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Abstract—Network coding has become a useful means for
achieving efficient multicast, and the optical community has
started to examine its application to optical networks. However,
a number of challenges, including limited processing capability
and coarse bandwidth granularity, need to be overcome before
network coding can be effectively used in optical networks. In this
paper, we address some of these problems. We consider the prob-
lem of finding efficient routes to use with coding, and we study the
effectiveness of using network coding for optical-layer dedicated
protection of multicast traffic. We also propose architectures for
all-optical circuits capable of performing the processing required
for network coding. Our experiments show that network coding
provides a moderate improvement in bandwidth efficiency for
unprotected multicast while significantly outperforming existing
approaches for dedicated multicast protection.

I. INTRODUCTION

PTICAL crossconnect (OXC) technology for wavelength
division multiplexing (WDM) optical networks is revo-
lutionizing the infrastructure of many types of networks. A
future where transparent optical networks dominate backbone
communication networks is inevitable. Many of these OXC
devices have the capability to support multicast connections
at the physical layer, which has led to research into exploiting
applications of optical-layer multipoint connections [2], [3],
[4], [5], [6], [7], [8]. Not only will optical-layer multicast
provide solutions for multicast applications such as high-
bandwidth streaming multimedia and storage area networks,
but it allows for the implementation of more general virtual
topologies. These virtual topologies may be more bandwidth
efficient and have an overall lower hardware cost [5].
Multicast communication has also been revolutionized with
the advent of network coding in which logically disparate data
is coded and transmitted together in order to obtain data rates
not achievable with the traditional store-and-forward paradigm
[9]. However, in order to apply network coding directly to
optical networks, the signal must undergo optical-electrical-
optical (OEO) conversion at each node so that the data can be
buffered and processed for the coding operations. This opaque
networking approach prohibits many of the benefits of optical-
layer multicast. Furthermore, network coding is easier to apply
in networks with fine bandwidth granularity. WDM networks,
however, may be relatively coarse grained with individual
communication channels operating in the tens of Gbps.

A smaller, preliminary version of this work appeared in the Fifth Interna-
tional Conference on Broadband Communications (Broadnets 2008) [1].
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In this paper, we address these issues and provide heuristics
for coding on optical networks with coarse bandwidth gran-
ularity. We go over some related work in Section II, and in
Section III, we discuss how network coding can be used with
multicast-capable OXCs for a more transparent implementa-
tion. We provide our formulation for the problem of coding
with coarse-grained bandwidth in Section IV followed by the
heuristics for solving the problem in both the protected and
unprotected cases in Section V. We then present our simulation
results in Section VI. In Section VII, we present an architecture
for an all-optical coding unit, and we conclude in Section VIII.

II. RELATED WORK

In this section, we review some related work on network
coding as well as network coding applied to optical networks.

A. Network Coding

The concept of network coding was introduced in 2000 by
Ahlswede, Cai, Li, and Yeung [9]. They showed that it is
possible, using network coding, to achieve information rates in
a single-source multicast equal to the smallest individual max-
flow rates among the receivers. This represents a fundamental
breakthrough as this rate is not achievable in traditional store-
and-forward network models. Li, Yeung, and Cai later also
showed that linear network coding, in which nodes transmit
a linear combination of the data received on incoming links
over each outgoing link, is sufficient to achieve the maximum
flow rate [10].

The process of finding network codes for multicast can be
broken into two sub-problems:

1) find a subgraph of the available topology which will be

utilized in coding, and

2) find the algebraic operations which the nodes must

perform to realize a valid code on the given topology.

Jaggi et al. presented both deterministic and randomized poly-
nomial time algorithms for solving Subproblem 2 [11]. Lun
et al. modeled Subproblem 1 as a linear program which finds
the asymptotic optimal solution in polynomial time assuming
arbitrarily fine bandwidth granularity [12]. In this paper, we
look at Subproblem 1 in the context of coarse granularity.

B. Network Coding in Optical Networks

Much of the research on using network coding for optical
networks relies on OEO conversion with electronic buffering
and processing at each node. The use of photonic circuits for
this purpose are only just beginning to be investigated [13].



Bhattad et al. attempted to minimize the number of nodes
at which coding is required for a multicast network [14]. An
optical network then benefits by having fewer terminations and
retransmissions of a signal when using optical circuit switch-
ing. With this kind of scheme there is a trade-off between
the number of coding operations required, which necessitates
terminating the optical signal, and bandwidth saved as a result
of the coding.

