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MULTICAST AWARE VIRTUAL NETWORK EMBEDDING IN SOFTWARE DEFINED

NETWORKS

by

EVRIM GULER

Under the Direction of Xiaojun Cao, PhD

ABSTRACT

The Software Defined Networking (SDN) provides not only a higher level abstraction

of lower level functionalities, but also flexibility to create new multicast framework. SDN

decouples the low level network elements (forwarding/data plane) from the control/man-

agement layer (control plane), where a centralized controller can access and modify the

configuration of each distributed network element. The centralized framework allows to de-

velop more network functionalities that can not be easily achieved in the traditional network

architecture.



Similarly, Network Function Virtualization (NFV) enables the decoupling of network

services from the underlying hardware infrastructure to allow the same Substrate (Physical)

Network (SN) shared by multiple Virtual Network (VN) requests. With the network virtual-

ization, the process of mapping virtual nodes and links onto a shared SN while satisfying the

computing and bandwidth constraints is referred to as Virtual Network Embedding (VNE),

an NP-Hard problem. The VNE problem has drawn a lot of attention from the research

community.

In this dissertation, we motivate the importance of characterizing the mode of commu-

nication in VN requests, and we focus our attention on the problem of embedding VNs with

one-to-many (multicast) communication mode. Throughout the dissertation, we highlight

the unique properties of multicast VNs and explore how to efficiently map a given Virtual

Multicast Tree/Network (VMT) request onto a substrate IP Network or Elastic Optical

Networks (EONs). The major objective of this dissertation is to study how to efficiently

embed (i) a given virtual request in IP or optical networks in the form of a multicast tree

while minimizing the resource usage and avoiding the redundant multicast tranmission, (ii) a

given virtual request in optical networks while minimizing the resource usage and satisfying

the fanout limitation on the multicast transmission. Another important contribution of this

dissertation is how to efficiently map Service Function Chain (SFC) based virtual multicast

request without prior constructed SFC while minimizing the resource usage and satisfying

the SFC on the multicast transmission.

INDEX WORDS: Multicast, Software Defined Networks, Virtual Network Embedding,
Network Function Virtualization
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PART 1

INTRODUCTION

Computer networks are generally constructed from a large number of network devices

(e.g., routers, switches and different types of middleboxes that manipulate traffic for purposes

other than packet forwarding such as a firewall) implemented by many complex protocols [1].

To realize a wide range of network applications and events, network operators have the re-

sponsibility of configuring network policies and transforming these high-level policies into

low-level commands to manage network devices while adapting to dynamically changing

real network conditions. In addition to network policy configurations, the network opera-

tors need to manage very complex tasks with limited access to the network tools. Hence,

the management and performance tuning of network systems are quite challenging while

vertically-integrating network devices exacerbates the network operations and administra-

tions.

Morever, the invincible/unsurmountable network challenge to be faced by network oper-

ators or researchers is referred to as ”Internet Ossification,” which has the huge deployment

base and is considered the main part of critical physical infrastructure such as the trans-

portation and power grids. Thus, the Internet has become extremely difficult to be evolved in

terms of its physical infrastructure, protocols and performance. However, emerging current

Internet applications and services has become more complex and dynamically demanding

that is able to evolve to address new network challenges.

To facilitate the network evolution, the new idea of ”Programmable Networks” has been

proposed as ”Software Defined Networking” in which the forwarding hardware is decoupled

from the control plane.
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1.1 Software Defined Networking

Software Defined Networking (SDN) defines a new concept to design and manage com-

puter networks. The SDN has two defining characteristics as shown in Fig. 1.1: (i) an

SDN decouples the control plane, which manages how to operate the traffic, from the data

plane, which forwards the traffic flow based on the decisions of a control plane, (ii) an SDN

consolidates the centralized control plane to handles multiple data plane elements [2]. The

SDN control plane practices directly operation over the state in the network elements of the

data plane (i.e., routers, switches, and other middleboxes) via a well-defined Application

Programming Interface (API) (i.e., OpenFlow [3]).

Figure (1.1) SDN Architecture: conceptual planes and communication interfaces

In Fig. 1.1, the architecture of SDN introduces three conceptual planes and communi-

cation interfaces, which are (i) application plane, (ii) control plane, and (iii) data plane. The

application plane runs applications over the network infrastructure, and allows to perform
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modifications regarding network aspects (i.e., network policies and routing behavior). The

control plane provides control logics (i.e., routing schemes) to manage the collected informa-

tion from the switches of the data plane such as flow statistics. In the control plane, we have

the global view of the network system to be able to make traffic distributions and enforce

Quality of Service policies. In the data plane, the physical devices are responsible to forward

data when the OpenFlow switches have programmable flow tables that can be dynamically

configured by the control plane.

Furthermore, to occur the communication between the planes, the northbound API en-

ables to program network controller by abstracting the network data with REpresentational

State Transfer (REST) protocol. On the other hand, the southbound API implements the

communication between control plane and data plane to configure switches with forwarding

actions based on received notifications of incoming packets from the data plane by using

OpenFlow protocol.

As a consequence of the SDN principles, the separation of network policies implemented

in switching hardware and the forwarding of traffic is key to provide the flexibility by break-

ing the network control problem into the tractable pieces, and introduce new abstractions

in networking by simplifying network management and facilitating network evolution and

innovation [4]. The SDN and OpenFlow, even though, started as academic experiments [2],

most vendors of commercial switches currently supports OpenFlow API in their equipment.

As an example, Google has a deployed SDN to interconnect its data centers across the globe

by helping the company to improve operational efficiency and significantly reduce costs [5].

With the development of Software Defined Networking, service providers are interested

in facilitating deployment of new network services by abstracting network devices and appli-

ances to fill specialized roles such as routing, switching, spam filter, load balancer, firewall,

and so forth. Integrated with SDN, the Network Function Virtualization (NFV) is proposed

to address flexible provisioning, deployment and centralized management of virtual network

functions while offering agile traffic steering and joint optimization of network functions and

resources.
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1.2 Network Function Virtualization

Network Function Virtualization (NFV) separates software instance from hardware plat-

form and decouples the functionality to provision more flexible and faster network service

while transforming the management of underlying network infrastructure by leveraging the

virtualization technology [6]. Essentially, NFV implements and runs network functions (i.e.,

well-defined functional behavior such as firewall, deep packet inspection, virtual private net-

work, etc.) on the hardware (i.e., industry standard servers, storage and switches) through

software virtualization, as shown in Fig. 1.2. To implement lower cost agile network infras-

tructure as an innovative step, the benefits of NFV can dramatically change the landscape of

telecommunications industry. The NFV may reduce capital investment and energy consump-

tion by consolidating networking appliances, decrease the time to market of a new service

by changing the typical innovation cycle of network operators (e.g., through software-based

service deployment), and rapidly introduce targeted and tailored services based on customer

needs.

NFV reduces the equipment cost and forming a strong, scalable and elastic network

ecosystem while decreasing the time to market. Firstly, the NFV is minimizing the spent

time on a new service evaluation and testing for automated Network Function Virtualization

Infrastructure (NFVI) management and orchestration. Next, NFV allows to run software

based network functions on Commercial-Off-The-Shelf (COTS) hardware rather than pur-

pose built hardware for network operators and service providers. NFV network ecosystem

also builds general purpose and cheap infrastructure, where the software based functions

(i.e., Virtual Network Functions (VNFs)) can be executed on middle-boxes. To place VNFs

on the Network Point of Presences (N-PoPs) of the underlying network and construct VNF

chain in a particular sequence are to achieve better network performance while providing as

least good service provision as the original proprietary hardware [7].

In other words, SDN and NFV provide programmable network control and flexible

network services. The virtualization techniques in SDN and NFV allow multiple tenants to
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Firewall

NFV 

Management 

and 

Orchestration

Virtual Network Functions (VNFs)

Network Function Virtualization (NFV) Infrastructure

Virtual 

Compute

Virtual 

Compute

Virtual 

Compute

Virtualization Layer

Compute Storage Network

Hardware Resources

IPTV VPN DPI

Figure (1.2) Hardware-based appliances for network services such as Firewall, Deep Packet
Inspection (DPI), Virtual Private Network (VPN), IPTV, to software-based NFV solutions

share the same physical infrastructure while reducing the CAPEX and OPEX, and increasing

the physical resource utilization [8]. The network virtualization also has an important role to

support simultaneously multiple architectures for the future Internet and a major challenge

how to deal with efficient usage of physical network resource for multiple tenants, referred

as virtual network embedding.

1.3 Virtual Network Embedding

The primary entity in the network virtualization is a Virtual Network or Request (VN).

A VN is a combination of active and passive network elements (virtual network nodes and

links) on the top of a Substrate Network (SN). Each virtual node in a VN is interconnected

through a virtual link to form a virtual network topology. By virtualizing both node and

link resources of an SN, multiple virtual network topologies with widely varying character-

istics can be created and co-hosted on the same (shared) physical hardware. Moreover, the
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introduced abstraction by the resource virtualization mechanism allows network operators to

highly flexible (or dynamically) manage and modify network systems. The introduction of

network virtualization separates the management and business roles of the Service Provider

(SP) by identifying three main players as shown in Fig. 1.3: (i) the Virtual Network Provider

(VNP) which assembles virtual resources from one or more Infrastructure Providers (InPs),

(ii) the Virtual Network Operator (VNO) which installs, manages and operates the VN ac-

cording to the needs of the SP, and (iii) the SP which is free of management and concentrates

on business by using the VNs to offer customized services.

Infrastructure Provider
(Owner of the Infrastructure)

Service Provider
(Offers services through VNs)

Virtual Network Operator

(Installs and operates VNs)

Virtual Network Provider
(Assembles VNs from InP resources)

Service Provider

Assembles, installs and manages 
VNs, and offers services

Business roles of IaaS
Management and business roles of 

network virtualization

Figure (1.3) Next Generation Network Model: Network virtualization

The problem of embedding virtual networks in a shared substrate network is the main

resource allocation challenge in network virtualization and referred to as the Virtual Net-

work Embedding (VNE) problem, where the benefit gained from existing hardware can be

maximized while mapping of virtual resources onto physical hardware. Optimal resource

allocation, leading to self-configuration and organization of next generation networks, will

be necessary to provide customized end-to-end guaranteed services to end users.
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Virtual Network Request (VNR1) Virtual Network Request (VNR2)

2

5
3

7

4 3158 1

3

9

9

7 6

4

9 5

3

Physical (Substrate) Network

   Virtual nodes
Physical nodes
Node capacity
Link capacity

9
4

Figure (1.4) The process of Virtual Network Embedding

The VNE problem deals with the allocation of virtual resources both in nodes and links

as shown in Fig. 1.4. Therefore, the problem generally includes two important subprocesses:

(i) Virtual Node Mapping (VNM) and (ii) Virtual Link Mapping (VLM). In the

former subprocess, virtual nodes have to be allocated in substrate (physical) nodes that

provide sufficient computing resource. In the latter subprocess of VNE, each virtual link

in VN is mapped onto a substrate (physical) path by reserving sufficient bandwidth (or

subcarriers). Solving optimally VNE problem is NP-Hard, as it is related to the multi-way

separator problem [9]. Even with a given virtual node mapping, the problem of optimally

allocating a set of virtual links to substrate paths reduces to the unsplittable flow problem

also known as NP-Hard [10]. Therefore, optimal solutions in a polynomial time can only be
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gained for small problem instances, and currently main focus of work within the research

community is on heuristic or meta-heuristic approaches.

1.4 Multicast Virtual Network Embedding

Many schemes have been proposed to address the general VN mapping problem for uni-

cast services (e.g., [11–15]) to efficiently design provisioning strategies for such VN requests.

Unicast transmission

Multicast transmission

Source

Destination

Figure (1.5) Unicast and Multicast Transmission

However, in many widely used applications, emerging distributed file systems, big data

and Internet applications such as IPTV, video-conferencing, live stock quotes demand mul-

ticast communication to improve the utilization of the physical resource. Unlike the unicast

service where a single sender transmits data to a single receiver, multicast service requires

that the same data packet flows through a selected group of destinations (receivers), which
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can share the data transmission along the common links (e.g., [16–19]), as shown in Fig. 1.5.

In other words, handling multicast communication as unicast requires transmitting multiple

copies of same data to reach each receiver from same source. Thus, to handle a one-to-

many communication as multicast, these multiple unicast transmission can be replaced by

a single multicast transmission while reducing the computation effort at the same source,

bandwidth consumption in the network, and improving the throughput of applications with

the response time. Thus, supporting multicast service for high traffic in cloud providers is

essential in their data centers. To this extent, multicast service in data center network has

become prominent research topic with focusing the resource allocation problem Multicast

Virtual Networks (MVNs) [20]. The problem of network resource allocation consists of VNM

and VLM processes. While allocating network resources is widely discussed for unicast VNs,

embedding MVNs is greatly different than unicast services. In MVNs, the routing of a traffic

flow from a source to multiple receivers (destinations) consists of constructing a multicast

distribution tree to avoid redundant traffic.

Therefore, in this work, the Multicast-Aware VNE (MVNE) or Virtual Multicast Tree

Embedding (VMTE), Multicast Service Embedding with Fanout Limitation (MSE-FL) and

Multicast-aware Service Function Tree Embedding (M-SFTE) problems have been defined

by minimizing required resource allocation in substrate networks while reducing redundant

multicast data transmission, satisfying the fanout limitation and functionality requirements,

respectively.
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PART 2

RELATED WORK

2.1 Virtual Network Embedding (VNE)

2.1.1 VNE over IP Networks

The VNE problem is known to be NP-hard [9]. Hence, many researchers have investi-

gated efficient heuristic and meta-heuristic approaches [11–15].

The authors in [11] introduce the algorithm design to solve on-demand VN assignment

problem, which is upon the arrival of a VN request, assigning its topology to the substrate

network to achieve low and balanced load on both substrate nodes and links, namely VN

assignment without reconfiguration (VNA-I) and VN assignment with reconfiguration (VNA-

II) problems. For the VNA-I problem, where the VN assignment is fixed throughout the

VN lifetim, the authors develop a basic scheme to achieve near optimal substrate node

performance and use it as a building block for all other advanced algorithms. For the VNA-

II problem, a selective VN reconfiguration scheme that prioritizes the reconfiguration for the

most critical VNS is developed to achieve most performance benefits of the reconfiguration

without excessively high cost.

In [12], the VN embedding problem by proposing a more flexible substrate network

to better support virtual network embedding is rethought. The flexibility of the substrate

network includes path splitting and migration. Path splitting (i.e. multipath) has been a

recurring theme in many network research topics, and the authors demonstrate the power

Table (2.1) Classification of Multicast Virtual Network Embedding

VNE MVNE

IP Network [11–15] [20–28]

Optical Network [29–33] [16–18]
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of multipath in substrate network for more cost-effective virtual network embedding while

attaining better resource utilization.

Policy-based inter-domain VN embedding (PolyViNE) framework to heuristically ad-

dress the inter-domain VN mapping problem is investigated in [13]. The authors introduce

policy-based end-to-end VN embedding framework that embeds VNs across multiple InPs

in a globally distributed manner while allowing each concerned InP to enforce its local poli-

cies. PolyViNE introduces a distributed protocol that coordinates the participating InPs

and ensures competitive pricing through repetitive bidding at every step of the embedding

process.

In [14], ViNEYard proposes a collection of VN embedding algorithms to leverage bet-

ter coordination between node mapping and link mapping. ViNEYard algorithms include

Deterministic VN Embedding (D-ViNE), Randomized VN Embedding (R-ViNE), and their

extensions. The major contributions of the algorithms:

• D-ViNE and R-ViNE are two rounding-based VN embedding algorithms that increase

the VN request acceptance ratio and InP revenue without incurring additional cost by

leveraging coordinated node and link mapping

• D-ViNE-LB and R-ViNE-LB are extensions to D-ViNE and R-ViNE that focus on

balancing load across substrate resource to improve the acceptance ratio, often causing

inflated link utilization across the substrate network

• A generalized window-based VN embedding (WiNE), which allows batch processing of

VN requests, is a mechanism for equipping any existing online VN embedding algorithm

with lookahead capabilities

• ViNEYard model presents a flexible and extensible mathematical programming formu-

lation of the VN embedding problem

Path-based Integer Linear Programming (ILP) model for VNE problem (P-VNE) is

proposed to obtain an optimal solution for some cases by using of the column generation
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in [15]. Based on the dual formulations of the P-VNE model, a column generation process is

presented, which can be embedded into a branch-and-bound framework to effectively resolve

VNE problem optimally in practice.

