1,248 research outputs found

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size

    Algorithms and complexity for approximately counting hypergraph colourings and related problems

    Get PDF
    The past decade has witnessed advancements in designing efficient algorithms for approximating the number of solutions to constraint satisfaction problems (CSPs), especially in the local lemma regime. However, the phase transition for the computational tractability is not known. This thesis is dedicated to the prototypical problem of this kind of CSPs, the hypergraph colouring. Parameterised by the number of colours q, the arity of each hyperedge k, and the vertex maximum degree Δ, this problem falls into the regime of LovĂĄsz local lemma when Δ â‰Č qᔏ. In prior, however, fast approximate counting algorithms exist when Δ â‰Č qᔏ/Âł, and there is no known inapproximability result. In pursuit of this, our contribution is two-folded, stated as follows. ‱ When q, k ≄ 4 are evens and Δ ≄ 5·qᔏ/ÂČ, approximating the number of hypergraph colourings is NP-hard. ‱ When the input hypergraph is linear and Δ â‰Č qᔏ/ÂČ, a fast approximate counting algorithm does exist

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Geometric Learning on Graph Structured Data

    Get PDF
    Graphs provide a ubiquitous and universal data structure that can be applied in many domains such as social networks, biology, chemistry, physics, and computer science. In this thesis we focus on two fundamental paradigms in graph learning: representation learning and similarity learning over graph-structured data. Graph representation learning aims to learn embeddings for nodes by integrating topological and feature information of a graph. Graph similarity learning brings into play with similarity functions that allow to compute similarity between pairs of graphs in a vector space. We address several challenging issues in these two paradigms, designing powerful, yet efficient and theoretical guaranteed machine learning models that can leverage rich topological structural properties of real-world graphs. This thesis is structured into two parts. In the first part of the thesis, we will present how to develop powerful Graph Neural Networks (GNNs) for graph representation learning from three different perspectives: (1) spatial GNNs, (2) spectral GNNs, and (3) diffusion GNNs. We will discuss the model architecture, representational power, and convergence properties of these GNN models. Specifically, we first study how to develop expressive, yet efficient and simple message-passing aggregation schemes that can go beyond the Weisfeiler-Leman test (1-WL). We propose a generalized message-passing framework by incorporating graph structural properties into an aggregation scheme. Then, we introduce a new local isomorphism hierarchy on neighborhood subgraphs. We further develop a novel neural model, namely GraphSNN, and theoretically prove that this model is more expressive than the 1-WL test. After that, we study how to build an effective and efficient graph convolution model with spectral graph filters. In this study, we propose a spectral GNN model, called DFNets, which incorporates a novel spectral graph filter, namely feedback-looped filters. As a result, this model can provide better localization on neighborhood while achieving fast convergence and linear memory requirements. Finally, we study how to capture the rich topological information of a graph using graph diffusion. We propose a novel GNN architecture with dynamic PageRank, based on a learnable transition matrix. We explore two variants of this GNN architecture: forward-euler solution and invariable feature solution, and theoretically prove that our forward-euler GNN architecture is guaranteed with the convergence to a stationary distribution. In the second part of this thesis, we will introduce a new optimal transport distance metric on graphs in a regularized learning framework for graph kernels. This optimal transport distance metric can preserve both local and global structures between graphs during the transport, in addition to preserving features and their local variations. Furthermore, we propose two strongly convex regularization terms to theoretically guarantee the convergence and numerical stability in finding an optimal assignment between graphs. One regularization term is used to regularize a Wasserstein distance between graphs in the same ground space. This helps to preserve the local clustering structure on graphs by relaxing the optimal transport problem to be a cluster-to-cluster assignment between locally connected vertices. The other regularization term is used to regularize a Gromov-Wasserstein distance between graphs across different ground spaces based on degree-entropy KL divergence. This helps to improve the matching robustness of an optimal alignment to preserve the global connectivity structure of graphs. We have evaluated our optimal transport-based graph kernel using different benchmark tasks. The experimental results show that our models considerably outperform all the state-of-the-art methods in all benchmark tasks