Ahmed Kamal has employed coding as a mechanism for
a novel protection scheme in optical networks called 1 + N
protection [15], [16], [17], [18]. Under traditional shared pro-
tection in optical networks, backup bandwidth is provisioned
for each connection and is only used in case of primary route
failure. Several connections may share the same backup band-
width if it can be assumed that their primary routes are unlikely
to fail simultaneously. This is called 1 : IV protection because
one unit of backup bandwidth protects /N primary connections.
One standard 1 : N approach, p-Cycles, was introduced and
extensively studied by Grover et al. [19], [20]. With p-Cycles,
a bidirectional cycle of spare bandwidth is formed among
several nodes in the network which can be used in case of
a failure on the primary path between two end-nodes which
are both on the cycle. Any links which are a chord to the cycle
are also protected. However, by employing network coding on
the p-Cycle, the protected connections simultaneously transmit
their data (in coded form) on the backup bandwidth. In case
of a primary failure, the end-nodes of the failed connection
can recover the data from the coded backup transmission, and
there is no need to detect the failure nor retransmit on the
backup route which would hinder recovery time. However,
the signal is terminated, processed, and retransmitted at each
intermediate node on the backup route. The buffering and
processing time then impacts the apparent recovery time, so
it should be smaller than the detection and retransmission
time of the alternative non-coding method. In the original
work, Kamal presented a solution for the single-error model
[15] and later extended it to handle multiple failures [16]
and for GMPLS-based implementation [17]. A generalized
version of the approach, which does not use p-Cycles was also
introduced [18]. Kamal and Ramamoorthy proposed another
generalization via implementation in an overlay layer [21]. It
has also been proposed that the OEO conversion of this type of
scheme could be avoided by utilizing a photonic XOR element
[13]. We consider protected multicast in this paper as well as
more general coding circuits.

III. CODING OPERATIONS IN OPTICAL NETWORKS

As defined by Yeung et al. [22], network codes can be
described in terms of local encoding mappings for each node
v,

ke : pln@| _, p

where F' is the base field, In(v) is the set of channels coming
in to v, Out(v) is the set of channels going out from v, and
e € Out(v). This describes the computation that each node in
the network must execute in order to implement the code but

requires only local information. For linear network codes, k.
gives a linear combination of each symbol on the incoming
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Fig. 1. An optical switch with a sharable bank of b optical circuits which
perform coding operations.

channels. This is a relatively straightforward operation in
electronic networks which can buffer packets and perform the
computations with readily available ALU operations. If this
process was implemented directly on an optical network, the
signal would have to be terminated, converted to electronics,
and buffered before computation and retransmission at each
node. This conversion and buffering is undesirable for optical
WDM mesh networks.

However, there exists optics technology that could enable
these operations to a limited extent without OEO conversion
or electronic buffering. All-optical buffers have also been
proposed for use in certain optical communication applications
such as Optical Packet Switching. These buffers are typically
built using a series of fiber delay lines onto which the optical
signal can be switched [23], but more sophisticated technology
based on slow-light effects in optical microcavity resonators
have also been investigated [24], [25]. With Optical Packet
Switching, optical buffering is used to store a signal for a very
short amount of time for the purpose of aligning the packet
with an available outgoing time slot. A similar approach could
be used for single-source network coding in optical networks.
The symbols for coding could be delayed just long enough
to be aligned before being input into an all-optical arithmetic
unit which would perform a serial coding operation over the
incoming signals.

Such an arithmetic unit could be built using all-optical logic
gates and optics-on-a-chip technology [26], [27], [28], [29].
For instance, the simplest of codes could be supported by a
single all-optical XOR gate built with an optical interferometer
[28], [29]. The coarse bandwidth granularity forces all but a
small number of the coefficients in the linear combination to
be zero, so only a few incoming channels will factor into
the computation which keeps the circuit complexity in check.



These operations devices could be deployed on a shared-per-
link or shared-per-node basis at an all-optical cross-connect.
For an illustration of such a switch layout, see Fig. 1. The
details the all-optical serial arithmetic unit are presented in
Section VII.

Network coding does have some disadvantages, and thus
may not be desirable for every optical network. The processing
of data required for network coding is suitable for electronic
networks because they are opaque. While complete trans-
parency is not possible for network coding in optical networks,
coding operations may be handled in a way that maintains
many of the advantages of transparency. The switches must
be aware of information such as data representation and data
rates. Furthermore, the control scheme must take into account
varying propagation delays which impacts the length of the
optical buffering. Since semi-permanent streams of traffic will
minimize the transient effects of propagation delays, bursty
traffic may not necessarily benefit from network coding. In
order to complexities arising from varying data rates, in this
paper, we only address single-source coding.

IV. PROBLEM FORMULATION

As discussed in Section II, the coding problem can be split
into two independent subproblems.

Given a particular multicast request of rate r between a
source s and a set of sinks 7', there exists a solution to
Subproblem 2 if there exists a solution to Subproblem 1 which
contains a flow of size r between s and ¢ for each ¢ € T'. Note
that for sinks t1,t5 € T, the flows to ¢; and ¢y respectively
need not be independent. Yeung et al. provide a polynomial-
time algorithm for Subproblem 2 which codes over symbols
of size O(log |T'|) [22]. Thus, the problem of finding efficient
network coded routes is reduced to Subproblem 1.

For general multicast networks, Lun et al. formulated Sub-
problem 1 as a linear program which finds an asymptotically
optimal solution in polynomial-time [12]. This method is
practical for electronic packet-based networks which can split
a message into arbitrary fractions across different communica-
tion channels. However, with a coarse bandwidth granularity,
this method will not necessarily produce usable solutions.
In optical networks, the bandwidth granularity is usually
extremely coarse, often with a minimum subdivision on the
order of tens of Gbps. Thus, for our purposes, it is more
appropriate to model the problem as follows.