2.1.2 VNE over Optical Flexible Networks

As Virtual Optical Network Embedding (VONE) problem known to be NP-Hard [34],

many researchers have explored efficient heuristic or meta-heuristic approaches to solve the

VONE problem [29–33].

In [29], the authors study a dynamic traffic scenario by using an auxiliary graph model

to address the multilayer optical network embedding while minimizing bandwidth block-

ing ratio in three possible underlying substrates for inter-datacenter networks, namely an

optical-layer-based, electrical-layer-based and multilayer-based (optical and electrical layer)

substrate network. For the node mapping, the applied policies select a node with different

wavelength or electrical resource distribution by setting the adjacent edge’s weight of the

node in the auxiliary graph (AG). Similarly, different link-mapping policies can also be de-

signed by adjusting weights of the edges of the AG. Hence, the main contribution of the

AG in [29] is to provide a general approach for addressing a dynamic VNE over multilayer

optical networks.

The Alignment and Consecutiveness-Aware Transparent Virtual Network Embedding

(ACT-VNE) algorithm in [30] uses consecutiveness-aware node ranking to measure node

capacities for the mapping process in transparent VNE (t-VNE). The algorithm takes into

account the spectrum alignment and consecutiveness between adjacent fiber links while map-

ping virtual nodes onto the substrate nodes. The authors also propose an extended scheme,

namely Importance, Alignment and Consecutiveness-aware Transparent Virtual Network

Embedding (iACT-VNE) that assigns virtual nodes to substrate nodes within close proxim-

ity to establish connections with less bandwidth utilization.

The authors in [31] present Integer Linear Programming (ILP) formulations and a

lightweight Greedy Randomized Adaptive Search (GRASP) heuristic algorithm to accommo-
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date the Virtual Optical Request (VOR) over a transparent optical substrate network. The

Virtual Optical Network Allocation (VONA) is solved over transparent and opaque services

while validating the benefits of exact ILP and GRASP against simpler VONA techniques.

The dynamic transparent virtual network embedding algorithm, which considers node

and link mapping jointly, is proposed for network virtualization over optical orthogonal

frequency-division multiplexing (O-OFDM) based elastic optical infrastructure in [32] in

order to minimize VOR blocking probability. For each VOR, the algorithm first transfers

the substrate optical network into a layered-auxiliary-graph according to the spectrum usage

of each fiber link. In the next step, a node mapping is applied by considering the local

information of all substrate nodes, and the link mapping is accomplished in a single layer of

auxiliary graph.

A static and dynamic versions of virtual topology mapping problems based elastic opti-

cal networks have been explored in [33]. The authors propose ILP model and two heuristic

approaches, which are greedy based First Fit (FF) and Link List (LL) algorithms, to maxi-

mize the subcarrier utilization while minimizing blocking ratio for dynamic traffic. The FF

algorithm maps a virtual node with the lowest index value from a VOR onto a substrate

candidate node that has enough available resource with the lowest index value. On the other

hand, the LL algorithm considers both node requirement and their bit rate request and sorts

virtual and substrate nodes with their connected bit rates of links in decreasing order. After

completing the ordering, the algorithm maps a most constrained virtual node in the virtual

node list onto a substrate node with the highest order.

The majority of these existing V(O)NE approaches targets on the point-to-point (uni-

cast) data traffic. With the rising demand on simultaneous bulk data transfer and the

support to path multiplicity from network topologies have made multicast necessary and

practical recent data centers.
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2.2 Multicast Virtual Network Embedding (MVNE)

With more Internet applications demanding multicast transmission such as IPTV, video-

conferencing and live stock quotes, Multicast VNE (MVNE) recently attracts much attention

to transmit the same content from one or multiple starting points through multiple end

points.

2.2.1 MVNE over IP Networks

In [20–28], the works try to minimize the resource allocation on SN to satisfy only

multicast VN requests.

The authors in [21] propose the mapping problem in the context of Virtual Multicast

service-oriented Network subject to Delay and Delay Variation Constraints (VMNDDVC)

and define an efficient heuristic algorithm to tackle the problem based on a sliding window

approach while minimizing the cost of VMNDDVC request mapping and achieving the load

balancing to increase the accepting ratio of Virtual Multicast Network (VMN) request. In

order to meet these constraints in VMNDDVC, a sliding window method is proposed to

construct a set of feasible paths and solve the problem based on feasible paths.

In [22], a multicast mapping algorithm (MMPC) is proposed to achieve MVNE while

improving the efficiency of physical resource utilization. The authors explore the multicast

networks mapping for enabling Multiple Description Coding (MDC) based video applica-

tions. The MMPC algorithm maps multicast trees onto the substrate network through the

path convergence approach to meet diverse VN request requirements while minimizing the

VNM mapping cost to improve global physical resources utilization efficiency.

An improved layered overlay multicast scheme based on Embedded Structure by intro-

ducing the gossip scheme into the data distribution progress to deal with the problems of

transmission isolation and unbalanced load allocation is proposed in [23]. With the help of

gossip process, the algorithm achieves cross-cluster transmission to maintain a more balanced

overlay topology by addressing the leaf members while delivering to the cluster leaders who
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have competence to dispose the expected data in higher topology hierarchy.

In [24], the authors introduce a heuristic algorithm called Multicast Virtual Network

Embedding with strategies of waiting tolerant and load prediction (MVNE-WL) and consider

the delay constraints to resolve the VNE problem for multicast services.

The importance of characterizing the type of communication for VN requests with

multicast communications in cloud computing is studied in [25]. The authors represent 3-step

heuristic algorithm to solve MVNE problem with end-delay and delay variation constrants

when the location of all the virtual machines in a given multicast VN is unknown. The

proposed algorithm is consisting of graph pruning, finding feasible subgraph and performing

node mapping schemes with well-known Breadth First Search (BFS) and Depth First Search

(DFS) to increase the mapping revenue and reduce the blocking ratio. Also, the authors

propose a Tabu-based search for solving the MVNE problem for multicast services with

heterogeneous resource demands over arbitrary network topologies in [20] while increasing

network admissibility in considerably fast runtime.

In [26], the authors consider the delay constraints of each VN edge while mapping and

routing the virtual link on the substrate links, and the constraint on locations of each VN

node while mapping the virtual node onto a substrate node in order to provision a multicast

virtual request. Also, in this work, the survivability of MVNE is studied while minimiz-

ing VMN request mapping by implementing Mixed ILP (MILP) and proposing heuristic

algorithm, namely Survivable Multicast Virtual Network Provisioning (SMVNP) based on

minimum set covering scheme.

The authors of [27] propose VNE schemes on fat-tree DCNs, which places the Virtual

Machines (VMs) of a multicast-capable VN without any disturbance to existing traffic and

manages to keep VMs in an even more compact way to reduce cost by allowing a small

degree of VM migration.

In [28], the impact of physical link failure on VMNs is investigated while minimizing link

mapping cost and increase admittance ratio with end-delay and delay variation requirements.

The proposed algorithm in [28] finds a constrained shortest path between multicast nodes
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utilized by the failed VMNs to minimize the recovery time while evaluating the algorithm in

terms of link mapping cost, restoration time and admittance ratio.

2.2.2 MVNE over Optical Flexible Networks

In addition to the IP-based networks, multicast services draw much attention in the

traditional Elastic Optical Networks [16–18].

Similarly, the layered based Shortest Path Tree (SPT) and Minimum Spanning Tree

(MST) approaches are employed to minimize the required resource for multicast transmission

in [16]. For each multicast request in EONs, the proposed algorithms decompose the physical

topology into several layered auxiliary graphs according to the network spectrum utilization.

In [17], the authors propose two multicast-capable routing and spectrum allocation algo-

rithms, namely, SPT and Steiner Minimal Tree (SMT), to maximize the resource utilization

while reducing the blocking probability of multicast services.

In [18], the authors propose two ILP models based on SPT and MST schemes, and the

Genetic Algorithm (GA) for online and offline multicast services. The joint and separate ILP

models optimize all multicast requests together and one request at a time by sequentially

handling the requests, respectively. To reduce the computational complexity, the authors also

propose Genetic Algorithm (GA) to minimize the cost and blocking probability of multicast

services.

Based on multicast services in traditional EONs, the authors of [35] define the multicast-

service oriented VN mapping that can support big data applications over EONs. In [35], an

efficient heuristic algorithm, called Integrated Genetic and Simulated Annealing (IGSA), is

proposed to minimize spectrum consumption and blocking probability while the algorithm

jointly optimizes the node and link mapping for all the multicast request in a global way.

To study the reliability in Multicast Virtual Optical Network Embedding (MVONE), the

authors of In [36] introduce efficiently VN mapping for multicast services over Orthogonal

Frequency Division Multiplexing (OFDM)-based EONs while taking into consideration the

max-min fairness in terms of reliability among distinct VNs. The proposed Reliability-Aware
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Genetic (RAG) algorithm addresses to reliable multicast VN mapping with a low compu-

tational complexity while achieving higher reliability fairness, lower bandwidth (spectrum)

consumption and transmission delay.
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PART 3

MULTICAST-AWARE VIRTUAL NETWORK EMBEDDING PROBLEM

FORMULATION

3.1 Substrate Network

The Substrate Network (SN) is modeled as an undirected graph GS = (NS, LS), where

NS and LS are the set of substrate nodes and substrate links, respectively.

NS = {n1, n2, ..., nm}, m = |NS| ∈ Z+

LS = {l1, l2, ..., lk}, k = |LS| ∈ Z+

The cardinality of sets (|NS|, |LS|) denoted by m and k is the number of nodes and

edges in SN, respectively. In order to ensure a connected graph, the number of links needs

to be in the range of boundaries as in the following expression [37].

m− 1 ≤ k ≤ m ∗ (m− 1)/2

In the SN, each node has a certain computing capacity (e.g., CPU), and each link has

a bandwidth capacity and weight (e.g., distance or delay).

CS = {c(n1), c(n2), ..., c(nm)}, c : NS → Z+

BS = {b(l1), b(l2), ..., b(lk)}, b : LS → Z+

WS = {ω(l1), ω(l2), ..., ω(lk)}, ω : LS → Z+
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CS represents the set of c(n) (∀n ∈ NS) to specify the available CPU of each substrate

node. For a substrate link ∀l ∈ LS, b(l) in the set of BS denotes the available bandwidth

of this substrate link, while ω(l) (or ωij, ij ∈ LS,∀i, j ∈ NS) in the set of WS represents the

cost or weight (e.g., distance or delay) of this substrate link.

3.2 Virtual Multicast Tree

A Virtual Request (VR) in the form of multicast tree can be modeled as an undirected

graph GV = (NV , LV ), where NV and LV represent the set of virtual nodes and links,

respectively.

NV = {v1, v2, ..., vp}, p = |NV | ∈ Z+

LV = {e1, e2, ..., er}, r = |LV | ∈ Z+

In the set of NV and LV , p and r denote the total number of virtual nodes and links,

respectively. In the following expression, c(v) in the set of CV specifies the requested com-

puting resource (i.e., CPU) by a virtual node and b(e) denotes the bandwidth (or number of

subcarriers for optical flexible networks) demand from a virtual link.

CV = {c(v1), c(v2), ..., c(vp)}, c : NV → Z+

BV = {b(e1), b(e2), ..., b(er)}, b : LV → Z+

3.3 Multicast Data Transmission Request

We assume that a projected multicast service to run on GV is denoted by a vector

MR =< s,D, β > where ∃s ∈ NV is the virtual source node, D = NV − {s} is the set

of multicast destinations in VR, and β ∈ Z+ is the requested bandwidth for the multicast
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service. Without loss of generality, we consider that all virtual links request the same amount

of multicast bandwidth, while each virtual node requests a random amount of computing

resource.

D = {d1, d2, ..., dt}

t = |NV − {s}| = |NV | − |{s}| = p− 1

3.4 Virtual Multicast Tree Embedding

To map a virtual multicast tree onto a shared SN, the processes of node and link mapping

has to be accommodated.

3.4.1 Node Mapping

Mvn =


1, if virtual node v ∈ NV is mapped onto physical node n ∈ NS

0, otherwise

(3.1)

∑
n∈NS

Mvn = 1, ∀v ∈ NV (3.2)

∑
v∈NV

Mvn ≤ 1, ∀n ∈ NS (3.3)

∑
v∈NV

c(v) ∗Mvn ≤ c(n), ∀n ∈ NS (3.4)

For such one-to-one node mapping, we use Mvn to represent whether a virtual node

v ∈ NV is mapped onto the substrate node n ∈ NS and hold all Mvn in a list. Eq. 3.2

ensures that each virtual node is mapped onto one substrate node. A substrate node, which
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is able to satisfy enough available computing resource demanded by the virtual node, can

host at most one virtual node from the same VR as shown in Eq. 3.3. To ensure the node

mapping, we use Eq. 3.4 to ensure one substrate node with enough computing capacity by

embedded a virtual node.

3.4.2 Link Mapping

In the process of link mapping, a physical path (or link) with enough bandwidth (or

subcarrier) has to be identified in the SN for each virtual link.

luvij =


1, if physical link (i, j) ∈ LS is used by a virtual link (u, v) ∈ LV

0, otherwise

(3.5)

luvij ∗ b(uv) ≤ b(ij) (3.6)

χij =
∑
uv∈LV

luvij , ∀ij ∈ LS (3.7)

For link mapping, we define luvij in Eq. 3.5 to specify whether or not virtual link (uv ∈

LV ) from virtual node u ∈ NV to v ∈ NV is using the substrate link (ij ∈ LS) between

substrate node i ∈ NS and j ∈ NS. To ensure demand of each virtual link satisfied by

a physical path (or links), Eq. 3.6 provides a substrate link(s) that has enough available

bandwidth capacity (or number of subcarriers). Eq. 3.7 denotes how many times a substrate

link is used for the mapping of all the virtual links.

During the process of node and link mapping, different mapping strategies will map

virtual nodes differently and use different physical paths to embed the virtual links, resulting

in various amount of resource consumption. Here, we define the objective function in Eq.

3.8, which is proportional to minimize the total cost of required bandwidth and multicast

transmission.
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min
(
β ∗

∑
ij∈LS

χij ∗ ωij
)

(3.8)

3.5 Virtual Multicast Tree Embedding Problem

Given the substrate network GS = (NS, LS) and a multicast tree request GV =

(NV , LV ), how to map the virtual multicast tree onto the substrate network while (i) sat-

isfying the aforementioned constraints of node/link mapping, (ii) minimizing the required

resource and the redundant multicast transmissions in the substrate network.

Similar to the traditional VNE, VMTE consists of the subprocess of node and link map-

ping. As a tree structure can be converted into a mesh network by adding necessary links

with zero bandwidth request in a polynomial time (bounded by the number of links) and

traditional VNE optimization is proved to be NP-Hard [9], the VMTE problem is also diffi-

cult to resolve optimally. Hence, we introduce efficient heuristic algorithms to solve VMTE

problem in IP-based and Elastic Optical Networks (EONs), called Closeness-Centrality based

Multicast-aware Virtual Network Embedding (CC-MVNE), Virtual Multicast Tree Embed-

ding with dynamic Impact Factor (VMTE-IF) and Dynamic Impact Factor based Virtual

Optical Multicast Tree Embedding (IF-VOMTE), in the following section.
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PART 4

MULTICAST-AWARE VIRTUAL NETWORK REQUEST EMBEDDING

In general, the existing Multicast-aware Virtual Network Embedding (MVNE) ap-

proaches process the node mapping according to the order of the requested computing re-

source and/or path cost. As shown in Fig. 4.1a, there are three virtual nodes in a multicast

VN request where S is the multicast source node, V1 and V2 are the multicast destination

nodes. The requested CPU resource from node S, V1 and V2 are listed along the respective

node. Fig. 4.1c shows the substrate node where the number beside a node indicates the

available CPU resource and the number on the link is the cost of the link resource. Based on

the requested CPU load or link resource/cost as Enhanced Greedy Node Mapping (EGNM)

algorithm in [38], the VN request in Fig. 4.1a will be mapped onto Fig. 4.1c as shown in

Fig. 4.1e. In other words, nodes S, V1 and V2 are mapped to substrate node A, C and B,

respectively. The virtual link S − V1 is mapped to a physical path A−B − C while S − V2

is mapped to physical path A − B. As a result, when node S sends multicast traffic to

node V1 and V2, the same multicast traffic goes through paths A−B −C and A−B of the

substrate network. Clearly, the same multicast traffic travels the physical link A− B twice

(or redundantly), which results in network resource wastage. Similarly, the scenario in Fig.

