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A persistent challenge in practical classification tasks is that labeled training sets are not always
available. In particle physics, this challenge is surmounted by the use of simulations. These simulations
accurately reproduce most features of data, but cannot be trusted to capture all of the complex correlations
exploitable by modern machine learning methods. Recent work in weakly supervised learning has shown
that simple, low-dimensional classifiers can be trained using only the impure mixtures present in data.
Here, we demonstrate that complex, high-dimensional classifiers can also be trained on impure mixtures
using weak supervision techniques, with performance comparable to what could be achieved with pure
samples. Using weak supervision will therefore allow us to avoid relying exclusively on simulations for
high-dimensional classification. This work opens the door to a new regime whereby complex models are
trained directly on data, providing direct access to probe the underlying physics.
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Data analysis methods at the Large Hadron Collider
(LHC) rely heavily on simulations. These simulations are
generally excellent and allow us to explore the mapping
between truth information (particles from collisions) and
observables (reconstructed momenta and energies). In
particular, simulations let us train complex algorithms to
extract the truth information from the observables. Machine
learning methods trained on low-level inputs have been
developed for collider physics [1] to identify boosted
W=Z=Higgs bosons [2–8], top quarks [9–13], b-quarks
[14–16], and light quarks [17–20], to remove noise [21],
and to emulate particle interactions with calorimeters
[22–24]. These new methods achieve excellent perfor-
mance by exploiting subtle features of the simulations,
which are presumed to be similar to the features in the data.
Unfortunately, the simulations are known to be imperfect.
This is particularly true for subtle features in high dimen-
sions, as illustrated clearly for boostedW bosons in Ref. [5]
and by the need for non-negligible corrections (“scale
factors”) to be applied to multivariate classifiers used by the
current LHC experiments (see e.g. Refs. [25–32]). Thus, it

is natural to question the performance of machine learning
algorithms trained on simulations as we know that if a
model is trained on unphysical artifacts, this is what the
model will learn. This objection certainly has merit, as the
power of these methods for physics applications stems
precisely from their ability to find features that we do not
fully understand and cannot easily interpret.
Data-driven approaches avoid the pitfalls of relying on

simulations in experimental analyses. For simple observ-
ables, such as the invariant mass of a photon pair, a
traditional experimental approach has been to perform
sideband fits directly to the data. This avoids relying on
the simulation altogether. Unfortunately, most of the
sophisticated discrimination techniques developed in recent
years use full supervision, where truth information is
needed in order to train the classifier. However, real data
generally consist only of mixed samples without truth
information, arising from underlying statistical or quantum
mixtures of two classes (henceforth referred to as “signal”
and “background”). Occasionally one can find a small
region of phase space where the signal or background is
pure, but these regions are generally sparsely populated and
may not produce representative distributions. Recent work
on weak supervision [33] allows classifiers to be trained
using only the information available from mixed samples.
Two weakly supervised paradigms tailored to physics
applications are learning from label proportions (LLP)
[34] and classification without labels (CWoLa) [35].
Reference [34] considered the problem of discriminating
the radiation pattern of quark from gluons (q=g) using three
standard observables and showed how to achieve fully
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supervised discrimination power by using LLP with two
samples of different but known quark fractions. In
Ref. [35], it was shown that the proportions are not
necessary for training since the likelihood ratio of the
mixed samples is monotonically related to the signal/
background likelihood ratio, the optimal binary classifier
for signal vs background.
One potential objection to the weak-learning demon-

strations in Refs. [34–36] is that the dimensionality of the
inputs used is small. Indeed, for a one-dimensional dis-
criminant one can extract the exact pure distributions from
mixed samples using the fractions. It is not obvious that
weak supervision will succeed when trained on high-
dimensional inputs where the feature space may be sparsely
populated. Indeed, the most powerful modern methods are
trained on high-dimensional, low-level inputs, where
numerically approximating and weighting the probability
distribution is completely intractable. These deep learning
techniques can expose subtle correlations in many dimen-
sions which are also much harder to model than simple low-
dimensional features.
In this paper, we demonstrate that weak supervision can