Minimum Cost Coded Flow Problem:

Instance: A directed weighted multigraph G =

(V,E), a source vertex s € V, a set of sink

vertices T C V with s ¢ T', and a positive integer

T.
Question: Find a minimum cost subgraph G’ =

(V', E") of G with TU{s} C V' such that for each

t € T, G’ contains r edge-disjoint paths between

sandt.

In this model, each edge represents the minimum subdivi-
sion of bandwidth (e.g. one edge could be equivalent to one
wavelength on a fiber).

In fact, the directed Steiner Tree problem can be reduced
to the Minimum Cost Coded Flow problem for each r € N,

(@) Gpst

f O O 153
(b) Transformation

Fig. 2. Given the topology shown in part (a), transform as shown in part (b)
in order to reduce the Directed Steiner Tree Problem to the Minimum Cost
Coded Flow Problem for r = 2.

and the directed Steiner Tree problem is known to be NP-hard
[30]. We sketch here the proof of this for » = 2. It should be
easy to see how this generalizes for all » € N.

Suppose Gpsr is a graph on which we wish to find a
directed Steiner tree from the source s to sink set 7. We
can transform this into an instance of Minimum Cost Coded
Flow by creating 2 copies of Gpsr: Ghgr and G4 ¢ with
Gpst & GLer = G4gr. Let s' and s? be the vertices
corresponding to s in G}, g7 and G%, ¢ respectively. Similarly,
let 77 and 75 be the sink sets corresponding to 7'. Create a
new source s’ with an edge to each of s! and s2. Create a
new sink set 7" which contains one new vertex ¢, for each
t; € T. Then from each ¢t} € Tj, create an edge from t}
to ¢;. Similarly, create edges from ¢? to t,. Now consider
a solution to the transformed problem and suppose ¢’ € T.
Given that ¢’ has exactly one incoming edge from each of
Gher and G% 4, exactly one path from s’ to ¢’ is in each
of GL ¢ and G% 4. Therefore, the portion of the subgraph
contained in G},¢; gives a minimum Steiner tree for Gpgr.
Conversely, 2 copies of the minimum Steiner tree gives a
minimum solution to the transformed instance of the Minimum
Cost Coded Flow problem. For an illustration of the reduction,
see Fig. 2. Therefore, for any r € N, the Minimum Cost Coded
Flow Problem is NP-hard.

Kiraly and Lau formulated a similar problem in which the
topology is undirected. The problem asks for a minimum cost
orientation (cost varies depending on which direction an edge
is oriented) of the graph such that the source is r-arc-connected
to each sink. This problem was shown to be NP-Complete and
hard to approximate within a factor of log [31], [32]. This



problem generalizes to an oriented hypergraph problem which
was motivated by the coded multicast problem in wireless
networks in which the tail of a hyperedge is the transceiver
and the head is the set of receivers of a wireless transmission.

Note that this problem statement considers the cost of
bandwidth only and does not require wavelength continuity.
We leave the problem of optimizing over additional costs (e.g.
the cost of the optical circuitry for implementing the coding
operations) and the incorporation of wavelength assignment as
future work.

V. HEURISTICS

In this section, we present two heuristics for solving the
Minimum Cost Coded Flow problem for optical WDM net-
works.

This problem is difficult because the minimum cost coded
multicast may simply be multiple copies of a minimum
directed Steiner tree. In this instance, it makes sense to simply
compute a good Steiner tree using an approximation algorithm
and allocate multiple wavelengths along the resulting tree.
Consider the two-wavelength butterfly network with unit edge
cost shown in Fig. 3. When s = A, T = {F,G}, r = 2,
the optimal solution using 8 edges is achieved by a two-unit
Steiner tree as shown in Fig. 3(a). Now suppose D is added
to the sink set (I' = {D, F, G}). We might expect a similar
solution as shown in Fig. 3(b). However, this solution uses 10
edges whereas the network coded solution in Fig. 3(c) uses 9.
While a 10% bandwidth savings here may not seem significant,
the throughput doubles, in this case, when network coding is
used.

A. Multicast with Network Coding

Our approach is motivated by the classic shortest path
heuristic [33] for finding Steiner trees in undirected networks.
In this algorithm, a tree is built iteratively by selecting the
path which will result in the least-cost increase to the partial
solution. We generalize this concept by applying it in a rooted,
directed fashion for r-edge-connectivity. Two variations are
presented here in Algorithms 1: Coded Multicast using Ar-
bitrary node ordering (CMA) and 2: Coded Multicast using
Greedy node ordering (CMG).

1) CMA Heursitic: In CMA the subgraph is built iteratively,
starting with a Steiner 1-edge-connected subgraph which then
increments to a 2-edge-connected graph and so on. At each
iteration, we consider the nodes in an arbitrary order, finding
the path to each node which is disjoint from all other paths
to that node found in previous iterations but which causes the
smallest increase in cost to the subgraph.

