
 
 
 
 
 
 
 
Abraham, D.J. and Levavi, A. and Manlove, D.F. and O'Malley, G. 
(2008) The stable roommates problem with globally-ranked pairs. 
Internet Mathematics, 5 (4). pp. 493-515. ISSN 1542-7951 

 
http://eprints.gla.ac.uk/150599/ 
 
Deposited on: 07 April 2010 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/150599/


The Stable Roommates Problem with

Globally-Ranked Pairs∗

David J. Abraham1,†, Ariel Levavi2,‡, David F. Manlove3,§ and Gregg O’Malley3

1 Computer Science Department, Carnegie Mellon University, USA

dabraham@cs.cmu.edu

2 Department of Computer Science and Engineering, University of California, San Diego, USA

alevavi@cs.ucsd.edu

3 Department of Computing Science, University of Glasgow, UK

davidm@dcs.gla.ac.uk, gregg@dcs.gla.ac.uk

Abstract

We introduce a restriction of the stable roommates problem in which roommate
pairs are ranked globally. In contrast to the unrestricted problem, weakly stable
matchings are guaranteed to exist, and additionally, can be found in polynomial time.
However, it is still the case that strongly stable matchings may not exist, and so
we consider the complexity of finding weakly stable matchings with various desirable
properties. In particular, we present a polynomial-time algorithm to find a rank-
maximal (weakly stable) matching. This is the first generalization of the algorithm
due to Irving et al. [21] to a non-bipartite setting. Also, we describe several hardness
results in an even more restricted setting for each of the problems of finding weakly
stable matchings that are of maximum size, are egalitarian, have minimum regret, and
admit the minimum number of weakly blocking pairs.

1 Introduction

The stable roommates problem (sr) [14, 18, 17, 19] involves pairing-up a set of agents,
each of whom ranks the others in (not necessarily strict) order of preference. Agents can
declare each other unacceptable, in which case they cannot be paired together. Our task
is to find a pairing of mutually acceptable agents such that no two agents would prefer to
partner each other over those that we prescribed for them.

We represent acceptable pairs by a graph G = (V,E), with one vertex u ∈ V for
each agent, and an edge {u, v} ∈ E whenever agents u and v are mutually acceptable. A
pairing is just a matching M of G, i.e., a subset of edges in E, no two of which share a
vertex. If {u, v} ∈ M , we say that u is matched in M and M(u) denotes v, otherwise u is
unmatched in M . An agent u prefers one matching M ′ over another M if i) u is matched
in M ′ and unmatched in M , or ii) u is matched in M and M ′, and u prefers M ′(u) to

∗A preliminary version of this paper appeared in the Proceedings of WINE 2007 [2].
†Research supported in part by NSF grants IIS-0427858 and CCF-0514922IIS-0427858. Part of this

work completed while visiting Microsoft Research, Redmond, USA.
‡Work completed whilst at the Computer Science Department, Carnegie Mellon University, USA.
§Supported by EPSRC grant EP/E011993/1.

1



M(u). Similarly, u is indifferent between M ′ and M if i) u is unmatched in M ′ and M , or
ii) u is matched in M and M ′, and u is indifferent between M ′(u) and M(u).

A matching M is weakly stable if it admits no strongly blocking pair, which is an edge
{u, v} ∈ E\M such that u and v prefer {{u, v}} to M . A matching M is strongly stable
if it admits no weakly blocking pair, which is an edge {u, v} ∈ E\M such that u prefers
{{u, v}} to M , while v either prefers {{u, v}} to M , or is indifferent between them. Finally,
a matching is super stable if it admits no edge {u, v} ∈ E\M such that i) u either prefers
{{u, v}} to M , or is indifferent between them, and ii) v either prefers {{u, v}} to M , or is
indifferent between them.

In this work, we introduce and study the stable roommates with globally-

ranked pairs problem (sr-grp). An instance of sr-grp is a restriction of sr in which
preferences may be derived from a ranking function rank : E → Z

+. An agent u prefers
v to w if rank(e) < rank(e′), where e = {u, v} and e′ = {u,w}. Similarly, agent u is
indifferent between v and w if rank(e) = rank(e′).

Before giving our motivation for studying this restriction, we introduce some additional
notation. We define Ei to be the set of edges with rank i, and E≤i to be the set E1 ∪E2 ∪
. . .∪Ei. Additionally, let n = |V | be the number of agents and m = |E| be the number of
mutually acceptable pairs. Without loss of generality, we assume the maximum edge rank
is at most m. Also, we make the standard assumption in the study of stable matching
problems that the adjacency list for a vertex is given in order of preference/rank.

Motivation

In several real-world settings, agents have restricted preferences that can be represented
by the sr-grp model. A pairwise kidney exchange market [33, 34, 1] is one such setting.
Here, patients with terminal kidney-disease obtain compatible donors by swapping their
own willing but incompatible donors. We can model the basic market by constructing
one vertex for each patient, and an undirected edge between any two patients where the
incompatible donor for one patient is compatible with the other patient, and vice versa. Of
course, patients may have different preferences over donors. However, since the expected
years of life gained from a transplant is similar amongst all compatible kidneys, the medical
community has suggested that patient preferences should be binary/dichotomous [16, 8]
– i.e., patients are indifferent between all compatible donors. Binary preferences are are a
special case of preferences induced by a global ranking, as all edges the same rank.

In repeated kidney exchange markets, swaps are conducted periodically, with patients
entering and leaving the market over time. When two (patient,donor) pairs are matched
with each other (in order to swap donors), doctors are not certain if the swap can occur
until expensive last-minute compatibility tests are performed on the donors and patients.
If either potential transplant in the swap is incompatible, the swap is cancelled and the
two patients must wait for a future match run. Note that the probability of a swap being
compatible is the same for both patients involved in the swap. Also, doctors can predict
the probability of a swap being compatible. Hence patient preferences can be inferred by
ranking the potential swaps by their chance of success, which is exactly the preference
model of sr-grp.

