344 research outputs found

    Indoor Radio Measurement and Planning for UMTS/HSPDA with Antennas

    Get PDF
    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator\u27s point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product\u27s response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Cooperative Radio Resource Management for Next Generation Systems

    Get PDF

    Game Theory in Wireless Ad-Hoc Opportunistic Radios

    Get PDF

    Power control for WCDMA

    Get PDF
    This project tries to introduce itself in the physical implementations that make possible the denominated third generation mobile technology. As well as to know the technology kind that makes possible, for example, a video-call in real time. During this project, the different phases passed from the election of WCDMA like the access method for UMTS will appear. Its coexistence with previous network GSM will be analyzed, where the compatibility between systems has been one of the most important aspects in the development of WCDMA, the involved standardization organisms in the process, as well as the different protocols that make the mobile communications within a network UTRAN possible. Special emphasis during the study of the great contribution that has offered WCDMA with respect to the control of power of the existing signals will be made. The future lines that are considered in the present, and other comment that already are in their last phase of development in the field of the mobile technology. UMTS through WCDMA can be summarized like a revolution of the air interface accompanied by a revolution in the network of their architecture

    LTE-verkon suorituskyvyn parantaminen CDMA2000:sta LTE:hen tehdyn muutoksen jälkeen

    Get PDF
    CDMA2000 technology has been widely used on 450 MHz band. Recently the equipment availability and improved performance offered by LTE has started driving the operators to migrate their networks from CDMA2000 to LTE. The migration may cause the network performance to be in suboptimal state. This thesis presents four methods to positively influence LTE network performance after CDMA2000 to LTE migration, especially on 450 MHz band. Furthermore, three of the four presented methods are evaluated in a live network. The measured three methods were cyclic prefix length, handover parameter optimization and uplink coordinated multipoint (CoMP) transmission. The objective was to determine the effectiveness of each method. The research methods included field measurements and network KPI collection. The results show that normal cyclic prefix length is enough for LTE450 although the cell radius may be up to 50km. Only special cases exist where cyclic prefix should be extended. Operators should consider solving such problems individually instead of widely implementing extended cyclic prefix. Handover parameter optimization turned out to be an important point of attention after CDMA2000 to LTE migration. It was observed that if the handover parameters are not concerned, significant amount of unnecessary handovers may happen. It was evaluated that about 50% of the handovers in the network were unnecessary in the initial situation. By adjusting the handover parameter values 47,28 % of the handovers per user were removed and no negative effects were detected. Coordinated multipoint transmission has been widely discussed to be an effective way to improve LTE network performance, especially at the cell edges. Many challenges must be overcome before it can be applied to downlink. Also, implementing it to function between cells in different eNBs involve challenges. Thus, only intra-site uplink CoMP transmission was tested. The results show that the performance improvements were significant at the cell edges as theory predicted.CDMA2000 teknologiaa on laajalti käytetty 450 MHz:n taajuusalueella. Viime aikoina LTE:n tarjoamat halvemmat laitteistot ja parempi suorituskyky ovat kannustaneet operaattoreita muuttamaan verkkoaan CDMA2000:sta LTE:hen. Kyseinen muutos saattaa johtaa epäoptimaaliseen tilaan verkon suorituskyvyn kannalta. Tämä työ esittelee neljä menetelmää, joilla voidaan positiivisesti vaikuttaa LTE-verkon suorituskykyyn CDMA2000:ste LTE:hen tehdyn muutoksen jälkeen erityisesti 450 MHz:n taajuusalueella. Kolmea näistä menetelmistä arvioidaan tuotantoverkossa. Nämä kolme menetelmää ovat suojavälin pituus, solunvaihtoparametrien optimointi ja ylälinkin koordinoitu monipistetiedonsiirto. Tavoite oli määrittää kunkin menetelmän vaikutus. Tutkimusmenetelmiin kuului kenttämittaukset ja verkon suorituskykymittareiden analyysi. Tutkimustulosten perusteella voidaan sanoa, että normaali suojaväli on riittävän pitkä LTE450:lle vaikka solujen säde on jopa 50km. Vain erikoistapauksissa tarvitaan pidennettyä suojaväliä. Operaattoreiden tulisi ratkaista tällaiset tapaukset yksilöllisesti sen sijaan, että koko verkossa käytettäisiin pidennettyä suojaväliä. Solunvaihtoparametrien optimointi osoittautui tärkeäksi huomion aiheeksi CDMA2000:sta LTE:hen tehdyn muutoksen jälkeen. Turhia solunvaihtoja saattaa tapahtua merkittäviä määriä, mikäli parametreihin ei kiinnitetä huomiota. Lähtötilanteessa noin 50 % testiverkon solunvaihdoista arvioitiin olevan turhia. Solunvaihtoparametreja muuttamalla 47,28 % solunvaihdoista per käyttäjä saatiin poistettua ilman, että mitään haittavaikutuksia olisi huomattu. Koordinoidun monipistetiedonsiirron on laajalti sanottu olevan tehokas tapa parantaa LTE-verkon suorituskykyä, etenkin solujen reunoilla. Monia haasteita pitää ratkaista, enne kuin sitä voidaan käyttää alalinkin tiedonsiirtoon. Lisäksi sen käyttöön eri tukiasemien solujen välillä liittyy haasteita. Tästä syystä monipistetiedonsiirtoa voitiin testata vain ylälinkin suuntaan ja vain yhden tukiaseman välisten solujen kesken. Tulokset osoittivat, että suorituskyky parani merkittävästi solun reunalla

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels

    The new enhancement of UMTS: HSDPA and HSUPA

    Get PDF
    During the last two decades, the world of the mobile communications grew a lot, as a consequence of the increasing necessity of people to communicate. Now, the mobile communications still need to improve for satisfies the user demands. The new enhancement of UMTS in concrete HSDPA and HSUPA is one of these improvements that the society needs. HSDPA and HSUPA which together are called HSPA, give to the users higher data rates in downlink and uplink. The higher data rates permit to the operators give more different types of services and at the same time with better quality. As a result, people can do several new applications with their mobile terminals like applications that before a computer and internet connection were required, now it is possible to do directly with the mobile terminal. This thesis consists in study these new technologies denominated HSDPA and HSUPA and thus know better the last tendencies in the mobile communications. Also it has a roughly idea about the future tendencies
    corecore