CMA has complexity O(r|T|(|V]|+|E|)). To see this, note
that each edge in the current portion of the subgraph H
is examined exactly once between lines 7 and 12 (either
for deletion of setting of zero weight in Gg) because each
of Dy,1,Pv,2,---,Pv,i—1 are edge disjoint. It is also evident
that each of lines 5, 6, 13 (using some linear-time shortest
path algorithm), and 14 take O(|V'| + |E|). This block must
be executed r|T| times. This dominates theO(|V]), O(r|T|),
and O(1) running times of lines 1, 2, and 17, so the time

G

F

. G
multicast for

(A,{D,F,G})

)G

(c) Optimal multicast for (A, {D, F, G}

Fig. 3. Multicast sessions in the butterfly topology with two wavelengths of
unit edge cost. Allocated bandwidth is represented by heavier, dashed lines.

complexity of the algorithm is O(r|T|(|]V| + |E|)). With
coarse-grained networks, r is small enough that is can be
considered constant. Growth in 7 would correspond to a higher
degree of stream divisibility, and therefore, finer granularity
with respect to the total data rate of the multicast session.

2) CMG Heursitic: CMG is similar to CMA except that
at each iteration, the subgraph is incremented using a greedy
ordering. To that end, a new potential path is computed for
each sink, and only the path which results in the smallest
increase in cost to the subgraph H is made permanent. This
results in lines corresponding to 5 through 13 of CMA being
run O(r|T|?) times instead of O(r|T|) resulting in a total
running time of O(r|T|*(|V| + |E|)).

B. Protected Multicast with Static Network Coding

These heuristics can be easily altered to find subtopologies
for multicast sessions which are robust against link failures
using static network codes. Static network codes are codes
which are robust against a particular set of potential link-
failure patterns. If one of these given failure patterns occurs,



Algorithm 1 CMA: Coded Multicast using an Arbitrary
node ordering

Algorithm 2 CMG: Coded Multicast using a Greedy node
ordering

Input: directed multigraph G, source s, sink set T, r units
of bandwidth requested
Returns: subgraph H containing r disjoint paths be-
tween sand v foreachv € T
1: Initialize subgraph H <« (V. 0).
2: Create an initially empty |T'| x  path matrix p such that
Dy, Will store the ith edge disjoint path from s to v.
3: forifrom 1tor do

4: forveTdo

5: SetGy <« G

6: Set Hy < H

7: for jfrom1toi—1do

8: Delete edges on p,, ; from both G, and Hy.
9: end for
10: for each remaining edge e € H, do
11: Set the weight of e in Gy to 0.

12: end for

13: Find p, ;, the shortest s-v path in Go.
14: Set H <« HUp,,.

15:  end for

16: end for

17: return H

then the message can be recovered at the sinks without
changing any of the local encoding mappings at any of the
network nodes. In optical networking, this serves the same
function as dedicated protection of a route, in which two
copies of a message are sent: one on the primary route, and the
other on the backup route. In case of a link failure, the receiver
for the protected connection may simply reconfigure to accept
the message on the backup route. With both static network
codes and optical-layer dedicated multicast protection, no
retransmission is needed, and no crossconnect needs to detect
the failure or reconfigure to recover from the failure.

Koetter and Médard [34] proved that a static network code
exists for a multicast session in a topology G which is robust
against a set F' of failure patterns (such that each f € F is
a set of edges defining the failure) if there exists a network
code for the multicast in the topology G — f for all f € F.

Using this result, we obtain robust versions of CMA and
CMG, which we refer to as RCMA and RCMG respectively,
by replacing line 8 in CMA and line 13 in CMG with the
following line:

for each edge («,y) on p, ;, delete all edges
with endpoints x and y from both Gy and H

which will ensure that for each ¢t € T, the r paths from s to
t are link-disjoint rather than simply edge-disjoint. This will
protect a single-unit of multicast bandwidth against a single-
link failure by finding a subgraph which is Steiner 2 link-
connected and computing its static network code.

Given a suitable subgraph for protecting against a single-
link failure, a static network code can be found in polynomial
time over a field containing 2™ (m + 1) elements where m is
the total number of channels in the subgraph [22].

Input: directed multigraph G, source s, sink set T, r units
of bandwidth requested
Returns: subgraph H containing r disjoint paths be-
tween sand v foreachv € T
1: Initialize subgraph H < (V. 0).
2: Create an initially empty |T'| x » path matrix p such that
Dy, Will store the ith edge disjoint path from s to v.
3: forifrom 1tor do

4: SetTy<T.
5. while T, # () do
6: Initialize node vpes: < null.
7: Initialize path ppes: < null.
8: Initialize cost cpest < o0.
9: forv e Ty do
10: SetGy <« G
11: SetHy < H
12: for jfrom1toi—1do
13: Delete edges on p, ; from both G and Hj.
14: end for
15: for each remaining edge e € Hy do
16: Set the weight of e in G to 0.
17: end for
18: Find p,; with cost ¢, the shortest s-v path in
Gy.
19: if ¢ < cpese then
20: Set cpest < ¢
21: Set Pbest < DPu,i
22: Set Vpest <= v
23: end if
24: end for
25: Set H < H U ppest.
26: Set To <= Th — Vpest-
27:  end while
28: end for