(b-d-f) shows the multicast traffic to node V1 travels from node A to node B, then to node

C. The same multicast traffic (from node V1) to node V2 travels from C to B. The fact that

the same multicast traffic cycles around the link B − C will lead to low resource usage in

the network.
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(a) (b)

(c) (d)

(e) (f)

Figure (4.1) Resource wastage in MVNE
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In [39], we propose an efficient Closeness-Centrality based Multicast-aware VNE (CC-

MVNE) algorithm to minimize the resource wastage as indicated in Fig. 4.1, while maxi-

mizing the sharing of substrate nodes and links. The basic idea of the proposed CC-MVNE

algorithm is to reduce the number of used links to access all destinations from source node

by using of the technique of closeness-centrality (CC) [40]. During the mapping process,

CC-MVNE simultaneously maps the nodes and links together while minimizing the needed

resources for the virtual nodes/links and multicast transmission in the network.

4.1 Closeness-Centrality based Multicast Virtual Network Embedding

Intuitively, mapping a virtual node to a substrate node with the most available com-

puting capacity may allow more CPU sharing while selecting the shortest (or least-cost)

substrate path to embed virtual link e will help in reducing the bandwidth consumption

of e. However, such greedy approach may result in the resource wastage for the multicast

service as shown in Fig. 4.1. In the following, similar to building a multicast tree in IP net-

work, we consider mapping a virtual node to a substrate node that is close to nodes within

the multicast group (i.e., substrate nodes with mapped virtual multicast nodes). We pro-

pose an efficient Closeness-Centrality based Multicast-aware VNE (CC-MVNE) algorithm

for the aforementioned MVNE problem. Fig. 4.2 and Algorithm 1 show the flowchart and

pseudocode of CC-MVNE.
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Figure (4.2) Flowchart of CC-MVNE Algorithm

As shown in Algorithm 1, the inputs of CC-MVNE algorithm are the information of

Substrate Network (SN), Virtual Network (VN) and projected Multicast service Request

(MR). First, the algorithm creates a priority list (PL) using the technique of Breath First

Search (BFS) [41], to sort the virtual nodes in GV in descending order based on the CPU,

bandwidth demands and connected link degree.
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Algorithm 1 Heuristic CC-MVNE Algorithm

1: procedure CC-MVNE(GV ,GS, MR)

2: PL ← PriorityList(GV ,MR)

3: MN ← ∅ . holding set of mapped nodes on the SN

4: ML ← ∅ . holding set of mapped links on the SN

5:

6: while size(PL) >0 do

7: if size(MN) 6= 0 then

8: CdFirst ← Candidate(GS, PL[0]) \MN

9: MN ←MN ∪ Closeness(CdFirst, NR(MN))

10: ML ←ML ∪ Path(MN , GS)

11: PL ← PL \ PL[0]

12: else

13: CdFirst ← Candidate(GS, PL[0])

14: CdSecond ← Candidate(GS, PL[1])

15: MN ←MN ∪ Closeness(CdFirst, CdSecond)

16: PL ← PL \ PL[0]

17: end if

18: Map CdFirst to the return node of Closeness()

19: Using least-cost path to map the corresponding

20: virtual links connected to CdFirst

21: end while

22: return GS(MN ,ML)

23: end procedure

PriorityList() function is getting MS over VN as shown in Algorithm 2. In MS, we

have one source node that has the highest priority in all other virtual nodes because we

could not start sending data packets if the system does not map source node on a shared
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SN. In the algorithm, after adding source node in priority list as the first node, the function

is sorting all destination nodes in the order of priority by using of Sorting() function defined

in Algorithm 3 by using of extended bubble sort [41]. The algorithm 3 is getting the set of

vertices, and returns back the all vertices in the order of priority according to their CPU,

bandwidth, and degree levels. At the beginning, all nodes (vertices) are in descending order

by CPU. If the CPU levels are same for multiple nodes in the list, the function compares

their bandwidth demands on VN. If it is also in same level for multiple nodes, last checking

point is how many connection the virtual nodes in VN have in order to find their priority.

All these three attributes are same for the nodes, then the system handles all nodes in the

same order of node list.

Algorithm 2 PriorityList

1: procedure PriorityList(GV ,MR)

2: . MR←< s,D, β >

3: List ← ∅

4: List ← List ∪ s . s ∈ V v as Virtual Source Node

5: D ← Sortcpu,bw,deg(D)

6: List ← List ∪D

7: I ← Sortcpu,bw,deg(I)

8: List ← List ∪ I

9: return List

10: end procedure
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Algorithm 3 Sortcpu,bw,deg

1: procedure Sortcpu,bw,deg(V)

2: List ← V

3: n ← size(List)

4: if n ≤ 1 then return List

5: end if

6: swapped← false

7: while !swapped do

8: for i← 0 to n− 1 do

9: if CPU(List[[i] ¡ CPU(List[i+1] then

10: swap(List[i],List[i+1])

11: swapped ← true

12: else if CPU(List[[i] = CPU(List[i+1] then

13: if BW(list[i] ¡ BW[i+1] then

14: swap(List[i],List[i+1])

15: swapped ← true

16: else if BW(list[i] = BW[i+1] then

17: if Deg(List[i] ¡ Deg(List[i+1]) then

18: swap(List[i],List[i+1])

19: swapped ← true

20: end if

21: end if

22: end if

23: end for

24: end while

25: end procedure
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4.1.1 Virtual Node Mapping

Line 3-4 initializes MN and ML to a set of mapped substrate nodes and links, respec-

tively. Then, Line 6-21 tries to map all virtual nodes in PL. If MN is not empty, for the

next virtual node in PL, the Candidate() function as shown in Algorithm 4 called in Line 8

finds all available candidate substrate nodes. With the candidate set, CC-MVNE finds the

closest node to the neighbors of the virtual nodes that are already mapped with substrate

nodes by using the Closeness() function. As shown in Algorithm 5, the closeness-centrality

is computed through Eq. 4.1.

∑
u∈NS ,V⊂NS\{u}

1/Dijkstra(u, V ) (4.1)

Algorithm 4 Find the Candidate Set

1: procedure Candidate(GS,vV )

2: List ← ∅

3: for vsi ∈ NS do

4: if CPU(vV ) ≤ CPU(vsi ) then

5: if BW (vV ) ≤ BW (vsi ) then

6: List ← List ∪ vsi
7: end if

8: end if

9: end for

10: end procedure

11: return List
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Algorithm 5 Determine the Closest Node

1: procedure Closeness(V1, V2)

2: min ←MAX INT

3: saved ← V1[0]

4: for v ∈ V1 do

5: total ← 0

6: for v ∈ V2 do

7: total = total + Dijkstra(u, v)

8: end for

9: if min > total then

10: min ← total

11: saved ← u

12: else if min = total then

13: if deg(saved) < deg(u) then

14: if max(BW (saved)) < max(BW (u)) then

15: min ←total

16: saved ←u

17: end if

18: end if

19: end if

20: end for

21: return saved

22: end procedure

4.1.2 Virtual Link Mapping

In Line 10 of Algorithm 1, Path() function as shown in Algorithm 6 generates the

shortest paths from the closest node in Line 9 to its neighbors in MN , which is defined as

NR(MN). The shortest paths are generated by using the Dijkstra’s shortest path algorithm
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[42] while satisfying the requested bandwidth demand. The substrate node with the highest

closeness ratio is then selected to map the current virtual node and the shortest paths are

used to map the corresponding virtual links as shown in Line 18-20 of Algorithm 1. If MN has

no mapped node, the algorithm takes first and second elements of PL to find the candidate

sets.

Algorithm 6 Find the Shortest Path

1: procedure Path(MN ,GS)

2: vertex ←MN [size(MN)− 1]

3: minDistance ← Dijkstra(MN [0], vertex)

4: saved ←MN [0]

5: for i←1 to size(MN)-2 do

6: cost = Dijkstra(MN [i], vertex)

7: if cost < min ‖ cost = min then

8: BW1 ← min(BW (Dijkstra(MN [i], vertex)))

9: BW2 ← min(BW (Dijkstra(saved, vertex)))

10: if BW1 >BW2 then

11: min ← cost

12: saved ← MN [i]

13: end if

14: end if

15: end for

16: return Dijkstra(saved, vertex)

17: end procedure

4.1.3 An Example of CC-MVNE

As an example, Fig. 4.3 shows the mapped results of CC-MVNE if the input VN and

SN are the ones in Fig. 4.1a, 4.1b and 4.1c. According to the requested VN in Fig 4.1a,

CC-MVNE creates PL as [S, V2, V1]. The first element in PL, S will find the closest node
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(a) (b)

Figure (4.3) The mapping result of CC-MVNE

as B and add B in MN . Next, it finds the closest node of the second element in PL, which

is A. Then, the algorithm creates a path from B to A. The last node in PL is mapped onto

C, and CC-MVNE generates a path from B to C. In the end, Fig. 4.1a is mapped as Fig.

4.3a by CC-MVNE. Similarly, the VN request in Fig. 4.1b is mapped as Fig.4.3b, which

does not incur resource wastage for multicast services.

The computing complexity of CC-MVNE depends on the pre-defined functions. The PL

creation uses BFS and sorting algorithms. BFS has an average time complexity of O(|V |+

|E|) [41] where |V | and |E| are the number of vertices and edges in the graph, respectively.

In CC-MVNE, the functions of Closeness() and Path() use the Dijkstra’s shortest path

algorithm. The computing complexity of Dijkstra’s algorithm for vertex-based cost isO(|E|+

|V | log |V |) [42]. The closeness-centrality algorithm takes O(|V ||E|+ |V |2 log |V |) computing

time [40]. Hence, the CC-MVNE algorithm can take O(|V |2|E| + |V |3 log |V |) computing

time.



34

4.1.4 Experimental Results
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Figure (4.4) Performance results of bandwidth usage while varying B, CPU and V

We evaluate the proposed CC-MVNE algorithm, and compare it with the Enhanced

Greedy Node and link Mapping (EGNM) algorithm in [38].

In the simulation, we use the random graph generator defined by Erdos-Renyi graph

structure to create the substrate network (SN) and multiple virtual networks (VNs) [37].

We generate the SN graph with 30 nodes that are randomly connected by 90 links. As

shown in Table 4.1, the computing resource of substrate nodes are generated in the range of
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Figure (4.5) Performance results of used hops while varying B, CPU and V

[5−CPU ] where CPU denotes the maximum computing resource a substrate node employs.

The bandwidth capacity of substrate links is in the range between 5 and B where B is the

maximum bandwidth a substrate link has.

A large number of virtual networks with [3−10] VN nodes that have random computing

and bandwidth demands are generated. The computing demands of each virtual node are

between 10 and CPU , and the requested bandwidth demands of a VN link is between 5

and B. The value ranges of CPU and B are listed in Table 4.1. Multiple random multicast

service (MS) requests with different source and destinations are also generated. For each SN,
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VN and MS, we vary the requested CPU and B based on different random seeds to obtain

the following average results.

Table (4.1) Network Simulation Parameters of CC-MVNE Performance

Substrate Network Virtual Network

Computing Resource [5-40] [10-30]

Bandwidth [5-35] [5-25]

Figs. 4.4a, 4.4b, 4.4c show the total bandwidth usage performance when varying the

virtual link bandwidth, computing demand and number of virtual nodes, respectively. The

performance of the total number of used hops are showed in Fig. 4.5a - 4.5c. In Fig. 4.4a, the

maximum demand of computing resource is 15, and the requested bandwidth, varies from 5

to 25. As one can see that the proposed CC-MVNE outperforms the EGNM algorithm by as

much as 40% when increasing B. This is because the proposed CC-MVNE can effectively use

the closeness-centrality technique to map the virtual network with multicast service onto the

substrate network while minimizing the bandwidth wastage(or transmission redundancies)

as identified in Fig. 1. In fact, the advantages of the proposed CC-MVNE lie in two aspects.

First, the proposed CC-MVNE can map the virtual network onto the substrate network

with less bandwidth usage, which is further verified by the smaller number of hops in Fig.

4.5a. Second, the closeness-centrality technique enables the mapping the VN with multicast

services while avoiding the bandwidth wastage(or transmission redundancies) in Fig. 1.

The total bandwidth usage increases with B in Fig. 4.4a while the number of hops for

the mapping slightly increases with B as shown in Fig. 4.5a. Similarly, when increasing

the requested computing demand and the number of requested virtual nodes, both the total

bandwidth usage and the number of hops for virtual links from the proposed CC-MVNE

increases. This is due to the fact that the increasing requested computing resource, node

and the limited SN resource may force some virtual links to take longer alternative paths

(i.e., more hops), resulting more bandwidth consumed by the VNs.
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Interestingly, when the computing demand increases to 30 as shown in Figs. 4.4b and

4.5b, the curves from CC-MVNE get very close to (or overlap with) that from EGNM. This

is because when the computing demand of the virtual nodes is large enough, there is very

limited number of physical nodes, which a virtual node can map to. In other words, when

there is not many options to map a virtual node, both CC-MVNE and EGNM essentially

just carry out the link mapping with the shortest paths, resulting in similar performance.

Figs. 4.4c and 4.5c show that increasing the number of virtual nodes will lead to

more consumed bandwidth and longer paths by both CC-MVNE and EGNM. Again, the

proposed CC-MVNE outperforms the EGNM algorithm by a significant margin in terms of

total bandwidth usage and total number of used hops when varying the number of virtual

nodes.

4.2 Chapter Summary

In this chapter, we have introduced the Closeness-Centrality based Multicast-Aware

VNE (CC-MVNE) algorithm that minimizes the resource consumption and maximizes the

sharing of the resource for mapping multicast-oriented virtual network requests. The pro-

posed closeness-centrality technique allows the process of multicast VNE to use less band-

width or short paths to satisfy the virtual network request while avoiding the bandwidth

wastage for multicast services. Our simulation and analysis have shown that the proposed

CC-MVNE outperforms the existing approach as much as by 40%.
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PART 5

VIRTUAL MULTICAST TREE REQUEST EMBEDDING

When a given virtual request in the form of multicast tree [43], we have investigated

how to efficiently embed virtual multicast trees while minimizing the required resource and

the redundant multicast transmissions in the substrate networks has not been investigated

in the existing works. As an example shown in Fig. 5.1a, virtual node A is the source node

of the multicast request. Node B, C and D are the destination nodes receiving multicast

streams from node A. In this Virtual Multicast Tree (VMT) request, each node also demands

a certain CPU resource as shown by the number along the node. Fig. 5.1b is the substrate

network, where the number beside a substrate node indicates the available CPU resource

of the node and the number on a substrate link shows the cost of the substrate link. If we

assume that each substrate link has enough bandwidth and apply traditional VNE or MVNE

schemes (e.g., the one in [11]), we will map the nodes according to the request/available CPU

resource as shown in Fig. 5.1c. Based on the request/available CPU resource, node A, B,

C and D are embedded to substrate node V4, V1, V2 and V3, respectively. The virtual link

A−B, A− C and C −D are mapped to substrate path V4 − V2 − V1, V4 − V2, and V2 − V3

by using of the traditional minimum cost strategy, respectively. Hence, when node A sends

multicast traffic in Fig. 5.1a, the multicast data will be transmitted to B and C along virtual

link A−B and A− C, respectively, as shown by the red dash line and blue dot line in Fig.