A third application arises in P2P networks [12, 13, 23, 27, 28]. For example [23], in a
P2P file-sharing network, a given peer may form a preference list over other peers based
on the similarity of their interests. In cooperative download applications such BitTorrent,
preference functions may be derived from properties such as download / upload bandwidth,
latency and storage capacity. The “Tit-for-Tat” strategy of BitTorrent can give rise to
preference lists for peers that are based on a single global ranking (referred to as a master
list in [20, 31]) of peers according to upload capacity. The presence of a global ranking
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of peers (as opposed to edges) gives rise to a special case of sr-grp (this can be seen as
follows: an sr-grp instance can be obtained by defining the rank of an edge {u, v} to be
rank(u)+rank(v), where rank(w) is the rank of agent w in the master list). In fact, peers
can have non-unitary capacity in general, so this application actually motivates a many-
many variant of sr-grp, called the stable b-matching problem [6] with globally-ranked
pairs.

One final real-world setting is described in [4]. When colleges pair-up freshmen room-
mates, it is not feasible for students to rank each other explicitly. Instead, each student
submits a form which describes him/herself in several different dimensions (e.g., bedtime
preference, cleanliness preference etc). Students can then be represented as points in a
multidimensional space, and preferences over other students can be inferred by a distance
function. Note that this model [4] is a restriction of sr-grp in that it is not possible to
declare another student unacceptable.

Preliminary Results

In order to highlight the generality of the sr-grp model, we introduce a second restriction
of sr called stable roommates with globally-acyclic preferences (sr-gap). In-
stances of sr-gap satisfy the following characterization test: given an arbitrary instance
I of sr with G = (V,E), construct a digraph P (G), containing one vertex e for each edge
in e ∈ E, and an arc from e = {u, v} ∈ E to e′ = {u,w} ∈ E if u prefers w to v. Now, for
each e = {u, v} and e′ = {u,w} in E, if u is indifferent between v and w, merge vertices
e and e′. Note that a merged vertex may contain several original edge-vertices and have
self-loops. Instance I belongs to sr-gap if and only if P (G) is acyclic.

Instances of sr-grp satisfy the sr-gap test, since any directed path in P (G) consists
of arcs with monotonically improving ranks, and so no cycles are possible. In the reverse
direction, given any instance of sr-gap, we can derive a suitable rank function from a
reverse topological sort on P (G), i.e., rank(e) < rank(e′) if and only if e appears before
e′. The following proposition is clear:

Proposition 1.1. Let I be an instance of sr. Then I is an instance of sr-grp if and
only if I is an instance of sr-gap.

As well as modelling real-world problems, sr-grp is an important theoretical restric-
tion of sr. It is well-known that sr has two key undesirable properties. First, some
instances of sr admit no weakly stable matchings (see, for example, [17, page 164]). And
second, the problem of finding a weakly stable matching, or proving that no such match-
ing exists, is NP-hard [32, 19]. It turns out that sr-grp has neither of these undesirable
properties.

Lemma 1.1. Let G = (V,E1 ∪ . . . ∪ Em) be an instance of sr-grp. Then M is a weakly
stable matching of G if and only if M ∩ E≤i is a maximal matching of E≤i, for all i.

Proof. Let M be a matching that is not weakly stable, and suppose for a contradiction
that M ∩ E≤i is a maximal matching of E≤i for all i. Since M is not weakly stable, it
admits a blocking pair e = {u, v} with some rank, say r. It follows that neither u nor v
are matched on M ∩ E≤r and so M ∩ E≤r is not maximal on E≤r, a contradiction.

Let M be a weakly stable matching and suppose for a contradiction that r is the first
rank for which M ∩ E≤r is not maximal on E≤r. Since M ∩ E≤r is not maximal, let
e = {u, v} be some edge in Er that could be added to M ∩ E≤r so that (M ∪ e) ∩ E≤r

is a legal matching. Since neither u nor v are matched by M ∩ E≤r, and {u, v} ∈ Er, it
follows that {u, v} blocks M , giving the required contradiction.
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So we can construct a weakly stable matching in O(n + m) time by finding a maximal
matching on rank-1 edges, removing the matched vertices, finding a maximal matching on
rank-2 edges, and so on.

Strongly stable matchings are also easy to characterize in sr-grp.

Lemma 1.2. Let G = (V,E1 ∪ . . .∪Em) be an instance of sr-grp. Then M is a strongly
stable matching of G if and only if M ∩ Ei is a perfect matching of {e ∈ Ei : e is not
adjacent to any e′ ∈ M ∩ E<i}, for all i.

Proof. Let M be a matching such that M ∩ Ei is a perfect matching of {e ∈ Ei : e is
not adjacent to any e′ ∈ M ∩ E<i} for all i. Suppose for a contradiction that M is not
strongly stable. It follows that M admits a blocking pair {u, v}, where, without loss of
generality, we assume u prefers v to M(u) and v either prefers u to M(v) or is indifferent
between them. Let r = rank({u, v}) and consider {e ∈ Er : e is not adjacent to any
e′ ∈ M ∩ E<r}. Note that v is not incident on an edge in E<r, otherwise v is matched in
M ∩E<r and prefers M(v) to u. Also, u is unmatched in E≤r, since u prefers v to M(u).
Hence, {u, v} ∈ {e ∈ Er : e is not adjacent to any e′ ∈ M ∩ E<r} and so M ∩ Er is not a
perfect matching, giving the required contradiction.

Let M be a strongly stable matching and suppose for a contradiction that r is the first
rank for which M ∩ Er is not a perfect matching of {e ∈ Er : e is not adjacent to any
e′ ∈ M ∩ E<r}. Since M ∩ Er is not perfect, it leaves some vertex u unmatched, where
{u, v} ∈ Er, and both u and v are unmatched in M ∩ E<r. If v is also unmatched in
M ∩ Er, then {u, v} is a strongly blocking pair of M , giving the required contradiction.
Alternative, if v is matched in M ∩Er, then {u, v} is a weakly blocking pair, contradicting
the assumption that M is strongly stable.

Of course, even E1 may not admit a perfect matching, and so strongly stable matchings
may not exist. However, we can find a strongly stable matching, or prove that no such
matching exists in O(m

√
n) time by using the maximum matching algorithm of Micali

and Vazirani for non-bipartite graphs [30] in place of the maximal matching algorithm for
finding a weakly stable matching above. This improves on the best known running time
of O(m2) for general sr [35].

