100 to 1600, and fix other parameters to their de-

fault values. Figure 13 and Figure 14 report the results on

SW and Sq respectively. In Figure 13, the total running time

of algorithms MQWK-I and MWK-I grows when SW as-

cends, although the growth is relatively moderate for MWK-

I. This is because the algorithms take more time to exam-

ine the samples. Moreover, it is obvious that the penalty

of algorithms MQWK-I and MWK-I drops as sample size
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grows. The reason behind is that the bigger the sample size,

the higher the quality result. Note that, the penalty some-

times decreases very fast with increasing sample size, and

sometimes it does not change. There are two potential rea-

sons. First, it is caused by the randomness since the sample

weighting vectors are randomly sampled from the sample

space. Second, different dataset distributions may also lead

to this phenomenon. In Figure 14, as expected, the total run-

ning time of algorithm MQWK-I changes and the penalty

of the algorithm MQWK-I decreases with the growing of

Sq . However, the total running time and the penalty of algo-

rithm MWK-I almost remain the same in Figure 14. This is

because algorithm MWK-I doesn’t need to sample the query

point. Moreover, in both Figure 13 and Figure 14, the total

running time and the penalty of MQP-I algorithm do not

change with the growth of SW /Sq , since MQP-I does not

use the sampling technique. Compared Figure 13 with Fig-

ure 14, it is found that Sq has a bigger impact on MWK-I

than SW . Recall that MQWK-I needs to iteratively invoke

MWK-I. If Sq increases, MQWK-I calls more MWK-I. If

SW increases, the time for each calling of MQWK-I in-

creases. From Figure 13, we find the time of MWK-I as-

cends gently as SW increases. Therefore, the growth of Sq

leads to more rapid degradation of MQWK-I .

Finally, we evaluate the effect of parameters α and γ on

the algorithms, whose results are shown in Figure 15 and

Figure 16 respectively. It is observed that both α and γ have

little influence on the total running time. In addition, α in-

fluences the penalty of algorithms MQWK-I and MWK-I;

and γ affects the penalty of algorithm MQWK-I. The reason

behind is that α and γ only determine the penalty model of

the algorithms but not the running time of the algorithms,

which also can be confirmed by Theorem 3.1, Theorem 3.2,

and Theorem 3.3 .

In summary, from all the experimental results, we can

conclude that our proposed algorithms, viz., MQP-I, MWK-

I, and MQWK-I, are efficient, and scale well under a va-

riety of parameters. Among three algorithms, MQP-I that

only modifies the query point is most efficient with relatively

high penalty while MQWK-I that modifies both the query

point and customer preferences incurs the smallest penalty

with relatively long running time. Moreover, It is found that

the algorithms’ performance decreases with the growth of

dimentionality and cardinality. Therefore, it is necessary to
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propose more efficient algorithms to answer why-not ques-

tions on reverse top-k queries.

5.3 Evaluation of Why Questions Algorithms

This subsection shows the performance of algorithms MQP-

II, MWK-II, and MQWK-II, which are designed to answer

why questions on reverse top-k queries. First, we explore the

influence of dimensionality d on three algorithms by using

synthetic datasets. Specifically, k = 10, |P | = 100K, |Wp|

= 1, sample size is set to 800, actual ranking of q under

Wp is 9, and d is in the range of [2, 5]. Figure 17 shows

the efficiency of three algorithms. Obviously, similar with

the why-not questions algorithms, the total running time of

three algorithms ascends as |d| grows. The reasons behind is

two-fold. First, the efficiency of R-tree is poor in a high di-

mensional space. Second, the performance of quadratic pro-

gramming algorithm degrades with the growth of d.

Second, we evaluate the effect of dataset cardinality |P |

on the algorithms, and report the results in Figure 18. As

|P | grows, the cost of three algorithms increases, which is

consistent with our expectation, and confirms that |P | has a

direct impact on the performance. This is because with the

growth of |P |, MQP-II, MWK-II, and MQWK-II all need

to traverse more data points, and hence, the performance of

algorithms degrades.

Third, we investigate the influence of k on the algo-

rithms. Figure 19 depicts the results on both real and syn-

thetic datasets. As expected, the total running time of three

algorithms ascends as |k| grows. For MWK-II algorithm,

it gets the optimal tuple (W ′
p, k

′) using sample weighting

vectors under which the query point q’s rank is between

[k′min, k]. If k grows, the range [k′min, k] enlarges, and thus,

more sample weighting vectors are examined, resulting in

the degradation of MWK-II. For MQP-II algorithm, if the

value of k becomes larger, the cost of finding the k-th point

also ascends, and hence, the performance degrades. More-

over, in Figure 19(b), the curve for MQP-II is the highest.

If k increases, the why-not weighting vectors also change,

making the size of the quadratic programming problem in-

crease rapidly. Therefore, the MQP-II degrades rapidly.

Fourth, we study the impact of actual ranking of q un-

der the why weighting vector set Wp by fixing d = 3, |P | =

100K, sample size = 800, |Wp| = 1, and k = 10. As shown

in Figure 20, the total running time of three algorithms in-

creases. For MWK-II algorithm, when the actual ranking of
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q under Wp grows, k′min also ascends, incurring longer to-

tal running time. For MQP-II algorithm, if the ranking of q

is low, the quadratic programming takes more time. Hence,

MQWK-II also degrades.

