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Resumo

Com o aumento do poder da computação e os avanços em robótica, os veículos subaquáticos
realizam as suas tarefas com cada vez mais exatidão. Os veículos subaquáticos autónomos (AUVs)
são de grande interesse, especialmente para tarefas que são perigosas para os humanos, como
inspeção, vigilância e segurança do meio ambiente. Estas operações estão a ser executadas em
diversos ambientes, sendo estes cada vez mais complexos. Ambiente complexo é definido aqui
como um cenário com diversas estruturas e com objetos destacados das paredes, podendo o objeto
ter uma certa variabilidade de orientação, com posição nem sempre conhecida. Por exemplo,
portos, um tanque, ou mesmo uma barragem.

A capacidade de localização de um veículo subaquático autónomo é de extrema importância,
e torna-se crucial quando se encontra em ambientes complexos, para conhecer a sua posição, mas
especialmente para conhecer a localização dos obstáculos. A posição dos obstáculos é importante
pois podem representar um perigo para o AUV ou para este navegar face aos mesmos.

Este trabalho endereça a localização subaquática nestes ambientes. A motivação principal
é um caso de aplicação num observatório subaquático onde é necessária a localização de uma
amarração. Embora a posição do cabo no mundo seja conhecida, a dinâmica do cabo introduz
incerteza quanto à sua posição exata. Assim, o veículo deve localizar-se relativamente ao cabo.

Os AUVs normalmente empregam uma variedade de sensores para localização e percepção.
Para o problema descrito, esta dissertação baseia-se em sensores óticos, uma câmera, e acústicos,
sonar de varrimento, a fim de extrair características ambientais relevantes que permitam estimar
a localização do veículo face ao cabo. Os recursos extraídos de cada um dos sensores, usando a
transformada de Hough para a imagem óptica e o template matching para a imagem acústica, são
usados para alimentar um estimador de posição, implementando um Filtro de Kalman Estendido
(EKF), a fim de estimar a posição do cabo.

Palavras-Chave: Análise de Imagem, AUV, EKF, Imagem Acústica, Localização, Sonar,
Template Matching, Transformada de Hough
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Abstract

With increasing computing power and advances in robotics, underwater vehicles carry out their
tasks with increasing accuracy. Autonomous underwater vehicles (AUVs) are of great interest,
especially for tasks that are dangerous to humans, such as inspection, surveillance, and environ-
mental safety. These operations are being performed in different environments, which are more
complex. Complex environment is defined here as a scenario with different structures and objects
detached from the walls, the object may have a certain variability of orientation, with a position
not always known. For example, harbors, a tank, or even a dam.

The localization ability of an Autonomous Underwater Vehicle (AUV) is extremely important,
and it becomes crucial when in complex environments, to know its position, but especially to
know the obstacles’ position. The position of obstacles is important as they can pose a danger to
the AUV or for the vehicle to navigate according to it.

This work addresses the underwater localization in these environments. The main motivation
is an application case in an underwater observatory where the localization of a mooring is neces-
sary. Although the position of the cable in the world is known, the cable’s dynamics introduces
uncertainty as to its exact position. Thus, the vehicle must locate itself according to the cable.

AUVs typically employ a variety of sensors for localization and perception. For the problem
described, this dissertation is based on optical sensors, a camera, and acoustic sensors, a scanning
sonar, in order to extract relevant environmental characteristics that allow estimating the position
of the vehicle relative to the cable. The resources extracted from each of the sensors are processed,
using the Hough transform for the optical image and the template matching for the acoustic image,
and then used to feed a position estimator, implementing an Extended Kalman Filter (EKF), in
order to estimate the cable’s position.

Keywords: Acoustic Images, AUV, EKF, Image Analysis, Hough Transform, Localization,
Sensor Fusion, Sonar, Template Matching
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Chapter 1

Introduction

1.1 Context

Over the years, a large number of Autonomous Underwater Vehicles (AUVs) are being designed

to accomplish a wide range of applications in the scientific, commercial, and military areas due to

the increase in the complexity and risk of the tasks to be performed. For oceanographic studies,

AUVs have become very popular to explore, collect data, and create 3D reconstructions or maps.

AUVs are also used for port and harbour security tasks such as environmental inspection and

surveillance.

Most of the tasks employed by AUVs are given through spatial localization, which makes

localization, absolute or relative, essential for AUVs. Absolute localization is the position in the

world, usually obtained through acoustic signals or satellite based signals. Relative localization

is the position relative to a given object or feature, usually acquired through optical and acoustic

sensors.

The ability of an AUV to move accurately is dependent on the performance of its localization.

In complex environments robots can, similarly to humans, take advantage of the characteristics

of the environment to locate themselves. Complex environment is defined here as a scenario

with objects detached from walls, for example the object can have a certain dynamic therefore its

position is not known at all times. Examples of scenarios can be a harbour, a tank or even a dam

with obstacles inside. In such environments, the presence of points of interest (features) can be

dense but their relevance to the localization is variable.

In order to take advantage of these features there are various potential AUV sensors, and state

estimators to aid navigation. Some sensors provide various information such as its position, ve-

locity, and acceleration, information about the robot itself, while others such as cameras, acoustic

sensors and force sensors gather the information of the surrounding environment. These determine

the position relative to the properties or features of the environment. As there are several sensors

that contribute to the same objective (the localization), an algorithm is necessary, for instance the

state estimators, which merge the data of these sensors.

1



2 Introduction

1.2 Motivation

Interest in underwater robotics research has increased over the last couple of decades, and yet our

knowledge of this vast environment is still limited.

When an AUV is operating beneath the sea surface and without an external positioning system,

the ability of an autonomous underwater vehicle (AUV) to locate itself in a complex environment

is of crucial importance for successful navigation. This is usually done through the use of cameras

and forward-looking sonars. However, this is particularly challenging in underwater environments

due to dark environment, for the optical sensors, and the rapid attenuation of acoustic signals.

As a motivation there is a concrete problem to solve, which is to locate a suspended cable in

a water column in a known region in the sea and navigate according to it. Although the cable’s

position in the world is well known, the cable dynamics does not allow knowing where it is exactly.

So, in order to inspect the cable, the vehicle must localize itself according to it. The proposed

solution for this problem uses optical and acoustic sensors, since cameras and sonars are usually

available in the vehicle for environment monitoring (cameras), or for obstacle avoidance (sonars).

1.3 Objectives

The purpose of this dissertation is to develop an algorithm for feature detection to work in under-

water environments which are lacking in significant features or variations, and combine the ad-

vantages of both types of sensors, optical and acoustic, allowing a better performance in different

ranges.

This thesis aims to:

• Develop an algorithm for feature detection in complex underwater environments

• Use the aforementioned algorithm to locate a suspended cable and navigate according to it.

1.4 Document Structure

This document is composed by six more chapters, apart from the present one.

Chapter 2 is focused on a review of the current state of AUV localization and navigation, from

common methodologies to sensor technology employed. Furthermore, an overview of common

image processing methods and algorithms is also introduced, as well as sensor fusion techniques.

Chapter 3 introduces the structure of the developed solution in further detail and the logical

reasoning behind it.

The work carried out for this purpose is more thoroughly detailed throughout chapters 4, 5

and 6. In chapter 4, Hough transform is applied to optical images and an assessment of contour

tracing algorithm is made, to evaluate its contribution to Hough line transform results. In chapter

5, feature extractor algorithms and template matching are applied to acoustic images and their

performance is compared. In chapter 6, an Extended Kalman Filter is developed in order to fuse
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the outputs from both optical and acoustic processing. A careful analysis of the results obtained is

presented in each of the chapters and the solutions performance evaluated.

Lastly, chapter 7 highlights the main conclusions and contributions of this work, as well as

some considerations regarding future work.
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Chapter 2

State of The Art

To tackle the problem of estimating the cable’s position, this chapter presents an analysis of what

the scientific community has to offer to this work. The diagram 2.1 formulates the structure of this

chapter, as well as the sequence of the solution presented in this thesis.

Figure 2.1: Chapter and solution’s structure

The information, acquired in Data Acquisition block needs to be processed, by the Data Pro-

cessing block, in order to provide the required information to feed a position estimator, the next

step, Position Estimation block.

Starting with the Data Acquisition block, which includes all the tools and technologies used

for the data acquisition, the sensors and the different approaches, all with the same purpose - to

provide the necessary information for the localization of the vehicle or of a specific feature and

the posterior navigation according to this information.

For the second block, this chapter will cover not only the methods that allow extracting the

features but also some pre-processing techniques.

In the third and last section, which receives parameters that define the features as inputs, is a

description of the filter used for this purpose along with an overview of other possible filters with

the same aim.

Localization and navigation in underwater environments continue to be great challenges due

to the rapid attenuation of high frequency signals making the implementation of general and broad

used strategies applied in the ground and aerial systems, like GPS for global localization, inef-

fective in an underwater scenario. However, these vehicles have great application potential, since

working underwater can be difficult and dangerous for humans. Localization is the process of es-

timating the pose of a rigid body within a given reference coordinate system. Sensors that provide

this pose directly, with the robustness, noise and frequency characteristics required by the robot’s

actions, are usually not available. This is usually solved by fusing the information of multiple

5



6 State of The Art

sensors into an estimate of the vehicle’s pose [3]. Navigation consists not only in determining the

vehicle’s position in the frame of reference, localization, but also planning its route to the desired

location and then executing the plan.

2.1 Data Acquisition - Tools, Technologies and Approaches

In robot localization and navigation, there are a variety of sensors that are necessary for their

missions. In this section, some of the most relevant sensors and methodologies for this purpose

will be explored, and are organized according to the authors in [4] by categories as Figure 2.2.

Figure 2.2: AUV tools and approaches for localization and navigation

2.1.1 Inertial Navigation

Inertial sensors exploit the property of inertia, the resistance to a change in momentum, for instance

accelerometers and gyroscopes. An Inertial Navigation System (INS) is a navigation system in

which measurements provided by inertial sensors are used to calculate the position, orientation,

and velocity of a moving object, without the need for outside references, by dead reckoning.

Dead reckoning is the process of calculating the current position of some moving object using a

previously known position through estimation of speed, and attitude over time.

These systems suffer from integration drift, i.e., biases in the measurement of acceleration

and angular velocity become progressively greater errors when integrating to obtain velocities and

position [4].

Although this type of navigation system is not within the scope of this dissertation, it could be

used in complement to the proposed solution, working in the absence of or between consecutive

position fixes.
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2.1.2 Acoustic Navigation

Acoustic navigation consists of techniques which use acoustic transponders and modems to esti-

mate the AUV’s position measuring the time of flight (TOF) of an acoustic signal from beacons or

modems to perform navigation. These signals propagate better in water and can reach hundreds of

miles [5], compared with other signals such as radio and electromagnetic [6]. These systems are

frequently used in a wide variety of applications, including ocean exploration.

As exposed in Figure 2.2, these positioning systems are generally categorized into three classes:

Long Baseline (LBL), Ultra-short-baseline (USBL), and Short-Baseline (SBL) systems differing

on the disposition of the transducers and, consequently on the area size to explore [7]. With GPS

intelligent buoys (GIBs) systems, the beacons are placed at the surface over a wide area [8]. Be-

sides these, when trying to minimize the cost, single transponders are used instead, where the

baseline is simulated by creating small artificial baselines through the vehicle’s movement. Also,

acoustic modems allow to transmit information along with the signal used for range estimation

using TOF [4].

All of these solutions have a limited range and accuracy since they suffer from multipath,

caused by reflection and scattering, and Doppler effects, when the source of the waves is moving

towards the observer [3].