Lemmas 1.1 and 1.2 indicate that sr-grp can be “more tractable” than sr. However,
the possible non-existence of a strongly stable matching motivates the search for weakly
stable matchings with desirable properties. A rank-maximal matching [21, 22] includes the
maximum possible number of rank-1 edges, and subject to this, the maximum possible
number of rank-2 edges, and so on. More formally, define the signature of a matching
M as 〈s1, s2, . . . , sm〉, where si is the number of rank-i edges in M . Then a matching
is rank-maximal if and only if it has the lexicographic-maximal signature amongst all
matchings.

Recall from Lemma 1.2 that a strongly stable matching is perfect on rank-1 edges, and
subject to removing the matched vertices, perfect on rank-2 edges, and so on. It is clear
that a rank-maximal matching is strongly stable, when strong stability is possible. If no
strongly stable matching exists, then a rank-maximal matching, which by Lemma 1.1 is
always weakly stable, seems a natural substitute. Irving et al. [21] gave an O(min(n +
R,R

√
n)m) algorithm for the problem of finding a rank-maximal matching in a bipartite

graph, where R is the rank of the worst-ranked edge in the matching.
Other desirable types of weakly stable matchings may be those that have maximum

cardinality, are egalitarian, are of minimum regret, or admit the fewest number of weakly
blocking pairs. An egalitarian (respectively minimum regret) weakly stable matching
satisfies the property that the sum of the ranks (respectively the maximum rank) of the
edges is minimised, taken over all weakly stable matchings. Given a general sr instance
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I, each of the problems of finding an egalitarian and a minimum regret weakly stable
matching is NP-hard [10, 25] (in the former case, even if the preference lists are complete
and strictly-ordered, and in the latter case, even if the underlying graph is bipartite).
However the complexity of the problem of finding a weakly stable matching with the
minimum number of weakly blocking pairs in I has, until now, been open.

Related work

Part of the motivation for this work is the investigation of which problems become more
tractable in sr-grp as compared to sr, and which problems maintain their hardness.
Work along these lines has been done before [5, 37, 7, 4]. In particular, in the case of sr

instances where preference lists may include ties, Chung [7] shows that the “no odd ring”
condition on preferences is sufficient for the existence of a weakly stable matching. The
sr-gap acyclic condition is a restriction of the “no odd ring” condition, in that neither
odd nor even rings are permitted.

As previously mentioned, several recent papers have focused on instances of sr-gap

that arise from P2P networks. In particular, Lebedev et al. [23] independently proved
Lemma 1.1 by showing that every instance of sr-gap (and hence sr-grp by Proposition
1.1) admits a weakly stable matching. Gai et al. [12] showed that every instance of sr

with a master list is an instance of sr-gap, but the converse need not be true. They
also considered instances of sr-sym – that is, the restriction of sr-grp where preferences
are symmetric. The notion of symmetric preferences is defined formally in Section 3, but
informally an sr instance involves symmetric preferences if, for any two agents u and v,
v appears in the kth tie in u’s preference list if and only if u appears in the kth tie in
v’s preference list. See also [13, 27, 28] for further results regarding instances of sr-gap

arising from P2P networks.
Arkin et al. [4] considered the Geometric Stable Roommates problem, which is a re-

striction of sr-grp in which the agents are points in R
d, all agents are mutually acceptable,

and the ranking function maps a pair of agents to the Euclidean distance between them.
In this restricted context Arkin et al. proved the analogues of Lemmas 1.1 and 1.2. They
also provided algorithms for finding egalitarian and super-stable matchings (if they exist).

O’Malley [31] showed that the problem of determining if an edge belongs to some
weakly stable matching in an instance of sm-sym (the bipartite restriction of sr-sym) is
NP-complete. He also gave generalized algorithms for finding a strongly and/or a super-
stable matching in the capacited version of sm-sym, where agents on one side of the
bipartition can be allocated to more than one agent on the other side of the bipartition.

Sng [36] studied popular matchings in the context of sm-sym. A matching M is popular
if there is no other matching M ′ such that the number of agents who prefer their partner
in M ′ to M exceeds the number of agents who prefer their partner in M to M ′. Using
properties of this preference class, Sng derived a characterization of popular matchings
and a polynomial-time algorithm to determine if a given matching is popular.

Finally, Ackermann et al. [3] studied two-sided stable marriage markets in which there
is no central authority to find a stable matching. Agents in the market propose pairings to
other agents, who may reject or tentatively accept the pairing. Ackermann et al. showed
that the number of proposals required before the market reaches a stable matching (called
the convergence time) can be exponential in the number of agents, even if the agents
make locally optimal proposals. As a counterpart to this result, Ackermann et al. showed
that, for markets with correlated preferences, which corresponds to the sr-grp model, the
convergence time is polynomial.
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Our contribution

In Section 2 we present a O(min(n + R,R
√

n)m) algorithm for finding a rank-maximal
matching, given an instance of sr-grp, where R is the rank of the worst-ranked edge in
the matching. Such a matching is weakly stable as previously observed. This is the first
generalization of Irving et al.’s [21] algorithm to a non-bipartite setting. In Section 3, we
report on hardness results for each of the problems of finding weakly stable matchings
that are of maximum size, are egalitarian, have minimum regret, and admit the minimum
number of weakly blocking pairs, given an instance of sr-grp. We also prove that this
last problem is inapproximable within a factor of n1−ε, for any ε > 0, unless P = NP.
These hardness results apply even in a restricted version of sr-grp in which the graph G
is bipartite, and (in the first three cases) if an agent v is incident to an edge of rank k,
then v is incident to an edge of rank k′, for 1 ≤ k′ ≤ k.

2 Rank-Maximal Matching

Consider an instance of sr-grp represented by an undirected graph G = (V,E), and a
ranking function, rank, on E. One obvious way to construct a rank-maximal matching
in G is to find a maximum-weight matching using edge weights that increase exponen-
tially with improving rank. However, with K distinct rank values, Gabow and Tarjan’s
matching algorithm [11] takes O(K2

√

nα(m,n) lg n m lg n) time1, where α is the inverse
Ackermann function. As in the bipartite restriction [21], our combinatorial algorithm
avoids the problem of exponential-sized edge weights, leading to an improved runtime of
O(min {n + R,R

√
n}m), where R ≤ K is the rank of the worst-ranked edge in the match-

ing. In the remainder of this section, we describe our generalization of the algorithm due
to Irving et al [21]. We encourage the reader to review their paper, which contains an
excellent exposition of the overall approach.