Next, we vary the cardinality of a why weighting vec-

tor set |Wp| from 1 to 5, and verify its effect on the algo-

rithms using both real and synthetic datasets. As shown in

Figure 21, the total running time of all algorithms increases

gradually when |Wp| ascends. The second phase of MWK-

II algorithm leads to its degradation, where it examines the

sample weighting vectors to find the optimal (W ′
p, k

′). In

addition, MQP-II needs to compute the k-th point for more

why weighting vectors, and thus results in the worse perfor-

mance. Similarly, MQWK-II degrades as well.

Then, we explore the impact of sample size SW and Sq

on three algorithms with results reported in Figure 22 and

Figure 23 respectively. We observe that (i) with the growth

of SW , the total running time of algorithms MQWK-II and

MWK-II grows while the penalty of these two algorithms

decrease; (ii) with the growth of Sq , the total running time of

algorithm MQWK-II grows while its penalty decreases. The

reason is obvious since (i) the algorithms take more time to

examine the sample weighting vectors; and (ii) the bigger

the sample size, the higher the quality result. It is observed

that, only in this set of experiments, the penalty changes in

a relatively stable trend. This is because, the penalty is only

affected by the sample size, but not the other parameters.

Finally, we evaluate the effect of parameters α and γ

on the algorithms, with results reported in Figure 24 and

Figure 25 respectively. As expected, α and γ rarely affect

the total running time of the algorithms. On the other hand,

(i) since the penalty model of MWK-II (i.e., Equation (8))

includes α, α affects the penalty of algorithm MWK-II; and

(ii) since the penalty model of MQWK-II (i.e., Equation (2))

contains α and γ, both α and γ affect penalty of algorithm

MQWK-II.

All the the above experimental results demonstrate that

MQP-II, MWK-II, and MQWK-II scale well under a variety

of parameters, which can further verify the flexibility of the

framework WQRTQ. Similar as the observations made in

the experiments on why-not question algorithms, MQP-II is

most efficient in terms of running time, and MQWK-II has

the smallest penalty with relatively long running time.
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6 Related work

In this Section, we review previous work on top-k queries,

reverse top-k queries, data provenance, and why-not ques-

tions.

Top-k queries. Top-k query has received much attention in

the database community because of its usefulness. Existing

algorithms include convex hull based algorithm Onion [12],

view based algorithms LPTA [20] and PREFER [29,30], lay-

ered index based algorithm AppIR [48], branch-and-bound

algorithm BRS [41], dominant graph based top-k query al-

gorithm [51], and top-k query algorithms using cache [47],

among which BRS is I/O optimal.

Reverse top-k queries. Vlachou et al. [43] firstly introduce

the reverse top-k query and consider its two variants, namely,

monochromatic and bichromatic versions. To efficiently an-

swer the monochromatic reverse top-k query, Vlachou et al.

[43] and Chester et al. [17] present several algorithms in

a 2-dimensional (2D) space. The bichromatic top-k query

algorithms include RTA, GRTA, and BBR [43,46]. In ad-

dition, Yu et al. [49] develop a dynamic index to support

reverse top-k queries, and Ge et al. [22] employ all top-k

queries to boost the reverse top-k query. More recently, re-

verse top-k queries are widely studied in market analysis

[36,45], location-based services [44], and uncertain circum-

stances [35]. It is worth noting that, all the current reverse

top-k queries only return the results without any explana-

tion, and thus, the existing techniques designed for reverse

top-k queries cannot answer corresponding why-not ques-

tions efficiently.

Data provenance. Data provenance explores the derivation

of a piece of data that is in a query result [40]. It can help

users understand why data tuples exist within a result set.

Current approaches for computing data provenance include

non-annotation method [9,19] and annotation approach [4,

18]. Nonetheless, it cannot be applied to clarify the missing

tuples in the query result set.

Why-not questions. Huang et al. [31] firstly explores the

provenance of the non-answers (i.e., the why-not question,

whose name was proposed in [13]). Since then, lots of ef-

forts have been put into answering why-not questions. The

existing approaches can be classified into three categories:

(i) manipulation identification (e.g., the why-not questions

on SPJ queries [13] and SPJUA queries [6]), (ii) database

modification (e.g., the why-not questions on SPJ queries [31,

50] and SPJUA queries [27,28]), and (iii) query refinement



24 Qing Liu et al.

MWK-IIMQP-II MQWK-II

SW

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

101

102

103

104

100 200 400 800 1600

0.146 0.146 0.146 0.146

0.146

0.214 0.164 0.129 0.1140.129

0.055
0.055

0.0570.0590.06

(a) Household

SW
to

ta
l 

ru
n

n
in

g
 t

im
e 

(s
ec

)