2.1.3 Geophysical Navigation

Geophysical navigation uses unique features of the surrounding as a reference to estimate AUV’s

relative position and navigate. For this, different sensors capable of detecting and identifying these

features are used.

There are different types of sensors inserted in this category according to [9], such as mag-

netic sensors, which use magnetic field maps for localization, and chemical sensors, through the

identification of specific substances in the water, optical sensors and acoustic sensors or sonars.

2.1.4 Optical Sensors

Monocular or stereo cameras are considered cheap solutions, offering superior update rates when

compared to other commonly used sensors in robotics [10]. These can be used to capture colored

and high-resolution images, providing information about the environment through the features

extracted. The dark underwater environment scattering of light, low visibility range are some

of the problems in underwater vision-based systems [11]. Thus, different algorithms are being

studied for the features identification in the environment or targets for the AUV’s mission.

Many previous algorithms have been proposed and applied in ground and air robotics, such as

in [12], where the detection of railway tracks is done using a monocular camera and processing

the images with Hough Transform. Although it is also a line detection problem, the environment

challenges in ground robotics are different. To overcome these challenges in underwater scenarios,

Alcocer et al. [13] adapts a color space to identify features of interest in underwater images, while
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Ferrera et al. [14] tackles the problem using the feature extractor algorithms covered later in

section 2.2.2.

2.1.5 Sonar

Sonar is a popular sensor in several areas, including robotics. This sensor employs acoustic pulses

and their echoes to measure the distance to an object, ranging sonars, or to create images, imaging

sonars, which provides more information. Since the sound speed is usually known, the object

distance is proportional to the echo’s travel time. At ultrasonic frequencies, the sonar energy is

focused in a beam, delivering directional information in addition to the distance [15]. In robotics,

it can have different purposes such as obstacle avoidance, mapping, and object recognition.

While ranging sonars provide only one measurement of range per ping, calculated by TOF,

imaging sonars return several intensity measurements, corresponding to the multiple echoes re-

flected in the area. This information allows to create an image of the surroundings present on

the emitted signal direction of travel. The fundamental principle of imaging sonar is to estimate

the reflectivity for all calculated ranges and in all selected directions. In this case, according to

Hansen in [16], the field of view is given by the angular width of each element. The angle and

range resolution is conveyed by the array length measured in wavelengths and by the bandwidth

of the system, respectively.

An important imaging sonar, for this study, is a Mechanical Scanning Imaging Sonar (MSIS).

The creation of the acoustic image is made by the mechanic rotation of the transducer’s head inside

the sonar. In other words, each element of the output array corresponds to a specific distance from

the transducer head. By varying the length of the listening period, the sensor can achieve a higher

resolution along the beam axis or a greater range, as the total number of discretized spaces tends

to be fixed on the sonar device [17].

Multibeam sonars are also a relevant type of sonar, they explore the concept of wave inter-

ference. Combining multiple receiving elements and precisely controlling the timing between the

emission and receiving times, multibeam sonar allows to distinguish the direction of the returning

echoes. The key advantage of a multibeam sonar is that this kind of device can gather information

of a larger area much faster if compared to the mechanical scanning sonar [3].

The side-scan sonar, another imaging sonar, requires the AUV to move to acquire imagery

on a given area [18], which is not always the case. When the vehicle approaches the feature, it

will significantly slow down or even stop, this type of sonar is not a good solution for this prob-

lem. However, both multibeam sonar and imaging sonar do not have this imposition, becoming

interesting for this mission.

2.2 Data Processing

This section explains how the data coming from the optical and acoustic sensors can be processed.

Data processing block aims to extract relevant information from the optical and acoustic images

for the AUV’s relative position to the cable, the feature in the proposed problem.
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Figure 2.3: Data Processing Procedure

2.2.1 Image Pre-processing

Image pre-processing is the name for operations on images whose aim is to improve the image

data, suppressing undesired distortions or enhancing some essential image features for further

processing [19]. There are many operators for image preparation, the following methods were the

ones used in this dissertation.

Canny Edge Operator

Canny operator was developed to be an optimal edge detector. Edges correspond to areas where

image brightness or color change rapidly. This operator produces as output an image showing the

positions of tracked intensity discontinuities [20]. The effect of the Canny operator is determined

by three parameters — the width of the Gaussian kernel used in the smoothing phase, and the upper

and lower thresholds used by the tracker. Increasing the width of the Gaussian kernel reduces the

detector’s sensitivity to noise, at the expense of losing some of the finer detail in the image.The

position error of the edge recognition also increases slightly with the increase of the Gaussian

width. If the lower threshold is set too high, the noisy edges will be destroyed. Setting the upper

threshold too low increases the number of false edge fragments appearing in the output.

Edge detection filters out irrelevant details while retaining information about the edges of

objects in the image. The Canny edge detector is the best known and most widely used among

many edge operators. Canny’s edge detector consist of four steps:

1. Find the intensity gradient of the image.

2. Apply non-maximum suppression to minimize erroneous edge detection.

3. Apply double threshold to determine potential edges.

4. Track edge by hysteresis: Finalize the detection of edges by suppressing all the other edges

that are not connected to strong edges.

Usually images where this operator is applied are blured, the reason being that calculating the

derivative in the spatial domain corresponds to accentuating high frequencies and hence magnify-

ing noise.
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Contour

Contours are represented as linked edges. The contour can be open or closed, as Figure 2.4 shows.

Closed contours correspond to region boundaries, and the pixels in the region may be found by

a filling algorithm. An open contour may be part of a region boundary, or simply a contour of a

curve.

Figure 2.4: Difference between closed contours and open contours

Gaps may appear at the boundaries of regions, because the contrast between regions may not

be enough for the boundary detector to find edges along the boundaries. Contours provide very

important information for object representation and image recognition.For example, they are used

to separate an object from its background and calculate the size of the object classify shapes and

to find the feature points of objects using the length and shape of their contour pixels. Therefore,

there have been many studies on contour-tracing algorithms for extracting and tracing the contour

of an object. [21]

Contour Tracing Algorithm

In digital image processing, image segmentation is the process of partitioning a digital image into

multiple segments with the goal to to simplify and/or change the representation of an image into

something that is more meaningful and easier to analyze. The problems of contour detection and

segmentation are related. In general, contour detectors offer no guarantee that they will produce

closed contours and hence do not necessarily provide a partition of the image into regions. Closed

contours can be recovered from regions in the form of their boundaries.

In conventional contour tracing algorithms, the tracer starts tracing at the contour of an object

after it saves the starting point along with its initial direction. Then, it determines the next contour

point using its specific rule of following paths according to the adjacent pixel, then move to the

boundary point and change its absolute direction.When the viewfinder reaches the starting point,

the scanning process ends.

Contour Following can be helpful, enhancing the line contour, to the Hough Transform to

detect lines in our problem. However, as in [22], where objects are detected by contour tracing

algorithms, the execution time can be a problem in our situation due to the real time demand.
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2.2.2 Feature Extraction

Feature extraction is done after the pre-processing phase.The main purpose of feature extraction

is to obtain the most relevant information from the original data. In the following sections some

of the methods that allow the extraction of information from the image are presented.

Image Transforms

These operators transform the images, in terms of the geometry of the information in the image

or the nature of the information itself. The usual purpose of applying a transformation is to help

make more obvious or explicit some desired information.

In the case of the operators in this group, the main effect is to make explicit:

• Distance Transform, the thickness of image features

• Fourier Transform, the spatial frequency composition of the image

• Hough Transform, the parameters of geometric shapes.

Hough Transform
The Hough transform, named after Paul Hough, who patented the method in 1962, is a tech-

nique that can be used to isolate features of a particular shape within an image. Since this requires

parameter adjustments to the required attributes, the classic Hough transform is used to find curves,

such as straight lines, circles, ellipses, etc.

The advantage of the Hough transform is that not all pixels in a row need to be continuous.

This is useful when you are trying to find lines that appear to be interrupted due to noise, or when

an object is partially occluded. However, if the objects are accidentally aligned, this may produce

incorrect results. Also the output lines from Hough Line Transform are infinite lines, rather than

finite lines with defined end points.

Feature Extractor Algorithms

A feature is a piece of relevant information about the content of an image. Feature extractor

algorithms aim to determine interest points on images that remain locally invariant, allowing its

detection even with rotation or scale changes [9]. These algorithms represent a solution for the

identification of relevant characteristics from the environment, and for this reason are of great

importance in many applications such as object recognition and tracking. According to the authors

in [18] and [9], the detectors are the algorithms that find the interest points and the descriptors are

those who describe the features.

Depending on the complexity of the image, a feature can be an edge, a point where there is

a boundary between two image regions, a corner, rapid changes in direction, or it can represent

a blob, that is, a set of pixels/pixel values that are related in some way and different from the

background.
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A brief explanation of the feature detectors and descriptors mainly used in similar works is

presented hereafter. The following feature extractors are the compared in Table 2.1 in terms of

feature type they detect.

The Harris Corner Detector

This operator was introduced in 1988 by Chris Harris Mike Stephens [23] and takes the differential

of the corner score into account with reference to direction directly, instead of using shifting

patches for every 45º angle as the previous corner detector and has been proved to be more accurate

in distinguishing between edges and corners.

FAST - Features from Accelerated Segment Test

FAST algorithm is essentially a corner detector, created in 2010 by Rosten et al. [24], which

computes the difference in brightness based off a circular neighbourhood. The most promising

advantage is its computational efficiency. The FAST corner detector is suitable for real-time video

processing application because of this low computational complexity.

SIFT - Scale Invariant Feature Transform

This detector, put forward by D.G.Lowe in 1999 [25] is based on Difference-of-Gaussians (DoG)

operator which is an approximation of Laplacian-of-Gaussian (LoG). Feature points are detected

by searching local maxima using DoG at various scales of the subject images. The description

method extracts a neighbourhood around each detected feature and further segments the region

into sub-blocks.

SURF - Speeded up robust features

This algorithm is inspired on the SIFT algorithm and it was created in 2008 by Herbert Bay et al.

[26]. This detector is based on the computation of the Hessian Matrix and uses integral images

to improve computation time and speed. Its feature descriptor is based on the sum of the Haar

wavelet [27] response around the point of interest.

ORB - Oriented FAST and Rotated BRIEF

The ORB algorithm is a fast and reliable FAST-based feature detector, and a modified version of

the BRIEF algorithm [28] , not only the speed has greatly improved over BRIEF, but also it has

the rotational invariance compared with the single BRIEF algorithm. This detector was created in

2011 by Ethan Rublee et al. [29].
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KAZE

KAZE features was put forward in 2012 by P.F.Alcantarilla et al. [30] and operates completely in

a nonlinear scale space. Through non-linear diffusion filtering makes blurring in images locally

adaptive to feature-points, reducing noise and retaining the region’s boundaries.

BRISK Binary Robust Invariant Scalable Keypoints

This corner detector put forward by S.Leutenegger et al. in 2011 [31] uses FAST for detecting

while searching for maxima in the scale space pyramid. Its description is based on identifying the

characteristic direction of each feature achieving rotation invariance.

Algorithm Type of feature
Harris Corners
FAST Corners
SIFT Corners
SURF Blobs
ORB Corners

KAZE Blobs
BRISK Corners

Table 2.1: Feature type extractors

In terms of applications, Harris, FAST, ORB and BRISK are usually applied for point track-

ing, image registration with little or no scale change, corner detection in scenes of human origin,

such as streets and indoor scenes. SURF algorithm is typically applied to object detection and

image registration with scale and rotation changes. Being able to detect different types of features,

SIFT has a lot of applications such as object or landmarks recognition [32], robotic mapping and

navigation, 3D modelling, gesture recognition and video tracking, however it is not open-source.

