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Abstract  
 

This thesis proposes a novel framework for interactions belonging to entities that 

implement functionalities for radio resource management (RRM) in the scope of next 

generation systems.  

Next generation systems will support a variety of heterogeneous networks, which 

means that connections span over different transport technologies supported by radio 

access networks of various topologies.  

Access layer differences manifest themselves at radio link (e.g., delay and jitter) and 

at system level (radio resource allocation).  This imposes the challenge of efficient 

network design and management. In this context RRM strategies are responsible for the 

efficient utilization of available resources in the radio access networks (RANs). 

Interworking between heterogeneous RANs is important for the provision of seamless 

mobility and ubiquitous coverage to users (i.e., user-perceived quality of service), for 

efficient network management including optimized system capacity, and fast 

deployment of new communication technologies. 

Two main scenarios for interactions at layer 2 and layer 3 are considered, 

namely: 

1. Inter-system interactions between RRM entities belonging to different RANs; 

2. Intra-system interactions between RRM entities belonging to the same RAN 

and associated with different layer 1 transmission modes of the same radio access 

technology. 

Existing RANs at this moment can be modified or updated for cooperation only at 

higher layers of the mobile network, which translates into routing at the radio network 

controller (RNC) or an equivalent network element. Further, already developed RRM 

architectures are optimized only for networks using a single layer technology. IMT-

Advanced candidate RANs are foreseen of a simplified RAN architecture where the 

functionalities for RRM are moved closer to the air interface according to a distributed 

approach. This implies a large number of possible scenarios requiring resource 

allocation.  

The heterogeneity of scenarios makes RRM interactions complex and multiple, 

meaning significant delays to execute them, degradation of QoS for mobile users, 

reduced throughput, unnecessary load increase in the networks and so forth. It is, 
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therefore, burdensome and inefficient to optimise traditional RRM mechanisms for a 

vast majority of specific scenarios. 

The following are the key research contributions to resolve the above 

challenges:  

• A novel, generic and scalable architecture for support of inter- and intra-

system interworking described in terms of physical entities and logical functionalities. 

The entities in charge of decision making can execute reconfiguration actions to the 

underlying entities/network(s), by mechanisms capable to modify the network 

behavior. The network behavior is examined through simulations and key performance 

indicators (KPIs) real-time monitoring. Scalability is achieved by a combined 

centralized and distributed approach towards cooperation among architectural entities 

depending on the arisen situation and assessed in terms of achievable gains. The 

architecture is introduced in Chapter 1 and further assessed in relation to a variety of 

proposed RRM strategies in the rest of the Chapters of this thesis. 

• Cooperation algorithms for mobility management, admission, load and 

congestion control in support of inter-and intra-system interworking towards provision 

of QoS to end users. Centralized and distributed strategies have been considered and a 

combined centralized and distributed approach has been proposed to provide for 

scalability. The proposed algorithms are generic and provide cooperation in any 

scenario without requiring major modifications in existing elements. They have been 

assessed for different traffic load scenarios and measurement strategies. The 

advantages of each algorithm have been assessed by simulations in terms of 

parameters related to QoS. Cooperative RRM algorithms are proposed and assessed in 

relation to different measurement strategies in Chapter 2. Chapter 3 proposes and 

assesses RRM strategies in support of inter-and intra-system handover. Chapter 4 

proposes and assesses congestion, admission and load control in the context of inter-

system interworking. Chapter 5 proposes a network-controlled mobility management 

scheme with policy enforcements. Chapter 6 proposes and assesses a multi-stage 

admission control strategy in support of intra-system interworking.  

• Demonstration of the benefits of the proposed schemes by deploying them in 

a real-time simulation platform. The real-time simulation platform is a mobile IPv6-

based software implementation where the IMT-Advanced candidate RAN is part of an 

experimental testbed configuration and the legacy RAN is an 802.11a/b/g WLAN 

access point. The efficiency of the proposed cooperative RRM is shown for a scenario 

of inter-system handover of a user with an ongoing real-time video streaming 
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application. Real-time network monitoring is based on use of key performance 

indicators, for which the process of decision making is enhanced by computational 

intelligence. The real-time simulation platform is proposed in Chapter 7. 

The achieved results provide useful feedback relevant for the RRM design 

specifics to be considered in the context of next generation communication systems. 