    Efficient parameterized algorithms on structured graphs

    Get PDF
    In der klassischen KomplexitĂ€tstheorie werden worst-case Laufzeiten von Algorithmen typischerweise einzig abhĂ€ngig von der EingabegrĂ¶ĂŸe angegeben. In dem Kontext der parametrisierten KomplexitĂ€tstheorie versucht man die Analyse der Laufzeit dahingehend zu verfeinern, dass man zusĂ€tzlich zu der EingabengrĂ¶ĂŸe noch einen Parameter berĂŒcksichtigt, welcher angibt, wie strukturiert die Eingabe bezĂŒglich einer gewissen Eigenschaft ist. Ein parametrisierter Algorithmus nutzt dann diese beschriebene Struktur aus und erreicht so eine Laufzeit, welche schneller ist als die eines besten unparametrisierten Algorithmus, falls der Parameter klein ist. Der erste Hauptteil dieser Arbeit fĂŒhrt die Forschung in diese Richtung weiter aus und untersucht den Einfluss von verschieden Parametern auf die Laufzeit von bekannten effizient lösbaren Problemen. Einige vorgestellte Algorithmen sind dabei adaptive Algorithmen, was bedeutet, dass die Laufzeit von diesen Algorithmen mit der Laufzeit des besten unparametrisierten Algorithm fĂŒr den grĂ¶ĂŸtmöglichen Parameterwert ĂŒbereinstimmt und damit theoretisch niemals schlechter als die besten unparametrisierten Algorithmen und ĂŒbertreffen diese bereits fĂŒr leicht nichttriviale Parameterwerte. Motiviert durch den allgemeinen Erfolg und der Vielzahl solcher parametrisierten Algorithmen, welche eine vielzahl verschiedener Strukturen ausnutzen, untersuchen wir im zweiten Hauptteil dieser Arbeit, wie man solche unterschiedliche homogene Strukturen zu mehr heterogenen Strukturen vereinen kann. Ausgehend von algebraischen AusdrĂŒcken, welche benutzt werden können, um von Parametern beschriebene Strukturen zu definieren, charakterisieren wir klar und robust heterogene Strukturen und zeigen exemplarisch, wie sich die Parameter tree-depth und modular-width heterogen verbinden lassen. Wir beschreiben dazu effiziente Algorithmen auf heterogenen Strukturen mit Laufzeiten, welche im Spezialfall mit den homogenen Algorithmen ĂŒbereinstimmen.In classical complexity theory, the worst-case running times of algorithms depend solely on the size of the input. In parameterized complexity the goal is to refine the analysis of the running time of an algorithm by additionally considering a parameter that measures some kind of structure in the input. A parameterized algorithm then utilizes the structure described by the parameter and achieves a running time that is faster than the best general (unparameterized) algorithm for instances of low parameter value. In the first part of this thesis, we carry forward in this direction and investigate the influence of several parameters on the running times of well-known tractable problems. Several presented algorithms are adaptive algorithms, meaning that they match the running time of a best unparameterized algorithm for worst-case parameter values. Thus, an adaptive parameterized algorithm is asymptotically never worse than the best unparameterized algorithm, while it outperforms the best general algorithm already for slightly non-trivial parameter values. As illustrated in the first part of this thesis, for many problems there exist efficient parameterized algorithms regarding multiple parameters, each describing a different kind of structure. In the second part of this thesis, we explore how to combine such homogeneous structures to more general and heterogeneous structures. Using algebraic expressions, we define new combined graph classes of heterogeneous structure in a clean and robust way, and we showcase this for the heterogeneous merge of the parameters tree-depth and modular-width, by presenting parameterized algorithms on such heterogeneous graph classes and getting running times that match the homogeneous cases throughout

    Quantum Algorithms for Memoryless Search and Perfect Matching

    Get PDF
    In this thesis, we present two new quantum algorithms for graph problems. The first algorithm we give is a memoryless walk that can find a unique marked vertex on a two-dimensional grid. Our walk is based on a construction proposed by Falk, which tessellates the grid with squares of size 2 × 2. Our walk uses minimal memory, O(sqrt(N logN)) applications of the walk operator, and outputs the marked vertex with vanishing error probability. To accomplish this, we apply a selfloop to the marked vertex—a technique we adapt from interpolated walks. We prove that with our explicit choice of selfloop weight, this forces the action of the walk asymptotically into a single rotational space. We characterize this space and as a result, show that our memoryless walk produces the marked vertex with a success probability asymptotically approaching one. Our second algorithm decides whether a graph contains a perfect matching. This is the first quantum algorithm based on the algebraic characterization by Tutte, which reduces the problem of detecting perfect matchings to deciding whether a matrix has nonzero determinant. The key part of our algorithm is a new span program that can decide whether a matrix is singular. Our span program has a simple structure and its witness size matches that of a related span program by Belovs for matrix rank-finding, up to a constant factor. Using a transformation given by Reichardt, our span program can be compiled into a quantum algorithm, which we use as a subroutine in our algorithm to detect perfect matchings. We also show that there are families of graphs for which our perfect matching detection algorithm may have exponential query complexity. These graphs could be a useful tool in determining the tight quantum query complexity of the perfect matching detection problem, which remains an open problem

    Exactly soluble models in many-body physics

    Get PDF
    Almost all phenomena in the universe are described, at the fundamental level, by quantum manybody models. In general, however, a complete understanding of large systems with many degrees of freedom is impossible. While in general many-body quantum systems are intractable, there are special cases for which there are techniques that allow for an exact solution. Exactly soluble models are interesting because they are soluble; beyond this, they can be used to gain intuition for further reaching many-body systems, including when they can be leveraged to help with numerical approximations for general models. The work presented in this thesis considers exactly soluble models of quantum many-body systems. The first part of this thesis extends the family of many-body spin models for which we can find a freefermion solution. A solution method that was developed for a specific free-fermion model is generalized in such a way that allows application to a broader class of many-body spin system than was previously known to be free. Models which admit a solution via this method are characterized by a graph theory invariants: in brief it is shown that a quantum spin system has an exact description via non-interacting fermions if its frustration graph is claw-free and contains a simplicial clique. The second part of this thesis gives an explicit example of how the usefulness of exactly soluble models can extend beyond the solution itself. This chapter pertains to the calculation of the topological entanglement entropy in topologically ordered loop-gas states. Topological entanglement entropy gives an understanding of how correlations may extend throughout a system. In this chapter the topological entanglement entropy of two- and three-dimensional loop-gas states is calculated in the bulk and at the boundary. We obtain a closed form expression for the topological entanglement in terms of the anyonic theory that the models support
    • 

    corecore