These feature extractors are being widely used in acoustic image analysis. For instance, Bandara

et al. [18] apply and compare these detectors and descriptors in side-scan sonar, on images for

purposes of localization and mapping. With the same purpose, Oliveira et al. in [9] uses these

extractors in acoustic images from an imaging sonar.

Template Matching

Template matching is a technique that identifies parts on an image that match a predefined tem-

plate. Many of the applications of computer vision simply need to know whether an image contains

some previously defined object or whether a pre-defined sub-image or pattern is contained within

a test image. This auxiliary image is called a template and should be a perfect representation of

the template or object being searched in the image.

There are two forms of template matching:

• Global Template Matching - Template used is a global representation of the object.
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• Local Template Matching - Several templates are used which represent local features of the

object, e.g., corners, edges, characteristic marks etc. present in the object.

One of the problems with pattern matching is that each pattern represents an object or part of

it, as we would expect. If the expected orientation can vary, then it requires a separate template for

each orientation and each one must be matching with the image. In this cases, template matching

may become computationally expensive, especially with large templates. One way of counter this

computational overhead is to use smaller local templates to detect salient features in the image

which characterize the object.

A measure of matching between the template and every location of the image, called measure

of similarity, is calculated and a decision is made based on its value.

Several similarity measures are possible, some based on the summation of differences be-

tween the image template, others based on the cross-correlation techniques. In terms of similarity

measures, there exist many. Hereafter,there are the methods that are available in the library used,

OpenCV 4.5.1, in [33], where T is the template image, I the original image and R the result image

from the respective method.

Square Difference

R(x,y) = ∑
x′,y′

(T (x′,y′)− I(x+ x′,y+ y′))2 (2.1)

Normalized Square Difference

R(x,y) =
∑x′,y′(T (x

′,y′)− I(x+ x′,y+ y′))2√
∑x′,y′ T (x′,y′)2 ·∑x′,y′ I(x+ x′,y+ y′)2

(2.2)

Correlation

R(x,y) = ∑
x′,y′

(T (x′,y′) · I(x+ x′,y+ y′))2 (2.3)

Normalized Cross-Correlation

R(x,y) =
∑x′,y′(T (x

′,y′) · I(x+ x′,y+ y′))2√
∑x′,y′ T (x′,y′)2 ·∑x′,y′ I(x+ x′,y+ y′)2

(2.4)

Correlation Coefficient

R(x,y) = ∑
x′,y′

(T ′(x′,y′) · I′(x+ x′,y+ y′))2 (2.5)

where

T ′(x′,y′) = T (x′,y′)−1/(w ·h) ·∑
x′,y′

T (x′′,y′′) (2.6)
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I′(x+ x′,y+ y′) = I(x+ x′,y+ y′)−1/(w ·h) ·∑
x′,y′

I(x+ x′′,y+ y′′) (2.7)

Normalized Correlation Coefficient

R(x,y) =
∑x′,y′(T

′(x′,y′) · I′(x+ x′,y+ y′))2√
∑x′,y′ T ′(x′,y′)2 ·∑x′,y′ I′(x+ x′,y+ y′)2

(2.8)

2.2.3 Deep Learning

At a very basic level, Deep Learning (DL) is a field of machine learning based on deep neural

networks that teaches a computer to filter inputs through layers to learn how to predict and classify

information. The data can be images, text files, or sound, for example.

Deep learning is being increasingly used for image analysis, among other applications. For

instance, in [34] an adaptive neural network image-based visual servo controller is proposed; this

control scheme allows placing the underwater vehicle in the desired position concerning a fixed

target. Also, [35] presents an image matching algorithm based on a convolutional neural network

(CNN) to aid in the navigating of an AUV and to improve the matching accuracy of sonar images

in the deep ocean with dynamic backgrounds, low-intensity, and high-noise scenes. Another inter-

esting article in terms of DL, is [36] which uses You Only Look Once (YOLO) which is a clever

CNN for doing object detection in real-time, in this case for motion Behaviour Recognition.

These methods can be very useful for feature extraction, however it requires a large data set

of images, high-performance GPUs for real-time processing. In the context of this dissertation,

creating an image bank, in various conditions, is truly difficult when faced with a deadline of

weeks and costs related to access to the sea.

2.3 Position Estimation

When sensors that provide position information directly, such as GPS, are not available, it is

necessary to resort to sensory fusion or SLAM to estimate the position.

SLAM (Simultaneous Localization and Mapping) is known as the chicken and egg problem,

i.e., a map is needed to localize the robot and its pose estimate is needed to build a map, so SLAM

provides the solution - building a map while estimating the pose of the robot relative to this map. In

SLAM the robot moves through a partially known environment, uses odometry and observations

of nearby features as inputs of the algorithm, and estimates a map of features and the robot pose.

Since the purpose of this solution is to provide information about a cable in the sea, and the sea is

a unstructured environment SLAM was not considered.

Sensor fusion processes and merges the available sensors data and allows the improvement of

the AUV state estimation. For the purpose of this dissertation, the fusion of optical and acoustic

data is needed for the position estimation, however this idea is not new, as referred in [37]. Al-

though SLAM and sensor fusion are different methods, they use the same tools - filters, which are
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described below. The need to merge acoustic and optical data comes from the fact that each sensor

has problems that can be counterbalanced by the fusion of data produced by the two. Fusing op-

tical and acoustic data can be done at different levels and with different sensors. There are many

examples already explored, for example using an acoustic array with optic systems, as in [38], or

pencil beam sonar with optic systems in [39], or using a multibeam and optical system in [40].

It is known that sensors are imperfect and pick up noise along with their measurements, which

leads to uncertainties in not only the measurements but also in the consequent estimation. The

level of uncertainty that an underwater system is exposed to is much higher if compared to "clas-

sic" robotic applications which perform the exact same task exhaustively. Examples of uncertain-

ties in this environment are unmodelled underwater currents, exact weight distribution, and the

noisy readings coming from a sonar sensor. Filtering has been widely adopted for dealing with

uncertainties and data fusion, Kalman Filters (KFs), Particle Filters (PFs) are some of the popular

state estimators used for AUV localization with available sensor data, which will further be anal-

ysed individually in the sections below as well as compared in section 2.3.3 and in Table 2.2 some

notable features are summarized. In this specific case, the filters will combine the information

from the sonar and the optical sensor to estimate the location of the cable.

Filter System/Update Model Noise Model
KF Linear Gaussian distribution

EKF Non-linear Gaussian distribution
UKF Non-linear Gaussian distribution

Particle No particular No particular
Table 2.2: Comparison between filters. Adapted from [2]

2.3.1 Kalman Filter

Kalman filter is a set of mathematical equations, providing efficient calculation tools for recursive

state estimation, given the measurements observed over time in a way that minimizes the mean of

the squared error. The filter is very powerful in several aspects such as supporting estimations of

past, present, and even future states. Also, has the major advantage to provide the state and the

uncertainty, which may be crucial for decision making, in real-time.[41]

Kalman Filters are normally applied to approximately linear models, assume sensor measure-

ments distribution to be gaussian. Its drawback lies in the fact of narrowing its application within

the normal distribution uncertainty, what make this approach limited to more simple models. Ap-

plications with multiple hypothesis, according to [8], such as global estimation, are not well suited

to be implemented with a KF.

This recursive algorithm consists of two stages – motion prediction or propagation and mea-

surement update or correction, depending on the literature. The first one is based on the kinematic

model which will increase the uncertainty. Then the estimator incorporates measurements to up-

date or correct the estimation, which will reduce the uncertainty of the filter.[41]
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Figure 2.5: Kalman Filter Algorithm from [1]

Extended Kalman Filter - EKF
Since the KF assumes all equations, motion and measurement, to be linear, in the case of non-

linear systems, a linearization of the state transition and measurement models can be performed as

in the Extended Kalman Filter (EKF), where the linearization is obtained via a first-order Taylor

series expansion.[4]

Figure 2.6: Extended Kalman Filter Algorithm from [1]

The EKF is very similar to the KF in terms of equations, except some minor difference. In

this case the A matrix is the Jacobian matrix of partial derivations of process update function with

respect to the state vector. And the H matrix represents the Jacobian matrix of partial derivative of

the measurement function with respect to the state vector.

Since it is computationally cheaper than other nonlinear filtering methods such as particle

filters [41], the Extended Kalman Filter has been used in various real-time applications like navi-

gation systems.

Unscented Kalman Filter
The main drawback of EKF is the approximation by means of the first order truncation. It

can create errors in the posterior estimation and may lead to suboptimal performance or even di-

vergence. This becomes significant when the non-linear models are approximated and the higher

order terms in the Taylor series are more important than the first order term. To deal with this

weakness, a new improvement of the extended Kalman filter was proposed, the Unscented Kalman
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Filter, [42]. The UKF uses a deterministic sampling technique known as the unscented transfor-

mation (UT) to pick a minimal set of sample points (called sigma points) around the mean. The

sigma points are then propagated through the nonlinear functions, from which a new mean and co-

variance estimate are then formed. The resulting filter depends on how the transformed statistics

of the UT are calculated and which set of sigma points are used.

2.3.2 Particle Filter

All the filters introduced assume the associated noises follow Gaussian distributions. One solution

for all the other noise models that do not follow this distribution is the particle filter, a popular

optimal estimation solution for non-linear and non-Gaussian applications. Particle Filter is called a

nonparametric filter, which means that the probability distributions involved in the state estimation

does not depend on a fixed set of parameters to be represented. [8]

The particle filter works by simulating the system’s operation multiple times, each time draw-

ing a new random number from the process noise’s distribution. This way, as the number of

particles gets large, the empirical distribution of the particles will approach the true probability

distribution of the posterior. In addition, each particle is assigned a weight that determines how

likely it is to be the true state, given the received measurements. The weights are updated ev-

ery time a new measurement is received – the weights are increased for particles closer to the

measurement.

The main gain of particle solutions over standard approximation methods is that it is not de-

pendent on any functional linearization or approximation but depends on random particles with

associated weights to characterize the posterior distribution. Thus, particle filter can be used in

more circumstances and with much flexibility.[3] This flexibility comes with a cost, it usually is

computationally expensive.

2.3.3 Filter Comparison

First, if the system in consideration is linear, then a Kalman filter is most likely the best approach.

Even if the noise is not Gaussian (or even if it is hard to identify any probability distribution),

the Kalman filter still has strong theoretical guarantees [43]. In addition, its numerous successful

applications over the years have confirmed its place as the most popular filtering algorithm.

If the system’s model is non-linear, then the choice of filter is made more difficult. The ex-

tended Kalman filter (EKF) is also a popular choice in this case, it is especially powerful in systems

that are non-linear. [44] However, depending on the type of system, the EKF may diverge due to

linearizing around a wrong estimate. Furthermore, the EKF is computationally expensive in high-

dimensional spaces and may be too slow on resource limited devices, such as microprocessors.

Particle filters accuracy can always be enhanced given more particles. Thus, the advancement

of modern computers is yet another argument in favor of the particle filter. [3] On the other hand,

particle filters perform poorly in high-dimensional spaces.
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Since localization is the main topic of this thesis, mapping and localization related techniques

were reviewed. Filtering is essential for a better estimation performance due to the constant pres-

ence of noise in the state space and measurements.
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Chapter 3

System Overview

In this chapter, a more comprehensive overview of the problem, proposed solution and base system

is presented.

3.1 Problem Statement

Autonomous underwater vehicles (AUVs) are noteworthy, particularly for missions that are unsafe

to people, such as observation, and natural security. These operations are being performed in

numerous situations, which are more complex. Complex environment is characterized here as

a situation with diverse structures and objects confined from the walls, the object may have a

position not continuously known. For instance, harbors, a tank, or a dam.

