924 research outputs found

    An Efficient Algorithm for Delay and Delay- Variation Bounded Core Based Tree Generation

    Get PDF
    Many multimedia group applications require the construction of multicast tree satisfying the quality of service (QoS) requirements. To support real time communication, computer networks need to optimize the Delay and Delay-Variation Bounded Multicast Tree (DVBMT). The problem is to satisfy the end-to-end delay and delay-variation within an upper bound. The DVBMT problem is known to be NP complete. In this paper, we propose an efficient core selection algorithm for satisfying the end-to-end delay and delay-variation within an upper bound. The efficiency of the proposed algorithm is validated through the simulation. The simulation results reveal that our algorithm performs better than the existing heuristic algorithms

    QoS-VNS-CS: QoS constraints Core Selection Algorithm based on Variable Neighborhood Search Algorithm

    Get PDF
    Within the development of network multimedia technology, more and more real-time multimedia applications arrive with the need to transmit information using multicast communication. Multicast IP routing is an important topic, covering both theoretical and practical interest in different networks layers. In network layer, there are several multicast routing protocols using multicast routing trees different in the literature. However PIM-SM and CBT protocols remains the most used multicast routing protocols; they propose using a shared Core-based Tree CBT. This kind of tree provides efficient management of multicast path in changing group memberships, scalability and performance. The prime problem concerning construction of a shared tree is to determine the best position of the core. QoS-CS’s problem (QoS constraints core Selection) consists in choosing an optimal multicast router in the network as core of the Shared multicast Tree (CBT) within specified QoS constraints associated. The choice of this specific router, called RP in PIM-SM protocol and core in CBT protocol, affects the structure of multicast routing tree, and therefore influences performances of both multicast session and routing scheme. QoS-CS is an NP complete problem need to be solved through a heuristic algorithm, in this paper, we propose a new core Selection algorithm based on Variable Neighborhood Search algorithm and new CMP fitness function. Simulation results show that good performance is achieved in multicast cost, end-to-end delay, tree construction delay and others metrics

    Applicability of group communication for increased scalability in MMOGs

    Full text link
    Massive multiplayer online games (MMOGs) are today the driving factor for the development of distributed interactive applications, and they are increasing in size and complex-ity. Even a small MMOG supports thousands of players, the biggest support hundreds of thousands of concurrent players. Since they are typically built as strict client-server systems, they suffer from the inherent scalability problem of the architecture. Computing power and bandwidth limita-tions close to the server limit the possible number of players. Also, the latency of communication between players through the server will be higher than using direct communication. In the paper, we address these issues and investigate im-provement options. A typical MMOG consists of a virtual world with a con-cept of time and space that is similar to the real world. In it, players are represented by avatars. Only subsets of these avatars interact with each other at any given time. This allows us to divide them into groups, and communication among group members becomes a multi-party communica-tion problem. Thus, to reduce resource consumption, we compare the performance of several algorithms for group communication with the current central server approach. We use overlay multicast as the means of providing group communication, and research algorithms for creating short-est path trees, spanning trees, delay-bounded spanning trees and, more specific, applying Steiner tree heuristics. Our experimental results indicate that different approaches are useful to reduce resource consumption while achieving a good perceived quality under varying conditions, such as frequent changes in group membership and the demand for low latency. 1

    Design of Overlay Networks for Internet Multicast - Doctoral Dissertation, August 2002

