7,902 research outputs found

    Stress and Decision Making: Effects on Valuation, Learning, and Risk-taking

    Get PDF
    A wide range of stressful experiences can influence human decision making in complex ways beyond the simple predictions of a fight-or-flight model. Recent advances may provide insight into this complicated interaction, potentially in directions that could result in translational applications. Early research suggests that stress exposure influences basic neural circuits involved in reward processing and learning, while also biasing decisions toward habit and modulating our propensity to engage in risk-taking. That said, a substantial array of theoretical and methodological considerations in research on the topic challenge strong cross study comparisons necessary for the field to move forward. In this review we examine the multifaceted stress construct in the context of human decision making, emphasizing stress’ effect on valuation, learning, and risk-taking

    Independent circuits in basal ganglia and cortex for the processing of reward and precision feedback

    Full text link
    In order to understand human decision making it is necessary to understand how the brain uses feedback to guide goal-directed behavior. The ventral striatum (VS) appears to be a key structure in this function, responding strongly to explicit reward feedback. However, recent results have also shown striatal activity following correct task performance even in the absence of feedback. This raises the possibility that, in addition to processing external feedback, the dopamine-centered reward circuit might regulate endogenous reinforcement signals, like those triggered by satisfaction in accurate task performance. Here we use functional magnetic resonance imaging (fMRI) to test this idea. Participants completed a simple task that garnered both reward feedback and feedback about the precision of performance. Importantly, the design was such that we could manipulate information about the precision of performance within different levels of reward magnitude. Using parametric modulation and functional connectivity analysis we identified brain regions sensitive to each of these signals. Our results show a double dissociation: frontal and posterior cingulate regions responded to explicit reward but were insensitive to task precision, whereas the dorsal striatum - and putamen in particular - was insensitive to reward but responded strongly to precision feedback in reward-present trials. Both types of feedback activated the VS, and sensitivity in this structure to precision feedback was predicted by personality traits related to approach behavior and reward responsiveness. Our findings shed new light on the role of specific brain regions in integrating different sources of feedback to guide goal-directed behavior

    Why we interact : on the functional role of the striatum in the subjective experience of social interaction

    Get PDF
    Acknowledgments We thank Neil Macrae and Axel Cleeremans for comments on earlier versions of this manuscript. Furthermore, we are grateful to Dorothé Krug and Barbara Elghahwagi for their assistance in data acquisition. This study was supported by a grant of the Köln Fortune Program of the Medical Faculty at the University of Cologne to L.S. and by a grant “Other Minds” of the German Ministry of Research and Education to K.V.Peer reviewedPreprin

    The neural basis of responsibility attribution in decision-making

    Get PDF
    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context

    Human Dorsal Striatal Activity during Choice Discriminates Reinforcement Learning Behavior from the Gambler’s Fallacy

    Get PDF
    Reinforcement learning theory has generated substantial interest in neurobiology, particularly because of the resemblance between phasic dopamine and reward prediction errors. Actor–critic theories have been adapted to account for the functions of the striatum, with parts of the dorsal striatum equated to the actor. Here, we specifically test whether the human dorsal striatum—as predicted by an actor–critic instantiation—is used on a trial-to-trial basis at the time of choice to choose in accordance with reinforcement learning theory, as opposed to a competing strategy: the gambler's fallacy. Using a partial-brain functional magnetic resonance imaging scanning protocol focused on the striatum and other ventral brain areas, we found that the dorsal striatum is more active when choosing consistent with reinforcement learning compared with the competing strategy. Moreover, an overlapping area of dorsal striatum along with the ventral striatum was found to be correlated with reward prediction errors at the time of outcome, as predicted by the actor–critic framework. These findings suggest that the same region of dorsal striatum involved in learning stimulus–response associations may contribute to the control of behavior during choice, thereby using those learned associations. Intriguingly, neither reinforcement learning nor the gambler's fallacy conformed to the optimal choice strategy on the specific decision-making task we used. Thus, the dorsal striatum may contribute to the control of behavior according to reinforcement learning even when the prescriptions of such an algorithm are suboptimal in terms of maximizing future rewards

    Involvement of the cortico-basal ganglia-thalamocortical loop in developmental stuttering

    Get PDF
    Stuttering is a complex neurodevelopmental disorder that has to date eluded a clear explication of its pathophysiological bases. In this review, we utilize the Directions Into Velocities of Articulators (DIVA) neurocomputational modeling framework to mechanistically interpret relevant findings from the behavioral and neurological literatures on stuttering. Within this theoretical framework, we propose that the primary impairment underlying stuttering behavior is malfunction in the cortico-basal ganglia-thalamocortical (hereafter, cortico-BG) loop that is responsible for initiating speech motor programs. This theoretical perspective predicts three possible loci of impaired neural processing within the cortico-BG loop that could lead to stuttering behaviors: impairment within the basal ganglia proper; impairment of axonal projections between cerebral cortex, basal ganglia, and thalamus; and impairment in cortical processing. These theoretical perspectives are presented in detail, followed by a review of empirical data that make reference to these three possibilities. We also highlight any differences that are present in the literature based on examining adults versus children, which give important insights into potential core deficits associated with stuttering versus compensatory changes that occur in the brain as a result of having stuttered for many years in the case of adults who stutter. We conclude with outstanding questions in the field and promising areas for future studies that have the potential to further advance mechanistic understanding of neural deficits underlying persistent developmental stuttering.R01 DC007683 - NIDCD NIH HHS; R01 DC011277 - NIDCD NIH HHSPublished versio

    When is giving an impulse? An ERP investigation of intuitive prosocial behavior

    Get PDF
    Human prosociality is often assumed to emerge from exerting reflective control over initial, selfish impulses. However, recent findings suggest that prosocial actions can also stem from processes that are fast, automatic and intuitive. Here, we attempt to clarify when prosocial behavior may be intuitive by examining prosociality as a form of reward seeking. Using event-related potentials (ERPs), we explored whether a neural signature that rapidly encodes the motivational salience of an event\u2014the P300\u2014can predict intuitive prosocial motivation. Participants allocated varying amounts of money between themselves and charities they initially labelled as high- or low-empathy targets under conditions that promoted intuitive or reflective decision making. Consistent with our predictions, P300 amplitude over centroparietal regions was greater when giving involved high-empathy targets than low-empathy targets, but only when deciding under intuitive conditions. Reflective conditions, alternatively, elicited an earlier frontocentral positivity related to response inhibition, regardless of target. Our findings suggest that during prosocial decision making, larger P300 amplitude could (i) signal intuitive prosocial motivation and (ii) predict subsequent engagement in prosocial behavior. This work offers novel insight into when prosociality may be driven by intuitive processes and the roots of such behaviors
    corecore