Let Gi = (V,E≤i). Our algorithm begins by constructing a maximum matching M1 on
G1. Note that M1 is rank-maximal on G1 by definition. Then inductively, given a rank-
maximal matching Mi−1 on Gi−1, the algorithm exhaustively augments Mi−1 with edges
from Ei to construct a rank-maximal matching Mi on Gi. One danger in this approach is
that an augmenting path may, for example, add two rank-2 edges and remove one rank-
1 edge. This would destroy the rank-maximal matching on rank-1 edges, because the
matching now has one less rank-1 edge. In order to ensure rank-maximality, certain types
of edges are deleted before augmenting. With these edges deleted, it becomes possible
to augment Mi−1 arbitrarily, while still guaranteeing rank-maximality. Hence, we can
perform the augmentations using Micali and Vazirani’s fast maximum matching algorithm
[30]. In order to generalize the bipartite algorithm due to Irving et al. [21], we perform
one additional type of edge deletion in non-bipartite settings. Additionally, we perform
a new type of operation that shrinks certain components of the graph into supervertices.
Note that this shrinking is separate from any blossom-shrinking [9] that might occur in
the maximum matching subroutine.

To understand the edge deletions and component shrinking, we review the Gallai-
Edmonds decomposition technique [24]. This states that V can be partitioned into three
sets, namely ged-u[G], ged-o[G] and ged-p[G]. Vertices in ged-u[G] are underdemanded,
since they are unmatched in some maximum matching of G. All other vertices that are
adjacent to one in ged-u[G] are overdemanded and belong to ged-o[G]. Finally, all
remaining vertices are perfectly demanded and belong to ged-p[G]. The decomposition
lemma gives many useful structural properties of maximum matchings. For example, in

1See [29] for an explanation of the K
2 factor.
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every maximum matching, vertices in ged-o[G] are always matched, and their partner is
in ged-u[G]. Similarly, vertices in ged-p[G] are always matched, though their partners
are also in ged-p[G]. We will use the properties given in Lemma 2.1. Note that in the
following lemma, and through the rest of the exposition, the cardinality of a connected
component C of a graph is the number of vertices in C.

Lemma 2.1 (Gallai-Edmonds Decomposition). In any maximum matching M of G,

1. For all u in ged-o[G], M(u) is in ged-u[G]

2. For all even (cardinality) components C of G \ ged-o[G], i) C ⊆ ged-p[G], and ii)
M(u) is in C, for all u in C

3. For all odd (cardinality) components C of G\ged-o[G], i) C ⊆ ged-u[G], ii) M(u)
is in C, for all u in C except one, say v, and iii) either v is unmatched in M , or
M(v) is in ged-o[G]

Consider the first inductive step of the algorithm, in which we are trying to construct
a rank-maximal matching M2 of G2 = (V,E≤2), given a maximum matching M1 of G1 =
(V,E1). We do not want to commit to edges in M1 at this point, because perhaps no
rank-maximal matching on G2 contains these edges. However, according to different parts
of the decomposition lemma above, we can safely delete any edge e = {u, v} such that
either:

(i) u ∈ ged-o[G1] and v ∈ ged-o[G1] ∪ ged-p[G1] (by part 1), or

(ii) e ∈ E≥2, and u ∈ ged-o[G1] ∪ ged-p[G1] (by parts 1 and 2), or

(iii) e ∈ E≥2, and both u and v belong to the same odd component of G1 (by part 3).

We delete all such edges to ensure they are not subsequently added to the matching
when we augment. Note that the third deletion type is required for non-bipartite graphs,
since only one vertex in each odd component C is unmatched internally.

After deleting edges in G1, we shrink each odd component C into a supervertex. We
define the root r of C as the one vertex in C that is unmatched within C. Note that
C’s supervertex is matched if and only if r is matched. Now, when we add in undeleted
edges from e = {u, v} ∈ E≥2 into the graph, if u ∈ C and v /∈ C, we replace e with
an edge between v and C’s supervertex. Note that during the course of the algorithm,
we will be dealing with graphs containing supervertices, which themselves, recursively
contain supervertices. In such graphs, we define a legal matching to be any collection of
independent edges such that in every supervertex, all top-level vertices but the root are
matched internally.

To give some intuition for why we shrink odd components, consider the graph in
Figure 1. The triangle of rank-1 edges is an odd component O (with {u, v} matched),
and so neither rank-2 edges are deleted. One way to augment this graph is to include the
two rank-2 edges and take out the rank-1 {u, v} edge. This destroys the rank-maximal
matching on G1. If we shrink the triangle down to a supervertex O however, then O is
unmatched, and so {O,x} and {O, y} are both valid augmenting paths. Note how these
augmenting paths can be expanded inside the supervertex O by removing and adding
one rank-1 edge to end at the root r. This expansion makes the augmenting path legal
in the original graph, while not changing the number of matching edges internal to the
supervertex.

Figure 2 contains pseudocode for our non-bipartite rank-maximal matching algorithm.
One aspect that requires more explanation is how we augment Mi in G′

i. The overall
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Figure 1: Example of shrinking operation

approach is to find an augmenting path P while regarding each top-level supervertex in
G′

i as a regular vertex. Then for each supervertex C in P , we expand P through C in the
following way. Let u be the vertex in C that P enters along an unmatched edge. If u is
the root r of C, then C is unmatched, and we can replace C by u in P . Otherwise, u 6= r,
and either C is unmatched or P leaves C via the matched edge incident on r. In the next
lemma, we show that there is an even-length alternating path from u to r, beginning with
a matched edge. We can expand P by replacing C with this even-length alternating path.

Lemma 2.2. Let M be a legal matching on some supervertex C with root r. Let u be any
other node in C. Then there is an even-length alternating path from u to r beginning with
a matched edge.

Proof. Let M ′ be a legal matching of C in which u is unmatched (such a matching is
guaranteed by the decomposition lemma). Consider the symmetric difference of M and
M ′. Since every vertex besides u and r is matched in both matchings, there must be an
even-length alternating path consisting of M and M ′ edges from u to r.