5.1c. Node C then forwards the same multicast data to D along virtual link C − D, as

shown by the brown dotdashed line. Note that, when examining the traces of the multicast

data in the substrate network, the same multicast data travels on the substrate link V4− V2

twice (or redundantly), which leads to the resource wastage or inefficiency in the substrate

network.
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(a) (b)

(c)

Figure (5.1) Redundant multicast transmissions for Multicast Tree Embedding

In [43], for the first time, we study how to design efficient algorithms to map a virtual

network (in the form of virtual multicast tree) request onto the substrate network while

minimizing the required resource and multicast transmissions. We define a novel problem,

namely, Virtual Multicast Tree Embedding (VMTE), which is different from traditional

MVNE and VNE problems. In MVNE, we are given a set of virtual nodes and need to
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map these nodes onto the substrate network for multicast services, which can lead to the

redundant transmission as showed in Fig. 5.1. Similarly, in traditional VNE, one is given

a virtual network graph and the VNE results may not be efficient in handling multicast

traffic, while encountering similar inefficiencies as showed in Fig. 5.1. We note that VMTE

is also different from IP multicast routing, whereas IP multicast routers are fixedly located

and mapping multicast routers (or virtual nodes) is not needed. Accordingly, we propose

an efficient algorithm, called Virtual Multicast Tree Embedding based on dynamic Impact

Factor (VMTE-IF), to minimize the required resource and multicast transmissions. The

proposed VMTE-IF algorithm maps the virtual nodes and links simultaneously to reduce

the resource needed for the multicast traffic from a source to all destinations by using the

Closeness-Centrality (CC) technique [40] with a dynamic local capacity metric (or impact

factor).

5.1 Virtual Multicast Tree Embedding with Dynamic Impact Factor

In this section, we propose the Virtual Multicast Tree Embedding based on dynamic

Impact Factor (VMTE-IF) algorithm to conduct the node and link mapping by using the

technique of Closeness-Centrality (CC) and a proposed dynamic local Impact Factor (IF)

as shown in Algorithm 7. Intuitively, to map a virtual multicast tree, we need to find a

similar tree structure in the substrate network that yields less bandwidth and multicast

transmission redundancy. Hence, the basic idea of VMTE-IF is to embed a virtual node

onto a substrate node that is close to substrate candidates of multicast group members and

map virtual links to the nearby mapped neighbors with minimal resource and redundant

multicast transmission.
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Algorithm 7 Heuristic VMTE-IF Algorithm

1: procedure VMTE-IF (GV , GS,MR)

2: ΛS ← ∅ . hold mapped substrate nodes

3: ΛV ← ∅ . hold mapped virtual nodes

4: χ← ∅ . hold all substrate paths

5: ζ ← ∅ . hold all substrate candidate sets

6: G
′
S ← Prune(GS, β)

7: for v ∈ NV do

8: ςv ← Candidate(G
′
S, v, β)

9: ζ ← ζ + ςv

10: end for

11: while size(ΛV ) < size(NV ) do

12: η ← ImpactFactor(GV ,ΛV , ζ, β)

13: µ← Closeness(G
′
S, η,Ω(η), ζ, β)

14: if µ 6= ∅ then

15: ΛS ← ΛS ∪ µ
16: ΛV ← ΛV ∪ η

17: else

18: terminate . block the mapping process

19: end if

20: if ΛV ∩ Ω(η) 6= ∅ then

21: P,G
′
S ← ShortestPath(G

′
S,ΛS,ΛV ,Ω(η), µ, β)

22: if P 6= ∅ then

23: X ← X + P . hold mapped substrate link(s)

24: else

25: terminate . block the mapping process

26: end if

27: end if

28: ζ ← ζ − ΛS

29: end while

30: Hold all links to connect mapped substrate nodes(X)

31: Calculate the cost of link usage with β demand

32: return β ∗ Σ∀p∈X

(
χp ∗ ωp

)
. ∀p ∈ LS

33: end procedure
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Finding Substrate Candidates

As shown in Algorithm 7, given a virtual network (in the form of a tree), a shared

substrate network, and multicast tree request (MR) over the virtual network, VMTE-IF

algorithm begins with the process of pruning SN to check the available bandwidth of each

substrate links in the SN. In Line 6, the Prune() function removes substrate links that

cannot satisfy the bandwidth demand (β) of MR. Line 7-9 finds all substrate candidates

that are satisfying the total bandwidth demand of virtual nodes with their neighbors (Ω)

and save them in the set of candidates (ζ) as shown in Algorithm 8. Each virtual node has

a set (ςv,∀v ∈ NV ) of substrate candidate nodes that own enough resource.

Algorithm 8 Find the Candidate Set

1: procedure Candidate(G
′
S, v, β)

2: List← ∅ . hold all candidate nodes

3: for n ∈ N ′
S do

4: if c(v) ≤ c(n) then

5: breq ← |Ω(v)| ∗ β

6: bres ← Σ∀m∈Ω(n)b(nm)

7: if breq ≤ bres then

8: List← List ∪ n

9: end if

10: end if

11: end for

12: return List

13: end procedure
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5.1.1 Virtual Node Mapping

Impact Factor and Closeness-Centrality

Line 11-28 represents the embedding process of virtual nodes and virtual links. In

Line 12, the ImpactFactor() method dynamically calculates IF of each virtual node as ψv

(∀v ∈ NV ) in Eq. 5.1. The process of calculating IF takes CPU request of a virtual node over

the total CPU demand of all virtual nodes as a normalized value, and bandwidth demands

of each virtual node connected with the neighbors (Ω) over the total bandwidth demand in

VR. The last component of Eq. 5.1 defines the ratio of maximal number of the candidate

sets among all virtual nodes over the number of nodes in ςv as shown in Algorithm 9. Line 13

identifies the substrate node that is close to all substrate candidates of its virtual neighbors

with the Closeness() function. In Algorithm 10, the current most important unmapped

virtual node is mapped onto a substrate node that has the highest CC ratio calculated as

in Eq. 5.2, where Dijkstra(n,m) calculates the available shortest path between substrate

node n and m. The equation finds the normalized value of the average distance from the

candidate of the current most important virtual node to all candidates of its neighbors. If

there is no available substrate node to host the current most important virtual node, the

algorithm needs to block the mapping request. After mapping the current most important

virtual node onto the closest substrate node with higher computing resource (or bandwidth)

in the SN, the algorithm tries to find any mapped neighbor of the virtual node in ΛV with

Ω to collect the virtual neighbors.
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Algorithm 9 Identify Next Virtual Node to Map

1: procedure ImpactFactor(GV ,ΛV , ζ, β)

2: η ← null . hold the most important virtual node

3: max← 0 . save the maximum impact factor

4: for v ∈ NV − ΛV do

5: ψv ← Eq.(5.1) . calculate the impact factor

6: if max ≤ ψv then

7: max← ψv

8: η ← v

9: end if

10: end for

11: return η

12: end procedure

ψv =
c(v)

Σu∈NV
c(u)

∗
Σu′∈Ω(v)b(vu

′)

Σe∈LV
b(e)

∗ |max(ζ)|
|ςv|

(5.1)

CC(n, V ) =
(∑

m∈V⊆NS
Dijkstra(n,m)

|V |

)−1
(5.2)
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Algorithm 10 Determine the Closest Node

1: procedure Closeness(G
′
S, η,Ω(η), ζ, β)

2: max← 0

3: µ← null

4: for n ∈ ςη do

5: V ← ∪m∈Ω(η)ςm . find all candidates of neighbors

6: V ← V \ n . remove current candidate from V

7: ψn ← CC(n, V ) . Eq. 5.10

8: if max < ψn then

9: max← ψn

10: µ← n

11: else if max = ψn then

12: if c(µ) < c(n) then

13: µ← n

14: max← ψn

15: else if Σm∈Ω(µ)b(µm) < Σm′∈Ω(n)b(nm
′) then

16: max← ψn

17: µ← n

18: end if

19: end if

20: end for

21: if max 6= 0 then

22: return µ . return the closest node

23: else

24: return ∅ . return empty set

25: end if

26: end procedure
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5.1.2 Virtual Link Mapping

After mapping a virtual node onto the substrate node, if the virtual node has the

mapped neighbor(s), ShortestPath() function in Line 21, defined in Algorithm 11, creates

the shortest substrate path(s) to all mapped virtual neighbor(s) in order to reduce the

redundancy and satisfy their connections. In Line 23, X holds all mapped substrate links.

Line 28 updates the set of substrate candidates of virtual nodes (ζ) by removing the mapped

substrate node. In Line 32, the algorithm returns the cost of all mapping process as the

total bandwidth usage of virtual links.

Algorithm 11 Find the Shortest Path

1: procedure ShortestPath(G
′
S,ΛS,ΛV ,Ω(η), µ, β)

2: Θ← getNeighbors(ΛS,ΛV ∩ Ω(η))

3: P ← ∅

4: for v ∈ Θ do

5: path← Dijkstra(G
′
S, µ, v, β)

6: if path 6= ∅ then

7: P ← P + path

8: G
′
S ← Update(G

′
S, path, β)

9: else

10: return ∅

11: end if

12: end for

13: return P,G
′
S

14: end procedure

5.1.3 An Example of VMTE-IF

As an example, Fig. 5.2 represents the mapped results of VMTE-IF if the input VN

and SN are the ones in Fig. 5.1a and 5.1b, respectively. According to the requested virtual
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multicast tree in Fig 5.1a, VMTE-IF determines IF of all virtual nodes, and begins with

the most important unmapped virtual node, B. Node B is mapped onto substrate node V3

based on the CC-ratio to the substrate candidates of virtual neighbors of B. Next, virtual

node C is mapped onto substrate node V2. Now, there is no mapped virtual neighbor of

node B and C in SN. Hence, the algorithm continues selecting virtual node D to map onto

substrate node V1 while creating a path between mapped virtual neighbors from D − C.

The last virtual node A is embedded onto substrate node V5. Similarly, VMTE-IF creates

substrate paths for A−C and A−B. Finally, Fig. 5.1a is mapped as Fig. 5.2 by VMTE-IF.

As a result, there is no redundant multicast transmissions in the substrate network when

the virtual network operator sends multicast traffic through A− C to C −D and A−B.

Figure (5.2) The mapping result of VMTE-IF
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5.1.4 Experimental Results
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Figure (5.3) Performance results of bandwidth, hop, and redundancy while varying B
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Figure (5.4) Performance results of bandwidth, hop, and redundancy while varying V

In this section, we analyze the proposed VMTE-IF algorithm comparing with the Greedy

Node Mapping (GNM) in [11] and First Fit node mapping (FF) [25].

In the simulation, we create the substrate network and virtual multicast trees by using

the random graph generator defined by Erdos-Renyi [37]. The substrate network graph has

30 nodes that are randomly connected with 90 links. The computing resource of substrate
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nodes is randomly generated in the range of [5 − 40], and the bandwidth capacity of each

substrate link is in the range of [5 − 35]. Similarly, a large number of virtual multicast

tree requests with [3 − 10] VN nodes are generated. The computing resource demand of

each virtual node in the request is randomly assigned in the range of [10 − 30], and the

bandwidth demand of the virtual multicast request is in the range of [5−25]. For each series

of experiments, we vary the CPU and B based on different multicast services demand to

obtain the average results, and we define link duplication as the number of SN links used by

multiple VN links.

Figs. 5.3a, 5.3b and 5.3c represent the total bandwidth usage, number of hops and

number of link duplication while varying the requested bandwidth demands from 5 to 25

with the maximum CPU as 15. Similarly, Figs. 5.4a - 5.4c show the total bandwidth

usage, number of hops and number of link duplication while varying the number of virtual

nodes from 3 to 10 with bandwidth demand as 20. In Fig. 5.3a, the proposed VMTE-IF

outperforms GNM and FF algorithms at least 50% when increasing B through 15. When B

is bigger than 15, the performance of our algorithm is as much as three times better than

GNM and FF. This is because the proposed VMTE-IF can effectively use the CC technique

with dynamic IF to simultenaously map the virtual nodes in a multicast service onto the

substrate network while minimizing the required bandwidth. The fact that the proposed

VMTE-IF maps the virtual multicast request onto SN with less bandwidth usage is further

verified by the smaller number of hops in Fig. 5.3b, which also shows the effectiveness of

VMTE-IF to minimize the redundant multicast transmission as shown in Fig. 5.3c.

In Fig. 5.4a, 5.4b and 5.4c, as one can see, the proposed VMTE-IF outperforms the

GNM and FF algorithms in terms of the bandwidth usage, the total number of hops, and

multicast traffic redundancy when increasing the number of virtual nodes. GNM and FF

yields close results due to the similar node mapping process in both schemes. VMTE-IF is

as much as two times better than GNM and FF algorithms. This is due to the fact that

VMTE-IF takes advantages of the group of substrate candidates that are close each other.

More specifically, the proposed VMTE-IF effectively explores the availability of substrate
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network and the connection structure of the substrate/virtual network to use less bandwidth

for mapping while reducing the redundant transmissions. In Fig. 5.4c, when the number

of virtual node is more than 7, more bandwidth resource is needed and the choices of link

mapping is limited. As a result, the more substrate links are used multiple times, the larger

amount of inevitable transmission redundancies by multicast traffic come from the proposed

VMTE-IF.



52

5.2 Impact Factor Based Virtual Optical Multicast Tree Embedding

In our earlier work [43], the embedding of virtual multicast trees is studied in the IP-

based SDN. However, with the employment of orthogonal frequency-division multiplexing or

the technology of Elastic Optical Networks (EONs), how to efficiently map virtual optical

multicast trees over EONs or Flexgrid networks while minimizing the resource usage and

avoiding redundant multicast transmission in the substrate networks has not been explored

in the existing studies. As an example shown in Fig. 5.5a, a Virtual Optical Request (VOR)

requires multicast data transmission with 2-subcarrier from virtual node S to V1, and from

V1 to V2. In the VOR, each node requests a certain amount of computing resource as shown

by the number along the virtual node. Fig. 5.5b is the Substrate Optical Network (SON),

where the number beside a substrate node shows the available computing resource. Each

column bar beside the Substrate Fiber Link (SFL) indicates the spectrum availability, where

the blank square is available subcarriers while the gray one is occupied subcarrier. If we

assume that each SFL has 5 subcarriers, the schemes in [12, 35] will create a virtual node

list according to the descending order of the requested computing resource in Fig. 5.5a and

a substrate node list based on the descending order of the available computing resource in

Fig. 5.5b. As a result of mapping these two lists, virtual node S, V1 and V2 are embedded

onto substrate node A, C and B, respectively. To satisfy the requested connections, the

virtual link S−V1 and V1−V2 are mapped to SFLs A−C and C −A−B using subcarriers

1− 2 and 3− 4, respectively1. When the user of VOR sends multicast streams from virtual

node S, in Fig. 5.5a, the multicast data will be transmitted to V1 and V2 through virtual

links S − V1 and V1 − V2. In the SON, the same multicast data goes through SFL A−C as

shown by the green dashed line, and C −A−B as shown by the red dotted line in Fig. 5.5c.

As a result, the same multicast data travels on SFL A − C twice (or redundantly), which

leads to resource wastage or inefficient resource usage in the SON. In addition, if A − C

is failed or broken in the SON, both multicast transmission over virtual link S − V1 and

1We assume that the virtual link S − V1 and V1 − V2 can use different spectrums from the SON.
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V1 − V2 will be impacted. However, for the traditional Virtual Optical Network Embedding

(VONE) [29, 30, 34, 44], a given virtual network graph needs to be mapped onto the shared

SON and the VONE process is oblivious to the redundant multicast transmission in Fig. 5.5.

(a) (b)

(c)

Figure (5.5) Redundant transmission from Multicast Virtual Optical Network Embedding
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In [45], we study how to embed a VOR (in the form of multicast tree) onto the shared

SON while minimizing the required resource usage and avoiding redundant multicast trans-

mission. For the first time, we define the problem as Virtual Optical Multicast Tree Em-

bedding (VOMTE), which is different from traditional MVONE problem. In MVONE, a

set of virtual nodes are given without any specific virtual link connection for the mapping

process. Therefore, we propose an efficient algorithm, namely, Impact Factor based Virtual

Optical Multicast Tree Embedding (IF-VOMTE), to minimize the resource usage and avoid

redundant multicast transmission. The proposed IF-VOMTE algorithm jointly maps virtual

nodes and links by using the proposed dynamic Impact Factor (IF) and Closeness-Centrality

(CC) techniques [40].