The localization ability of an Autonomous Underwater Vehicle (AUV) is vital, and even more

when in complex situations, in order to know the vehicle’s position, but particularly to know the

obstacles’ position.

The problem of this dissertation arises from an ongoing project, in which there is a real chal-

lenge - to locate a cable in an underwater observatory. Although the position of the cable in the

world is known, the cable’s dynamics introduces uncertainty as to its exact position. Thus, the

vehicle must locate itself according to the cable.

Even though this problem is a unique situation, it can also be adapted to other scenarios where

the localization is necessary in relation to certain structures present in the environment.

3.2 Assumptions and Base System

For the purpose of this dissertation, and to address the stated problem a Tritech Micron sonar and

a Go Pro camera were made available. Just like the sensors, their position in the vehicle was taken

as an assumption since the beginning of this study.

21
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Camera

For this study, a GoPro Hero 3 was positioned facing forward, allowing the visualization of the

mooring from the stated problem. This small and light camera provides a cheap solution for the

development of a vision-based system.

Sonar

The forward-looking sonar mentioned is an imaging sonar, having a wide vertical beamwidth and

a small horizontal opening, is well suited to perform obstacle avoidance and navigation. Objects

or targets presented above or below the transducer axis will be detected while maintaining a good

horizontal angular resolution. In the following Table are the acoustic specifications of the Micron

sonar that support its choice for this problem.

Beamwidth 35° vertical, 3° horizontal
Maximum range 75m
Minimum range 0.3m
Mechanical resolution 0.45°, 0.9°, 1.8°, 3.6°
Scanned sector Variable up to 360°

Table 3.1: Micron Acoustic Specifications

An imaging sonar can emit a sound beam and measure the intensity of subsequent echoes from

a specific location. This information can be subsequently used to generate acoustic images of the

surrounding environment. This sonar has an acquisition rate of 8 seconds, i.e., a full revolution

that corresponds to an acoustic image of the complete surroundings (360º) takes this period of

time to be available.

IMU

An inertial measurement unit was also made available in order to complement acoustic and optical

data. This electronic device provides force, angular rates, and usually the orientation of the body

through a combination of accelerometers, gyroscopes and occasionally magnetometers.

3.3 Proposed solution

After reviewing all the tools and methodologies to address underwater localization problems, it

is possible to design a system that solves this problem. Figure 3.1 presents the structure of this

solution in the form of a block diagram.

The main idea to solve this problem is to use optical and acoustic sensors in order to obtain po-

sition estimates in complex environments. For this purpose, the solution involves the development

of two parallel processes, one for each sensor. Both optical and acoustic sensors provide useful
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Figure 3.1: System Block Diagram

information for the localization, however each sensor provides different information from the en-

vironment. The processes will run in parallel as they have different acquisition rates. Whenever

the sensors acquire an image, the raw data acquired will be processed and the result will be fed to

a state estimator in order to estimate the cable’s position.

3.3.1 Data Acquisition

For this study, a GoPro Hero 3 was positioned facing forward. The camera provides frames, such

as the one presented in Figure 3.2, and each pixel can be used to infer information regarding two

angles, horizontal and vertical.

Figure 3.2: Video frame taken in tank with test cable

For the optical images, the aim is to extract information about the cable, where it is in relation

to the AUV, angle α , and its orientation, θ , as can be seen in Figures 3.3 and 3.4, through line

extraction algorithms.

Figure 3.3: Horizontal angle relative to the line Figure 3.4: Line orientation in camera’s frame
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The imaging sonar provides an array of intensities corresponding to one beam, and conse-

quently to a line in the acoustic image, when using polar coordinates, left image in 3.5. The arches

observable in the left image or the square-shape in the right image (image in Cartesian coordi-

nates), represent the water tank walls and the intersection of these (its corners). These contrasting

shapes are due to the nature of the sonar data, since every detected reflection is represented by a

detection angle and a detection distance.

Figure 3.5: Imaging sonar revolution in test tank

In the acoustic image in polar coordinates, it is possible to obtain the feature’s position in the

image, i.e., the range, ρ , and angle, φ , in the horizontal sonar plane, as Figure 3.6 shows, through

feature extractor algorithms or taking advantage of knowing the feature’s appearance and apply

template matching.

Figure 3.6: Sonar plane
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3.3.2 Data processing

After the images have been extracted, they are processed in order to extract the relevant informa-

tion present in each image. Relevant information is usually referred to as features, which can be

defined as a prominent or distinctive part or characteristic in the image, which can be an isolated

point, a zone with a big variation in comparison to the rest, among others. Through the algorithms

studied in chapter 2, hereafter are those that will be used during the development of this solution.

The application scenario mentions the need to localize a cable in a water column. So, the

vision process will deal with the problem through line detection algorithms. Given the good

performance of Hough line transform, mentioned in chapter 2, in extracting lines from images,

this algorithm is used in the feature detection of the vision process. In complex environments,

with various structures involving the mooring, it is expected to have many lines detected by the

Hough algorithm. Therefore, as the cable, showed in Figure 3.2, stands out for its color in the

surroundings, the Contour Tracing algorithm will also be explored due to its capability to follow

the pixels that are different from its neighborhood. It is worth mentioning, that this algorithm is

explored in the attempt to improve the Hough transform results.

To process the acoustic images, the feature extraction algorithms performance will be assessed

since they detect abstract features, such as corners and blobs. As the cable is a specific feature

unlike the features from the previous algorithms, template matching will also be explored.

3.3.3 Sensor Fusion

After processing the data coming from each of the sensors, the result will be processed asyn-

chronously, as they have different acquisition and processing rates, through a filter and the cable’s

position, as well as the orientation, will be estimated.

The filter’s estimation will allow the removal of outliers within the processed data. For in-

stance, if the line extraction returns several results, with the cable’s position estimation it will be

possible to exclude within all the returned lines the ones that are far from the estimation.

Through the sensor fusion’s feedback, it would also be possible to change sensor parameters

such as the sector scan, restricting it to the interest zone. This automatic adjustment would be

innovative and would spare the microprocessor.

3.4 Requirements

After structuring the proposed solution, it is necessary to establish some requirements according

to the problem and according to the imposed sensors.

Being a real-time solution, to operate, for instance, 10 Hz control system, it would be favorable

to have, at least, 1 or 2 processing results in each control cycle. This means that, in the case of

the optical sensor, the processing algorithm must execute and return a result, at most, in 100

ms or 50ms, respectively. The sonar acquisition rate is much lower, as a revolution of a beam



26 System Overview

takes approximately 40ms. Thus, it would be desirable that during each acquisition, the feature

extraction algorithm could finish processing the data present in an acoustic image line.

In addition to the defined time requirement, an operational requirement is defined. It was

assumed that this solution will be used in a scenario with relative visibility, that is, where the

vision sensor has visibility at least up to 3m, an estimated value.

3.5 Tools

In order to implement the proposed solution, MATLAB R2021a software was initially used, along

with functions and tools available in the Image Processing Toolbox, for image preparation and fea-

ture detection, in order to apply feature extraction algorithms. After this phase, all methods were

implemented in C ++, for being a high-performance language, along with the OpenCV library,

and all developed methods and algorithms were tested using a Raspberry Pi 3 Model B+.

For the given problem, there is a predefined vehicle for testing , Figure 3.7. In specific, an

AUV with 0.12 m of diameter and 0.90 m of length combined with 6.0 kg of weight. The vehicle

has a torpedo-like geometry. Its geometry and dimensions make it a vehicle easy to deploy and

operate. The thrusters’ configuration grant it four degrees of motion freedom. [45]

In the development of this thesis, the experimental part was carried out in in a rectangle-shaped

tank with dimensions 4.6 m (length) x 4.4 m (width) x 1.8 m (depth).

Figure 3.7: Vehicle in test tank
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Optical Image Processing

4.1 Tools and Methodology

In Figure 4.1, the methodology used for extracting the necessary information from the optical sen-

sor is presented and detailed here and in the next sections. This procedure will provide two angles,

the line orientation angle, θ and the horizontal angle relative to the cable, α . This information will

then feed the position estimator and improve the cable position estimation.

Figure 4.1: Optic Image Processing Procedure

4.2 Image Acquisition

The image resolution is an important configuration in image processing projects being the amount

of detail an image holds. Therefore, it will have a great impact in processing time of the algorithm

itself. Being that this thesis focuses on localization for navigation, time becomes a challenge.

With the purpose of achieving better results in terms of time, a study of the compromise

between resolution reduction and loss of crucial information was made.

27
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Figure 4.2: Horizontal Field of View Representation

Knowing the distance d and the horizontal field of view angle HFOV, the following expression,

4.1 can be obtained from trigonometry.

width = 2 ·d · tan
HFOV

2
(4.1)

As mentioned, for this part a GoPro Hero 3 was used in video mode. In this mode, some

settings are configurable, for instance video resolution and the field of view. So, for this camera

and the stated settings, the horizontal field of view angle, represented in the Figure 4.2 as HFOV,

is 64.4°.

It was defined that in order to use the proposed feature extraction methods, the cable must

represent at least 1 pixel at any distance within the established maximum distance, represented in

the Figure 4.2 by d, which in the requirements was defined to be 3 meters. So, for this specific

case, the frame’s width represents 3.78 meters. Therefore, for the 1 cm wide cable to correspond

to 1 pixel, the frame’s width in pixels has to be at least 378px. For 360p (640x360) resolution, the

cable represents 1,69 pixels. This way it is possible to lower the processing time while still being

able to identify the cable.

4.3 Image Pre-processing

Prior to the analysis of each frame, represented in Figure 4.3, a pre-processing step is required.

This step is crucial to the effectiveness of this algorithm and will greatly impact the overall per-

formance of subsequent operations.



4.4 Line Extraction Algorithms 29

Figure 4.3: Frame example from Go Pro video

Due to the computational weight of processing RGB images, the image was converted to

grayscale. Then, in order to prepare the image to the edge detection algorithm, the image is

blurred due to a general problem for edge detection which is its sensitivity to noise.

Figure 4.4: Blurring Result Figure 4.5: Canny Edge Detector Result

4.4 Line Extraction Algorithms

After the removal of irrelevant details in the image, it is possible to focus on the important infor-

mation present in the image. From the methods explained hereafter it is expected to obtain the

relative position in angle of the cable and its orientation.

Hough transform is theoretically capable of providing this information. However, for the pur-

poses of this thesis, Contour Tracking is considered as an intermediate step for the line detection,

meaning that it was explored with the goal of complementing the other algorithms.

4.4.1 Hough Transform

Since the final goal is to detect lines, more specifically a cable suspended in a water column,

Hough Line Transform should be the most suitable.

The basic theory of the Hough line transform, explained in [46], is that any point in a binary

image could be part of some set of possible lines. If we parameterize each line by, for example, a

slope a and an intercept b, then a point in the original image is transformed to a locus of points in

the (a, b) plane corresponding to all of the lines passing through that point.
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If every nonzero pixel is converted in the input image into such a set of points in the output

image and such contributions are summed, then lines that appear in the input (i.e., (x, y) plane)

image will appear as local maxima in the output (i.e., (a, b) plane) image. Because we are summing

the contributions from each point, the (a, b) plane is commonly called the accumulator plane.

Note that the slope-intercept form is not really the best way to represent all the lines passing

through a point, because of the considerably different density of lines as a function of the slope, and

the related fact that the interval of possible slopes goes from –∞ to +∞. It is for this reason that

the actual parameterization of the transform image used in numerical computation is somewhat

different. The preferred parameterization represents each line as a point in polar coordinates (ρ ,

θ ), with the implied line being the line passing through the indicated point but perpendicular to

the radial from the origin to that point. The equation for such a line is:

ρ = xcosθ + ysinθ (4.2)

The OpenCV Hough transform algorithm does not make this computation explicit to the user.