29: return H

Without coding, in order to guarantee dedicated protection
against the failure of a single link, a backup tree must be
computed which is link disjoint from the primary tree. Another
approach for the protection of optical layer multicast is the
idea of self-sharing trees which allow certain portions of the
backup bandwidth to protect against different link failures on
the primary tree [35]. The primary and backup bandwidth
in this approach must collectively contain two link-disjoint
paths between the source and each sink in order to protect
against a single failure, so collectively, this bandwidth forms
a subtopology suitable for dedicated protected multicast with
network coding (assuming edges are directed rather than
orientable). Therefore, in terms of bandwidth, allowing coding
is no less efficient than using self-sharing but has the added
benefit of being dedicated protection rather than shared pro-
tection. However, cross-sharing, i.e. sharing backup bandwidth
between two different multicast sessions [36], may allow for
some bandwidth savings over the coded approach, but contrary
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Fig. 4. Topologies used in the simulations.

to the coding approach, will suffer delay from reconfiguration
and retransmission.

Intuitively, the reason that network coding has the potential
to greatly improve upon the dedicated backup tree method is
that the network coding approach guarantees protection for the
whole group given a local connectivity requirement between
the source and each sink. The backup tree method requires a
much more stringent global connectivity property in order to
protect the whole group. A route satisfying this property is
more difficult to find and less likely to exist.

VI. SIMULATION RESULTS

We conducted simulations in order to determine the po-
tential benefit of using network coding for both optical layer
multicast as well as protected optical layer multicast. For
both cases, we use a network model in which each link in
the network contains enough unused bandwidth to support all
requests. Comparisons are then made with non-network coding
solutions.
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Fig. 5. For the Pacific Bell network under CMA; (a) the fraction of the
multicast sessions in our simulation which benefit from network coding, (b)
the fraction of bandwidth saved for those sessions in which coding was
beneficial.

In this section, we present the results on three topologies
(shown in Figure 4): the 15-node Pacific Bell network, the 21-
node Italian network [37, p. 193], and a randomly generated
50-node network. The random network was generated using
the rectangular grid method [38]. Each data point presented is
the average over 1000 different multicast sessions. The source
for each simulated multicast session was chosen randomly
from a uniform distribution. A fixed number of sinks was then
also chosen uniformly at random.

A. Multicast

For the case of unprotected multicast, we simulated both
the CMA and CMG heuristics. We compared each algo-
rithm against the traditional multicast algorithm obtained from
running multiple instances of the heuristic with only one
unit of bandwidth requested (which will, by definition not
require any network coding). That is, we simply compute
a single-unit multicast session, remove the allocated edges,
and then repeat until we have allocated the desired amount
of bandwidth for the r-unit multicast. Since all links have
enough available bandwidth to support all requests in our
model, this is effectively r copies of the same directed Steiner
tree. This comparison allows us to see the impact that network
coding has vis-a-vis a non-network coding algorithm of the
same basic approach and complexity. Thus, we can attribute
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Fig. 6. For the Pacific Bell network under CMG; (a) the fraction of the
multicast sessions in our simulation which benefit from network coding, (b)
the fraction of bandwidth saved for those sessions in which coding was
beneficial.

any improvement over traditional multicast to network coding
rather than tertiary differences between algorithms.

Recall that in many cases, there is no improvement possible
for a particular multicast session [see Fig. 3(a)]. In fact, in the
optimal case, the improvement in throughput due to coding is
conjectured to be bounded by a factor of two [39]. In practice,
we found no advantage at all to using coding (even with the
optimal subgraph) when compared with an optimal multicast
route. A similar observation was also made by Li, Li, and Lau:

“the fundamental benefit of network coding is not

higher optimal throughput, but to facilitate signifi-

cantly more efficient computation and implementa-

tion of strategies to achieve such optimal through-

ut.” [39]
This is the reason why we chose to study the performance of
each heuristic against its corresponding traditional multicast
algorithm rather than the optimal case. However, unlike Li,
Li, and Lau, we consider a fixed desired throughput and then
measure bandwidth usage. In order to better understand the
impact of the cases in which coding does offer a more efficient
solution, we first look at the fraction of multicast sessions in
which network coding allowed a nonzero improvement, and
then for those cases, we computed the amount of bandwidth
that was saved as a fraction of the bandwidth required using
the traditional multicast approach. These values were for
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Fig. 7. For the Italian network under CMA; (a) the fraction of the multicast
sessions in our simulation which benefit from network coding, (b) the fraction
of bandwidth saved for those sessions in which coding was beneficial.

various multicast group sizes and bandwidth request amounts.
The results are plotted in Figures 5 through 10.

We found that, for both algorithms on all topologies the
fraction of sessions which benefit from coding was lowest
when the multicast group size was very small or very large and
peaked somewhere in the middle. This seems to be consistent
with theoretical results which state that there is no advantage to
network coding in the case of either unicast or broadcast [40].
However, the fraction of beneficial coding sessions with the
arbitrary-order heuristic peaks with a relatively larger group
size. The limited sample of network topologies also seems to
indicate that larger networks have a greater potential for coding
benefit. This is again likely because, with larger networks,
there are many more potential solutions, and thus the near-
optimal ones are more difficult to isolate.