In all cases of P and C, note that C has the same number of internally matched edges
before and after augmentation by P , and so the matching remains legal. Also, if r was
matched prior to augmentation, then it is still matched afterwards.

Rank-Maximal-Matching(G = (V,E1 ∪ E2 ∪ . . . ∪ Em))
Set G′

1 to G1;
Let M1 be any maximum matching of G1;
For i = 2 to m:

Set G′
i to G′

i−1
, and Mi to Mi−1;

Compute the GED of G′
i−1

using Mi−1;
Delete edges in G′

i between two vertices in ged-o[G′
i−1

];
Delete edges in G′

i between vertices in ged-o[G′
i−1

] and ged-p[G′
i−1

];
Delete any edge e in E≥i where:

i) e is incident on a ged-o[G′
i−1] or ged-p[G′

i−1] vertex, or
ii) e is incident on two vertices in the same odd component of Gi−1;

Shrink each odd component of Gi−1 in the graph G′
i;

Add undeleted edges {u, v} from Ei to G′
i, replacing

u or v with their supervertex, if any;
Augment Mi in G′

i until it is a maximum matching;
End For

Return Mm;

Figure 2: Non-bipartite rank-maximal matching algorithm
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The next three lemmas, which generalize those in [21], establish the correctness of the
algorithm. Lemma 2.3 proves that no rank-maximal matching contains a deleted edge.
Lemma 2.4 proves that augmenting a rank-maximal matching Mi−1 of Gi−1 does not
change its signature up to rank (i − 1). And finally, Lemma 2.5 proves that the final
matching is rank-maximal on the original graph G.

Lemma 2.3. Suppose that every rank-maximal matching of Gi−1 is a maximum legal
matching of G′

i−1. Then every rank-maximal matching of Gi is contained in G′
i.

Proof. Let M be an arbitrary rank-maximal matching of Gi. Then M ∩ E≤i−1 is a rank-
maximal matching of Gi−1, and by assumption, a maximum legal matching of G′

i−1
. By

Lemma 2.1, the edges we delete when constructing G′
i belong to no maximum matching

of G′
i−1, in particular M ∩E≤i−1. Now, since M = (M ∩E≤i−1)∪ (M ∩Ei), it remains to

show that M ∩ Ei contains no deleted edges.
Suppose for a contradiction that there is an edge e ∈ M ∩ Ei that is deleted by the

algorithm. Note that e ∈ Ei is deleted only if e is incident on i) a ged-o[G′
i−1] vertex, or

ii) a ged-p[G′
i−1] vertex, or iii) two vertices in the same odd component of G′

i−1. In each
of these cases, e ∈ M ∩Ei means that M ∩E≤i−1 cannot be a rank-maximal matching of
Gi−1, giving the required contradiction.

Lemma 2.4. Let Mi and Mj be the matchings produced by the algorithm, where i < j.
Then Mi and Mj have the same number of edges with rank at most i.

Proof. Mi consists of edges contained within top-level supervertices of G′
i, and edges be-

tween top-level (super)vertices of G′
i. We have already shown that augmenting through

a supervertex does not change the number of matching edges internal to the supervertex.
Hence, Mj contains the same number of such edges as Mi.

By Lemma 2.1, the remaining edges of Mi are all incident on some ged-o[G′
i] or

ged-p[G′
i] (super)vertex. Since these vertices are matched in Mi, they are also matched

in Mj , as augmenting does not affect the matched status of a vertex. Also, no edges
of rank worse than i are incident on such vertices, due to deletions, and so each must
be matched along a rank-i edge or better in Mj. Hence |Mi| ≤ |Mj ∩ E≤i|. Of course,
|Mj ∩ E≤i| ≤ |Mi|, since all edges from E≤i in G′

j are also in G′
i, and Mi is a maximum

legal matching of G′
i.

Lemma 2.5. For every i, the following statements hold: 1) Every rank-maximal matching
of Gi is a maximum legal matching of G′

i, and 2) Mi is a rank-maximal matching of Gi.

Proof. For the base case, rank-maximal matchings are maximum matchings on rank-1
edges, and so both statements hold for i = 1. Now, by Lemma 2.3 and the inductive
hypothesis, every rank-maximal matching of Gi is contained in G′

i. Let 〈s1, s2, .., si〉 be
the signature of such a matching. By Lemma 2.4, Mi has the same signature as Mi−1 up
to rank-(i−1). Hence, Mi’s signature is 〈s1, s2, .., si−1, ti〉 for some ti ≤ si, since Mi−1 is a
rank-maximal matching of Gi−1. However, Mi is a maximum legal matching of G′

i, hence
ti = si and Mi is rank-maximal matching of Gi. This proves the second statement.

Now, for the first statement, let Ni be any rank-maximal matching of Gi. By Lemma
2.3 and the inductive hypothesis, we know that Ni is contained in G′

i. Ni has signature
〈s1, s2, ..., si〉, which is the same signature as Mi. Hence, Ni is also a maximum legal
matching of G′

i.

We now comment on the runtime of the algorithm. In each iteration i, it is clear that
computing the decomposition (given a maximum matching), deleting edges and shrinking
components all take O(m) time. Constructing Mi from Mi−1 requires |Mi| − |Mi−1| +
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1 augmentations. At the top-level of augmenting (when supervertices are regarded as
vertices), we can use the Micali and Vazirani non-bipartite matching algorithm, which
runs in time O(min(

√
n, |Mi+1| − |Mi|+ 1)m). Next, we have to expand each augmenting

path P through its incident supervertices. Let u be the first vertex of some supervertex
C that P enters along an unmatched edge. It is clear that we can do this expansion in
time linear in the size of C by appending a dummy unmatched vertex d to u, and then
looking for an augmenting path from d to r in C. Since each supervertex belongs to at
most one augmenting path in each round of the Micali and Vazirani algorithm, this does
not affect the asymptotic runtime. It follows that after R iterations, the running time is
at most O(min(n + R,R

√
n)m). Using the idea in [21], we can stop once R is the rank of

the worst-ranked edge in a rank-maximal matching, because we can test in O(m) time if
MR is a maximum matching of GR together with all undeleted edges of rank worse than
R (in which case MR is rank-maximal).