With the technology of O-OFDM based EONs, we propose the Impact Factor based

Virtual Optical Multicast Tree Embedding (IF-VOMTE) algorithm to map a request of vir-

tual optical multicast tree onto a shared Substrate Optical Network (SON) while reducing

the bandwidth usage and avoiding redundant multicast transmission. To minimize band-

width usage and avoid redundant multicast transmission, the algorithm jointly optimizes

the node and link mapping processes by using the techniques of Closeness-Centrality (CC)

and dynamic Impact Factor (IF) as shown in Algorithm 12. The basic idea of IF-VOMTE

algorithm is to use the CC technique to map a selected virtual node by IF onto a substrate

node that is close to the substrate candidates of adjacent multicast members.
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Algorithm 12 IF-VOMTE Algorithm

1: procedure IF-VOMTE (GS, GV ,MR)

2: initialize the set of mapped substrate node (ΓS) as ∅

3: initialize the set of mapped virtual node (ΓV ) as ∅

4: initialize each substrate link usage(χ) as 0 in the list X

5: prune GS by removing links without β unused consecutive subcarriers and save it as GP

6: while the size of ΓV is less than the size of NV do

7: call Candidate() to find substrate candidate sets for all virtual nodes and save in ζ

8: call ImpactFactor() to identify next virtual node η, to be embedded

9: call Closeness() to find the candidate substrate node µ for virtual node η

10: if µ is not ∅ then

11: add µ in ΓS and add η in ΓV

12: else

13: terminate the mapping process

14: end if

15: if η has any neighbor in ΓV then

16: find the substrate path(s), denoted as P, to connect µ with substrate nodes mapped by

virtual neighbor(s) of η

17: if P is not ∅ then

18: update substrate link(s) usage in X according to P

19: prune and update GP by removing links without β unused consecutive subcarriers

20: else

21: terminate the mapping process

22: end if

23: end if

24: end while

25: return β ∗ Σ∀ij∈X

(
χij ∗ ωij

)
26: end procedure
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As shown in Algorithm 12, the IF-VOMTE algorithm starts with initializing the set of

mapped substrate nodes (ΓS), mapped virtual nodes (ΓV ), and the set of all SFL usage (X).

In Line 5, the algorithm prunes the SON by removing substrate links that do not have β

unused consecutive subcarriers and creates GP = (NP , LP ), where NP and LP are the set

of substrate nodes and fiber links in the pruned SON, respectively. Line 6-24 outlines the

simultaneous mapping process of virtual nodes and links until embedding all virtual nodes

in a VOR, which are further elaborated in the following sections.

Candidate Factor

In Line 7 of Algorithm 12, Candidate() method finds the set of all substrate candidate

nodes for all virtual nodes. The method calculates the Candidate Factor (CF ) of unmapped

substrate nodes whether the computing resource, and bandwidth demand of the connected

links with an unmapped virtual node can be satisfied by using Eq. (5.3). As shown in Eq.

(5.4), CS denotes the normalized value of the available computing resource of n ∈ NP over

the computing demand of a virtual node v ∈ NV . BS checks whether there are enough

available spectrum blocks (θ) in the SFLs from a substrate node to its neighbors as shown in

Eq. (5.5). To generate the candidate sets of all virtual nodes, if CF is greater than or equal

to 1, the method adds the substrate node (n) into the candidate set (ςv) of the virtual node

(v). Otherwise, n is not a candidate for v. After finding the candidate sets of all virtual

nodes, Candidate() as defined in Algorithm 13 returns all candidate sets in the set ζ.

CF (v, n,B) = CS(v, n) ∗BS(v, n, β)

∀n ∈ NP , ∀v ∈ NV , β ∈ Z+
(5.3)

CS(v, n) =

⌊
cS(n)

cV (v)

⌋
(5.4)

BS(v, n,B) =

∑m∈Neighborn
∑

θ∈Blockmn

⌊
size(θ)
β

⌋
size(Neighborv)


∀m ∈ NP , ∀mn ∈ LP , m 6= n

(5.5)
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Algorithm 13 Find Substrate Candidate Sets

1: procedure Candidate(GP , GV ,ΓS,ΓV ,MR)

2: initialize ζ as ∅

3: for each unmapped virtual node v ∈ (NV − ΓV ) do

4: initialize ςv, substrate candidate set of v, as ∅

5: for each unmapped substrate node n ∈ (NP − ΓS) do

6: if CF in Eq. (5.3) is greater than or equal to 1 then

7: add n into ςv

8: end if

9: end for

10: add the set ςv into ζ

11: end for

12: return ζ

13: end procedure

5.2.1 Virtual Node Mapping

Impact Factor

ImpactFactor() method, which is defined in Algorithm 14, in Line 8 of Algorithm 12

finds the most appropriate virtual node to be embedded. The method calculates the Impact

Factor (IF ) of each unmapped virtual node by using Eq. (5.6). CV as shown in Eq. (5.7) is

the ratio between the computing demand of the current virtual node and the total computing

demand in VOR, and BV as shown in Eq. (5.8) is the ratio between the requested bandwidth

demand by the current virtual node and the total bandwidth demand in VOR. In Eq. (5.6),

Z calculates the ratio between the maximum number of candidates in ζ and the number of

candidates for the current virtual node in order to increase the chance of mapping the virtual

node that has less number of substrate candidate(s) as shown in Eq. (5.9). After finding

IF , the method returns the virtual node (η) with the highest IF . If there are multiple
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virtual nodes with the same highest IF , the method returns the virtual node (η) with higher

computing demand.

IF (v) = CV (v) ∗BV (v) ∗ Z(v), ∀v ∈ NV (5.6)

CV (v) =
cV (v)∑

u∈NV
cV (u)

(5.7)

BV (v) =

∑
u∈Neighborv bV (uv)∑
u′v′∈LV

bV (u′v′)
,

∀u, u′, v′ ∈ NV , uv ∈ LV , u 6= v, u′ 6= v′
(5.8)

Z(v) =
size(max{ζ})

size(ςv)
(5.9)

Algorithm 14 Identify Next Virtual Node to be Embedded

1: procedure ImpactFactor(GV ,ΓV , ζ,MR)

2: initialize maximum IF as 0 and save it as temp

3: for each unmapped virtual node v ∈ (NV − ΓV ) do

4: calculate IF of v in Eq. (5.6) and save it as f

5: if f is greater than temp then

6: update current temp as f and save v in η

7: else if f is equal to temp and v has more CPU than η then

8: save v in η

9: end if

10: end for

11: return η

12: end procedure
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Closeness Centrality

Closeness() method in Line 9 of Algorithm 12 identifies the substrate node in ςη that

is close to all substrate candidates of η’s virtual neighbors. In Algorithm 15, the method

finds substrate candidates for unmapped virtual neighbors of η (set1) and substrate nodes

mapped by virtual neighbors of η (set2) as set0,(i.e., set0 = set1 ∪ set2). After finding

the set0, Eq. (5.10) calculates the Closeness Centrality (CC) ratio of the current substrate

candidate of η. In Eq. (5.10), Path() function finds the shortest path from substrate node

n to m with β subcarriers. After checking the CC-ratio for all substrate candidates of η, the

method returns the substrate node (µ) that has the maximum value of CC-ratio. If there is

no available substrate node to host η, the algorithm denies the mapping request as in Line 13

of Algorithm 12. Once mapping η onto µ in the SON, the Algorithm 12 in Line 11 updates

the sets ΓS and ΓV .

Algorithm 15 Find the Substrate Node to Embed

1: procedure Closeness(GP , η,ΓS,ΓV , ζ,MR)
2: initialize maximum CC-ratio as 0 and save it as temp
3: identify the substrate candidate set of η (ςη) from ζ
4: for each substrate node n ∈ ςη do
5: identify the substrate candidates of unmapped virtual neighbor(s) of η and save them

as set1
6: identify the substrate node(s) mapped by virtual neighbor(s) of η and save them as set2
7: find the union of set1 and set2 and save it as set0
8: calculate CC ratio of n in Eq. (5.10) and save it as f
9: if f is greater than temp then

10: save f in temp and save n in µ
11: else if f is equal to temp and n has more CPU than µ then
12: save n in µ
13: end if
14: end for
15: return µ
16: end procedure

CC(n, set0, B) =
(∑

m∈{set0−{n}}⊆NP
Path(n,m,B)

size(set0 − {n})

)−1
(5.10)
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5.2.2 Virtual Link Mapping

After mapping a virtual node, in Line 15 of Algorithm 12, the algorithm checks whether

there is any mapped neighbor(s) of the current virtual node (η) in order to conduct the

corresponding link mapping in the SON. If the virtual node has mapped neighbor(s), the

Algorithm 12 in Line 16 tries to find a feasible physical path to map the virtual link between

η and the mapped neighbor(s). If IF-VOMTE finds feasible path(s) between mapped virtual

neighbors in the SON, the algorithm in Line 18-19 updates each substrate link usage and

prunes the current SON. However, if no feasible path can be found, the request will be denied

as shown in Line 21 of Algorithm 12.

In IF-VOMTE, the Candidate() and ImpactFactor() functions respectively have the

average time complexity of O(|N |2 log |L|) and O(|N | ∗ log|L|), where |N | and |L| are the

number of nodes and links in the graph, respectively. The Closeness-Centrality (CC) function

takes O(|N ||L|+ |N |2 log |N |) computing time [40]. The Path() function uses the Dijkstra’s

shortest path algorithm and first fit spectrum assignment that has the computing complexity

of O(|N ||L|+ |N |2 log |N |+ |S||L|) [46], where |S| is the number of spectrum segments in a

SFL. Hence, the IF-VOMTE algorithm can take the average computing time of O(|N |3|L|+

|N |3 log |N |).
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5.2.3 An Example of IF-VOMTE Algorithm

(a) The mapping result of IF-VOMTE

(b) The values of IF

(c) The values of CC

Figure (5.6) The mapping process of IF-VOMTE with B = 2
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To illustrate how the IF-VOMTE algorithm works, Fig. 5.6a shows the result of the

mapping process if the input VOR and SON are the same ones in Fig. 5.5a and 5.5b,

respectively. As the requested VOR requires 2 subcarriers (i.e., B = 2) in Fig. 5.5a, the

IF-VOMTE finds the current most appropriate virtual node (V1) with the highest IF value

at Iteration 1 in Fig. 5.6b. Since all substrate candidate nodes of V1 have the same CC value

as shown in Fig. 5.6c and the node A has more computing resource than other substrate

candidates, V1 is mapped onto the node A. Next, the unmapped virtual node that has the

highest IF value at Iteration 2 is the node S, which is then mapped onto the substrate node

C that has more computing resource than other substrate candidates of S. Since the mapped

virtual node V1 is the neighbor of the mapped virtual node S, the IF-VOMTE algorithm

finds a physical path from substrate node C to A as shown by the green dashed line in Fig.

5.6a. Similarly, the IF-VOMTE maps the last unmapped virtual node V2 onto the substrate

node β that has the highest CC value as shown in Fig. 5.6c and creates the physical path

between mapped virtual neighbors V1 and V2 as shown by the red dotted line. As a result,

when the virtual network operator sends multicast traffic through S − V1 and V1− V2 in the

VOR, there is no redundant multicast tranmission in the SON. Note that, the IF-VOMTE

in Algorithm 12 cannot totally avoid the redundant multicast transmission. However, one

can apply a Redundancy Checking Mechanism (RCM) and make sure χij + χji ≤ 1 during

the subprocess of virtual link mapping to avoid any redundant multicast transmission in the

substrate network. When incorporating χij +χji ≤ 1 or the RCM is employed in Algorithm

1, there is no redundant multicast transmission, which is called as the IF-VOMTE-NO.
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5.2.4 Experimental Results
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Figure (5.7) Results of spectrum and hop usage, and redundancy while varying B
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Figure (5.8) Results of spectrum and hop usage, and redundancy while varying V

To study the performance of the proposed IF-VOMTE algorithm, we also implement two

other heuristics: Greedy Node Mapping (GNM-SP) [12], First-Fit Node Mapping (FFNM-
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SP) [25], both of which employ the shortest path strategy to map virtual links [47].

In the simulation, we use the connected graph technique of Erdos-Renyi [37] to create

the substrate network with 35 nodes randomly connected by 90 links and to generate a large

number of virtual multicast tree requests with [3, 10] virtual nodes. Each substrate node

is assigned with random available computing resource in the range of [5 − 45], and each

substrate fiber link has the same number of subcarrier (S= 55) with random availability.

Similarly, each virtual node has random computing resource demand in the range of [10, 30]

and the bandwidth demand (or subcarrier) of each virtual request, B, is in the range of

[5, 25]. In the experimental series, we obtain the average results by varying B and V the

requests.

In Figs. 5.7a-5.7c and 5.8a-5.8c, we show the total spectrum usage, the number of hops,

and the total redundancy when the number of requested subcarriers (or spectrums) for the

request varies from 5 to 25, the maximum computing demand CPU is 30 and the number

of virtual node V is 8 in Figs. 5.7a-5.7c. Similarly, Figs. 5.8a-5.8c show the results while

varying the requested number of virtual nodes in a VOR from 3 to 10, setting the maximum

bandwidth demand B and the maximum computing demand CPU as 25 and 30, respectively.

As shown in Figs. 5.7a and 5.8a, the proposed IF-VOMTE outperforms the GNM-SP

and FFNM-SP heuristics in terms of spectrum usage, particularly when B or V is larger.

This is because the proposed IF-VOMTE embeds the virtual nodes onto the SON with

dynamic Impact Factor (IF) and Closeness-Centrality (CC) techniques, which effectively op-

timize the processes of nodes and links mapping. More specifically, the IF technique takes

the resource demand by a virtual node and the connected virtual links into the consideration,

which enables IF-VOMTE to give the virtual nodes with less number of mapping candidates

a higher priority in the mapping process. In the mean time, the CC technique effectively

identifies the substrate node that is close to substrate candidates of adjacent multicast mem-

bers, to minimize the required bandwidth resource by the process of links mapping. The

results in Figs. 5.7b and 5.8b further verify the effectiveness of the proposed IF and CC

techniques, which can facilitate the proposed IF-VOMTE to employ the shorter physical



66

paths by comparing with GNM-SP and FFNM-SP.

In Figs. 5.7a and 5.8a, we can also see that the IF-VOMTE performs slightly better

than IF-VOMTE-NO when B and V are smaller. However, when increasing B beyond 10

or V beyond 5, the performance gap between IF-VOMTE and IF-VOMTE-NO is enlarged

significantly. This is because, when B and V are smaller or less resource requested by the

VOR, IF-VOMTE and IF-VOMTE-NO can find similar group of nodes to be mapped with

less resource usage. However, when B and V are larger, and the subcarrier resource in the

SON becomes relatively less, IF-VOMTE-NO may have to find a longer path due to the

Redundancy Checking Mechanism (RCM), resulting in more spectrum usage. The higher

hop numbers in Figs. 5.7b and 5.8b by IF-VOMTE-NO further verify the impacts of RCM.

In Figs. 5.7c and 5.8c, IF-VOMTE-NO has 0 multicast redundancy due to the em-

ployment of the RCM (i.e., χij + χji ≤ 1). When increasing B or V in a VOR, multicast

redundancy for FFNM-SP and GNM-SP increases. This can be explained as follows: when

B or V is larger, more virtual links require more subcarrier resource from the substrate

network; longer physical paths are employed as shown in Figs. 5.7b and 5.8b, resulting in

more multicast redundancy by GNM-SP and FFNM-SP. Interestingly, when increasing B

and V , the number of multicast redundancy from IF-VOMTE is almost flat and IF-VOMTE

significantly outperforms the algorithms of GNM-SP as well as FFNM-SP. This indicates

that the proposed IF and CC techniques in IF-VOMTE can intrinsically avoid multicast

redundancy during the node/link mapping process. In other words, even without employing

the RCM, IF-VOMTE can effectively map a multicast tree request with much less multicast

redundancy due to the fact that the CC and IF techniques map proper virtual nodes onto

the substrate nodes that are close to other multicast members.