Instead, it simply returns the local maxima in the (ρ , θ ) plane. However, it is necessary to under-

stand this process to understand the arguments to the OpenCV Hough line transform function.

HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold,

double srn = 0, double stn = 0, double mintheta = 0, double maxtheta = π)

The first argument is the input image. It must be an 8-bit image, but the input is treated as

binary information. The second argument is a pointer to a place where the results can be stored,

which can be either a memory storage or a plain N-by-1 matrix array. The next two arguments,

rho and theta, set the resolution desired for the lines (i.e., the resolution of the accumulator plane).

The units of rho are pixels, and the units of theta are radians; thus, the accumulator plane can be

thought of as a two-dimensional histogram with cells of dimension rho pixels by theta radians.

The threshold value is the value in the accumulator plane that must be reached for the routine to

report a line.

In order to improve the processing time and avoid overlapping lines, the parameters of rho

and theta were configured after a study of their influence on the final result. Rho, as mentioned

before, is the distance resolution of the accumulator, i.e., is the size of the accumulator array for

all incoming rho. For rho, the default value was set and proved to have the best outcome. Theta

defined as the angle resolution of the accumulator in radians, or in other words, the size of the

accumulator array for all incoming theta. For theta, a brief analysis was made in order to decrease

the total number of detected lines but always making sure that the cable was detected, and, given

that it was detected, increase the similarity between the detected orientation and the actual cable

orientation. Table 4.1 displays, for different values of theta, the number of frames in which the

algorithm detected the cable and it was present (true positives), and the number of frames where

the orientation of the Hough line corresponds to the cable orientation. The decision whether or

not the cable was detected and whether the orientation corresponds to the orientation of the cable

was made by visual inspection.
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Accumulator’s Angle
Resolution

Number of frames
(with the cable) in
which the cable is

detected

Number of frames in
which the cable is
detected, and the
line orientation is

correct

Average of
total number of
lines detected

in a frame

1º 10/10 10/10 272
2º 10/10 10/10 143
4º 10/10 10/10 76
6º 10/10 10/10 52
9º 10/10 9/10 35
10º 10/10 10/10 35
12º 9/10 8/9 28
15º 9/10 5/9 19
18º 9/10 3/9 19
20º 10/10 2/10 19
30º 0/10 - 19

Table 4.1: Resolution angle for Hough Transform

As the aim was to reduce the total number of lines in each frame, but at the same time still

detect the cable whenever it is present, the resolution angle was set to 4º.

Moving to the fifth parameter, threshold, all the data was analysed, and the threshold was

configured to reduce the total number of detections but always detect the cable.

Since we are looking for vertical lines, the search for it using the HoughLines function was

restricted through the min_theta and max_theta angles. As we are working in the aquatic envi-

ronment, the cable may have a certain inclination, that is, not be completely vertical. Thus, a

angle interval in the orientation of the line detected was considered for the configuration of these

parameters, from -18º to 18º.

Figure 4.6: Detected lines with Hough Line Transform

The result of the Hough algorithm for this frame in particular is thirteen lines, each one of

these lines will return two angles – the orientation of the line itself and the horizontal angle from

the camera relative to the center point of the line, as showed in Table 4.2.
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Line Line orientation angle Relative horizontal angle
1 2º 16º
2 -2º 15º
3 -2º 15º
4 2º 16º
5 -2º 15º
6 2º 16º
7 -2º 14º
8 2º 16º
9 10º 11º
10 14º 13º
11 -2º 15º
12 14º 12º
13 10º 11º

Table 4.2: Result from Optic Image Process

One of these values, filtered by a method explained afterwards, will feed the position estimator,

and through the feedback of the position estimator it is possible to remove the outliers between the

different values that this algorithm returns.

To assess if this algorithm meets the time requirement of a real-time solution, the run time was

measured for each frame, and is presented in Figure 4.7.

Figure 4.7: Run time of Hough Line Transform algorithm for a set of video frames

Through this graphic, it is easy to perceive that all frames are processed in less than 14 ms,

which is bellow the time interval it was set as our goal in chapter 3.

4.4.2 Contour Tracking

The possibility of using contour following to find the cable was analysed. For this, the image was

subjected to the pre-processing already described and then the function findContours(), from the

OpenCV library, was used.
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Contours can be explained simply as a curve joining all the continuous points along a bound-

ary, having same colour or intensity. The contours are a useful tool for shape analysis and object

detection and recognition, as mentioned in chapter 2.

This function computes contours from binary images. It can take images created by the Canny

edge detection, which have edge pixels in them, or images created by functions in which the

edges are implicit as boundaries between positive and negative regions, like threshold or adaptive

threshold.

After the preparation of the image the contours were found using the OpenCV function, find-

Contours(), which returns the detected contours. For each contour found, they are drawn in the

Canny result image, Figure 4.8.

Figure 4.8: Contour tracking algorithm result

In Figure 4.8 is observable that this algorithm does not define the cable with only one contour

but two. This may be caused by a potential gap in the definition of the line. This discontinuity

may be related to the suspended particles in the water. The next step is to apply an algorithm that

finds the cable. In order to assess its viability to complement the other algorithms, the run time

was measured in a Raspberry Pi 3 Model B+, for a set of video frames and is displayed graphically

in Figure 4.9.

Figure 4.9: Run time of a contour tracking algorithm for a set of video frames

For the Contour Tracking method, through Figure 4.9 it is possible to conclude that it returns

the contours present in an image and it meets the time requirements of this thesis.
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To decide on this topic, further information is necessary. On one hand, whether it will improve

the results when joined with an algorithm that can detect the feature itself. On the other hand,

whether this merge will cause the run time to be higher than the required for a real-time solution.

In order to understand if Contour Tracking should be used prior to Hough Line Transform,

toward a more robust optical algorithm, the two were applied to the frames. As illustrated in

Figure 4.10, this was not the case, concluding that Hough Transform works better after a Canny

operator than following the enhancement of the contours.

Figure 4.10: Result of Hough Line Transform after Contour Tracking algorithm

4.5 Conclusions

In this chapter, in order to obtain the relevant information present in an optic image, the behavior

of each of the algorithms described was assessed.

With Hough Line Transform it was expected that it would not have any problem to detect the

cable, but with a big cost in terms of time. However, this was not what was seen. Concluding

that if the feature we are seeking is well defined, such as in this case, where the feature consists in

a vertical line with certain limited orientation, this function’s parameters can be properly defined

and so it can process the image in short periods of time, and therefore can be used in real-time

problems, such as localization and navigation.
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Acoustic Data Processing

5.1 Tools and Methodology

In Figure 5.1, the methodology used for extracting the necessary information from the acoustic

sensor is presented and detailed hereafter, in the next sections. This procedure will provide a

range, ρ , the distance to the cable’s point in the sonar horizontal plane, and an angle, φ , the angle

in the horizontal plane which the cable’s point is detected. This information will then feed the

position estimator and improve the state estimation.

Figure 5.1: Acoustic image processing procedure

From the methods explained hereafter it is expected to obtain the relative position of the cable

in polar coordinates. Both methods, the Feature Detectors Algorithms and Template Matching, are

in theory capable of providing this information, however with different feature type assumptions.

While the feature extractor algorithms search for an abstract feature, template matching looks for

a specific pattern in the image. In the following subsections, an evaluation of various methods is

made in order to select the best one.

5.2 Image Acquisition

The Tritech Micron sonar is connected to an on-board computer, providing an array of echo-

intensities, which are usually represented in 8 bits and can be displayed as images. The Mechan-

ical Scaning Sonar’s (MSIS) head rotates and forms an overall acoustic image of the vehicle’s

surroundings. Figure 5.2 shows the result of a sonar scan provided by an MSIS in the middle of

35
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the test tank described in chapter 3. As it can be seen the way a MSIS maps the surroundings is

by an array of bins characterized by a distance (range), an angle and the echo intensity. It can

be represented directly in the polar coordinate system, on the left, or in cartesian coordinate sys-

tem, on the right. Some of the readings are affected by multipath interference, multiple echoes, or

reflections on multiple walls. For instance, in the image example, in polar coordinates the horizon-

tal parabola-like formats correspond to the walls of the tank, which are easier to see in cartesian

coordinates.

Figure 5.2: Sonar scan in the middle of the test tank

The intrinsic parameters of every sensor should be assessed carefully, specifically in this sonar

there are three important configurable parameters – gain, range and step. The gain setting controls

the sensitivity of the sonar receiver to compensate for water depth and water clarity. Increasing the

gain shows more sensitivity, and decreasing the gain reduces screen clutter. The range setting will

control the maximum radial distance between the sonar and the reflector. Increasing the distance

allows to cover a larger area, however decreases the acquisition rate. The sonar’s step, also called

mechanical resolution step is the movement of the motor in terms of angle. In Table 5.1, the

different parameters influence is showed in the respective acoustic image. After this assessment,

the parameters used for all tests presented in this thesis were 0.5, 5m, and 1.8º for gain, range and

step angle, respectively.

The cable has an associated pattern in the acoustic image, usually called signature. The cable

pattern will be always the same independently of the point of view. This pattern has a comet-like

form, a nucleus with high intensity and a tail of lower intensity pixels, demonstrated in Figure 5.4

which was cut out of a sonar scan in the test tank with the cable, Figure 5.3 is the complete scan

without any processing.
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Gain Range (m) Step Angle Result

0.5 5 1.8º

0.1 5 1.8º

1 5 1.8º

0.5 2 1.8º

0.5 10 1.8º

0.5 5 0.9º

0.5 5 3.6º

Table 5.1: Study results of the different sonar parameters
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Figure 5.3: Sonar scan in test tank with different
cables

Figure 5.4: Cable pattern in acoustic image

This pattern directly depends on the position of the cable in the tank, this is because of the

distance influence on the acoustic image echoes. Therefore, the distance will directly affect the

echo in the pattern, which corresponds to the comet’s tail. The higher the distance to the cable, the

bigger the echo or the tail, as the "footprint" of the sonar beam increases with distance.

5.3 Feature Detectors Algorithms

Depending on the algorithm used, the type and overall shape of the feature varies.

Table 5.2 contains the algorithms application to the pre-processed image results, it shows that

all corner and blob detectors detect the feature, except for SURF Algorithm, a blob detector.

The cable’s pattern is similar to a blob, i.e., a cluster of pixels that are distinguishable from its

background. Therefore, it would be expected that the SURF algorithm, being a blob detector,

would detect the cable in the acoustic image, just like the KAZE algorithm. The bibliography,

referred in chapter 2, states that this algorithm applies filters of at least 9x9 to locate the points of

interest. Since the cable’s pattern is inferior than the filter that this method applies to the image,

the cable is not detected.

For filtering purposes, the problem is not only the amount of correct and wrong detections,

but also the distance at which the wrong ones are from the right ones. Therefore, to evaluate this

measurement, a square centered on the feature with 1m of width , which in the image corresponds

to approximately 93 pixels, was cut from the image and the algorithms that detected the cable were

applied to it. The results of this analysis are shown in Table 5.3.

In order to understand which of these algorithms to use, a study was conducted on how many

features each algorithm detects in a set of sonar revolutions, as well as its processing time.
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Algorithm Type of feature Image Result
Number of
Features
Detected

Detected?

Harris Corners 54 Yes

FAST Corners 126 Yes

SURF Blobs 92 No

ORB Corners 460 Yes

KAZE Blobs 41 Yes

BRISK Corners 40 Yes

Table 5.2: Feature extractors results in MATLAB R2021a software

Harris, in addition to detecting many features, has a very high variance which is an indicator

that it is not reliable. ORB and KAZE are the best and relatively similar in terms of number of

detected features, but they are also the slowest.