Theorem 2.1. Suppose we are given an instance of sr-grp represented by an undirected
graph G = (V,E), and a ranking function, rank, on E. Let R be the rank of the worst-
ranked edge in a rank-maximal matching of G = (V,E). Then a rank-maximal matching
of G can be found in time O(min(n + R,R

√
n)m).

3 Hardness Results

In this section we establish several NP-hardness results for a special case of sr-grp. We
refer to this restriction as stable marriage with symmetric preferences (sm-sym).
An instance of sm-sym is an instance of sr in which the underlying graph is bipartite
(with men and women representing the two sets of agents in the bipartition) subject to
the restriction that a woman wj appears in the kth tie in a man mi’s preference list if and
only if mi appears in the kth tie in wj ’s preference list. Clearly an instance of sm-sym is a
bipartite instance of sr-grp in which rank({mi, wj}) = k if and only if wj appears in the
kth tie in mi’s preference list, for any man mi and woman wj. Indeed it will be helpful
to assume subsequently that rank is defined implicitly in this way, given an instance of
sm-sym.

Our first result demonstrates the NP-completeness of com-sm-sym, which is the prob-
lem of deciding whether a complete weakly stable matching (i.e., a weakly stable matching
in which everyone is matched) exists, given an instance of sm-sym. Our transformation
begins from exact-mm, which is the problem of deciding, given a graph G and an integer
K, whether G admits a maximal matching of size K.

Theorem 3.1. com-sm-sym is NP-complete.

Proof. Clearly com-sm-sym is in NP. To show NP-hardness, we reduce from exact-mm

in subdivision graphs, which is NP-complete [26]. Let G = (V,E), a subdivision graph of
some graph G′, and K, a positive integer, be an instance of exact-mm. Suppose that V =
U ∪ W is a bipartition of G, where U = {m1,m2, . . . ,mn1

} and W = {w1, w2, . . . , wn2
}.

Then we denote the set of vertices adjacent to a vertex mi ∈ U in G by Wi and similarly
the set of vertices adjacent to wj ∈ W in G by Uj .

We construct an instance I of com-sm-sym as follows: let U ∪ X ∪ A ∪ B be the
set of men and W ∪ Y ∪ A′ ∪ B′ be the set of women, where X = {x1, x2, . . . , xn2−K},
Y = {y1, y2, . . . , yn1−K}, A = {a1, a2, . . . , aK}, B = {b1, b2, . . . , bK}, A′ = {a′1, a′2, . . . , a′K}
and B′ = {b′1, b′2, . . . , b′K}. The preference lists of I are shown in Figure 3 (entries in round
brackets are tied). It may be verified that I is an instance of sm-sym (e.g., for any xi ∈ X
and for any wj ∈ W , each of xi and wj appears in the second tie in one another’s list). We
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Men’s preferences
mi : (Wi) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)
xi : a′i (W ) (1 ≤ i ≤ n2 − K)
ai : (yi b′i) (1 ≤ i ≤ K)
bi : a′i (1 ≤ i ≤ K)

Women’s preferences
wj : (Uj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)
yj : aj (U) (1 ≤ j ≤ n1 − K)
a′j : (xj bj) (1 ≤ j ≤ K)

b′j : aj (1 ≤ j ≤ K)

Figure 3: Preference lists for the constructed instance of com-sm-sym

claim that G has an exact maximal matching of size K if and only if I admits a complete
weakly stable matching.

Suppose G has a maximal matching M , where |M | = K. We construct a matching
M ′ in I as follows. Initially let M ′ = M . There remain n1 − K men in U that are not
assigned to women in W ; denote these men by mki

(1 ≤ i ≤ n1 − K) and add (mki
, yi)

to M ′. Similarly there remain n2 − K women in W that are not assigned to men in U ;
denote these women by wlj (1 ≤ j ≤ n2 − K), and add (xj , wlj ) to M ′. Finally we add
(ai, b

′
i) and (bi, a

′
i) (1 ≤ i ≤ K) to M ′. It may then be verified that M ′ is a complete

weakly stable matching in I.
Conversely suppose that M ′ is a complete weakly stable matching in I. Let M =

M ′ ∩ E. We now show that |M | = K. First suppose that |M | < K. Then since M ′ is a
complete weakly stable matching, at least n1 − K + 1 men in U must be assigned in M ′

to women in Y , which is impossible as there are only n1 − K women in Y . Now suppose
|M | > K. Hence at most n1 − K − 1 women in Y are assigned in M ′ to men in U . Then
since M ′ is complete, there exists at least one women in Y assigned in M ′ to a man in
A. Thus at most K − 1 men in A are assigned in M ′ to women in B′. Hence only K − 1
women in B′ are assigned in M ′, contradicting the fact that M ′ is a compete weakly stable
matching in I. Finally, it is straightforward to verify that M is maximal in G.

The following corollary will be useful for establishing subsequent results.

Corollary 3.1. com-sm-sym is NP-complete, even if each preference list comprises ex-
actly two ties (where a tie can be of length 1).

Proof. The constructed instance in the proof of Theorem 3.1 can be extended to that
shown in Figure 4 with straightforward modifications to the proof of correctness. This
allows us to assume that each man and woman has exactly two ties on their list.

We next consider minimum regret and egalitarian weakly stable matchings, given an
instance I of smc-sym, which is the restriction of sm-sym in which each person finds all
members of the opposite sex acceptable. Let U and W be the set of men and women in I
respectively, let M be a weakly stable matching in I, and let p be some agent in I. Then
we define the cost of p with respect to M , denoted by costM (p), to be rank({p,M(p)}).
Furthermore we define the regret of M , denoted by r(M), to be maxp∈U∪W costM (p). M
has minimum regret if r(M) is minimised over all weakly stable matchings in I. Similarly
we define the cost of M , denoted by c(M), to be

∑

p∈U∪W costM (p). M is egalitarian if
c(M) is minimised over all weakly stable matchings in I.
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Men’s preferences
mi : (Wi) (y1 y2 . . . yn1−K) (1 ≤ i ≤ n1)
xi : a′i (W ) (1 ≤ i ≤ n2 − K)
ai : (yi b′i) c′i (1 ≤ i ≤ K)
bi : a′i c′i (1 ≤ i ≤ K)
ci : c′i (bi b′i) (1 ≤ i ≤ K)

Women’s preferences
wj : (Uj) (x1 x2 . . . xn2−K) (1 ≤ j ≤ n2)
yj : aj (U) (1 ≤ j ≤ n1 − K)
a′j : (xj bj) ci (1 ≤ j ≤ K)

b′j : aj ci (1 ≤ j ≤ K)

c′j : cj (aj bj) (1 ≤ j ≤ K)

Figure 4: Preference lists for the extended constructed instance of com-sm-sym

We define regret-smc-sym (respectively egal-smc-sym) to be the problem of de-
ciding, given an instance I of smc-sym and a positive integer K, whether I admits a
weakly stable matching such that r(M) ≤ K (respectively c(M) ≤ K). We now show that
regret-smc-sym is NP-complete.

