111 research outputs found

    Efficient AUV Navigation Fusing Acoustic Ranging and Side-scan Sonar

    Get PDF
    This paper presents an on-line nonlinear least squares algorithm for multi-sensor autonomous underwater vehicle (AUV) navigation. The approach integrates the global constraints of range to and GPS position of a surface vehicle or buoy communicated via acoustic modems and relative pose constraints arising from targets detected in side-scan sonar images. The approach utilizes an efficient optimization algorithm, iSAM, which allows for consistent on-line estimation of the entire set of trajectory constraints. The optimized trajectory can then be used to more accurately navigate the AUV, to extend mission duration, and to avoid GPS surfacing. As iSAM provides efficient access to the marginal covariances of previously observed features, automatic data association is greatly simplified — particularly in sparse marine environments. A key feature of our approach is its intended scalability to single surface sensor (a vehicle or buoy) broadcasting its GPS position and simultaneous one-way travel time range (OWTT) to multiple AUVs. We discuss why our approach is scalable as well as robust to modem transmission failure. Results are provided for an ocean experiment using a Hydroid REMUS 100 AUV co-operating with one of two craft: an autonomous surface vehicle (ASV) and a manned support vessel. During these experiments the ranging portion of the algorithm ran online on-board the AUV. Extension of the paradigm to multiple missions via the optimization of successive survey missions (and the resultant sonar mosaics) is also demonstrated.United States. Office of Naval Research (Grant N000140711102

    Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles

    Get PDF
    We present a cooperative bathymetry-based localization approach for a team of low-cost autonomous underwater vehicles (AUVs), each equipped only with a single-beam altimeter, a depth sensor and an acoustic modem. The localization of the individual AUV is achieved via fully decentralized particle filtering, with the local filter’s measurement model driven by the AUV’s altimeter measurements and ranging information obtained through inter-vehicle communication. We perform empirical analysis on the factors that affect the filter performance. Simulation studies using randomly generated trajectories as well as trajectories executed by the AUVs during field experiments successfully demonstrate the feasibility of the technique. The proposed cooperative localization technique has the potential to prolong AUV mission time, and thus open the door for long-term autonomy underwater.Massachusetts Institute of Technology. Department of Mechanical EngineeringSingapore-MIT Alliance for Research and Technology (SMART) (Graduate Fellowship

    Underwater localization using imaging sonars in 3D environments

    Get PDF
    This work proposes a localization method using a mechanically scanned imaging sonar (MSIS), which stands out by its low cost and weight. The proposed method implements a Particle Filter, a Bayesian Estimator, and introduces a measurement model based on sonar simulation theory. To the best of author’s knowledge, there is no similar approach in the literature, as sonar simulation current methods target in syntethic data generation, mostly for object recognition . This stands as the major contribution of the thesis as allows the introduction of the computation of intensity values provided by imaging sonars, while maitaining compability with the already used methods, such as range extraction. Simulations shows the efficiency of the method as well its viability to the utilization of imaging sonar in underwater localization. The new approach make possible, under certain constraints, the extraction of 3D information from a sensor considered, in the literature, as 2D and also in situations where there is no reference at the same horizontal plane of the sensor transducer scanning axis. The localization in complex 3D environment is also an advantage provided by the proposed method.Este trabalho propõe um método de localização utilizando um sonar do tipo MSIS (Mechanically Scanned Imaging Sonar ), o qual se destaca por seu baixo custo e peso. O método implementa um filtro de partículas, um estimador Bayesiano, e introduz um modelo de medição baseado na teoria de simulação de sonares. No conhecimento do autor não há uma abordagem similar na literatura, uma vez que os métodos atuais de simulação de sonar visam a geração de dados sintéticos para o reconhecimento de objetos. Esta é a maior contribuição da tese pois permite a a computação dos valores de intensidade fornecidos pelos sonares do tipo imaging e ao mesmo tempo é compatível com os métodos já utilizados, como extração de distância. Simulações mostram o bom desempenho do método, assim como sua viabilidade para o uso de imaging sonars na localização submarina. A nova abordagem tornou possível, sob certas restrições, a extração de informações 3D de um sensor considerado, na literatura, como somente 2D e também em situações em que não há nehnuma referência no mesmo plano horizontal do eixo de escaneamento do transdutor. A localização em ambientes 3D complexos é também uma vantagem proporcionada pelo método proposto

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles

    An Overview of AUV Algorithms Research and Testbed at the University of Michigan

    Full text link
    This paper provides a general overview of the autonomous underwater vehicle (AUV) research projects being pursued within the Perceptual Robotics Laboratory (PeRL) at the University of Michigan. Founded in 2007, PeRL's research thrust is centered around improving AUV autonomy via algorithmic advancements in sensor-driven perceptual feedback for environmentally-based real-time mapping, navigation, and control. In this paper we discuss our three major research areas of: (1) real-time visual simultaneous localization and mapping (SLAM); (2) cooperative multi-vehicle navigation; and (3) perception-driven control. Pursuant to these research objectives, PeRL has acquired and significantly modified two commercial off-the-shelf (COTS) Ocean-Server Technology, Inc. Iver2 AUV platforms to serve as a real-world engineering testbed for algorithm development and validation. Details of the design modification, and related research enabled by this integration effort, are discussed herein.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86058/1/reustice-15.pd