Also, the fraction of comparatively beneficial sessions
seems to be an order of magnitude higher for CMA. This
is because the greedy-order heuristic for the uncoded tradi-
tional multicast variation finds many more optimal or near-
optimal routes which are very difficult to improve upon as
stated earlier. This tends to suggest that network coding and
higher-complexity heuristics are two options for improving the
bandwidth efficiency of multicast. We leave the details of this
hardware space/time complexity trade-off to future work.

These simulations also show that the amount of bandwidth
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Fig. 8. For the Italian network under CMG; (a) the fraction of the multicast
sessions in our simulation which benefit from network coding, (b) the fraction
of bandwidth saved for those sessions in which coding was beneficial.

requested has very little impact on the fraction of sessions
which see an improvement. It may be that these requests
simply are too-coarse to show this impact. However, the
bandwidth savings when coding does give an improvement
increases with the amount of bandwidth requested which
indicates that finer-grained bandwidth subdivision relative to
the total amount of bandwidth requested does indeed allow for
more bandwidth efficient solutions.

One surprising finding, however, is that the amount of band-
width saved seems to be similar regardless of the algorithm
or topology. In all cases, our simulation showed a general
decrease in savings as group size increased and an increase in
savings as the requested bandwidth increases. Again, this is
likely due in part to the granularity and near-optimal strength
of the base algorithms as described above. However, it also
suggests that there may be typical route sub-topologies that
occur frequently and are improved upon in the same way
regardless of the algorithm and larger network topology. For
instance, variations of the butterfly example (see Fig. 3)
may occur often. But, when the two or three sinks involved
in the “butterfly” part of the route become an increasingly
smaller part of the entire coding subgraph, the impact of the
improvement on that part also become relatively smaller.

50-Node Network - Arbitrary Order

o0
@ £
88 17
3 o
%3
-
oo 05 7 A
sg |
55 |22 ]
[ 0 +—, units of
&
= bandwidth
ng N s o T 2 requested
Y S u
o7 o7 Q¥ 0?)0) Q@?) A° o g
N

fraction of nodes in the multicast group

(@
50-Node Network - Arbitrary Order

units of
bandwidth
requested

fraction of bandwidth saved when
coding benefits session

fraction of nodes in the multicast group

(b)

Fig. 9. For the random 50-node network under CMA; (a) the fraction of
the multicast sessions in our simulation which benefit from network coding,
(b) the fraction of bandwidth saved for those sessions in which coding was
beneficial.

B. Protected Multicast

We also simulated RCMG, the greedy-order variation of our
heuristic, for robust multicast. as indicated in Section V-B with
r = 2 to get a subgraph with two link-disjoint paths between
the source and each sink. If the source is 2 link-connected to
each sink and the shortest-path algorithm used in line 18 is
altered to instead find the shortest path which does not block
all other s — v paths (e.g. run Suurballe’s algorithm [41] for
finding the shortest path pair and use only the shorter of the
two paths), then this algorithm is guaranteed to find a solution.
This is a tremendous advantage over traditional optical-layer
multicast dedicated protection algorithms which often fail to
find two disjoint directed Steiner trees.

For comparison with other optical-layer multicast protection
algorithms, we implemented a naive algorithm which attempts
to find two link-disjoint directed Steiner trees by first using
CMG with r = 1, deleting all links containing edges in the
resulting tree, and then running CMG with r» = 1 a second
time to find a backup tree.

We also implemented a heuristic called the Minimum Cost
Collapsed Ring (MCCR) algorithm which was recently pro-
posed by Rahman and Ellinas [42] for dedicated multicast
protection and reported to have low blocking. This approach
uses the inherent robustness of the ring structure to construct
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Fig. 10. For the random 50-node network under CMG; (a) the fraction of
the multicast sessions in our simulation which benefit from network coding,
(b) the fraction of bandwidth saved for those sessions in which coding was
beneficial.

a protected multicast. First, a ring is found, and two paths are
set up in opposite directions on different wavelengths which
each terminate at the last node before the source.

We experimented with all three algorithms on our three
test networks and measured the blocking rate as well as the
bandwidth used by each session. The blocking rate is defined
as the number of requested sessions which can not be fulfilled
over the total number of requested sessions. Note that since
we assume that all links have enough available bandwidth
to support all connections, a connection cannot be blocked
because some links are saturated due to inefficient routing
of previous sessions. Thus, all blocking is due to the fact
that the topology does not admit a solution (a case in which
the network coding approach has an advantage) or because a
solution exists and the algorithm fails to find it. The blocking
rates of the three algorithms are shown over varying multicast
group sizes in Figures 11(a), 12(a), and 13(a).