approach the effectiveness of full supervision on complex
models with high-dimensional inputs. As a concrete illus-
tration, we use an image representation to distinguish the
radiation pattern of high-energy quarks from gluons (“jet
images” [2]). Convolutional neural networks (CNNs) are
applied to the quark and gluon jet images, where the
dimensionality of the inputs is Oð1000Þ and simulation
mismodeling issues are a challenge [25,37–43]. We find that
CWoLa more robustly generalizes to learning with high-
dimensional inputs than LLP, with the latter requiring careful
engineering choices to achieve comparable performance.
Though we use a particle physics problem as an example,
the lessons about learning from data usingmixtures of signal
and background are applicable more broadly.
We begin by establishing some notation and formulating

the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, xmight be the
momenta of observed particles, calorimeter energy depos-
its, or a complete set of observables [7,8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background. Then
the fully supervised model is trained to predict the correct
labels for each training example by minimizing a loss
function. For a sufficiently large training set, an appropriate
model parameterization, and a suitable minimization pro-
cedure, the learned model should approach the optimal
classifier defined by thresholding the likelihood ratio.
Data collected from a real detector do not come with

signal/background labels. Instead, one typically has two or
more mixtures Ma of signal and background with different
signal fractions fa, such that the distribution of the features,
pMa

ðxÞ, is given by

pMa
ðxÞ ¼ fapSðxÞ þ ð1 − faÞpBðxÞ; ð1Þ

where pS and pB are the signal and background distribu-
tions, respectively. Weak supervision assumes sample
independence, that Eq. (1) holds with the same distribu-
tions pSðxÞ and pBðxÞ for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table Ref. II below).
LLP uses any fully supervised classification method and

modifies the loss function to globally match the signal
fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The batch
size, which for LLP we define as the number of samples
drawn from each mixture during one update of the model, is
a critical hyperparameter of LLP.
The loss functions we use for LLP differ from those in

Ref. [34]. Analogous to the mean squared error (MSE) loss
function for fully supervised (or CWoLa) training, we
introduce the weak MSE (WMSE) loss for the LLP
framework:

lWMSE ¼
X

a

�
fa −

1

N

XN

i¼1

hðxiÞ
�2

; ð2Þ

whereN is the batch size, a indexes the mixed samples, and
h is the model. Analogous to the cross entropy, we also
introduce the weak cross-entropy (WCE) loss:

lWCE ¼
X

a

CE

�
fa;

1

N

XN

i¼1

hðxiÞ
�
; ð3Þ

where CEða; bÞ ¼ −a logb − ð1 − aÞ logð1 − bÞ. One ca-
veat we discovered while exploring LLP is that the range of
hðxÞ must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe the
effect of model outputs becoming effectively binary at 0
and 1, necessitating additional care to avoid numerical
precision issues.
CWoLa classifies two mixtures, M1 and M2, from each

other using any fully supervised classification method. The
resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier trained
on pure samples [35,45,46]. CWoLadoes not require that the
fractions fa are known for training (the fractions on smaller
test sets can be used to calibrate the classifier operating
points). The CWoLa framework has the nice property that
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as the samples approach complete purity (f1 → 0; f2 → 1) it
smoothly approaches the fully supervised paradigm.
CWoLa presently only works with two mixtures; if more
than two are available they can be pooled at the cost of
diluting their purity. The key features ofCWoLa andLLPare
compared in Table I. Note that no learning is possible with
either method as f1 → f2.
To explore weak supervision methods with high-

dimensional inputs, we simulate Zþq=g events at
ffiffiffi
s

p ¼
13TeV using PYTHIA 8.226 [47] and create artificially mixed
samples with various quark (signal) fractions. Jets with trans-
verse momentum pjet

T ∈ ½250;275�GeV and rapidity jyj≤2.0
are obtained from final-state, non-neutrino particles clustered
using the anti-kt algorithm [48] with radius R ¼ 0.4 imple-
mented in FASTJET 3.3.0 [49]. Single-channel, 33 × 33
jet images [2,3,17] are constructed from a patch of the
pseudorapidity-azimuth plane of size 0.8 × 0.8 centered
on the jet, treating the particle pT values as pixel intensities.
The images are normalized so the sum of the pixels is 1 and
standardized by subtracting the mean and dividing by the
standard deviation of each pixel as calculated from the
training set.
All instantiations and trainings of neural networks were