    OBJECT PERCEPTION IN UNDERWATER ENVIRONMENTS: A SURVEY ON SENSORS AND SENSING METHODOLOGIES

    Get PDF
    Underwater robots play a critical role in the marine industry. Object perception is the foundation for the automatic operations of submerged vehicles in dynamic aquatic environments. However, underwater perception encounters multiple environmental challenges, including rapid light attenuation, light refraction, or backscattering effect. These problems reduce the sensing devices’ signal-to-noise ratio (SNR), making underwater perception a complicated research topic. This paper describes the state-of-the-art sensing technologies and object perception techniques for underwater robots in different environmental conditions. Due to the current sensing modalities’ various constraints and characteristics, we divide the perception ranges into close-range, medium-range, and long-range. We survey and describe recent advances for each perception range and suggest some potential future research directions worthy of investigating in this field

    Underwater Localization in Complex Environments

    Get PDF
    A capacidade de um veículo autónomo submarino (AUV) se localizar num ambiente complexo, bem como de extrair características relevantes do mesmo, é de grande importância para o sucesso da navegação. No entanto, esta tarefa é particularmente desafiante em ambientes subaquáticos devido à rápida atenuação sofrida pelos sinais de sistemas de posicionamento global ou outros sinais de radiofrequência, dispersão e reflexão, sendo assim necessário o uso de processos de filtragem. Ambiente complexo é definido aqui como um cenário com objetos destacados das paredes, por exemplo, o objeto pode ter uma certa variabilidade de orientação, portanto a sua posição nem sempre é conhecida. Exemplos de cenários podem ser um porto, um tanque ou mesmo uma barragem, onde existem paredes e dentro dessas paredes um AUV pode ter a necessidade de se localizar de acordo com os outros veículos na área e se posicionar em relação ao mesmo e analisá-lo. Os veículos autónomos empregam muitos tipos diferentes de sensores para localização e percepção dos seus ambientes e dependem dos computadores de bordo para realizar tarefas de direção autónoma. Para esta dissertação há um problema concreto a resolver, localizar um cabo suspenso numa coluna de água em uma região conhecida do mar e navegar de acordo com ela. Embora a posição do cabo no mundo seja bem conhecida, a dinâmica do cabo não permite saber exatamente onde ele está. Assim, para que o veículo se localize de acordo com este para que possa ser inspecionado, a localização deve ser baseada em sensores ópticos e acústicos. Este estudo explora o processamento e a análise de imagens óticas e acústicas, por meio dos dados adquiridos através de uma câmara e por um sonar de varrimento mecânico (MSIS),respetivamente, a fim de extrair características ambientais relevantes que possibilitem a estimação da localização do veículo. Os pontos de interesse extraídos de cada um dos sensores são utilizados para alimentar um estimador de posição, implementando um Filtro de Kalman Extendido (EKF), de modo a estimar a posição do cabo e através do feedback do filtro melhorar os processos de extração de pontos de interesse utilizados.The ability of an autonomous underwater vehicle (AUV) to locate itself in a complex environment as well as to detect relevant environmental features is of crucial importance for successful navigation. However, it's particularly challenging in underwater environments due to the rapid attenuation suffered by signals from global positioning systems or other radio frequency signals, dispersion and reflection thus needing a filtering process. Complex environment is defined here as a scenario with objects detached from the walls, for example the object can have a certain orientation variability therefore its position is not always known. Examples of scenarios can be a harbour, a tank or even a dam reservoir, where there are walls and within those walls an AUV may have the need to localize itself according to the other vehicles in the area and position itself relative to one to observe, analyse or scan it. Autonomous vehicles employ many different types of sensors for localization and perceiving their environments and they depend on the on-board computers to perform autonomous driving tasks. For this dissertation there is a concrete problem to solve, which is to locate a suspended cable in a water column in a known region in the sea and navigate according to it. Although the cable position in the world is well known, the cable dynamics does not allow knowing where it is exactly. So, in order to the vehicle localize itself according to it so it can be inspected, the localization has to be based on optical and acoustic sensors. This study explores the processing and analysis of optical and acoustic images, through the data acquired through a camera and by a mechanical scanning sonar (MSIS), respectively, in order to extract relevant environmental characteristics that allow the estimation of the location of the vehicle. The points of interest extracted from each of the sensors are used to feed a position estimator, by implementing an Extended Kalman Filter (EKF), in order to estimate the position of the cable and through the feedback of the filter improve the extraction processes of points of interest used
    corecore