Theorem 3.2. regret-smc-sym is NP-complete.

Proof. Clearly the problem belongs to NP. To show NP-hardness, we reduce from the
restriction of com-sm-sym in which each person’s list has exactly two ties, which is NP-
complete by Corollary 3.1. Let I be such an instance of this problem. We form an instance
I ′ of regret-smc-sym as follows. Initially the people and preference lists in I and I ′ are
identical. Next, in I ′, each person adds a third tie in their preference list containing all
members of the opposite sex that are not already contained in their first two ties. It is
not difficult to verify that I admits a complete weakly stable matching if and only if I ′

admits a weakly stable matching M such that r(M) ≤ 2.

We next prove that egal-smc-sym is NP-complete, using a result of Gergely [15],
shown in Theorem 3.3, relating to diagonalized Latin squares. A transversal of an order-n
Latin square is a set S of n distinct-valued cells, no two of which are in the same row or
column. A Latin square is said to be diagonalized if the main diagonal is a transversal.

Theorem 3.3 (Gergely [15]). For any integer n ≥ 3, there exists a diagonalized Latin
square of order n having a transversal which has no common entry with the main diagonal.

Theorem 3.4. egal-smc-sym is NP-complete.

Proof. Clearly egal-smc-sym is in NP. To show NP-hardness, we reduce from the restric-
tion of com-sm-sym in which each person’s list has exactly two ties, which is NP-complete
by Corollary 3.1. Let I be such an instance of this problem, where U = {m1,m2, . . . ,mn}
is the set of men and W = {w1, w2, . . . , wn} is the set of women. For each man mi ∈ U
(1 ≤ i ≤ n) we denote the women in the first and second ties on mi’s preference list in I
by Wi,1 and Wi,2 respectively, and let Wi = Wi,1∪Wi,2. Similarly for each woman wj ∈ W
(1 ≤ j ≤ n) we denote the men in the first and second ties on wj ’s preference list in I by
Uj,1 and Uj,2 respectively, and let Uj = Uj,1 ∪ Uj,2.

We construct an instance I ′ of egal-smc-sym as follows: let U ∪ X ∪ {p} be the
set of men and let W ∪ Y ∪ {q} be the set of women, where X = {x1, x2, . . . , xn} and
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Men’s preferences
mi : Wi,1 Wi,2 (y1 q) y2 . . . yn (W \ Wi) (1 ≤ i ≤ n)
x1 : y1 q (W ) ys1,2

ys1,3
ys1,4

. . . ys1,n

x2 : y2 q ys2,1
(W ) ys2,3

ys2,4
. . . ys2,n

x3 : y3 q ys3,1
ys3,2

(W ) ys3,4
. . . ys3,n

...
xn : yn q ysn,1

ysn,2
ysn,3

ysn,4
. . . (W )

p : q (Y ) (W )

Women’s preferences
wj : Uj,1 Uj,2 (x1 p) x2 . . . xn (U \ Uj) (1 ≤ j ≤ n)
y1 : x1 p (U) xt1,2

xt1,3
xt1,4

. . . xt1,n

y2 : x2 p xt2,1
(U) xt2,3

xt2,4
. . . xt2,n

y3 : x3 p xt3,1
xt3,2

(U) xt3,4
. . . xt3,n

...
yn : xn p xtn,1

xtn,2
xtn,3

xtn,4
. . . (U)

q : p (X) (U)

Figure 5: Preference lists for the constructed instance of egal-smc-sym

Y = {y1, y2, . . . , yn}. Then we construct the preference lists in I ′ by considering the
diagonalized Latin square S = (si,j) of order n, as constructed using Gergely’s method
[15] (we note that Gergely’s method is polynomial-time computable). Without loss of
generality we may assume that the entries in the main diagonal are in the order 1, 2, . . . , n
(this can be achieved by simply permuting symbols in S if necessary). Next we construct
a matrix T = (ti,j) from S as follows: for each i and j (1 ≤ i, j ≤ n), if si,j = k then
tk,j = i. We claim that T is a Latin square.

For, suppose not. First suppose ti,j = ti,k = l, for some j 6= k. Thus it follows that
sl,j = sl,k = i, contradicting the fact that S is a Latin square. Now suppose ti,j = tk,j = l,
for some i 6= k. Therefore sl,j = i and sl,j = k, which is impossible. Hence T is a Latin
square. Moreover the elements 1, 2, . . . , n appear in order on the main diagonal of T .

We then use S and T to constructed the preference lists as shown in Figure 5. By
the construction of T from S and by inspection of the remaining preference list entries,
we observe that I ′ is an instance of egal-smc-sym. Intuitively, we require the Latin
squares S and T in this construction to ensure that the preference lists remain symmetric
after including the agents in Y and X in the preference lists of the agents in U and W
respectively. For example, each y2 appears in the fourth tie in the preference list of each
mi ∈ U , so all men in U must appear in the fourth tie in y2’s list. Thus the first, second
and third ties in y2’s list must be non-empty. In particular, xt2,1

appears in the third
tie in y2’s list. Let t2,1 = k. Then by construction, sk,1 = 2 and it may be verified that
ysk,1

= y2 appears in the third tie in xk’s list, since k > 1.
Let K = 2(3n + 1). We now show that I has a complete weakly stable matching M if

and only if I ′ has a weakly stable matching M ′ such that c(M ′) ≤ K.
Suppose that M is a complete weakly stable matching in I. Then we construct a

matching M ′ in I ′ as follows: M ′ = M ∪{(p, q)}∪{(xi, yi) : 1 ≤ i ≤ n}. Then clearly M ′ is
weakly stable in I ′, as M is weakly stable in I and every person in X∪Y ∪{p, q} is assigned
to their first-choice partner. Also each person ai ∈ U ∪ W has costM ′(ai) ≤ 2, and each
person aj ∈ X∪Y ∪{p, q} has costM ′(aj) = 1. Therefore c(M ′) ≤ (2n+n+1)+(2n+n+1) =
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K.
Conversely suppose that M ′ is a weakly stable matching in I ′ such that c(M ′) ≤ K.

