thesis

Function Design of Mechatronic Systems for Human-Robot Collaboration

Abstract

Traditionally, robots have been caged off from human activity but, recently, improvements in advance robotic technology as well as the introduction of new safety standards, have allowed the possibility of collaboration between human workers and robotic systems. The introduction of Human-Robot Collaboration has the potential to increase the quality and the flexibility of the production process while improving the working condition of the operators. However, traditional industrial robots are typically characterized by small payload and small reachable workspace that reduce the range of possible applications. These drawbacks can overcome the advantages related to a collaborative task and make the collaboration not effective. This work aims at analyzing innovative mechatronic solutions capable of increasing the workspace and the versatility of the system with the final goal of creating effective collaborations with humans. Cable driven Parallel Robots (CDPRs) are considered a promising technology able to satisfy these requirements. In fact, compared to rigid serial and parallel robots, they have several advantages such as large workspaces, high payloads per unit of weight, ease of construction, versatility and affordable costs. This work presents two innovative solutions of CDPR able to enlarge the workspace, improve the versatility and reduce the collisions risk. The first solution consists of a cable-suspended parallel robot with a reconfigurable end-effector whereas the second solution is an innovative model of cable-driven micro-macro robot. In the first part of the thesis, the kinematic and dynamic models of these innovative systems are presented and analyzed in order to characterize their capability. Trajectory planning and optimal design are addressed with the purpose of maximizing the performance of the systems. The last part of the thesis deals with the design of a novel family of Intelligent CAble-driven parallel roBOTs whose architecture and control are conceived to maximize the robot versatility to the task to be performed and the environment in which the robot is intended to operate

    Similar works