101

102

103

104

100 200 400 800 1600

0.026 0.026 0.026 0.026 0.026

0.144 0.121 0.109 0.095 0.09

0.008
0.0080.0090.009

0.008

(b) NBA

SW

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

100

101

102

103

104

100 200 400 800 1600

0.235 0.235 0.235 0.2350.235

0.1940.255 0.175 0.0640.299

0.07

0.0740.0810.0850.086

(c) Independent

SW

to
ta

l 
ru

n
n

in
g

 t
im

e 
(s

ec
)

100

101

102

103

104

100 200 400 800 1600

0.107 0.107 0.107 0.107 0.107

0.339 0.272 0.186 0.147
0.106

0.03
0.032

0.027
0.034

0.034

(d) Anti-correlated

Fig. 22 Why questions cost vs. SW

MWK-IIMQP-II MQWK-II

Sq

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

101

102

103

104

100 200 400 800 1600

0.146 0.146 0.146 0.146

0.146

0.129 0.129 0.129 0.129 0.129

0.055
0.054

0.058
0.059

0.064

(a) Household

Sq

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

101

102

103

104

100 200 400 800 1600

0.026 0.026 0.026 0.026 0.026

0.095 0.0950.0950.0950.095

0.008
0.07

0.08
0.009

0.01

(b) NBA

Sq
to

ta
l 

ru
n

n
in

g
 t

im
e 

(s
ec

)

100

101

102

103

104

100 200 400 800 1600

0.235 0.235 0.235 0.2350.235

0.175 0.175 0.175 0.175 0.175

0.074
0.09

0.1
0.108

0.068

(c) Independent

Sq

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

100

101

102

103

104

100 200 400 800 1600

0.107
0.107 0.107 0.107

0.107

0.147 0.147 0.147 0.1470.147

0.03

0.035

0.027

0.033
0.034

(d) Anti-correlated

Fig. 23 Why questions cost vs. Sq

MWK-IIMQP-II MQWK-II

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

101

102

103

104

0.1 0.5 0.9

0.146

0.129

0.055

0.1460.146

0.067

0.02

0.074

0.019

(a) Household

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

101

102

103

104

0.1 0.5 0.9

0.026

0.095

0.008

0.0260.026

0.099

0.015

0.097

0.009

(b) NBA

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)

100

101

102

103

104

0.1 0.5 0.9

0.235

0.175

0.074

0.2350.235

0.021 0.047

0.0920.079

(c) Independent

to
ta

l 
ru

n
n
in

g
 t

im
e 

(s
ec

)
100

101

102

103

104

0.1 0.5 0.9

0.107

0.147

0.03

0.1070.107

0.099

0.042 0.028

0.097

(d) Anti-correlated

Fig. 24 Why questions cost vs. α

(e.g., the why-not questions on SPJA queries [42], top-k
queries [24,25], top-k dominating queries [25], reverse sky-

line queries [33], image search [5], spatial keyword top-k

queries [15,16], similar graph match [32], and metric prob-

abilistic range queries [14]). In addition, Herschel [26] tries

to identify hybrid why-not explanations for SQL queries,

which combines manipulation identification and query re-

finement. Ten Cate et al. [11] present a new framework for

why-not explanations by leveraging concepts from an ontol-

ogy to provide high-level and meaningful reasons. Bidoit et

al. [7,8] provide a new formalization of why-not explanation

as polynomials. Meliou et al. [37] aim to find the causality

and responsibility for the non-answers of the query. Here,

causality is the cause of non-answers to the query, and re-

sponsibility captures the notion of degree of causality.

It is noteworthy that our work follows the query refine-

ment model to answer why-not questions on reverse top-

k queries, i.e., we modify the parameter(s) and/or a query

point and/or why-not point(s) of an original query to include

the missing tuples in a refined query result. However, since

why-not questions are query-dependent, different queries re-

quire different query refinement, which explains the reason

that existing query refinement techniques cannot be applied

directly in our problem, and justifies our main contribution,

that is to design proper query refinement approaches to sup-

port why-not questions on reverse top-k queries.

7 Conclusions

In this paper, for the first time, we study the problem of why-

not and why questions on reverse top-k queries. We pro-

pose a unified framework called WQRTQ to answer why-not

questions on reverse top-k queries. Specifically, WQRTQ

consists of three solutions, i.e., (i) modifying a query point

q, (ii) modifying a why-not weighting vector set Wm and a

parameter k, and (iii) modifying q, Wm, and k. Furthermore,

we utilize the quadratic programming, sampling method, and

reuse technique to boost the performance of our algorithms.

In addition, we extend WQRTQ to answer why questions on

reverse top-k queries, which demonstrates the flexibility of

our proposed algorithms. Extensive experiments with both

real and synthetic data sets verify the effectiveness and effi-

ciency of our presented algorithms.

A promising direction for future work is to study the

why-not-and-whyquestions, i.e., not only to include the why-
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Fig. 25 Why questions cost vs. γ

not weighting vectors into the result but also to exclude the

why weighting vectors from the result. A naive method is to

first call the algorithms of why-not questions to include the

why-not weighting vectors, and then call the algorithms of

why questions to exclude the why weighting vectors. How-

ever, the efficiency of the naive method may not be desir-

able. Hence, we would like to develop more efficient algo-

rithms to answer why-not-and-why questions in our future

work.
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