542 research outputs found

    Function Design of Mechatronic Systems for Human-Robot Collaboration

    Get PDF
    Traditionally, robots have been caged off from human activity but, recently, improvements in advance robotic technology as well as the introduction of new safety standards, have allowed the possibility of collaboration between human workers and robotic systems. The introduction of Human-Robot Collaboration has the potential to increase the quality and the flexibility of the production process while improving the working condition of the operators. However, traditional industrial robots are typically characterized by small payload and small reachable workspace that reduce the range of possible applications. These drawbacks can overcome the advantages related to a collaborative task and make the collaboration not effective. This work aims at analyzing innovative mechatronic solutions capable of increasing the workspace and the versatility of the system with the final goal of creating effective collaborations with humans. Cable driven Parallel Robots (CDPRs) are considered a promising technology able to satisfy these requirements. In fact, compared to rigid serial and parallel robots, they have several advantages such as large workspaces, high payloads per unit of weight, ease of construction, versatility and affordable costs. This work presents two innovative solutions of CDPR able to enlarge the workspace, improve the versatility and reduce the collisions risk. The first solution consists of a cable-suspended parallel robot with a reconfigurable end-effector whereas the second solution is an innovative model of cable-driven micro-macro robot. In the first part of the thesis, the kinematic and dynamic models of these innovative systems are presented and analyzed in order to characterize their capability. Trajectory planning and optimal design are addressed with the purpose of maximizing the performance of the systems. The last part of the thesis deals with the design of a novel family of Intelligent CAble-driven parallel roBOTs whose architecture and control are conceived to maximize the robot versatility to the task to be performed and the environment in which the robot is intended to operate

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Alignment of lines in space (with particular reference to laser-fibre coupling)

    Get PDF
    The object of this work (featuring the study of alignment of lines in space) is to produce a novel system for automatic production of optoelectronic components. It begins by reviewing the different components associated with optical fibre transmission and examines the existing laser-fibre coupling methods. The manual alignment technique adopted by STC to align a laser beam with a monomode optical fibre is then presented. The various interpretations of alignment are explored. The results obtained from the analysis determine the type of manipulator required for laser to optical fibre coupling. The central axis of a divergent beam emitted by a semi-conductor laser diode is manipulated for alignment with the axis of the fibre. Such an alignment places stringent displacement tolerance and accuracy demands on the manipulator. To construct a manipulator, actuators need to be coupled together. The coWling methods are studied and presented. Prior to this study, commercially available actuators are surveyed leading to the selecticin of the Oriel Encoder Mike actuator. This actuator exhibits some inherent control problems but meets the laser-fibre coupling accuracy demands. Various types of couplings are also examined based on the expansion of the Kelvin coupling for the construction of a four degree of freedom manipulator. A computational algorithm analogous to that used to solve two plane balancing problems is sucessfully tested on this manipulator for alignment of a conventional He-Ne laser beam with the centres of two transparent screens. This algorithm requires linearity for its success. For this reason and for purposes of completeness, spatial displacement characteristics of the manipulator are analysed and confirmed experimentally. This work ends with the ocnstruction. and testing of a program based on a hill climbing technique for the control of a three degree of freedom (Oriel Encoder Mike) manipulator to align a laser beam emitted by a semi-conductor laser diode with a monomode optical fibre

    Automation of garment assembly processes

    Get PDF
    Robotic automation in apparel manufacturing is reviewed and investigated. Gripper design for separation and de-stacking of batch cut fabric components is identified as an important factor in implementing such automation and a study of existing gripper mechanisms is presented. New de-stacking gripper designs and processes are described together with experimental results. Single fabric component handling, alignment and registration techniques are investigated. Some of these techniques are integrated within a demonstrator robotic garment assembly cell automating the common edge binding process. Performance results are reported

    Integration and operational strategy of a flexible automated system for sample analysis

    Get PDF
    This project describes the integration of a twenty-two workstation laboratory automation system based around a track-mounted robot. The required level of operational flexibility of the overall system puts the emphasis on interfacing and controlling effectively a large number of instruments. The integration of such a large system can sometimes be tricky as off-the-shelf instruments are put near side modified commercial equipment and purpose built workstations. The automated system being developed at Rhone-Poulenc Agriculture Ltd (RPAL) automates several highly manual analytical processes following one another in a constantly varying order. The integration of such a system was carried out in collaboration with a software and a mechanical engineer. The choice of the controlsystem was made so that the variety of workstations included could be controlled by a limited number of different means. After having drawn the specifications and estimated the number of inputs/outputs needed for every station, a PLC was acquired together with four computers. Various electronics interfaces had to be built or purchased in order to fully operate the system from the controlling computers. Printed circuit boards have been designed and manufactured at Middlesex University together with many mechanical parts for different stations. This integration had to make sure that the system will operate as intended and governed by the parameters entered by the user. System's behaviour and safety in case of an error or an emergency was studied and an emergency stop circuit together with interlocks was implemented. The PLC program was designed so that the machines will fail safe in case of a problem. Being a tool for method development and optimisation, the system evolves gradually towards becoming an expert system. From the information gathered during runs, a decision tree is implemented and responsibilities are gradually withdrawn from the user. Cross-contamination, radio-labelled samples, and solvent compatibility are determining factors in the safety evaluation and validation processes. This system was developed as part of a three year Teaching Company Scheme collaboration project between Middlesex University and RPAL. The diversity of the task required the participation of three engineers with varying skills: mechanical, software, and electronics