5.3 Chapter Summary

In this chapter, we have defined a novel problem namely, Virtual Multicast Tree Em-

bedding (VMTE) in IP and flexible optical networks. To heuristically solve the VMTE

problem in IP and optical networks, we have proposed the virtual multicast tree embed-
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ding based on dynamic impact factor (VMTE-IF) and Impact Factor based Virtual Optical

Multicast Tree Embedding (IF-VOMTE) algorithms to take advantage of the node/link

closeness-centrality to minimize the required resource and redundant multicast transmission

in the substrate network. Extensive simulations and analysis demonstrate that the pro-

posed VMTE-IF algorithm outperforms the traditional approaches Greedy Node Mapping

(GNM-SP) and First-Fit Node Mapping (FFNM-SP) by a very large margin.
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PART 6

DEGREE-BOUNDED MULTICAST-AWARE VIRTUAL REQUEST

EMBEDDING

In our earlier work [43] and [45], we have studied how to efficiently embed a given virtual

multicast tree in IP or optical networks while minimizing the resource usage and avoiding the

redundant multicast transmission. However, none of the aforementioned work addresses how

to efficiently map virtual multicast requests over EONs or Flexgrid networks while satisfying

the fanout limitation on the multicast tranmission. To illustrate the multicast transmission

with the fanout limitation, we assume that a VOR requires a multicast service from node S

to a set of virtual nodes {D1, D2, D3}, where no virtual network topology is given a prior as

shown in Fig. 6.1a. Each virtual node requests a certain amount of computing resource as

shown by the number along the node in Fig. 6.1a. In the substrate network shown in Fig.

6.1b, the number beside each substrate node indicates the available computing resource. To

map the multicast virtual request in Fig. 6.1a onto Fig. 6.1b, the traditional approaches

in [12, 35] will create a list of virtual nodes according to the descending order of computing

demands in Fig. 6.1a as well as a substrate node list based on the descending order of

the available computing resource in Fig. 6.1b. As shown in Fig. 6.1c, the process of node

mapping will embed the virtual nodes S,D1, D2, D3 onto the substrate nodes B,E, F, C,

respectively. If there is no multicast fanout limitation, the virtual link S −D1, S −D2, and

S −D3 will be created and mapped to substrate link B−E, B−F , and B−C as shown in

Fig. 6.1c, respectively. However, if the multicast fanout limitation of the substrate node is

2, then at most two multicast links can start from any substrate node. In other words, we

cannot map 3 virtual links (i.e., S−D1, S−D2, S−D3) simultaneously onto physical links

starting from substrate node B. Instead, one may create virtual link S −D1, S −D2, and

D1−D3, which will be mapped to substrate path B−E, B−F , and E−D−C as shown in
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Fig. 6.1d, respectively. Clearly, the traditional MVONE schemes cannot be directly applied

to efficiently solve the embedding of multicast services with fanout limitation.

(a) (b)

(c) (d)

Figure (6.1) Fanout limited multicast service

In this section, for the first time, we investigate how to design efficient algorithms to

map a virtual multicast request onto the substrate network while minimizing the required

resource and satisfying the fanout limitation. We define a new problem called Multicast

Service Embedding in EONs with Fanout Limitation (MSE-FL) [48], which is different from

the problem of MVONE. We also propose an efficient algorithm, namely, Centrality-based

Degree Bounded Shortest Path Tree (C-DB-SPT), to minimize the required resource of

multicast transmission while satisfying the fanout limitation. The proposed C-DB-SPT
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maps virtual nodes and links simultaneously to reduce the needed resource by using the

proposed dynamic centrality metric.

6.1 Substrate Optical Network

We model a Substrate Optical Network (SON) as a bidirectional connected graph GS =

(NS, LS) defined as in Section 3. We use cS(n) and f(n) (∀n ∈ NS) to represent the

available computing capacity and fanout (splitting/forwarding) capacity of each substrate

node, respectively. For a Substrate Fiber Link (SFL), bij and ωij (ij ∈ LS,∀i, j ∈ NS) denote

the index list of the available subcarriers and the cost or weight of the SFL, respectively.

6.2 Virtual Optical Request

To model a Virtual Optical Request (VOR), we use a 2-tuple R = (NV , B), where NV

is the set of virtual nodes, which consists of the virtual source and destination nodes of the

multicasting service. In R, B ∈ Z+ denotes the bandwidth demand (i.e., the number of

subcarriers) by the VOR. Without loss of generality, we consider that all virtual connections

for the multicast service require the same amount of subcarriers B, while each virtual node

requests a random amount of computing resource denoted as cV (v), (∀v ∈ NV ).

6.3 Multicast Service Embedding in EONs with Fanout Limitation

To map a VOR onto a shared SON with given fanout limitation, the processes of node

and link mapping have to be employed.

6.3.1 Node and Link Mapping

The process of node mapping is defined in Section 3, and to connect the mapped virtual

nodes in the SON, physical paths consisting of SFL(s) with enough available number of

subcarriers have to be identified. We use P v
ij and Zij to specify whether or not the substrate

link ij ∈ LS is chosen to reach virtual node v and the link is in the constructed multicast
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tree, respectively. When P v
ij and Zij are equal to 1, the requested B consecutive subscarriers

will be reserved from the substrate link ij ∈ LS. Eq. (6.3) represents the flow conservation,

and Eq. (6.4) indicates the distinct substrate links that form the constructed multicast tree.

Eq. (6.5) represents the total traffic usage for each link in the constructed multicast tree. In

Eq. (6.6) and Eq. (6.7), we ensure that the provisioned traffic does not violate the substrate

link capacity, and the number connections from substrate node i to its adjacent substrate

nodes at most equals to the fanout limitation, respectively.

P v
ij =


1, if substrate link ij, (∀ij ∈ LS) is chosen

to reach virtual node v ∈ NV

0, otherwise

(6.1)

Zij =


1, if substrate link ij, (∀ij ∈ LS) is part

of the multicast tree

0, otherwise

(6.2)

∑
j:(ij)∈LS

P v
ij −

∑
j:(ji)∈LS

P v
ji = M v

i −M s
i , ∀i ∈ NS, v ∈ NV \ {s} (6.3)

Zij ≥ P v
ij, ∀v ∈ NV \ {s}, (ij) ∈ LS (6.4)

tij = Zij ∗B, ∀(ij) ∈ LS (6.5)

tij ≤ bij, ∀(ij) ∈ LS (6.6)

∑
ij∈LS

Zij ≤ f(i), ∀i, j ∈ NS (6.7)

During the process of node and link mapping, different embedding strategies will dif-
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ferently map virtual nodes and use different physical paths to connect the mapped virtual

nodes, resulting in various amount of resource consumption. Here, we define the cost func-

tion in Eq. (6.8), which is proportional to the total cost of the required bandwidth (or

number of subcarriers) for a multicast request.

min(
∑
ij∈LS

tij ∗ ωij), ∀i, j ∈ NS (6.8)

Definition: Multicast Service Embedding in EONs with Fanout Limitation

(MSE-FL) Given GS, an R and the fanout limitation, how to map a VOR onto the SON

while (i) satisfying the aforementioned constraints of the node/link mapping, (ii) satisfying

fanout limitation for multicast transmission in the shared SON, and (iii) minimizing the

required resource.

MSE-FL consists of the subprocesses of node and link mapping with the constraints of

spectrum continuity and consecutiveness as in the VONE [34], which is NP-Hard. Thus, we

introduce an efficient heuristic algorithm, namely, Centrality-based Degree Bounded Shortest

Path Tree (C-DB-SPT) with a dynamic centrality metric in the following part.
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Table (6.1) Notations for the C-DB-SPT Algorithm

Notation Physical Meaning

GS substrate network GS = (NS, LS)

NS set of substrate nodes

LS set of substrate optical links

GP pruned substrate network GP = (NP , LP )

NP set of substrate nodes in the pruned network

LP set of substrate optical links in the pruned network

R 2-tuple of virtual multicast request R = (NV , B)

NV set of virtual nodes in a multicast request

B bandwidth (or subcarrier) demand of a virtual multicast request

MV set of mapped virtual nodes

MS set of mapped substrate nodes

T degree bounded multicast tree

P physical fiber path

ANS(T ) set of adjacent substrate nodes of T

SC set of all substrate candidates of unmapped virtual nodes

CV centrality metric

NV set of virtual nodes that can be mapped onto the closest substrate node
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6.4 Centrality-based Degree Bounded Shortest Path Tree

We propose the Centrality based Degree Bounded Shortest Path Tree (C-DB-SPT)

algorithm to map a request of virtual optical multicast service onto a shared substrate

network while minimizing the needed resource and satisfying the fanout limitation for the

multicast transmission. The proposed centrality metric allows the C-DB-SPT to map the

appropriate virtual node onto a substrate node that satisfies the computing demand of the

virtual node and is close to the substrate candidates of virtual multicast nodes.

Algorithm 16 C-DB-SPT Algorithm

1: procedure C-DB-SPT(GS, R)
2: Initialize MV ,MS, T, ANS(T ) as ∅;
3: prune GS by removing links without B unused consecutive subcarriers and save it as
GP ;

4: while size(MV ) < size(NV ) do
5: update SC;
6: calculate centrality values (CV ) of all nodes in SC;
7: if T is ∅ then
8: call NodeMapping() and update MV , MS;
9: T ← T ∪ {n};

10: update ANS(T );
11: else
12: if ANS(T ) ∩ SC 6= ∅ then
13: SC ← ANS(T ) ∩ SC;
14: call NodeMapping() and update MV , MS;
15: call LinkMapping() and update T , ANS(T );
16: else
17: find the substrate node n from SC, the closest to T ;
18: call NodeMapping() and update MV , MS;
19: call LinkMapping() and update T , ANS(T );
20: end if
21: end if
22: prune the nodes in T that reach the fanout limitation;
23: end while
24: return total spectrum usage of T
25: end procedure

As shown in Algorithm 16, the C-DB-SPT algorithm has the inputs as SON (GS) and

VOR (R). In Line 2, the algorithm initializes the set of mapped virtual nodes MV , mapped
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substrate nodes MS, the degree bounded substrate multicast tree T and adjacent substrate

nodes of T , denoted by ANS(T ) as empty. Next, the algorithm prunes the substrate network

by removing the substrate links that do not have B unused consecutive subcarriers and

creates GP = (NP , LP ), where NP and LP are the set of substrate nodes and links in the

pruned SON, respectively. Then, the C-DB-SPT conducts virtual node and link mapping

until embedding all virtual nodes in Line 4-23.

For each unmapped virtual node, in Line 5 of Algorithm 16, the C-DB-SPT finds sub-

strate candidate nodes, which satisfy the demand of unmapped virtual node, and add all

substrate candidate nodes into the set SC. After creating SC, the algorithm calculates

the centrality value CV for each node in SC by using Eq. (6.9), where CV identifies the

average distance from the substrate node n to all other substrate nodes in SC. In Eq. (6.9),

distance() calculates the shortest path between substrate nodes.

CV (SC, n) =

∑
m∈{SC\n} distance(n,m)

|SC| − 1
,∀n ∈ SC (6.9)

In Line 7-21 of Algorithm 16, the C-DB-SPT constructs the multicast tree T . Line

7 checks whether or not T has any substrate node. If there is no substrate node in T ,

Line 8 calls NodeMapping() method to find the substrate node n for the virtual node v as

shown in Algorithm 17. The C-DB-SPT also updates the set of mapped virtual nodes MV

and substrate nodes MS by adding v and n, respectively. As shown in Algorithm 17, the

NodeMapping() method, in Line 2 of Algorithm 17, finds the substrate candidate n that has

the lowest CV value. In other words, Line 2 of Algorithm 17 will identify the substrate node

n that is closest to other substrate candidates. After identifying the substrate node n, the

method finds the unmapped virtual nodes that can be satisfied by the substrate node n and

holds them into the set NV . In Line 4 of Algorithm 17, the methods selects the virtual node

v ∈ NV with the highest computing demand to map onto the substrate node n and returns

the virtual node v as well as substrate node n. In Algorithm 17, NodeMapping() method
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gives higher priority to the virtual node with the highest computing demand. This is because

(i) virtual node with high computing demand has less number of substrate candidates in the

SON and (ii) a VOR does not specify any given or fixed topology to map.

Algorithm 17 The Process of Node Mapping

1: procedure NodeMapping(SC,R,MV )
2: find the substrate node (n) in SC with the lowest CV ;
3: find the set of virtual nodes (NV,NV ⊆ {NV \MV }) that can be satisfied by n;
4: map the virtual node v in NV with the highest computing demand onto n;
5: return v and n
6: end procedure

In Line 9-10 of Algorithm 16, the C-DB-SPT adds the mapped substrate node into T ,

and adds the adjacent substrate nodes of T into the set ANS(T ).

In Line 11, the algorithm checks the current multicast tree T whether the multicast

tree has at least one substrate node. The C-DB-SPT then employs two subprocesses: (i)

ANS(T ) has at least one common substrate node within the set of substrate candidate nodes

SC as shown in Line 13-15, and (ii) there is no common substrate node between ANS(T )

and SC as shown in Line 17-19.

In Line 13 of Algorithm 16, the C-DB-SPT assigns the SC as the intersection of SC with

ANS(T ). In Line 14, the algorithm calls NodeMapping() process and maps the virtual node

v onto the substrate node n while updating MV and MS. The C-DB-SPT in Line 15 uses

LinkMapping() method to create the physical fiber path from the node n to the substrate

node in T and to return the updated T . As shown in Algorithm 18, the LinkMapping()

method finds the shortest physical fiber path P from the substrate node n to the closest

substrate node in T . When creating P , the method adds P into the multicast tree T in

Line 3 of Algorithm 18. In Line 4, the LinkMapping() method updates the degree of each

substrate node in T and returns the updated T . When the C-DB-SPT receives the updated

T from LinkMapping(), the algorithm updates the ANS(T ) in Line 15 of Algorithm 16.

In Line 17 of Algorithm 16, the C-DB-SPT finds the closest substrate node n from SC

to the multicast tree T . If multiple substrate nodes have the same distance to T , then the
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Algorithm 18 The Process of Link Mapping

1: procedure LinkMapping(GP , n, T )
2: find the shortest path from n to any node in T and save it as P ;
3: add the substrate fiber path P into T ;
4: update the degree of each node in T ;
5: return T
6: end procedure

algorithm picks the substrate node with the lowest CV metric.

In Line 22, if there is a substrate node in T that reaches the fanout limitation, the

algorithm marks the node from the multicast tree T as unusable for more data splitting

and forwarding. In other words, the substrate node reaches the fanout limitation for the

multicast service.

When the C-DB-SPT completes the process of virtual node and link mapping, the

algorithm returns the total usage of number of subscarriers in Line 24.

In the C-DB-SPT, the process of finding substrate candidates and NodeMapping()

method has the average time complexity of O(|V | ∗ |N |) and O(|N | + |V |), respectively,

where |V | and |N | are the number of virtual nodes in the VOR and substrate nodes in the

SON, respectively. The calculation of centrality metric takes O(|V | ∗ |N | ∗ log |N |+ |V | ∗ |L|)

computing time, where |L| is the number of substrate links. The LinkMapping() method

uses the Dijkstra’s shortest path algorithm that has the computing complexity of O(|N |2 ∗

log |N |+ |N | ∗ |L|). Hence, the C-DB-SPT algorithm can take the average computing time

of O(|N |3 ∗ log |N |+ |N |2 ∗ |L|).
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6.4.1 An Example of C-DB-SPT Algorithm

A

F D

CB

[14][13] [15]

[13][14] [15]

E

S

D
1

D
2

D
3

(a) The mapping result of the C-DB-SPT

CV Values of Candidate Nodes

Iteration A B C D E F

1 1.6 1 1.6 1.4 1.4 1.4

2 1.75 - 1.75 1.5 1.5 1.5

3 1.66 - 1.66 1.66 - 1.66

4 1.5 - - 2 - 1.5

Sets of SC and NS(T)

SC NS(T)

{ A, B, C, D, E, F} -

{ A, C, D, E, F} { A, C, D, E, F}

{ A, C, D, F} { A, C, D, F}

{ A, D, F} { A, D, F}

(b) CV Values, the sets of SC and ANS(T ) in the C-DB-SPT

Iteration

1 2 3 4

B B

E

CB

E

CB

EF

(c) Constructed degree bounded multicast tree

Figure (6.2) The mapping process of the C-DB-SPT
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To illustrate how the C-DB-SPT algorithm works, we use Fig. 6.2a to show the mapping

results when the input VOR and SON are the same ones as in Fig. 6.1. If the VOR requires

2 subcarriers (i.e., B = 2) and the fanout limitation equals to 2 (i.e., F = 2 for all substrate

nodes), the C-DB-SPT finds a substrate candidate with the lowest centrality value CV to

be mapped by a virtual node with the highest computing demand. In the first iteration, the

C-DB-SPT identifies the substrate node B having the lowest CV and maps the virtual node

S onto B while adding B into T as shown in Iteration 1 of Fig. 6.2b and 6.2c, respectively.