    Get PDF
    Multicast is an efficient transmission scheme for supporting group communication in networks. Contrasted with unicast, where multiple point-to-point connections must be used to support communications among a group of users, multicast is more efficient because each data packet is replicated in the network – at the branching points leading to distinguished destinations, thus reducing the transmission load on the data sources and traffic load on the network links. To implement multicast, networks need to incorporate new routing and forwarding mechanisms in addition to the existing are not adequately supported in the current networks. The IP multicast are not adequately supported in the current networks. The IP multicast solution has serious scaling and deployment limitations, and cannot be easily extended to provide more enhanced data services. Furthermore, and perhaps most importantly, IP multicast has ignored the economic nature of the problem, lacking incentives for service providers to deploy the service in wide area networks. Overlay multicast holds promise for the realization of large scale Internet multicast services. An overlay network is a virtual topology constructed on top of the Internet infrastructure. The concept of overlay networks enables multicast to be deployed as a service network rather than a network primitive mechanism, allowing deployment over heterogeneous networks without the need of universal network support. This dissertation addresses the network design aspects of overlay networks to provide scalable multicast services in the Internet. The resources and the network cost in the context of overlay networks are different from that in conventional networks, presenting new challenges and new problems to solve. Our design goal are the maximization of network utility and improved service quality. As the overall network design problem is extremely complex, we divide the problem into three components: the efficient management of session traffic (multicast routing), the provisioning of overlay network resources (bandwidth dimensioning) and overlay topology optimization (service placement). The combined solution provides a comprehensive procedure for planning and managing an overlay multicast network. We also consider a complementary form of overlay multicast called application-level multicast (ALMI). ALMI allows end systems to directly create an overlay multicast session among themselves. This gives applications the flexibility to communicate without relying on service provides. The tradeoff is that users do not have direct control on the topology and data paths taken by the session flows and will typically get lower quality of service due to the best effort nature of the Internet environment. ALMI is therefore suitable for sessions of small size or sessions where all members are well connected to the network. Furthermore, the ALMI framework allows us to experiment with application specific components such as data reliability, in order to identify a useful set of communication semantic for enhanced data services

    Multicast Aware Virtual Network Embedding in Software Defined Networks

    Get PDF
    The Software Defined Networking (SDN) provides not only a higher level abstraction of lower level functionalities, but also flexibility to create new multicast framework. SDN decouples the low level network elements (forwarding/data plane) from the control/management layer (control plane), where a centralized controller can access and modify the configuration of each distributed network element. The centralized framework allows to develop more network functionalities that can not be easily achieved in the traditional network architecture. Similarly, Network Function Virtualization (NFV) enables the decoupling of network services from the underlying hardware infrastructure to allow the same Substrate (Physical) Network (SN) shared by multiple Virtual Network (VN) requests. With the network virtualization, the process of mapping virtual nodes and links onto a shared SN while satisfying the computing and bandwidth constraints is referred to as Virtual Network Embedding (VNE), an NP-Hard problem. The VNE problem has drawn a lot of attention from the research community. In this dissertation, we motivate the importance of characterizing the mode of communication in VN requests, and we focus our attention on the problem of embedding VNs with one-to-many (multicast) communication mode. Throughout the dissertation, we highlight the unique properties of multicast VNs and explore how to efficiently map a given Virtual Multicast Tree/Network (VMT) request onto a substrate IP Network or Elastic Optical Networks (EONs). The major objective of this dissertation is to study how to efficiently embed (i) a given virtual request in IP or optical networks in the form of a multicast tree while minimizing the resource usage and avoiding the redundant multicast tranmission, (ii) a given virtual request in optical networks while minimizing the resource usage and satisfying the fanout limitation on the multicast transmission. Another important contribution of this dissertation is how to efficiently map Service Function Chain (SFC) based virtual multicast request without prior constructed SFC while minimizing the resource usage and satisfying the SFC on the multicast transmission

    An algorithm for join/prune mechanisms for improving handoff using mobility prediction in wireless networks

    Get PDF
    In this paper, we provide a detailed description of an algorithm that implements join and prune mechanisms, which will help to build an optimal multicast tree with QoS requirements during handoff. An analysis is presented to show how mobility prediction can help in the selection of potential access routers (AR) with QoS requirements that affect multicast group size and bandwidth cost in the multicast tree. The proposed technique tries to minimise the number of multicast tree join and prune operations. We have examined the performance of this algorithm using simulations in various environments and obtained good performance results. Our results show that the expected multicast group increases linearly with the increase in the number of selected destination access routers (AR) for multicast during handoff. We observe that the expected number of joins and prunes from the multicast tree increases with group size. Thus, for an increased number of destinations, the estimated cost of the multicast tree in a cellular network also increases

    Network Coding for WDM All-Optical Multicast

    Get PDF
    Network coding has become a useful means for achieving efficient multicast, and the optical community has started to examine its application to optical networks. However, a number of challenges, including limited processing capability and coarse bandwidth granularity, need to be overcome before network coding can be effectively used in optical networks. In this paper, we address some of these problems. We consider the problem of finding efficient routes to use with coding, and we study the effectiveness of using network coding for optical-layer dedicated protection of multicast traffic. We also propose architectures for all-optical circuits capable of performing the processing required for network coding. Our experiments show that network coding provides a moderate improvement in bandwidth efficiency for unprotected multicast while significantly outperforming existing approaches for dedicated multicast protection
    • …
    corecore