    Intelligent gripper design and application for automated part recognition and gripping

    Get PDF
    Intelligent gripping may be achieved through gripper design, automated part recognition, intelligent algorithm for control of the gripper, and on-line decision-making based on sensory data. A generic framework which integrates sensory data, part recognition, decision-making and gripper control to achieve intelligent gripping based on ABB industrial robot is constructed. The three-fingered gripper actuated by a linear servo actuator designed and developed in this project for precise speed and position control is capable of handling a large variety of objects. Generic algorithms for intelligent part recognition are developed. Edge vector representation is discussed. Object geometric features are extracted. Fuzzy logic is successfully utilized to enhance the intelligence of the system. The generic fuzzy logic algorithm, which may also find application in other fields, is presented. Model-based gripping planning algorithm which is capable of extracting object grasp features from its geometric features and reasoning out grasp model for objects with different geometry is proposed. Manipulator trajectory planning solves the problem of generating robot programs automatically. Object-oriented programming technique based on Visual C++ MFC is used to constitute the system software so as to ensure the compatibility, expandability and modular programming design. Hierarchical architecture for intelligent gripping is discussed, which partitions the robot’s functionalities into high-level (modeling, recognizing, planning and perception) layers, and low-level (sensing, interfacing and execute) layers. Individual system modules are integrated seamlessly to constitute the intelligent gripping system

    Distributed product development approaches and system for achieving optimal design.

    Get PDF
    The research in this dissertation attempts to provide theoretic approaches and design systems to support engineers who are located in different places and belong to different teams or companies to work collaboratively to perform product development.The second challenge is addressed by developing a collaborative design process modeling technique based on Petri-net. Petri-net is used to describe complex design processes and to construct different design process alternatives. These alternative Petri-net models are then analyzed to evaluate design process alternatives and to select the appropriate process.In this dissertation, three major challenges are identified in realization of a collaborative design paradigm: (i) development of design method that supports multidisciplinary xi design teams to collaboratively solve coupled design problems, (ii) development of process modeling techniques to support representation and improve complex collaborative design process, and (iii) implementation of a testbed system that demonstrates the feasibility of enhancing current design system to satisfy with the needs of organizing collaborative design process for collaborative decision making and associated design activities.New paradigms, along with accompanying approaches and software systems are necessary to support collaborative design work, in a distributed design environment, of multidisciplinary engineering teams who have different knowledge, experience, and skills. Current research generally focuses on the development of online collaborative tools, and software frameworks that integrate and coordinate these tools. However, a gap exists between the needs of a distributed collaborative design paradigm and current collaborative design tools. On one side, design methodologies facilitating engineering teams' decision making is not well developed. In a distributed collaborative design paradigm, each team holds its own perspective towards the product realization problem, and each team seeks design decisions that can maximize the design performance in its own discipline. Design methodologies that coordinate the separate design decisions are essential to achieve successful collaboration. On the other side, design of products is becoming more complex. Organizing a complex design process is a major obstacle in the application of a distributed collaborative design paradigm in practice. Therefore, the principal research goal in this dissertation is to develop a collaborative multidisciplinary decision making methodology and design process modeling technique that bridges the gap between a collaborative design paradigm and current collaborative design systems.To overcome the first challenge, decision templates are constructed to exchange design information among interacting disciplines. Three game protocols from game theory are utilized to categorize the collaboration in decision makings. Design formulations are used to capture the design freedom among coupled design activities.The third challenge, implementation of collaborative design testbed, is addressed by integration of existing Petri-net modeling tools into the design system. The testbed incorporates optimization software, collaborative design tools, and management software for product and process design to support group design activities.Two product realization examples are presented to demonstrate the applicability of the research and collaborative testbed. A simplified manipulator design example is used for explanation of collaborative decision making and design process organization. And a reverse engineering design example is introduced to verify the application of collaborative design paradigm with design support systems in practice
    • …
    corecore