performed with the python deep learning library Keras [50]
with the TensorFlow [51] backend. A CNN architecture
similar to that employed inRef. [17]was used: three 32-filter
convolutional layers with filter sizes of 8 × 8, 4 × 4, and
4 × 4 followed by a 128-unit dense layer. Maxpooling of
size 2 × 2was performed after each convolutional layer with
a stride length of 2. The dropout rate was taken to be 0.1 for
all layers. Keras VarianceScaling initialization was used
to initialize the weights of the convolutional layers. Due to
numerical precision issues caused by the tendency of LLP to
push outputs to 0 or 1, a softmax activation function was
included as part of the loss function rather than the model
output layer. Validation and test sets were used consisting
each of 50k 50:50 mixtures of quark and gluon jet images.
Training was performed with the Adam algorithm [52] with
a learning rate of 0.001 and a validation performance
patience of 10 epochs. Each network was trained 10 times
and the variation of the performance was used as a measure
of the uncertainty. Unless otherwise specified, the following
are used by default: exponential linear unit (ELU) [53]
activation functions for all nonoutput layers, the CE loss
function for CWoLa, and the WCE loss function for LLP.

The performance of a binary classifier can be captured by
its receiver operating characteristic (ROC) curve. To con-
dense the classifier performance into a single number, we
use the area under the ROC curve (AUC). The AUC is also
the probability that the classifier output is higher for signal
than for background. Random classifiers have AUC ¼ 0.5
and perfect classifiers have AUC ¼ 1.0. We also confirmed
that our conclusions are unchanged when using the back-
ground mistag rate at 50% signal efficiency as a perfor-
mance metric instead.
As previously noted, the LLP paradigm works by match-

ing the predicted fraction of signal events to the known
fraction for multiple mixed samples. In Ref. [34], the
averaging took place over the entire mixed sample.
Averaging over the entire training set at once is effectively
impossible for high-dimensional inputs such as jet images
because thegraphics processing units (GPUs) that are needed
to train theCNNs in a reasonable amount of time typically do
not have enoughmemory to hold the entire training set at one
time. Hence, the ability to train with batches is highly
desirable for using LLP with high-dimensional inputs.
There are many tradeoffs inherent with choosing the LLP

batch size. Smaller batch sizes are susceptible to shot noise
in the sense that the actual signal fraction on that batch may
differ significantly from the fraction for the entire mixed
sample, an effect which decreases as the batch size increases.
Smaller batch sizes result in longer training times per epoch
(because the full parallelization capabilities of the GPU
cannot be used) but often require fewer epochs to train.
Larger batch sizes have shorter training times per epoch but
typically requiremore epochs to train. For CWoLa, the batch
size plays the same role as in full supervision, with the

TABLE I. The essential pros (✓), cons (✗), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

Property LLP CWoLa

Compatible with any trainable model ✓ ✓
No training modifications needed ✗ ✓
Training does not need fractions ✗ ✓
Smooth limit to full supervision ✗ ✓
Works for >2 mixed samples ✓ ?

FIG. 1. The AUC and training time of CWoLa (solid) and LLP
(dashed) as the batch size is varied. Training times are measured
on an NVIDIA Tesla K80 GPU using CUDA 8.0, TensorFlow
1.4.1, and Keras 2.1.2. AUC is a measure of classifier perfor-
mance and is 1 for a perfect classifier and 0.5 for a completely
random one.
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performance being largely insensitive to it but the total
training time varying slightly. These tradeoffs are captured
in Fig. 1, which shows both the performance and training
time forCWoLa andLLPmodels as the batch size is swept in
powers of two from 64 to 16384, trained on two mixtures
with f1 ¼ 0.2 and f2 ¼ 0.8. The expected independence of
CWoLa performance and the degradation of LLP perfor-
mance for low batch sizes can clearly be seen. The training
time curves are concave with optimum batch sizes toward
the middle of the swept region. Based on this figure, we
choose default batch sizes of 4000 for LLP and 400
for CWoLa.
In order to explore a slightly more realistic scenario than

artificially mixing samples from the same distribution of
quarks and gluons, we generate Z þ jet and dijet events
with the same generation parameters and cuts as described
previously. These “naturally” mixed samples have quark
fractions fZþjet ¼ 0.88 and fdijets ¼ 0.37. The signal and
background fractions have been systematically explored for
these and many other processes in Ref. [54]. As indicated
by Table Ref. II, there is no significant difference in
performance on the naturally mixed or artificially mixed
samples. Hence, artificially mixed samples are used in the
rest of this study in order to evaluate weak supervision
performance at different quark purities.
Figure 2 compares CWoLa and LLP performance for