We observe that p and q are assigned to one another in every weakly stable matching and
also that xi is assigned to yi (1 ≤ i ≤ n) in every weakly stable matching. Hence each man
mi is assigned in M ′ to a woman in Wi or a woman in W \Wi. Now suppose there exists
a man mk ∈ U , such that M ′(mk) ∈ W \ Wk. Then costM ′(mk) = n + 3 and since the
preference lists are symmetric, costM ′(M ′(mk)) = n + 3. Hence c(M ′) ≥ ((n + 3) + (n −
1)+n+1)+((n+3)+(n−1)+n+1) = 3n+3+3n+3 = 6(n+1), contradicting the fact
that that c(M ′) ≤ K. Thus each man mi ∈ U and woman wj ∈ W must be assigned to a
partner in Wi and Uj respectively. Now let M = M ′ \ ({(p, q)} ∪ {(xi, yi) : 1 ≤ i ≤ n}).
Then as each person ai ∈ U ∪ W is assigned to someone in Wi ∪ Ui in M and since M ′ is
weakly stable in I ′, it follows that M is a complete weakly stable matching in I.

Our final hardness result applies to sm-grp, which is the restriction of sr-grp to
bipartite graphs. Recall that a strongly stable matching has no weakly blocking pairs.
min-bp-sm-grp is the problem of finding a weakly stable matching (which by definition
has no strongly blocking pairs) with the minimum number of weakly blocking pairs, given
an instance of sm-grp.

Theorem 3.5. min-bp-sm-grp is not approximate within a factor of n1−ε, for any ε > 0,
unless P=NP, where n is the number of men and women.

Proof. Let ε > 0. We give a gap-introducing reduction from the restriction of com-sm-

sym in which each person’s list has exactly two ties, which is NP-complete by Corollary
3.1. Let I be an instance of this problem, where U = {m1,m2, . . . ,mn} is the set of men
and W = {w1, w2, . . . , wn} is the set of women. For each man mi ∈ U , we let Wi,1 and
Wi,2 denote the women in the first and second ties in mi’s preference list in I, respectively.
Similarly, for each woman wj ∈ W , we let Uj,1 and Uj,2 denote the men in the the first
and second ties in wj ’s preference list in I, respectively.

Construct an instance I ′ of min-bp-sm-grp with U ∪X as the set of men and W ∪Y as
the set of women, where X = {x1, x2, . . . , xn2+k+1} and Y = {y1, y2, . . . , yn2+k+1}, where
k =

⌈

4

ε

⌉

. The preferences for these people are given in Figure 6. It is clear from Figure 6
that I ′ is an instance of min-bp-sm-grp, and additionally that I ′ can be constructed in
polynomial time.

Suppose I admits a complete weakly stable matching M . Augment M in I ′ to form
M ′ by pairing-up all people in X and Y . Note that M ′ is weakly stable with at most n2

weakly blocking pairs in I ′, since any weakly blocking pair of M ′ must also weakly block
M in I, and I has at most n2 acceptable pairs.

Now suppose that I does not admit a complete weakly stable matching. Let M ′ be a
weakly stable matching in I ′. We claim that M ′ admits at least n2+k + 1 weakly blocking
pairs in I ′. For, suppose not. Then every man in both U and X must be matched in M ′, for
otherwise he weakly blocks with each of the n2+k + 1 women in Y , giving a contradiction.
It follows that M ′ must contain a perfect matching from X to Y , since i) every man in
X is matched in M ′, ii) |X| = |Y |, and iii) men in X find only women in Y acceptable.
Hence, M ′ contains a perfect matching M from U to W , which is clearly weakly stable in
I, a contradiction. Hence the claim is established.

Thus the existence of an approximation algorithm for min-bp-sm-grp with perfor-
mance guarantee nk could be used to decide in polynomial time whether I admits a
complete weakly stable matching, a contradiction unless P=NP. Finally we note that I ′

contains a total of N men and women, where N = 2(n + n2+k + 1). It follows that

N ≤ 6n2+k and hence nk ≥ 6−
k

2+k N1− ε
2 . Without loss of generality we may assume

14



Men’s preferences
rank-1 rank-2 rank-3

mi : (Wi,1) (Wi,2) (Y ) (1 ≤ i ≤ n)
xi : (Y ) (1 ≤ i ≤ n2+k + 1)

Women’s preferences
rank-1 rank-2 rank-3

wj : (Uj,1) (Uj,2) (1 ≤ j ≤ n)
yj : (U ∪ X) (1 ≤ j ≤ n2+k + 1)

Figure 6: Preference lists for the constructed instance of min-bp-sm-grp

that n ≥ 3, so that N ≥ 6
k
2 and hence 6−

k
2+k ≥ N− ε

2 . It follows that nk ≥ N1−ε as
required.

4 Conclusion

In this work, we introduced a restriction of sr in which preferences are deduced from
a global ranking of the roommate pairs. This restriction has the property that weakly
stable matchings are guaranteed to exist – a property that does not hold in the general
sr problem, even if there are no ties in the preference lists. We derived a polynomial-time
algorithm to find a rank-maximal (weakly stable) matching. This is the first non-bipartite
generalization of the rank-maximal matching algorithm due to Irving et al. [21]. Also, we
proved several hardness results in an even more restricted setting for each of the problems
of finding weakly stable matchings that are of maximum size, are egalitarian, have mini-
mum regret, and admit the minimum number of weakly blocking pairs. We conclude with
the following open problem: it remains to extend the rank-maximal matching algorithm
of Irving et al. [21] to an arbitrary instance of sr (i.e., where preferences need not be
deduced from a global ranking of the roommate pairs).
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