After comparing the blocking rates, we consider bandwidth
efficiency by comparing each of the naive and MCCR algo-
rithms independently against the network coding approach.
Since a different set of sessions are blocked by each algorithm,
we only look at the subset of connections in which both
the naive algorithm and the coding heuristic (respectively the
MCCR algorithm and the coding heuristic) found a solution. In
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Fig. 11. For the Pacific Bell network; (a) the algorithm blocking rate for

each of the naive heuristic, MCCR heuristic, and our RCMG coding heuristic,
(b) the amount of additional bandwidth needed by the naive heuristic (resp.
MCCR heuristic) for those sessions in which both the naive and coding
heuristics (resp. MCCR and coding heuristics) found a valid solution.

our simulations, no session was ever blocked using the network
coding heuristic, so these comparisons do not overstate the
relative bandwidth efficiency of the coding heuristic. The data
points in those plots [Figures 11(b), 12(b), and 13(b)] is
the percent of additional bandwidth needed when using the
traditional protected multicast approach versus the network
coding approach. That is, we plot

Bnc — Be « 100,

fe

where [pc is the bandwidth used with non-coding approach
and (¢ is bandwidth used with coding approach

In the Pacific Bell network [Figure 11(a)], the MCCR
algorithm blocked significantly fewer sessions than the naive
algorithm, although both MCCR and the naive algorithm
steadily increased blocking as the size of the groups grew
larger. However, the network coding approach outperformed
both algorithms, not blocking any of the sessions. For those
sessions in which the naive algorithm did not block, it used
up to 10% more bandwidth than the coding algorithm [Figure
11(b)]. Even though the MCCR algorithm blocked less often
than the naive algorithm, it used relatively more bandwidth
compared with the coding approach, using as much as 35%
more.

For the two larger networks [Figures 12(a) and 13(a)], the



Italian Network

: o * >
o 09
T os
g o7
=
300 o -
-g oa —o—NAIVE
E O
g 8.; 7 —@—MCCR -
& CODING
© 0.1 - -
0 -+
0 0.2 0.4 0.6 0.8 1
fraction of nodes in the multicast group
(@
Italian Network
60
c -
£_ % ——NAIVE |
_E £ —i—MCCR
53 40 -
o o
£ o
3 20
3%
s g 10 o ——e . . -
° K.——v— v v g -
X 0 T T
0 0.2 0.4 0.6 0.8 1

fraction of nodes in the multicast group

(b)

Fig. 12. For the Italian network; (a) the algorithm blocking rate for each of
the naive heuristic, MCCR heuristic, and our RCMG coding heuristic, (b) the
amount of additional bandwidth needed by the naive heuristic (resp. MCCR
heuristic) for those sessions in which both the naive and coding heuristics
(resp. MCCR and coding heuristics) found a valid solution.

MCCR outperformed the naive algorithm, but to a lesser extent
than with the Pacific Bell network. In both these instances the
blocking rate still approached 1.0 with the increase in group
size. The trend in additional bandwidth used also continued
[Figures 12(b) and 13(b)] with the naive algorithm using up
to 10% more bandwidth. However, the MCCR algorithm used
as much as 50% more bandwidth in the Italian network and
as much as 70% more in the random 50-node network.

Given these results, it appears that network coding provides
a very good solution for robust multicast in optical networks
as it has significantly lower blocking and uses less bandwidth
than existing approaches.

VII. ARCHITECTURE OF AN ALL-OPTICAL CODING UNIT

Now that we have established potential benefits of network
coding in optical networks, we look at how the coding
operations might be implemented. In this section, we give an
architecture capable of performing the coding arithmetic in
GF(2™), the finite field with 2™ elements. Symbols in GF(2")
can be represented using m bits where each bit represents a
coefficient to the polynomial 2™ ! +2™ 24+ ..+ 22+ +1.
Addition is accomplished using a bit-wise XOR, and multipli-
cation is done modulo some irreducible polynomial of degree
m. In GF(2™), a linear multicast code may be constructed
in polynomial time supporting 2™ — 1 terminals using an
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Fig. 13. For the random 50-node network; (a) the algorithm blocking rate

for each of the naive heuristic, MCCR heuristic, and our RCMG coding
heuristic, (b) the amount of additional bandwidth needed by the naive heuristic
(resp. MCCR heuristic) for those sessions in which both the naive and coding
heuristics (resp. MCCR and coding heuristics) found a valid solution.

algorithm of Jaggi er al. [11], [22]. We denote the physical
bit separation as 7. An overview of the architecture is shown
in Fig. 14. Given two serial inputs A and B € GF(2™),
the coding unit first performs the scalar multiplication and
addition C4 - A+ Cp - B using the coefficients C4 and Cp
from the local encoding kernal. This multiplication takes 2m
bits on the serial line, so two of these units run in parallel
in order to avoid the need for buffering. The stream of input
symbols are multiplexed between these two units. This can
be accomplished using a high-speed 1 x 2 switch such as
the one demonstrated by Herrera et al. which operates at 160
Gbps [43]. The resulting 2m-bit values are normalized to m-
bit values concurrently using the normalization unit. We will
now describe the scalar multiplication/addition unit and the
normalization unit.