various quark/gluon purities as a function of the number of
training samples. Each network is trained using two
samples, one with quark fraction f1 and the other with
quark fraction f2 ¼ 1 − f1. Each point in the figure is the
median of 10 independent network trainings and the error
bars show the 25th and 75th percentiles. Full supervision
performance corresponds to CWoLa with f1 ¼ 0. The most
important takeaway from Fig. 2 is that we have achieved
good performance with both weak supervision methods
over a large variety of sample purities and training sample
sizes. We also see that CWoLa consistently outperforms
LLP and continues to get better as additional training
samples are used, likely a result of the increasingly
populated feature space, whereas LLP performance tends
to level off. It should be noted that given the binary output
nature of LLP models, classifiers trained in this way

effectively come with a working point and sweeping the
threshold to produce a ROC curve may not be ideal. The
purity/data tradeoff analysis of Fig. 2 can provide valuable
information for practical applications of weak supervision
methods in physics, particularly in cases where more data
can be acquired at the expense of worsening sample purity.
The sensitivity of LLP to different choices of loss

function and activation function was examined. We studied
the choices of the symmetric squared loss of Eq. (2) and
the weak cross-entropy loss of Eq. (3) with rectified linear
unit (ReLU) [55] and ELU activation functions. We found
a significant improvement in LLP classification perfor-
mance in using ELU activations instead of ReLU activa-
tions, particularly at high signal efficiencies. The choice of
loss function was found to be less important than the
choice of activation function, but minor improvements in
AUC were observed with the WCE loss function over
WMSE. We also studied the dependence of CWoLa on
the choice of activation function and found consistent
performance between ELU and ReLU activations. These
results justify our default choices of ELU activation and
WCE loss functions. With the choice of ELU activation,
LLP achieves almost the same performance to our CWoLa-
trained network near the operating point with equal signal
and background efficiencies. We suspect this is a result
of the tendency of LLP to output binary predictions (near
0 or 1) rather than a continuous output that can be easily
thresholded.

TABLE II. AUCs for training with CWoLa and LLP on Z þ jet
and dijet samples as well as on artificial mixtures of Z þ g and
Z þ q samples. The error given is the interquartile range. There is
no significant difference in classifier performance between the
naturally mixed (Z þ jet vs dijets) samples and the artificially
mixed (Z þ q=g) samples with the same signal fractions.

Learning Sample AUC

CWoLa
Z þ jet vs dijets 0.8626� 0.0020
Artificial Z þ q=g 0.8621� 0.0019

LLP
Z þ jet vs dijets 0.8544� 0.0019
Artificial Z þ q=g 0.8549� 0.0018

FIG. 2. Classifier performance (AUC) shown for both CWoLa
(solid) and LLP (dashed) trained on two mixed samples with
various signal fractions f1, 1 − f1 as the number of training data
is varied between 100k and 1M. Each training is repeated 10
times and the 25th, 50th, and 75th percentiles are shown. The
f1 ¼ 0.0 CWoLa curve corresponds to full supervision. CWoLa
outperforms LLP by this metric, though both methods work
quite well.
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Lastly, LLP has the potential advantage over the present
implementation of CWoLa that it can naturally encompass
multiple mixed samples with different purities. While in
principle adding more samples should help, it is not obvious
whether the networkwill effectively take advantage of them.
Indeed, we did not find significant improvement to LLP
when adding additional samples with intermediate purities,
even after significant, dedicated architecture engineering.
In conclusion, we have shown that machine learning

approaches using very high-dimensional inputs can be
trained directly on mixtures of signal and background, and
therefore on data. This addresses one of the main objections
to the use of modern machine learning in jet tagging:
sensitivity to untrustworthy simulations. We have imple-
mented and testedweakly supervised learningwith both LLP
and CWoLa, finding that for the quark/gluon discrimination
problem considered here CWoLa outperforms LLP and is
less sensitive to particular hyperparameter choices. We have
developed a method for training LLP with high-dimensional
inputs in batches and demonstrated that the batch size is a
critical hyperparameter for both performance and training
time. Given any fully supervised classifier, CWoLa works
“out-of-the-box,”whereas LLP requires additional engineer-
ing to achieve good performance and is generally harder to

train. Nonetheless, the success in using both of these weak
supervision approaches on high-dimensional data is encour-
aging for the future of modern machine learning techniques
in particle physics and beyond.
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