1,756 research outputs found

    Fractional cable models for spiny neuronal dendrites

    Get PDF
    Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    Mutant huntingtin enhances activation of dendritic Kv4 K+ channels in striatal spiny projection neurons

    Get PDF
    Huntington\u27s disease (HD) is initially characterized by an inability to suppress unwanted movements, a deficit attributable to impaired synaptic activation of striatal indirect pathway spiny projection neurons (iSPNs). To better understand the mechanisms underlying this deficit, striatal neurons in ex vivo brain slices from mouse genetic models of HD were studied using electrophysiological, optical and biochemical approaches. Distal dendrites of iSPNs from symptomatic HD mice were hypoexcitable, a change that was attributable to increased association of dendritic Kv4 potassium channels with auxiliary KChIP subunits. This association was negatively modulated by TrkB receptor signaling. Dendritic excitability of HD iSPNs was rescued by knocking-down expression of Kv4 channels, by disrupting KChIP binding, by restoring TrkB receptor signaling or by lowering mutant-Htt (mHtt) levels with a zinc finger protein. Collectively, these studies demonstrate that mHtt induces reversible alterations in the dendritic excitability of iSPNs that could contribute to the motor symptoms of HD

    Generation of directional selectivity by individual thin dendrites in neocortical pyramidal neurons

    Get PDF
    Patterned 2-photon glutamate uncaging and local GABA iontophoresis were used to test, in brain slices, whether basal and oblique dendrites possess the biophysical machinery to contribute to the directional selectivity exhibited by many sensory neocortical neurons. On average, Distal-to-Proximal (DP) sequences of glutamate stimuli along individual dendrites produced ~1.5-fold larger responses than the same stimuli in reverse order (PD). Proximal inhibition consistent with spatially-offset receptive subfields, preceding PD but following DP sequences, enhanced directionality to ~2.1-fold

    A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the roles of dendritic gap junctions (GJs) of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms.</p> <p>Results</p> <p>Under physiological conditions, excitatory post-junctional potentials (EPJPs) interact with thalamocortical (TC) inputs within an unprecedented few milliseconds (i.e. over 200 Hz) to enhance the firing probability and synchrony of coupled fast-spiking (FS) cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: <b><it>1) </it></b>rapid capacitive current (I<sub>cap</sub>) underlies the activation of voltage-gated sodium channels; <b><it>2) </it></b>there was less than 2 milliseconds in which the I<sub>cap </sub>underlying TC input and EPJP was coupled effectively; <b><it>3) </it></b>cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; <b><it>4) </it></b>synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy.</p> <p>Conclusion</p> <p>Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz). Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.</p

    The positive effect on ketamine as a priming adjuvant in antidepressant treatment.

    Get PDF
    Ketamine is an anesthetic with antidepressant properties. The rapid and lasting effect of ketamine observed in preclinical and clinical research makes it a promising therapeutic to improve current major depression (MD) treatment. Our work intended to evaluate whether the combined use of classic antidepressants (imipramine or fluoxetine) and ketamine would improve the antidepressant response. Using an animal model of depressive-like behavior, we show that the addition of ketamine to antidepressants anticipates the behavioral response and accelerates the neuroplastic events when compared with the use of antidepressants alone. In conclusion, our results suggest the need for a reappraisal of the current pharmacological treatment of MD.This work is supported by the Fundação para a Ciência e Tecnologia (FCT) grant SFRH/SINTD/60126/200

    Reaction-subdiffusion front propagation in a comblike model of spiny dendrites

    Get PDF
    Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism
    • …
    corecore