For the next iteration, the algorithm identifies common substrate nodes between ANS(T )

and SC for unmapped virtual nodes as shown by Iteration 2 in Fig. 6.2b. The substrate

node E is selected with higher computing capacity when multiple substrate nodes have the

same lowest CV , and then the unmapped virtual node D1 with higher computing demand

is mapped onto the substrate node E. After mapping D1 onto E, the algorithm has the

substrate node B in T and then node E is connected with node B as shown by Iteration 2

in Fig. 6.2c. Therefore, the C-DB-SPT simultaneously finds a physical fiber path to connect

the current mapped substrate node with the current tree such that the current mapped D1

connects with S by using physical link B − E. Next, the algorithm chooses the substrate

node C during Iteration 3 in Fig. 6.2b and maps virtual node D2 onto C. The C-DB-SPT

then connects D2 with S by using physical fiber link B−C while adding C into T as shown

by Iteration 3 in Fig. 6.2c. For the last iteration, the C-DB-SPT maps the virtual node D3

onto the substrate node F and connects the mapped virtual nodes by using E − F instead

of using the SFL B − F as shown by Iteration 4 in Fig. 6.2c. This is because the substrate

node B cannot split and forward data more than the fanout limitation (F = 2). As a result,

the C-DB-SPT completes the mapping process of virtual node and link while satisfying the

fanout limitation to connect the virtual nodes S−D1, S−D2 and D1−D3 by using physical

fiber paths B − E, B − C and E − F , respectively.
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6.5 Experimental Results
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Figure (6.3) Performance results of spectrum usage while varying V , MB and F
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Figure (6.4) Performance results of used hops while varying V , MB and F
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In this section, we compare the proposed C-DB-SPT algorithm with the greedy node

mapping and degree bounded shortest path tree (GN-DB-SPT), and the global resource

capacity based degree bounded shortest path tree (GRC-DB-SPT) algorithms. The GN-

DB-SPT uses the node mapping scheme proposed in [11] and the process of node mapping

in the GRC-DB-SPT considers node ranking based on the availability of a substrate network

proposed in [49]. The link mapping process in both GN-DB-SPT and GRC-DB-SPT is based

on the technique of degree bounded shortest path tree.

In the simulation, we model the substrate network as the NSFNET with 14 nodes and

22 links. Each substrate node is assigned with random computing resource (e.g., CPU) in

the range of [5 − 35] and the same fanout limitation (F ). Each substrate fiber link has

the same number of subcarrier (S = 55) together with a random availability. Similarly, we

create a large number of virtual multicast requests with the number of virtual nodes in the

range of [1, V ]. Each virtual node requests a random computing resource in the range of

[5, C]. For each multicast request, the bandwidth demand (or number of subcarriers) is in

the range of [5,MB]. For each series of experiments, we obtain the average results by varying

the maximum number of virtual nodes (i.e., V ) and the maximum bandwidth demand (i.e.,

MB) in a multicast service request, and the fanout limitation (i.e., F ).

Fig. 6.3a and 6.4a show the total spectrum usage and number of hops while varying V .

In Fig. 6.3a, V varies from 3 to 10 when setting F = 2, C = 15, MB = 15. For all three

schemes, the total spectrum usage increases with V . This is due to the fact that larger V

leads to a larger load of virtual multicast requests coming to the substrate network. The

proposed C-DB-SPT algorithm outperforms the GN-DB-SPT and GRC-DB-SPT algorithms

by as much as 35% when V is less than 9. Fig. 6.4a further verifies better performance of

the C-DB-SPT while identifying shorter trees. This is because the centrality technique in

the proposed C-DB-SPT can identify a better (i.e., closer) set of substrate nodes to form

the virtual multicast tree. However, when V ≥ 9, the heavy virtual multicast requests limit

the option of C-DB-SPT in searching of efficient node/link mapping. As a result, the curve

of C-DB-SPT gets close to (or overlapped with) that of GRC-DB-SPT. In fact, when V is
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large and there are not many options to map virtual nodes, both C-DB-SPT and GRC-DB-

SPT essentially just carry out the link mapping with the degree bounded shortest path tree,

resulting similar performance. The GN-DB-SPT uses more substrate resource than the C-

DB-SPT and GRC-DB-SPT. This is because the GN-DB-SPT focuses on greedily choosing

substrate nodes with higher resource availability.

Similarly, Fig. 6.3b and 6.4b show that the C-DB-SPT algorithm has better performance

than the GN-DB-SPT and GRC-DB-SPT algorithms when varying MB from 5 to 25, and

setting V = 5, F = 2, C = 15. Specifically, the C-DB-SPT uses as much as 20% fewer

subcarriers than the GRC-DB-SPT and as much as 40% fewer subcarriers than the GN-DB-

SPT when MB is larger than 10.

Fig. 6.3c and 6.4c show the results of performance comparison when varying F from 1

to 5 and setting V = 7, C = 15, MB = 15. As one can see that the proposed C-DB-SPT

algorithm again outperforms the GN-DB-SPT and GRC-DB-SPT algorithms in terms of the

total spectrum usage when F is less than 4. This is because the centrality technique can find

closer substrate nodes for the multicast members with limited fanout capacity. Interestingly,

when F is larger than 3, the GRC-DB-SPT finds slightly better results. This is due to the

fact that the GRC-DB-SPT can find the group of substrate nodes that are close to each

other when substrate nodes have higher flexibility (i.e., more fanouts) to connect with their

neighbors, which is further verified by Fig. 6.4c.

6.6 Chapter Summary

In this chapter, we have defined a new problem, which is called Multicast Services

Embedding in Optical Networks with Fanout Limitation (MSE-FL). We have proposed an

efficient algorithm, namely, Centrality-based Degree Bounded Shortest Path Tree (C-DB-

SPT) algorithm, to take advantage of the centrality technique for multicasting node and link

mapping while minimizing the needed resource and satisfying the fanout limitation. Exten-

sive simulations and analysis have demonstrated that the proposed C-DB-SPT algorithm

outperforms the schemes directly extended from the traditional approaches by as much as

35% in terms of the total spectrum usage and number of hops.
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PART 7

MULTICAST-AWARE SERVICE FUNCTION TREE EMBEDDING

Unlike the traditional/virtual multicast studies on routing data from a source node to

multiple destination nodes [43,45,48], NFV-enabled multicast requires constructing multicast

transmission tree and embedding the required VNFs (e.g., Deep Packet Inspection (DPI),

Network Address Translation (NAT), Intrusion Detection System (IDS), video transcoder

(VT)) before reaching the destinations [50–53]. In [50], the authors introduce a dynamic

heuristic method to solve centralized function deployment problem while minimizing the

required resource. The authors in [51] propose a heuristic method based on path-intersection

to place VNF nodes on these intersection nodes. In [52], the techniques of minimum spanning

tree and backtracking are used to construct NFV-based multicast tree.

However, none of the aforementioned works addresses how to efficiently map SFC-based

virtual multicast request without prior constructed SFC while satisfying the node and link

constraints. To illustrate the multicast transmission with the VNF node placement, we

assume that a Virtual Request (VR) requires a multicast service from source node s to a

set of destination nodes {d1, d2} and a set of requested service functions {V NF1, V NF2} as

shown in Fig. 7.1a. In this VR, the traffic has to traverse through SFC that provides all VNFs

(i.e., V NF1, V NF2) before reaching the destination nodes. The VNF nodes (V NF1, V NF2)

request a certain amount of computing resource and network functionality as 10, 15 and f1, f2,

respectively. In the substrate network shown in Fig. 7.1b, the number beside each substrate

link indicates the weight (e.g., distance) of a link. The available computing capacity and

offered functionality of each substrate node are listed in Table 7.1. To map the multicast

virtual request in Fig. 7.1a onto Fig. 7.1b, the traditional approach (e.g., [54]) will create a

list of virtual nodes according to the descending order of computing demands in Fig. 7.1a

as well as a substrate node list based on the descending order of the available computing



85

resource in Fig. 7.1b. This process will embed the virtual nodes V NF2, V NF1 onto the

substrate nodes B,A, respectively, as shown in Fig. 7.1c. More specifically, to construct the

SFC from s to d1 and d2, the virtual link s − V NF1 and V NF1 − V NF2 will be created

and mapped to substrate links s − A, A − B as shown in Fig. 7.1c, respectively. When

connecting VNF nodes with the source node s, the SFC connects the destinations via the

shortest paths as shown B − d1 and B −D − d2 in Fig. 7.1c. The traditional SFC schemes

construct the SFC to split/forward transmission through all destinations. In other words, as

in Fig. 7.1c, the traffic from source node s will traverse through V NF1 − V NF2 as a single

SFC to reach destination nodes d1 and d2. Thus, the schemes cannot be directly applied to

efficiently solve the embedding of multicast services with SFC constraint.
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(c) Result of traditional mapping

Figure (7.1) Multicast Service Function Tree
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Table (7.1) The Substrate Network

Substrate Node A B C D E F

Available CPU 15 20 15 10 15 10

Offered Functionality f1 f2 f2 f1 f3 f1

In this dissertation, for the first time, we investigate how to design an efficient algorithm

to map a virtual NFV-based multicast request onto the substrate network while minimizing

the required resource and satisfying the functionality requirement. We define a new problem

called Multicast-aware Service Function Tree Embedding (M-SFTE) [55], which is different

from the NFV mapping problem. We propose an efficient algorithm, namely, Minimum

Cost Multicast Service Function Tree (MC-MSFT), to minimize the required resource of the

multicast transmission. The proposed MC-MSFT maps VNF nodes and links simultaneously

to reduce the needed resource by using the proposed level-based SFC construction technique.

7.1 Substrate Network

We model a Substrate Network (SN) as a bidirectional connected graph G = (N,L),

where N and L are the set of substrate nodes and links, respectively. In an SN, each

node has a certain computing capacity (e.g., CPU) with an offered network functionality,

and has splitting/forwarding capability. Each substrate link has a bandwidth capacity and

weight metric (e.g. hop or distance). We use cS(n) and fS(n) (∀n ∈ N) to represent the

available computing capacity and network function of each substrate node, respectively. For

a substrate link, bmn and ωmn (mn ∈ L,∀m,n ∈ N) denote the available bandwidth and

weight of the link, respectively.
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7.2 Virtual Request

To model a Service Function Chain (SFC) based Virtual Request (VR), we use a 4-tuple

R = (s,D, F, β), where s and D are the given source node and set of destination nodes,

respectively. In R, F represents the set of requested Virtual Network Functions (VNFs)

between the source node and each destination node, and β ∈ Z+ denotes the bandwidth

demand of the VR. Without loss of generality, we consider that all virtual connections for

the multicast service require the same amount of bandwidth β while each VNF node requests

a random amount of computing resource denoted as cV (v), (∀v ∈ F ). For each VNF, we use

fV (v), (∀v ∈ F ) to represent the requested functionality.

7.3 Multicast Service Function Tree Embedding (M-SFTE)

To map a VR onto a shared SN, the processes of node and link mapping have to be

employed.

7.3.1 Node Mapping

We use M v
n to denote whether a virtual node v ∈ F is mapped onto the substrate node

n ∈ N as shown in Eq. (7.1). In Eq. (7.2), we ensure that each virtual node is mapped onto

one substrate node. Similarly, Eq. (7.3) denotes that a substrate node can host at most

one VNF node from the same VR. Each virtual node is embedded onto only one substrate

node with enough computing resource and required functionality as in Eq. (7.4) and (7.5),

respectively.

M v
n =


1, if v ∈ F is mapped onto n ∈ N

0, otherwise

(7.1)

∑
n∈N

M v
n = 1, ∀v ∈ F (7.2)
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∑
v∈F

M v
n ≤ 1, ∀n ∈ N (7.3)

∑
v∈F

cV (v) ∗M v
n ≤ cS(n), ∀n ∈ N (7.4)

∑
v∈F

fV (v) ∗M v
n = fS(n), ∀n ∈ N (7.5)

7.3.2 Link Mapping

To connect the mapped virtual nodes in the SN, physical paths consisting of substrate

links with enough available bandwidth have to be identified. We use luvmn to specify whether

or not the multicast service goes through a substrate link from m ∈ N to n ∈ N (mn ∈ L)

for a virtual link from u to v (u, v ∈ {s}∪D∪F ) . When luvmn is 1, the requested β bandwidth

will be reserved from the substrate link mn ∈ L.

luvmn =


1, if a substrate link from m to n is used

for a virtual link from u to v

0, otherwise

(7.6)

During the process of node and link mapping, different embedding strategies will differ-

ently map virtual nodes and use different physical paths to connect the mapped VNF nodes,

resulting in various amount of resource consumption. Here, we define the cost function in

Eq. (7.7), which is proportional to the total cost of the required bandwidth for a multicast

request.

min(β ∗
∑

mn∈L,∀u,v∈{s}∪D∪F

luvmn ∗ ωmn) (7.7)
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Definition: Multicast-aware Service Function Tree Embedding (M-SFTE)

Given G and R, how to map a VR onto a shared SN while (i) satisfying the aforemen-

tioned constraints of node/link mapping, (ii) satisfying the requested SFC for multicast

transmission in the shared SN, and (iii) minimizing the required resource.

Similar to SFCE, M-SFCTE consists of the subprocesses of node and link mapping under

the constraints such as bandwidth consumption and computing resource. By adding some

links with zero bandwidth demand, one can convert a tree into a mesh network. Accordingly,

the M-SFCTE optimization can be converted to the traditional virtual network embedding

optimization, which is proved to be NP-Hard [9]. Thus, we introduce an efficient heuristic

algorithm for the M-SFTE, called Minimum Cost Multicast-aware Service Function Tree

(MC-MSFT) in next section.

7.4 Minimum Cost Multicast Service Function Tree

We propose the Minimum Cost Multicast Service Function Tree (MC-MSFT) algorithm

to map a Virtual Request (VR) onto a shared Substrate Network (SN) while minimizing the

needed resource. We propose a technique of level-based path splitting to map the clos-

est (or minimum cost) unsatisfied functionality in a source-destination pair for multicast

transmission.

As shown in Algorithm 19, the MC-MSFT algorithm has the inputs as an SN (G) and

a VR (R). In Line 2, the algorithm initializes the set of constructed Service Function Tree

(SFT ) as empty and the Service Function Chain (MSFC) matrix to hold satisfied functions

for source-destination pairs in SFT as 0. Next, the algorithm prunes the substrate net-

work by removing the substrate links that do not have β available bandwidth and creates

GP = (NP , LP ), where NP and LP are the set of substrate nodes and links in the pruned

SN, respectively. In the pruned SN (GP ), the algorithm finds the Minimum Spanning Tree

(MST), which connects the source node (s) with all destination nodes (D), and updates SFT .

In Line 5, the MC-MSFT algorithm creates Path = pathsd1 , ..., pathsdm, (∀di ∈ D, ∀pathsdi ⊆

SFT,m = size(D)) to hold all substrate paths from source node to each destination node in
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Table (7.2) Notations for the MC-MSFT Algorithm

Notation Physical Meaning

G substrate network G = (N,L)

N set of substrate nodes

L set of substrate links

GP pruned substrate network GP = (NP , LP )

NP set of substrate nodes in the pruned network

LP set of substrate links in the pruned network

R 4-tuple of virtual multicast request R = (s,D, F, β)

s source node in a multicast request

D set of destination nodes in a multicast request

F set of requested VNFs for an SFC in a multicast request

β bandwidth demand of a virtual request

SFT substrate service function tree

MSFC matrix to hold satisfied functionality from s-D pairs

Cf set of candidate substrates for VNF f

SFT . In Line 6 and 7, the algorithm finds all substrate candidates of Virtual Network Func-

tions (VNFs) that have enough available computing capacity with the requested functionality

as Candidate = {Cf1 , ..., Cft}, (∀fi ∈ F, t = size(F ),∀Cfi ⊆ NP ), and updates MSFC with

satisfied VNFs that are already in Path for each source-destination pair as shown in Eq.

(7.8). Line 8-15 outlines the VNF node and link mapping until satisfying SFCs for each

source-destination pair, which are further elaborated in the following sections.