FAST and BRISK algorithms have the lowest mean of processing time of all, and it meets the

imposed time requirement, 40 ms. However, BRISK’s standard deviation of 6.6ms means it will

take more than 40 ms, in some cases. Among these, the BRISK algorithm detects, on average,

fewer features and tends to consistently detect a number of features around the average (51.4).

As shown in Table 5.4, it would be easier to filter them since the number of detections reduces

considerably in the area of interest. Therefore, with this dataset of acoustic revolutions, the BRISK

algorithm would be the most suitable.
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Algorithm Number of Features
Detected in the original image Image Result

Number of
Features
Detected

Harris 54 13

FAST 126 20

ORB 460 4

KAZE 41 6

BRISK 40 9

Table 5.3: Feature extractors results in region of interest in MATLAB R2021a software

Number of detected
features Processing Time (ms)

Feature Detector
Algorithm Mean

Standard
deviation

Mean Standard deviation

Harris 62.7 15.4 56 8.7
FAST 87,7 8,9 22 1.6
ORB 39 3.4 339,1 45.2

KAZE 39.7 3.5 134 2
BRISK 51.4 3.8 33.1 6.6

Table 5.4: Mean and standard deviation of the number of detected features and processing time
comparison in a data set of 20 acoustic images

5.4 Image Pre-Processing

Due to the distance influence in the feature to search for, and with the aim to always look for

the same pattern, the image must be prepared for the extraction algorithms. It is known that the
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horizontal axis in the acoustic image in polar coordinates is the distance, so for different columns

of the image the feature will differ. Pre-processing prevents searching for a different form in each

column or set of columns. Searching for the same form in the entire image compared to dividing it

in sets of columns and applying different methods to each one is computationally less expensive,

and therefore was the path taken.

Not only the influence of the range is known, but also it is proportional to the size of the

echo. As the feature pattern stretches with distance, the image needs to be resized in the opposite

sence,so that the feature retains its geometrical characterstics (especially dimensions) over the

entire image, stretched in the lowest distances and schrunk for the higher distances. With this

purpose, the original image is divided into equal parts, resized, and then merged. For the used

maximum range, 5 meters, it was considered that 3 parts was sufficient, but when increasing this

value, the number of parts should increase as well.

For comparison purposes, the two images are presented hereafter, the original sonar scan,

Figure 5.5, and the resized image, Figure 5.6.

Figure 5.5: Original acoustic image

Figure 5.6: Acoustic image after pre-processing

5.5 Template Matching

Pattern matching in computer vision refers to a set of computational techniques which enable the

localization of a template pattern in a sample image or signal. Such template pattern can be a

specific facial feature, an object of known characteristics or a speech pattern such as a word.

The advantage is knowing what is expected to see in the acoustic image when the cable is

present. This knowledge allows the construction of a template. For this step, there are two options,

cutting out the pattern directly off the image, Figure 5.7, or building the expected pattern.
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Figure 5.7: Template cropped of the original acoustic image

As described earlier, the pattern has a high intensity pixel which corresponds to the first reflec-

tion, that is, the direct or shortest path. Because of the horizontal beam opening there is vertical

dispersion, lower intensity pixels, in the image. On the horizontal axis, there is also dispersion

caused by the reflections of the spherical section formed by the beams. Knowing this, the image

was built with OpenCV, and it is presented in Figure 5.8.

Figure 5.8: Expected pattern

The expected pattern was created with 16 lines to have a black background, as the cable will

always be detached from the walls and consequently, the pattern is detached from other reflections

corresponding to the walls.

The OpenCV template matching function, matchTemplate(), simply slides the template image

and compares the template and patch of input image under the template image. Several compari-

son methods are implemented in OpenCV, as described in chapter 2.2.2. The most used methods

are the square difference and the normalized square difference or the normalized correlation co-

efficient. One of them is not inherently better than the others, it really depends on the imagery

and the template. In general, if the implementation requires exact or very close to exact matches,

the square difference method will be a good choice since it is fast, and it directly maps the differ-

ence between the template and image patch. In that case, there is no need to normalize, it is just

added overhead. If the requirements are similar but there will be used multiple templates to be

comparable, then the normalized square difference is a good choice. Lastly, when working with

real-world data that may have exposure or contrast differences, the mean shifting and variance

equalization from the normalized correlation coefficient will likely be the best choice. Therefore,

for this implementation the normalized correlation coefficient comparison method was used.

The template matching algorithm detects the pattern if the matched image has a similiraty

value superior to 0.8. After implementing the algorithm for both templates, the performance of

each in a set of acoustic revolutions was assessed, Table 5.5.
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Template cropped from the
original acoustic image

Template constructed
from expected pattern

Sonar
Revolution Detected?

Normalized
Correlation
Coefficient

[0-1]

Processing
Time
(ms)

Detected?
Normalized
Correlation

Coefficient [0-1]

Processing
Time
(ms)

1 Yes 0.99 34 Yes 0.89 34
2 Yes 0.99 33 Yes 0.89 33
3 Yes 0.84 34 No - -
4 Yes 0.86 33 No - -
5 Yes 0.85 33 No - -
6 Yes 0.87 34 Yes 0.87 34
7 Yes 0.87 32 Yes 0.86 32

Table 5.5: Comparison between templates

Since the template developed using the expected pattern was not able to correctly detect the

feature in some cases, the template cropped of the acoustic image was the one used for the follow-

ing steps.

Complete Image Analysis Iterative Analysis

Sonar
Revolution Detected?

Similarity
Coefficient

[0-1]

Processing
Time
(ms)

Detected?
Similarity
Coefficient

[0-1]

Processing
Time
(ms)

1 Yes 0.99 34 Yes 0.99 1.9
2 Yes 0.99 33 Yes 0.99 1.8
3 Yes 0.84 34 Yes 0.84 2.1
4 Yes 0.86 33 Yes 0.86 1.7
5 Yes 0.85 33 Yes 0.85 1.9
6 Yes 0.87 34 Yes 0.87 2.6
7 Yes 0.87 32 Yes 0.87 1.8

Table 5.6: Comparison between the complete image’s analysis and the analysis every 16 lines

In order to improve the processing time of the template matching algorithm, and not wait for

the full 360º sonar revolution, which takes 8s, the image was analyzed every 16 lines, as soon as a

new array of intensities (one line of the image) arrives, the oldest line is discarded. This approach

is done through a stack of lines, and when the new line is inserted in the stack the algorithm is

applied. These two analysis methods are compared in Table 5.6. As the intensity peaking point,

the pixel that represents the position of the cable in the image, is in the center of the template,

whenever it exists in the image the template is only detected when the next 8 lines are returned.

This method imposes a delay. Another option was to define the pattern as just a single line, the line

that contains the maximum point. This option would have a faster processing; however, it would

not be able to determine if this peak would have vertical continuity, which would cause an increase

in false positive detections. Yet another option would be to set the template as the previous 8 lines
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to the peak intensity line, i.e., the first 8 lines from the default template, but it would have the same

trade-off.

Figure 5.9: Example of 16 line segment image for iterative analysis

Figure 5.10: Feature detection in iterative analysis

After the pattern has been found in the image, it is possible through the strongest pixel location

to return the requested information, the polar coordinates of the cable.

Figure 5.11: Template matching result

In the sonar image in Figure 5.11, and according to the template matching algorithm, the

cable’s coordinates in the acoustic image are (193,128). Which means that the cable, in the hori-

zontal sonar plane, is at 2.41 m of distance and at 230º angle, as showed in the illustrative image

presented in Figure 5.12. This conversion is made since the image has 200 lines, 399 columns and

the maximum range was set to 5m.

Figure 5.12: Illustrative image of sonar plane with detected cable
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This measurement allows to feed and update the position estimator and improve its estimation.

5.6 Conclusions

In the previous sections, the behaviour of both methods was assessed, feature detectors and tem-

plate matching, in order to obtain the relevant information present in an acoustic image.

While the template matching algorithm only returns a result with a high degree of certainty,

feature detectors return dozens of results, which makes it difficult to filter out false positives. To

use feature detectors, a filtering process would then have to exist to feed the state estimator with a

single value, the image segment with the highest similarity value.

Not forgetting that a temporal requirement was imposed, that the acoustic processing algorithm

returns a result, at least, during the acquisition time of an acoustic image line, 40 ms. For this

reason, the temporal analysis of each of the algorithms was carried out, Figure 5.13. It is worth

noting that, in this case, the full image was used and not the iterative analysis, because while

template matching is able to return no features in cases where the feature is not present, the feature

detectors always return a large number of features, and even if the outlier removal could be done

in the entire image, repeating the process for every segmentation of the image would potentially

be computational expensive.

Figure 5.13: Template matching and feature detectors algorithm comparison

For the stated problem, the template matching algorithm is the ideal approach, since it greatly

reduces the number of detections to a single result, and fulfills the time requirements, however

it is a very specific method. To extend the solution’s application area, it would have to know all

the existing moorings and their corresponding patterns or adopt more generic algorithms, such as

feature detectors.
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Chapter 6

Sensor Fusion

As mentioned throughout this document, the aim of the analysis of the acquired optical and acous-

tic images is to detect the cable and feed this information to the developed state estimator, as

represented by the block diagram in Figure 6.1.

Figure 6.1: Developed solution in block diagram

6.1 System Model

To analyze the system model, the vision and acoustic model have to be studied independently.

Figure 6.2: Cable seen by AUV’s sensors

47
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Figure 6.2 shows the cable seen by the two sensors, optical and acoustic. The cable is defined

by the point pa, the point of the cable at the water’s surface, and a vector−→v that defines the cable’s

orientation. The point p is a random point belonging to the line that represents the sum of the point

pa with the vector −→v .

pI = pa +
−→v (6.1)

Figure 6.3: Camera’s perspective of the cable

The vector −→v consists of 3 components, vx, vy and vz, where vx and vy represent the vector’s

components in the respective axis and vz is the position of the vehicle on the z axis in relation to

the inertial frame.

To analyze the cable in the camera frame, C, Figure 6.3, it is necessary to calculate the point p

in the camera frame. The cable will be projected in the plane of the camera image, this represen-

tation is made through the projection matrix PC.

PC =

[
0 1 0

0 0 1

]
(6.2)

Let RI→C be the rotation matrix from the inertial frame to the camera’s frame. Through the

previous figure, becomes clear that the point p in the camera’s coordinate system will be:
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pc = PC ·RI→C · (pI
C + pI) (6.3)

= PC ·RI→C · (pI
C + pa +

−→v ) (6.4)

= PC ·RI→C · pI
C +PC ·RI→C · pa +PC ·RI→C ·−→v (6.5)

Vector −→v seen by the camera, can be defined in the camera’s frame, −→v c through:

−→v c = PC ·RI→C ·−→v (6.6)

Through the Equation 6.3, that defines p in the camera frame, it is possible to define the angles

provided by the optical image processing, α and θ , through pc.

Figure 6.4: Output from optical image processing - α and θ

[
α

θ

]
=

[
HFOV

2 · (pcx− width
2 )

atan(
−→v c(1)−→v c(0)

)

]
(6.7)

Where HFOV represents the horizontal field of view configured by the camera, in this case

64.4º, and width represents the frame width, in pixels, 640px.

