3,335 research outputs found

    Fast Distributed Algorithms for LP-Type Problems of Bounded Dimension

    Full text link
    In this paper we present various distributed algorithms for LP-type problems in the well-known gossip model. LP-type problems include many important classes of problems such as (integer) linear programming, geometric problems like smallest enclosing ball and polytope distance, and set problems like hitting set and set cover. In the gossip model, a node can only push information to or pull information from nodes chosen uniformly at random. Protocols for the gossip model are usually very practical due to their fast convergence, their simplicity, and their stability under stress and disruptions. Our algorithms are very efficient (logarithmic rounds or better with just polylogarithmic communication work per node per round) whenever the combinatorial dimension of the given LP-type problem is constant, even if the size of the given LP-type problem is polynomially large in the number of nodes

    Geometric Approximation Algorithms in the Online and Data Stream Models

    Get PDF
    The online and data stream models of computation have recently attracted considerable research attention due to many real-world applications in various areas such as data mining, machine learning, distributed computing, and robotics. In both these models, input items arrive one at a time, and the algorithms must decide based on the partial data received so far, without any secure information about the data that will arrive in the future. In this thesis, we investigate efficient algorithms for a number of fundamental geometric optimization problems in the online and data stream models. The problems studied in this thesis can be divided into two major categories: geometric clustering and computing various extent measures of a set of points. In the online setting, we show that the basic unit clustering problem admits non-trivial algorithms even in the simplest one-dimensional case: we show that the naive upper bounds on the competitive ratio of algorithms for this problem can be beaten using randomization. In the data stream model, we propose a new streaming algorithm for maintaining "core-sets" of a set of points in fixed dimensions, and also, introduce a new simple framework for transforming a class of offline algorithms to their equivalents in the data stream model. These results together lead to improved streaming approximation algorithms for a wide variety of geometric optimization problems in fixed dimensions, including diameter, width, k-center, smallest enclosing ball, minimum-volume bounding box, minimum enclosing cylinder, minimum-width enclosing spherical shell/annulus, etc. In high-dimensional data streams, where the dimension is not a constant, we propose a simple streaming algorithm for the minimum enclosing ball (the 1-center) problem with an improved approximation factor

    Quasiconvex Programming

    Full text link
    We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization technique in meshing, scientific computation, information visualization, automated algorithm analysis, and robust statistics.Comment: 33 pages, 14 figure

    Algorithmic Superactivation of Asymptotic Quantum Capacity of Zero-Capacity Quantum Channels

    Full text link
    The superactivation of zero-capacity quantum channels makes it possible to use two zero-capacity quantum channels with a positive joint capacity for their output. Currently, we have no theoretical background to describe all possible combinations of superactive zero-capacity channels; hence, there may be many other possible combinations. In practice, to discover such superactive zero-capacity channel-pairs, we must analyze an extremely large set of possible quantum states, channel models, and channel probabilities. There is still no extremely efficient algorithmic tool for this purpose. This paper shows an efficient algorithmical method of finding such combinations. Our method can be a very valuable tool for improving the results of fault-tolerant quantum computation and possible communication techniques over very noisy quantum channels.Comment: 35 pages, 17 figures, Journal-ref: Information Sciences (Elsevier, 2012), presented in part at Quantum Information Processing 2012 (QIP2012), v2: minor changes, v3: published version; Information Sciences, Elsevier, ISSN: 0020-0255; 201
    • …
    corecore