7.4.1 Level-based Path Splitting

For each unmapped VNF node, in Line 8 of Algorithm 19, the CheckFunctionality()

function returns a VNF (f) that has the highest FV value as shown in Eq. (7.9), where
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Algorithm 19 Minimum Cost MSFT Algorithm

1: procedure MC-MSFT(G, R)
2: Initialize SFT as empty and MSFC [D,F ] as 0;
3: Prune G by removing links without β available bandwidth and save it as GP =

(NP , LP );
4: Find the Minimum Spanning Tree (MST) between s and D pairs and save it as SFT ;
5: Find all s-D paths in SFT and save them as Path;
6: Find all substrate candidate nodes in NP for each f ∈ F and save all candidate sets

as Candidate;
7: Update MSFC for the satisfied functionality in Path;
8: while f = CheckFunctionality() is not empty do
9: Initialize min as MAX INTEGER;

10: Find destinations in MSFC without f and save them as DList;
11: Call ReceivePathLevels() and save it as Levels;
12: Call SelectPairs() and update current SFT ;
13: Find all s-D paths in SFT and save them as Path;
14: Update MSFC for the satisfied functionality in Path;
15: end while
16: Prune SFT by removing duplicate functions in Path;
17: return total bandwidth usage of SFT
18: end procedure

the ratio of unsatisfied VNF for all destinations over the number of substrate candidates for

Cf . After selecting VNF f , the algorithm finds all destination nodes that do not have f in

pathsd, (∀d ∈ D), and save them as DList in Line 10. If there is no unsatisfied VNF node

for all source-destination pairs (i.e., FV = 0 for all VNFs), the function returns empty.

MSFC [d][f ] =


1, if f ∈ F is in the pathsd

0, otherwise

(7.8)

FV (MSFC , f, Cf ) =
size(D)−

∑
d∈DMSFC [d, f ]

size(Cf )
(7.9)

In Line 11 of Algorithm 19, the technique of level-based path splitting, namely,

ReceivePathLevels() method, finds the levels of all source-destination paths (pathsd,∀d ∈

DList). In other words, the method selects each node pairs (or link between adjacent nodes)
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Algorithm 20 Returns the levels in path for a particular DList

1: procedure ReceivePathLevels(GP ,Path,DList,Cf )
2: Initialize Levels as empty;
3: for each node pair p of pathsdi in DList do
4: Initialize count as 1;
5: for each node pair p′ of pathsdj ,(i<j) in DList do
6: if p equals to p′ then
7: Increase count by 1 and remove p′ from pathsdj ;
8: end if
9: end for

10: Call ConnectFunction() and save it as cost;
11: Append count and cost to p and save p in Levels[i];
12: end for
13: return Levels
14: end procedure

starting from source to each destination in DList and save them into Levels, which sepa-

rately holds the node pair (or link) with their usage for different pathsd. In Algorithm 20,

the ReceivePathLevels() method chooses node pairs for each pathsd in Line 3 by ordering

their hop counts from the source node to the destination node. In Line 5-9 of Algorithm

20, the method finds the number of the node pair usage in all source-destination pairs. If

the node pair is used for multiple pathsd, the method increases the count of the node pair

and remove it from other source-destination pairs in Line 7 of Algorithm 20. In Line 10 of

Algorithm 20, the ConnectFunction() method finds the closest substrate candidate of VNF

f to all node pairs (p) in the current level via the shortest path. In Line 11 of Algorithm 20,

the ReceivePathLevels() appends all node pairs p with their usage and the cost of VNF f

connection, and save them into the Levels until completing all destination nodes in DList.

7.4.2 Minimum Cost Pair Selection

In Line 12 of Algorithm 19, the SelectPairs() method finds the minimum cost of con-

necting f to the current SFT . For each level of Levels, in Line 2-17 of Algorithm 21,

the SelectPairs() method finds a node pair in Levels that has the minimum cost to add

VNF f into SFT . In Line 7 of Algorithm 21, the method checks whether the pair is used
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Algorithm 21 Returns node pair(s) with minimum cost

1: procedure SelectPairs(PList, Levels, index)
2: for each pair p in Levels[index] do
3: Set start node of p as start;
4: Set end node of last pair in PList as end;
5: if start is not equal to end then
6: Add p into PList and save its count and cost as count, cost, respectively;
7: if count = size(DList) and cost < min then
8: Assign total cost of PList to min and save PList;
9: else

10: Increase index by 1;
11: call SelectPairs(PList, Levels, index);
12: end if
13: else
14: Increase index by 1;
15: call SelectPairs(PList, Levels, index);
16: end if
17: end for
18: return PList
19: end procedure

by all pathsd, (d ∈ DList). In other words, if the node pair is used for all destinations

(count = size(DList)), the method can add VNF node to that pair by satisfying all source-

destination pairs. Otherwise, the method, in Line 11 and 15, recursively calls another level

until satisfying all source-destination pairs, and saves the pairs with minimum addition cost

as shown in Line 8 of Algorithm 21. After finding the minimum cost to add the current VNF

node to the current SFT , in Line 12 of Algorithm 19, the SelectPairs() method returns the

selected node pairs and updates the current path list.

In Line 13 and 14 of Algorithm 19, the MC-MSFT algorithm updates all paths for source-

destination pairs and MSFC . After constructing SFT , in Line 16 and 17, the algorithm

prunes the current SFT by removing the duplicate functions that are used multiple times

in the same pathsd, (∀d ∈ D), and returns the total bandwidth usage of SFT .

In the MC-MSFT, the process of CheckFunctionality() and ReceivePathLevels() have

the average time complexity of O(|F | ∗ |D|) and O(|D| ∗ log |N |), where |F |, |D| and |N |

are the number of VNF and destination nodes in the VR, and substrate nodes in the SN,
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respectively. The ConnectFunction() method uses the Dijkstra’s shortest path algorithm

that has the computing complexity of O(|N |2 ∗ log |N | + |N | ∗ |L|). Hence, the MC-MSFT

algorithm can take the average computing time of O(|F | ∗ |N |2 ∗ log |N |+ |F | ∗ |N | ∗ |L|).

7.4.3 An Example of MC-MSFT

To illustrate how the proposed MC-MSFT algorithm works, we use Fig. 7.2 to show

the mapping results when the input VR and SN are the same ones as in Fig. 7.1a and

7.1b, respectively. If the VR requires two VNF nodes (i.e., F = {V NF1, V NF2}) and the

substrate links satisfies the bandwidth demand, the MC-MSFT finds the MST in SN and the

VNF node with the highest FV value to be mapped onto the closest substrate candidate of

VNF node. In the first iteration, the MC-MSFT updates MSFC and identifies the VNF node

V NF2 having the highest FV value for the path from s to d2 (i.e., pathsd2). For the second

iteration, the algorithm identifies the substrate node C that is the closest substrate candidate

of V NF2 to be connected with pathsd2 and updates the multicast tree SFT , functionality

matrix MSFC and the set of paths Path. Therefore, the algorithm simultaneously finds a

physical path to connect the current mapped substrate node with the current tree such that

the current mapped C connects with s and F by using physical links s− C and C − F . In

the last iteration, the algorithm chooses the VNF node V NF1 to be mapped for s-d1 path

and maps V NF1 onto the substrate candidate A. The MC-MSFT then connects A with the

path s − d1 (i.e., pathsd1) by using physical links s − A and A − B while updating SFT

as shown in Fig. 7.2a. As a result, the MC-MSFT completes the mapping process of VNF

node and link while satisfying SFC for each s − D pairs as s − V NF1 − V NF2 − d1 and

s−V NF2−V NF1−d2 by using physical paths s−A−B−d1 and s−C−F−d2, respectively.
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(a) The result of MC-MSFT
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(b) SFT , SFC, Path, MSFC and FV values in the MC-MSFT

Figure (7.2) The mapping process of MC-MSFT
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7.5 Experimental Results

2 3 4 5 6 7

Number of Destinations

50

100

150

200

250

300

350

T
ot

al
 B

an
dw

id
th

 U
sa

ge

G-MSFT
NN-MSFT
MC-MSFT

(a) Bandwidth Usage vs D
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Figure (7.3) Performance results of bandwidth usage while varying D, F and B
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(a) Number of Hops vs D
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(b) Number of Hops vs F
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Figure (7.4) Number of hops while varying D, F and B
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In this section, we compare the proposed MC-MSFT algorithm with the Greedy node

mapping and Multicast Service Function Tree (G-MSFT), and the nearest neighbor MCSFT

(NN-MSFT) algorithms. The G-MSFT uses the node mapping scheme proposed in [54] and

the process of node mapping in the NN-MSFT considers node ranking based on the closeness

of a substrate candidates to the current Service Function Chain (SFC). The link mapping

process in both G-MSFT and NN-MSFT is based on the technique of shortest path SFC.

In the simulation, we model the substrate network as the USNET with 24 nodes and

43 links. Each substrate node is assigned with random computing resource (e.g., CPU) in

the range of [5− 35] and a single offered functionality (f). Each substrate link has random

bandwidth availability in the range of [5, 45]. Similarly, we create a large number of virtual

multicast requests with the number of Virtual Network Function (VNF) and destination

nodes in the range of [1, V ] and [2, D], respectively. Each VNF node requests a random

computing resource in the range of [5, 25]. For each multicast request, the bandwidth demand

is in the range of [5, B]. For each series of experiments, we obtain the average results by

varying the maximum number of VNF and destination nodes (i.e., V and D), and the

maximum bandwidth demand (i.e., B) in a multicast service request.

Fig. 7.3a and 7.4a show the total bandwidth usage and number of hops while varying

D. In Fig. 7.3a, D varies from 2 to 7 when setting F = 2 and B = 5. For all three schemes,

the total bandwidth usage increases with D. This is due to the fact that larger D leads to

a larger load of virtual multicast requests coming to the substrate network. The proposed

MC-MSFT and NN-MSFT algorithms outperform the G-MSFT algorithm by as much as

35% when D is less than 4. When D is larger than 4, the MC-MSFT has better performance

than the NN-MSFT algorithm. This is because the level-based path splitting technique for

VNF node embedding in the proposed MC-MSFT can identify a better (i.e., closer) set of

substrate nodes to form the multicast service tree. However, when D > 6, the heavy virtual

multicast requests limit the option of MC-MSFT in searching of efficient node/link mapping.

In fact, when D is large, there are not many options to map virtual nodes, both MC-MSFT

and NN-MSFT essentially just carries out the link mapping with the multicast service tree.
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As a result, the curve of MC-MSFT gets close to that of NN-MSFT. The G-MSFT uses

more substrate resource than the MC-MSFT and NN-MSFT. This is because the G-MSFT

greedily chooses substrate nodes with higher resource availability.

Similarly, Fig. 7.3b and 7.4b show that the MC-MSFT algorithm has better performance

than the NN-MSFT and G-MSFT algorithms when varying F from 1 to 5, and setting

D = 4 and B = 5. When F ≤ 2, both MC-MSFT and NN-MSFT algorithms have similar

performance. This is because both MC-MSFT and NN-MSFT selects closer VNF nodes to

destinations. When F is larger than 2, the MC-MSFT uses as much as 20% fewer bandwidth

than the NN-MSFT and much less than the G-MSFT.

Fig. 7.3c and 7.4c show the performance comparison when varying B from 5 to 20

and setting D = 4 and F = 2. Interestingly, when B is less than 10, both MC-MSFT and

NN-MSFT find similar results. This is due to the fact that both MC-MSFT and NN-MSFT

can find the group of substrate nodes that are close to each other when substrate nodes

have higher flexibility (i.e., more available links) to connect with their neighbors, which is

further verified by Fig. 7.4c. As one can see that the proposed MC-MSFT algorithm again

outperforms the NN-MSFT and G-MSFT algorithms in terms of the total bandwidth usage.

This is because the technique of level-based path splitting can find closer substrate nodes

for the multicast request.

7.6 Chapter Summary

In this chapter, we have defined a new problem of Multicast-aware Service Function

Tree Embedding (M-SFTE). We have proposed an efficient Minimum Cost Multicast Ser-

vice Function Tree (MC-MSFT) algorithm. The MC-MSFT algorithm takes advantage of the

proposed level-based path splitting technique to map the closest (or minimum cost) missed

Virtual Network Function (VNF) nodes to minimize the needed resource and construct the

Service Function Chain (SFC) for each source-destination pair in the multicast request. Ex-

tensive simulations and analysis have demonstrated that the proposed MC-MSFT algorithm

outperforms the schemes directly extended from the traditional approaches by as much as

35% in terms of the total bandwidth usage.
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PART 8

CONCLUSION

Software-Defined Networking (SDN) decouples the network control and forwarding func-

tions to enable the programmable network control such that the underlying infrastructure

can offer flexible network services. SDN offers an architecture that is cost-effective, agile

and adaptable for today’s emerging high-bandwidth applications. With network virtual-

ization in SDN, the networking connectivity and services can be abstracted and decoupled

from the underlying infrastructure. As a result, multiple tenants can share the same phys-

ical infrastructure to advance the utilization of physical resource and minimize the service

CAPEX/OPEX. The process of Virtual Network Embedding (VNE) deals with how to map

Virtual Network (VN) requests onto a shared Substrate Network (SN) with limited resource.

The traditional VNE includes two important mapping processes: node mapping and

link mapping. For the node mapping, each virtual node that requires some specific com-

puting resource (such as CPU) needs to be mapped onto a substrate node with enough

computing resource. The link mapping will find an appropriate substrate path and reserve

enough bandwidth along the path in the substrate network for each virtual link. The VNE

optimization problem is known as NP-hard [9]. Hence, many researchers focus on efficient

heuristic and meta-heuristic approaches to solve the VNE problem.

Recently, with emerging cloud applications and services unlike the unicast (point-to-

point) tranmission, Internet applications (e.g. live stock quotes, IPTV, video-conferencing)

require the same data packet to be transmitted through the group of destinations. We

have studied how to efficiently embed a given virtual multicast tree in IP or optical networks

while minimizing the resource usage and avoiding the redundant multicast transmission, and

map virtual multicast requests over EONs or Flexgrid networks while satisfying the fanout

limitation on the multicast tranmission.
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In this dissertation, we have studied how to design efficient algorithms to map a virtual

network (in the form of virtual multicast network/tree) request onto the substrate network

while minimizing the required resource and multicast transmissions. We define a novel prob-

lem, namely, Virtual Multicast Tree Embedding (VMTE), which is different from traditional

MVNE and VNE problems. In MVNE, we are given a set of virtual nodes and need to map

these nodes onto the substrate network for multicast services, which can lead to the redun-

dant transmission. Similarly, in traditional VNE, one is given a virtual network graph and

the VNE results may not be efficient in handling multicast traffic, while encountering similar

inefficiencies. We note that VMTE is also different from IP multicast routing, whereas IP

multicast routers are fixedly located and mapping multicast routers (or virtual nodes) is

not needed. Accordingly, we propose efficient algorithms, called Closeness-Centrality based

Multicast-aware VNE (CC-MVNE), Virtual Multicast Tree Embedding based on dynamic

Impact Factor (VMTE-IF), and Impact Factor based Virtual Optical Multicast Tree Embed-

ding (IF-VOMTE) algorithms, to minimize the required resource and multicast transmissions

in IP and flexible optical networks.

Furthermore, we have defined new problems, which are called Multicast Services Em-

bedding in Optical Networks with Fanout Limitation (MSE-FL) and Multicast-aware Service

Function Tree Embedding (M-SFTE). To solve these problems, we have proposed efficient

algorithms, namely, Centrality-based Degree Bounded Shortest Path Tree (C-DB-SPT) al-

gorithm and Minimum Cost Multicast Service Function Tree (MC-MSFT) algorithm. The

Centrality-based Degree Bounded Shortest Path Tree (C-DB-SPT) algorithm takes advan-

tage of the centrality technique for multicasting node and link mapping while minimizing

the needed resource and satisfying the fanout limitation. The Minimum Cost Multicast Ser-

vice Function Tree (MC-MSFT) algorithm takes advantage of the proposed level-based path

splitting technique to map the closest (or minimum cost) missed Virtual Network Function

(VNF) nodes to minimize the needed resource and construct the Service Function Chain

(SFC) for each source-destination pair in the multicast request.
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