Similarly for the acoustic sensor, Figure 6.5, to analyze the cable in the sonar frame, S, it

is necessary to calculate the point p in the corresponding frame. The cable will be projected in

the horizontal plane of the sonar, this representation is made through the projection matrix PS,

equation 6.8.
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Figure 6.5: Sonar’s perspective of the cable

PS =

[
1 0 0

0 1 0

]
(6.8)

Calculating p in the sonar frame as before:

ps = PS ·RI→S · (pI
S + pI) (6.9)

= PS ·RI→S · (pI
S + pa +

−→v ) (6.10)

= PS ·RI→S · pI
S +PS ·RI→S · pa +PS ·RI→S ·−→v (6.11)

Where RI→S represents the rotation matrix from the inertial frame to the sonar’s frame. Through

the expression that defines p in the sonar frame, it is possible to define the data provided by the

acoustic image processing, ρ and φ , through ps, Equation 6.9.



6.1 System Model 51

Figure 6.6: Output from acoustic image processing - ρ and φ

[
ρ

φ

]
=

[
||ps||

atan( psx
psy

)

]
(6.12)

Considering that the origin of the inertial frame is the initial position of the vehicle, and that

the camera and sonar frames are centered on the center of mass of the vehicle itself, the rotation

matrix from the inertial to the camera and to the sonar will be the yaw, pitch and roll rotation.

The yaw angle represents a counterclockwise rotation of ψ about the z-axis. The rotation

matrix is given by:

Rz(ψ) =

cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (6.13)

The pitch angle is a counterclockwise rotation of ω about the y-axis. The rotation matrix is

given by:

Ry(ω) =

cosω 0 sinω

0 1 0

sinω 0 cosω

 (6.14)

The roll angle is a counterclockwise rotation of γ about the x-axis. The rotation matrix is given

by:

Rx(γ) =

1 0 0

0 cosγ −sinγ

0 sinγ cosγ

 (6.15)
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So, a single rotation matrix can be formed by multiplying the yaw, pitch, and roll rotation

matrices to obtain the rotation matrix, R = RI→C = RI→S.

R = R(ψ,ω,γ) = Rz(ψ)Ry(ω)Rx(γ) (6.16)

=

cosψ · cosω cosψ · sinω · sinγ− sinψ · cosγ cosψ · sinω · cosγ + sinψ · sinγ

sinψ · cosω sinψ · sinω · sinγ + cosψ · cosγ sinψ · sinω · cosγ− cosψ · sinγ

−sinω cosω · sinγ cosω · cosγ

 (6.17)

The Euler angles (roll, pitch and yaw), and consequently the rotation matrix R, will be calcu-

lated by integrating the angular velocities provided by the vehicle’s gyroscope.

6.2 State Estimator

The implemented state estimator follows the EKF algorithm presented initially in chapter 2, which

makes use of new measurements provided by the acquired information from each sensor, and the

previous state vector to estimate the current state vector X̂ . This state vector, Equation 6.51 ,

besides the vehicle’s pose, includes the cable’s surface position and its orientation, through the

components of the vector −→v .

X̂ =



x

y

z

pax

pay

vx

vy


(6.18)

EKF algorithm encompass two major procedures during state estimation, the prediction cycle,

and the measurement update cycle. This section is focused in presenting further detail regarding

the state estimation implementation and its computation.

6.2.1 Prediction Cycle

The prediction cycle takes place between the acquisition of two consecutive measurements. The

predicted state is defined as:

Xt = f (X̂t−1,ut−1,wt−1) (6.19)
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During it, the motion model presented hereafter is used to predict the vehicle’s pose.

x = x0 +
∫

ẋ ·dt (6.20)

y = y0 +
∫

ẏ ·dt (6.21)

z = z0 +
∫

ż ·dt (6.22)

Where x0, y0, and z0 represent the vehicle’s initial x,y,z position, t the time reference and ẋ, ẏ

and ż are the velocities in each axis, and can be expressed by the linear velocities u, v and w and

the Euler angles, roll (γ), pitch (ω) and yaw (ψ).

ẋ = u ·(cosω ·cosψ)+v ·(sinγ ·sinω ·cosψ−cosγ ·sinψ)+w ·(cosγ ·sinω ·cosψ +sinγ ·sinψ)

(6.23)

ẏ = u ·(cosω ·sinψ)+v ·(sinγ ·sinω ·sinψ +cosγ ·cosψ)+w ·(cosγ ·sinω ·sinψ−sinγ ·cosψ)

(6.24)

ż = u · (−sinω)+ v · (sinγ · cosω)+w · (cosγ · cosω) (6.25)

As we do not have access to linear velocities, we consider these as null, that is, with error that

follows a Gaussian distribution with null mean. In order to perform the proposed state prediction,

the model introduced is further discretized as follows:

Xt =



xt

yt

zt

paxt

payt

vxt

vyt


=



xt−1

yt−1

zt−1

paxt−1

payt−1

vxt−1

vyt−1


(6.26)

Where Xt represent the state at the current iteration and xt−1, yt−1 and zt−1 represent the vehi-

cle’s x and y position and z at the previous iteration, pxt−1 , pyt−1 , vxt−1and vyt−1 the position and the

orientation of the cable at the previous iteration.

Taking this discretized model into consideration [41], the state prediction is performed ac-

cordingly. To conclude the prediction cycle, after projecting the state ahead, the error covariance



54 Sensor Fusion

matrix, P, needs to be computed, Equation 6.27.

Pt = AtPt−1AT
t +WtQt−1W T

t (6.27)

Being At and Wt the Jacobian matrix of partial derivatives of f, Equation 6.19 with respect to X,

Equation 6.40, and with respect to w, equation 6.29, respectively, and Qt−1 the covariance matrix

of the process noise.

A[i, j] =
∂ f[i]
∂X[ j]

(X̂t−1,ut−1,wt−1) (6.28)

W[i, j] =
∂ f[i]
∂w[ j]

(X̂t−1,ut−1,wt−1) (6.29)

Since the prediction state only depends on the previous state, the Jacobian matrix of the f

function results in the identity matrix. It is presumed that all state variables are influenced by

the uncertainty and process modelling errors, which is expressed in the matrix W, the Jacobian of

partial derivatives relative to the process noise vector. Thus, these matrices are defined by:

A = I7x7 (6.30)

W = I7x7 (6.31)

Q is the covariance matrix associated with the noise in the states. The covariance matrices

must be acquired by considering the stochastic properties of the corresponding noises; however,

these are usually not known, the covariance matrices are employed as tuning parameters.

6.2.2 Update Cycle

The purpose of the update cycle is to fuse the measurements zt = h(Xt ,vt), where h is the non-

linear function that relates the state Xt to the measurement zt , and where vt is the measurement

noise.

From the optical sensor and the acoustic sensor different measurements are provided. Each

of these measures results in different information, as described throughout the document, and

consequently in different functions of h.

The optical process returns two angles, the horizontal angle relative to the center point of the

line found, α , and the angle that defines the orientation of that line, θ . Therefore, the zvt view

measure is expressed by:

zvt =

[
α(Xt)

θ(Xt)

]
(6.32)
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Figure 6.7: Illustration of horizontal angle rela-
tive to the frame’s center axis and line orientation
measurement

Figure 6.8: Frame as captured by the camera

And the the relation between these measurements and the state vector are defined hereafter.

α(Xt) =
HFOV

2
· ((cosγ · cosψ + sinγ · sinψ) · (pay + vy− y)+ cosω · sinψ · (pax + vx− x)−1)

(6.33)

θ(Xt) = z · cosω · cosγ− vx · sinω + vy · cosω · sinγ (6.34)

The acoustic process returns a point in polar coordinates, the distance, ρ , and the angle, φ .

Therefore, the zst view measure is expressed by:

zst =

[
ρ(Xt)

φ(Xt)

]
(6.35)

Where ρ and φ , were defined in the previous section, and the the relation between these

measurements and the state vector are defined hereafter.

ρ(Xt) = (((cosγ · cosψ + sinω · sinγ · sinψ) · (pay + vy− y)+ cosω · sinψ · (pax + vx− x))2

(6.36)

+((cosγ · sinψ− cosψ · sinω · sinγ) · (pay + vy− y)− cosω · cosψ · (pax + vx− x))2)1/2

(6.37)

φ(Xt) =−atan(
(cosγ · cosψ + sinω · sinγ · sinψ) · (pay + vy− y)+ cosω · sinψ · (pax + vx− x)
(cosγ · sinψ− cosψ · sinω · sinγ) · (pay + vy− y)− cosω · cosψ · (pax + vx− x)

)

(6.38)

In the same way that there is an expression of h for each of the sensors, there is the Jacobian

matrix of partial derivatives of h with respect to the state vector for each sensor, Hv and Hs, as well
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as the Jacobian matrix of partial derivatives of h with respect to the respective measurement noise

vector for each sensor, Vv and Vs.

H[i, j] =
∂h[i]
∂X[ j]

(Xt ,vt) (6.39)

V[i, j] =
∂h[i]
∂v[ j]

(Xt ,vt) (6.40)

For the optical sensor, the Jacobian matrix of h with respect to the respective measurement

noise vector is defined as:

Vv = I2x2 (6.41)

For the acoustic sensor, the Jacobian matrix of h with respect to the respective measurement

noise vector is defined as:

Vs = I2x2 (6.42)

To update the prediction with the measurements of each sensor, the following equations are

computed:

Kt = PtHT
t (HtPtHT

t +VtRtV T
t )−1 (6.43)

X̂t = X̂t +Kt(zt −h(Xt ,vt)) (6.44)

Pt = (I−KtHt)Pt (6.45)

Where Kt represents the Kalman gain, zt the measurement returned by the sensor, h(Xt ,vt))

the measurement infered by the filter and R the covariance matrix of the measurement noise.

6.3 Results

In this section, a comprehensive analysis of the developed state estimator performance is pre-

sented, in light of the solution structure presented in Figure 6.1. Therefore, the information ex-

tracted from the data processing is fed into the develop state estimator.
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For the filter’s computation, the initial estimation of the state vector and the initial covariance,

P, were set, as follows.

X̂0 =



x0

y0

z0

pax0

pay0

vx0

vy0


=



0

0

0

2.3

2.2

0

0


(6.46)

Assuming that the vehicle is at the origin of the inertial frame of reference and that the cable

is located roughly in the center of the test tank with null orientation angle, i.e. vertically.

P0 =



10 0 0 0 0 0 0

0 10 0 0 0 0 0

0 0 10 0 0 0 0

0 0 0 10 0 0 0

0 0 0 0 10 0 0

0 0 0 0 0 10 0

0 0 0 0 0 0 10


(6.47)

The covariance matrices, Q and R, were defined as a function of the model’s noise and the

measurement’s noise, and then tuned manually by trial and error methods.

Q =



(0.001)2 0 0 0 0 0 0

0 (0.001)2 0 0 0 0 0

0 0 (0.001)2 0 0 0 0

0 0 0 0.001 0 0 0

0 0 0 0 0.001 0 0

0 0 0 0 0 0.001 0

0 0 0 0 0 0 0.001


(6.48)

The noise covariance matrices of the measurements of each one of the sensors were defined

through their measurement error. By measuring the position of the cable in the test tank, it was

possible to determine that it was at [2.2, 1.9] m. Thus, the sonar’s measurement was ρ of 2.3 m and

φ of 0.38 radians, and the camera’s measurement was of α of 0.87 radians and θ of 0.1 radians.

Through these measurements, the respective errors were calculated, and the matrices were defined

as:

Rc =

[
0.01 0

0 0.07

]
(6.49)
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Rs =

[
0.65 0

0 0.48

]
(6.50)

Thus, to assess the performance of this last module, estimates of the vehicle position and cable

location as a function of time were collected. The vehicle and cable’s position estimations were

collected.

