37,032 research outputs found

    Classification without labels: Learning from mixed samples in high energy physics

    Get PDF
    Modern machine learning techniques can be used to construct powerful models for difficult collider physics problems. In many applications, however, these models are trained on imperfect simulations due to a lack of truth-level information in the data, which risks the model learning artifacts of the simulation. In this paper, we introduce the paradigm of classification without labels (CWoLa) in which a classifier is trained to distinguish statistical mixtures of classes, which are common in collider physics. Crucially, neither individual labels nor class proportions are required, yet we prove that the optimal classifier in the CWoLa paradigm is also the optimal classifier in the traditional fully-supervised case where all label information is available. After demonstrating the power of this method in an analytical toy example, we consider a realistic benchmark for collider physics: distinguishing quark- versus gluon-initiated jets using mixed quark/gluon training samples. More generally, CWoLa can be applied to any classification problem where labels or class proportions are unknown or simulations are unreliable, but statistical mixtures of the classes are available.Comment: 18 pages, 5 figures; v2: intro extended and references added; v3: additional discussion to match JHEP versio

    The Behavioral Paradox: Why Investor Irrationality Calls for Lighter and Simpler Financial Regulation

    Get PDF
    It is widely believed that behavioral economics justifies more intrusive regulation of financial markets, because people are not fully rational and need to be protected from their quirks. This Article challenges that belief. Firstly, insofar as people can be helped to make better choices, that goal can usually be achieved through light-touch regulations. Secondly, faulty perceptions about markets seem to be best corrected through market-based solutions. Thirdly, increasing regulation does not seem to solve problems caused by lack of market discipline, pricing inefficiencies, and financial innovation; better results may be achieved with freer markets and simpler rules. Fourthly, regulatory rule makers are subject to imperfect rationality, which tends to reduce the quality of regulatory intervention. Finally, regulatory complexity exacerbates the harmful effects of bounded rationality, whereas simple and stable rules give rise to positive learning effects

    Coarse-to-Fine Annotation Enrichment for Semantic Segmentation Learning

    Full text link
    Rich high-quality annotated data is critical for semantic segmentation learning, yet acquiring dense and pixel-wise ground-truth is both labor- and time-consuming. Coarse annotations (e.g., scribbles, coarse polygons) offer an economical alternative, with which training phase could hardly generate satisfactory performance unfortunately. In order to generate high-quality annotated data with a low time cost for accurate segmentation, in this paper, we propose a novel annotation enrichment strategy, which expands existing coarse annotations of training data to a finer scale. Extensive experiments on the Cityscapes and PASCAL VOC 2012 benchmarks have shown that the neural networks trained with the enriched annotations from our framework yield a significant improvement over that trained with the original coarse labels. It is highly competitive to the performance obtained by using human annotated dense annotations. The proposed method also outperforms among other state-of-the-art weakly-supervised segmentation methods.Comment: CIKM 2018 International Conference on Information and Knowledge Managemen

    Learning to Classify from Impure Samples with High-Dimensional Data

    Get PDF
    A persistent challenge in practical classification tasks is that labeled training sets are not always available. In particle physics, this challenge is surmounted by the use of simulations. These simulations accurately reproduce most features of data, but cannot be trusted to capture all of the complex correlations exploitable by modern machine learning methods. Recent work in weakly supervised learning has shown that simple, low-dimensional classifiers can be trained using only the impure mixtures present in data. Here, we demonstrate that complex, high-dimensional classifiers can also be trained on impure mixtures using weak supervision techniques, with performance comparable to what could be achieved with pure samples. Using weak supervision will therefore allow us to avoid relying exclusively on simulations for high-dimensional classification. This work opens the door to a new regime whereby complex models are trained directly on data, providing direct access to probe the underlying physics.Comment: 6 pages, 2 tables, 2 figures. v2: updated to match PRD versio
    • …
    corecore