A. Scalar Multiplication/Addition Unit

Multiplication in this architecture is accomplished using the
shift-and-add approach. The input symbols are split into m
copies and then fiber delay lines shift each copy by the appro-
priate number of bits. The fiber delay lines could be set for a
fixed delay or could be controllable to accommodate multiple
transmission rates. Each bit of the scalar coefficient controls an
all-optical “ON/OFF” switch, such as a semiconductor optical
amplifier (SOA), which effectively multiplies the correspond-
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ing copy of the input signal by that bit. The coefficient-bit by noticing that
control signal is fixed for a particular session, so high speed
switching is not necessary here. Addition in GF(2™) is merely z™ L 552 + 1
an XOR of the operands, and can be accomplished with an all- $m+2 = $3 + xz
optical XOR gate [27], [28], [29]. Figure 15 shows a diagram s = x +
of this all-optical circuit. This design uses two 1 : N optical
splitters, 2m — 2 delay lines (which need not allow the same g2m—4 . gm-3 o gm—
maximum delay), 2m SOAs, and at most m two-input all- p2m=3 — gm-2 L m-3
optical XOR gates. z2m=2 — gm-1 4 o m-2

B. Normalization Unit

The normalization unit in Fig. 16 shows how two 2m — 1-bit
outputs of the multiplication/addition units can be normalized
with a reducing polynomial of the form z™ + = + 1. This
polynomial is irreducible for several choices of m (such as
m=2,3,4,6,7,9,15,22,28, 30,46, 60 and 127 [44, p. 158]).
If another choice of m is desired, the architecture can be easily
modified for an appropriate modulus.

Our design is based on the GF(2™) normalization step
in Itoh-Tsujii algorithm [45], [46]. This approach reduces
a polynomial of the form dom—22%™ ™2 4 dopy_sx?™ 3 4
d2m74$2m_4+. . .+d3x3+d2x2+d1x+do where dl S GF(?)

That is, the term d;x' can be removed for all ¢ > m and
replaced with two terms in GF(2™). Thus, the polynomial
becomes 7,1 2™ L 1o x™ 241 _sx™ S 4. a4
rox? 4+ r1x + 19 where

To = do e dn

™ = dl D dm+1 SY) dm

T2 = dy © dmy2 D dmt
3 = d3 D dmys D dpto
Tm—3 = dm—3 @ dopn—3 D dan—s
Tm—2 = dm—a @ dopm—2 O dom—3
Tm—1 = dm—1 @ dopm—2.
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Thus, we may XOR the lower m bits with two copies of the
upper m — 1 bits (with the second copy being up-shifted one
bit). This operation is accomplished by splitting the symbol
onto two space-disjoint lines using an m7 clock as a control
signal and delaying the lower bits by m7 in order to align
them with the upper bits. The upper bits are split into two
copies with a one-bit delay on one copy. The three signals
can then be XORed to get the normalized value.

In the portion of the circuit where the value is split onto
three separate lines, the value takes only m-bits of space, so
this is a prudent location to multiplex the two outputs from
the multiplication/addition unit as illustrated in Fig. 16. This
design requires two 1 x 2 switches, a 1:2 splitter, two 2:1
combiners, two fiber delay lines, and two two-input all-optical
XOR gates.

Alternatively, normalization in GF(2™) may take place
using a parallel normalization unit (see Fig. 17). This ap-
proach has been proposed for inband-forward-error-correction
in SDH/SONET networks [47]. This would also require the
use of serial-to-parallel and parellel-to-serial converters. This
technology has been proposed for use in label recognition [48],
[49], [50]. A design for the parallel normalization unit using
the ™ 4+ x 4+ 1 modulus is shown in Fig. 18 which uses
2m — 1 two-input XOR gates as well as m splitters. In this
design, only fixed delay lines are needed to ensure the proper
propagation delay on each of the inputs.

VIII. CONCLUSIONS

In this paper, we investigated several issues related to the use
of network coding for optical-layer multicast. We formulated
the problem of finding a subgraph of the optical topology
for coding and discussed its complexity. We gave heuristics
for finding bandwidth efficient subgraphs for use in coding

An illustration of using a parallel normalization circuit with the appropriate serial-to-parallel and parallel-to-serial conversion.
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for both protected and unprotected multicast. Additionally, we
have proposed architectures for supporting coding operations
in optical hardware while maintaining as much transparency
as possible.

Our simulation results have shown that network coding
can improve the bandwidth efficiency of mutlicast sessions
over analogous directed Steiner tree heuristic methods even
in optical networks which have relatively coarse-grained sub-
divisions of bandwidth. The fraction of multicast groups
which could be improved varies depending on the topology
and the heuristic used, but the overall trends are similar. In
general, network coding has the greatest potential benefit in
the less-complex algorithms where coding provides an option
for increased efficiency as opposed to algorithms of greater
complexity which find better routes for non-coded multicast.
Furthermore, we showed that the network coding approach to
dedicated protection is far superior than existing methods in
terms of blocking rate and bandwidth usage.

Some future research directions include investigating the
problem of coding over multiple sessions from multiple
sources and exploring the bandwidth/hardware trade off. There
is also theoretical work to be completed related to network
coding in coarse-grained networks. Some of these questions
are well-known including a conjecture of Kriesell’s [51] and
a question of Li and Li on the theoretical coding advantage
using coding in undirected networks with integral routing [40].
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