First, the behavior of the state estimator with each sensor, individually, was evaluated, that is,

only with optical sensor measurements and then only with acoustic sensor measurements. Sec-

ondly, the fusion of both systems was carried out, in a first scenario with the vehicle immobilized.

All these tests were carried out in a square tank, 4.4m long along the x axis of the inertial frame

and 4.6 wide along the y axis. Figure 6.9 shows the mooring, it was placed vertically at [2.2, 1.9]

m and the vehicle was kept still throughout all data acquisition.

Figure 6.9: Cable’s position in test tank

6.3.1 State Estimator Using Optical Data

The data acquired from the optical sensor is processed through the Hough transform, and results

in multiple lines detected in the frame provided by the sensor. In order to feed the estimator, it

is necessary to restrict these to a single result. Thus, an outlier removal algorithm was developed

using the filter’s previous estimate.

Figure 6.10: Frame example Figure 6.11: Hough transform result

Through the state estimation and resultant optical sensor measurement estimation calculated

by the system’s model, the algorithm analyzes which of the results provided by the Hough trans-

form is closest to the estimate. If the estimate is far from any of the results, then the outlier removal
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algorithm provides the line parameters that are closest to the result of the previous iteration of the

algorithm itself.

Figure 6.12: Block diagram of outlier removal after Hough transform

For the optical sensor, the estimate is made in cycles of 100 ms, since through the algorithm’s

processing time analysis in section 4.4.1, is concluded that this sensor’s data processing is done in

less than 50 ms, and so in each state estimation’s cycle there is at least one measurement.

(a) AUV’s x coordinate estimation (b) AUV’s y coordinate estimation

(c) AUV’s z coordinate estimation

Figure 6.13: AUV’s position estimation using optical sensor throughout time

As observable in Figure 6.13, the vehicle’s position does not diverge from the initial state,

having only a small oscillation, possibly caused by uncertainty growth due to time evolution. This



60 Sensor Fusion

variation is more noticeable in x and in y, however still less than 1 cm. Therefore, it is possible to

conclude that the state estimator converges to a final estimate.

(a) Cable’s x coordinate estimation (b) Cable’s y coordinate estimation

Figure 6.14: Cable’s position estimation using optical sensor throughout time

(a) Vector −→v x component estimation (b) Vector −→v y component estimation

Figure 6.15: Cable’s orientation estimation using optical sensor throughout time

The cable position’s estimate, Figure 6.14, does not diverge from the initial state imposed on

each of the components, concluding that the state estimator converges to a final estimate.

Observing the inertial frame of reference in Figure 6.9, it is noticeable that the cable’s pro-

jection in the image, provided by the camera, only gives the cable orientation on the y axis of

the inertial frame. Therefore, causing the difference between the temporal evolution of each of the

components estimations of−→v . While x component estimate diverges from the defined initial state,

as expected, the y component presents a small oscillation with a maximum amplitude of 0.6.

6.3.2 State Estimator Using Acoustic Data

For the acoustic sensor, the prediction cycle is performed at time intervals of 0.4 seconds, while

the update cycle is executed at time intervals of 8s, since a full sonar revolution is only completed
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after this period.

Figure 6.16: Template matching result with match signalized

In this case, the processing algorithm used for acoustic images, template matching, Figure

6.16, only returns one result, with an associated level of similarity. This similarity value allows

that if it is low, considered as less than 0.8, it is discarded, and since the data set was acquired

in a static scenario, the last match with an adequate similarity value will be passed to the state

estimator. The results of this processing were then used to feed the state estimator, with the same

initial conditions.

As in state estimation using optical measurements, the estimates of the vehicle position in x

and in z, Figure 6.17, do not diverge from the initial state, and it can be concluded that it converges

to a final estimate. However, the vehicle’s position estimate in y presents sudden oscillations in

the time instants that an acoustic measurement is available, and the update cycle is executed. The

first update cycle executed results in a fall from the initial value to 7 cm, in each update cycle this

value rises, finally converging at -5cm.

While using only optical measurements, which only provided information on the y axis, acous-

tic measurements deliver information on both axis, x and y, resulting in a great variation, in both

coordinates of the cable’s position estimates, whenever the correction cycle is executed. It is also

visible that one component is mirrored to the other on the time axis, since the norm of these coor-

dinates is the distance measured by the sonar. The last present estimate of pax is 2.2m, and of pay

is 2.6m.

Information about the cable’s orientation is only given by the optical sensor, since in the sonar

plane the cable is a point. Therefore, the estimates of the vector −→v have oscillations through time,

potentially caused by the increase of uncertainty since there is no information about these state

variables through the sonar measurements, and so vx oscillates between -48 and 0, while vy varies

between -18 and 36.
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(a) AUV’s x coordinate estimation (b) AUV’s y coordinate estimation

(c) AUV’s z coordinate estimation

Figure 6.17: AUV’s position estimation using acoustic sensor throughout time

(a) Cable’s x coordinate estimation (b) Cable’s y coordinate estimation

Figure 6.18: Cable’s position estimation using acoustic sensor throughout time
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(a) Vector −→v x component estimation (b) Vector −→v y component estimation

Figure 6.19: Cable’s orientation estimation using acoustic sensor throughout time

Using the measurements of each of the sensors individually presents errors in some state vari-

ables. In state estimation with optical measurements, not having information on the x-axis leads

to errors in all estimates on this axis, as they are calculated through measurements on the y-axis,

never having a correction for the state variables on this axis. In state estimation with acoustic

measures, there is information about the position of the vehicle and the cable, yet not about the

cable’s orientation. Merging data from both sensors allows balancing these variations.

6.3.3 Optical and Acoustic Data Fusion

With the same initial conditions, the estimated vehicle position, Figure 6.20, again, does not di-

verge from the imposed initial state.

The cable’s position estimate, Figure 6.21, in the two axes, x and y, presents a sharp variation

in the time of execution of the first update cycle with acoustic measurements, but both converge

to a final state. The estimate on the x-axis converges at 2.2 m, while on the y-axis it converges at

2.1 m. This estimate is the closest to reality, [2.2 , 1.9] m, from all tests of state estimators here

presented.

The estimate of vector −→v , cable orientation, in the x-axis there is variation due to the sonar

correction cycle, and it finishes at -9.5. As this estimate is only being fed by the acoustic mea-

surements, and these do not contain information about the orientation of the cable, the final value

does not inform about the actual orientation of the cable on the x-axis as it is only being calcu-

lated with the uncertainty. To improve this estimate, the vehicle would have to be in motion and

the optical measurements would provide information about the x-axis through movement. The

estimate of vy presents a constant variation due to correction cycles with acoustic measurements,

the sudden variations corrected by the optical measurements. To evaluate the filter performance,

the uncertainty of the filter of each of the components was also assessed. It was observed that the

uncertainty over the iterations decreases until it stagnates at 6.5.
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(a) AUV’s x coordinate estimation (b) AUV’s y coordinate estimation

(c) AUV’s z coordinate estimation

Figure 6.20: AUV’s position estimation using sensor fusion

(a) Cable’s x coordinate estimation (b) Cable’s y coordinate estimation

Figure 6.21: Cable’s position estimation using sensor fusion
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(a) Vector −→v x component estimation (b) Vector −→v y component estimation

Figure 6.22: Cable’s orientation estimation using sensor fusion

Another test was performed to assess the filter’s performance. In this second test, the initial

values of state and uncertainty were changed. The initial state of the cable’s position was increased,

in order to see if the filter really converges to values close to the desired one. For this, the initial

uncertainty was also increased.

X̂0 =



x0

y0

z0

pax0

pay0

vx0

vy0


=



0

0

0

2.7

2.4

0

0


(6.51)

P0 =



100 0 0 0 0 0 0

0 100 0 0 0 0 0

0 0 100 0 0 0 0

0 0 0 100 0 0 0

0 0 0 0 100 0 0

0 0 0 0 0 100 0

0 0 0 0 0 0 100


(6.52)

The results of this last test are presented hereafter. The AUV’s position estimate, Figure 6.23,

shows no difference from the previous fusion. However, the cable’s position estimate, Figure 6.24,

shows more variations in y-axis due to the initial uncertainty increase. Comparing with the pre-

vious test with initial values of cable position closer to reality, the final cable’s position estimates

are [2.3 , 1.8] m, which represent values closer to reality, 10 cm error of the true value, but also an

improvement on the y-axis since the last test. As for the estimate of the cable’s orientation, Figure

6.25 this test does not show significant changes, having similar final estimates.
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(a) AUV’s x coordinate estimation (b) AUV’s y coordinate estimation

(c) AUV’s z coordinate estimation

Figure 6.23: AUV’s position estimation using sensor fusion

(a) Cable’s x coordinate estimation (b) Cable’s y coordinate estimation

Figure 6.24: Cable’s position estimation using sensor fusion
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(a) Vector −→v x component estimation (b) Vector −→v y component estimation

Figure 6.25: Cable’s orientation estimation using sensor fusion

6.4 Conclusions

In this chapter, the development of the position estimator and sensor fusion, based on the imple-

mentation of the EKF algorithm, was presented. Further detail was given regarding the employed

system model, measurement model and its incorporation into the state estimator.

A brief analysis of the develop state estimator performance was conducted with, in a first sce-

nario with only optical measurements, then only using acoustic measurements and finally merging

the sensor information of both. Through sensor fusion was possible to observe that the time evo-

lution of the AUV’s position and cable’s position meets the real position. However, the cable’s

orientation estimate needs improvement, what could be potentially achieved through vehicle’s

movement and optical measurements from different angles.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In retrospective, the main proposed objectives were accomplished. A working solution for under-

water vehicles localization has been developed, based on optical and acoustic sensors.

The analysis of optical data was achieved through image processing techniques, with especial

focus on line extraction algorithms. A comprehensive analysis of some of the most common

algorithms for image pre-processing and line detection in literature has been conducted, in order

to better understand the most suitable solution for the proposed problem: the suspended cable’s

detection. Afterwards, Hough line transform was applied, and its performance was assessed on

the cable’s detection in the camera’s frames. Concluding that this algorithm is able to detect the

cable for a real-time localization solution.

The study and interpretation of sonar data was achieved through the application of image pro-

cessing techniques. A comprehensive analysis of some of the most common algorithms presented

in literature for abstract features has been conducted, in order to better understand the most suit-

able solution for the proposed objectives. Furthermore, the comparison between feature extraction

algorithms and template matching algorithm, provides valuable information regarding the appli-

cation of these algorithms to acoustic images. In conclusion, both algorithms are able to detect

the cable, however for a real-time problem and knowing the cable’s pattern in an acoustic image,

template matching proved to be the best approach.

Finally, a state estimator based on the common EKF algorithm has been developed and im-

plemented in order to enable the estimation of the vehicle’s pose as well as the cable’s position

through the fusion of the processed data from optical and acoustic sensors.

It is also worth mentioning that although this project was carried out with a small sized vehicle

and a certain type of sensors, it can be adapted to the tools available and even to bigger scale

problems.
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Contributions:

• Developed an algorithm for line detection with both optical and acoustic sensors.

• Comparison between feature extraction algorithms and template matching for acoustic imag-

ing.

7.2 Future Work

The next step would be to validate the developed solution in unstructured underwater environ-

ments, such as the sea, and eventually adapt it. For this case, it would be necessary to integrate

other sensors to allow control in navigation.

It would also be interesting to change the sonar settings through filter estimation, in order to

restrict the scanned sector. For this work, a real-time solution, it was not feasible since the sonar

that was used takes a long time to reconfigure. Yet, using another sonar with lower reconfiguration

period would significantly reduce the acquisition time of acoustic images.

In image processing, further improvement on the acoustic image feature detection to include

less false positives and exploring machine learning methods would bring significant improvements

to feature-based localization procedures.
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