The follow up research is intended to elevate the proposed concepts to a fully autonomic 

management framework. Focus is on cross-layer philosophy as a means for optimizing 

the mutual exchange of information between decision entities responsible for 

cooperative RRM.  
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Dansk Resume 
 

Denne afhandling foreslår en nyskabende struktur for samspil mellem enheder, der 

implementerer funktionaliteter til administration af radioressourcer (RRM) indenfor 

næste generation kommunikationssystemer. 

Næste generation kommunikationssystemer vil understøtte en bred vifte af 

heterogene netværk, hvilket betyder, at forbindelser mellem enheder fungerer over 

forskellige transportteknologier understøttet af radiotilgangsnetværk med forskellige 

topologier. 

Forskelle i tilgangslag manifesterer sig på radioforbindelse- (f.eks. forsinkelse og 

jitter) og på system-niveau (radio ressourcefordeling). Dette medfører en udfordring i 

form af effektiv netværksudformning og administration. I denne sammenhæng er RRM 

strategier ansvarlige for en effektiv udnyttelse af de tilgængelige ressourcer i radio 

tilgangsnetværk (RANs). Samspil mellem heterogene RANs er vigtigt for levering af 

problemfri mobilitet og udbredt dækning for brugere (dvs. brugerens oplevelse af 

servicekvaliteten), og for effektiv administration af netværk, herunder optimeret 

systemkapacitet, og hurtig udbredelse af nye kommunikationsteknologier. 

To vigtige scenarier for interaktioner på lag 2 og lag 3, behandles, nemlig: 

1. Inter-system-samspillet mellem RRM enheder, der tilhører forskellige RANs; 

2. Intra-system-samspillet mellem RRM enheder, der tilhører samme RAN og er 

forbundet med forskellige lag 1 transmissionsformer af samme radiotilgangsteknologi. 

Eksisterende RANs kan udelukkende ændres eller opdateres for samarbejde på de 

højere lag af det mobile netværk, svarende til routing på radionetværkscontrolleren 

(RNC) eller et tilsvarende netværkselement. Yderligere er allerede udviklede RRM 

arkitekturer optimeret udelukkende til netværk, der benytter en enkelt-lags teknologi. 

IMT-Advanced kandidat-RANs forventes med en forenklet RAN arkitektur, hvor 

funktionerne for RRM er flyttet tættere på den trådløse grænseflade i henhold til en 

distribueret tilgang. Dette indebærer en lang række mulige scenarier, der kræver 

ressourcetildeling. 

Forskelligheden i scenarier gør RRM-interaktioner komplekse og mangfoldige, 

hvilket betyder store forsinkelser ved at udføre dem, ledende til forringelse af 

servicekvaliteten for mobile brugere, reduceret kapacitet, unødvendig stigning af 
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trafikbelastning i netværkene osv. Det er derfor besværligt og ikke effektivt at optimere 

traditionelle RRM-mekanismer for langt størstedelen af specifikke scenarier. 

Det følgende er de vigtigste forskningsbidrag til at løse de ovennævnte udfordringer: 

• En ny, generisk og skalerbar arkitektur, der kan fungere på inter- og intra-system-

niveau beskrevet i form af fysiske enheder og logisk funktionalitet. Enheder med ansvar 

for beslutningstagning kan udføre omkonfigureringsprocedurer til de underliggende 

enheder/netværk, ved hjælp af mekanismer, der er i stand til at ændre netværkets 

virkemåde. Netværkets opførsel er undersøgt gennem simulationer og 

realtidsovervågning af centrale ydelsesindikatorer (KPIs). Skalerbarhed er opnået ved 

en kombineret central og decentral tilgang til samarbejde mellem enheder i arkitekturen, 

afhængigt af den opståede situation og vurderet i forhold til de opnåelige gevinster. 

Arkitekturen er introduceret i kapitel 1 og yderligere vurderet i forhold til en række 

forslag til RRM-strategier i resten af kapitlerne i denne afhandling. 

• Algoritmer til samarbejde for administration af mobilitet, optagelse, belastning og 

overbelastningskontrol til understøttelse af for inter- og intra-system-funktionalitet til 

bestemmelse af servicekvalitet for slutbrugerne. Disse er beskrevet enkeltvist som 

centraliserede og distribuerede strategier og en kombineret centraliseret og distribueret 

tilgang er foreslået for at opnå skalerbarhed. De foreslåede algoritmer er generiske og 

muliggør samarbejde i ethvert scenario, uden at større ændringer i eksisterende 

elementer er påkrævede. Algoritmerne er blevet vurderet i forskellige 

trafikbelastningsscenarier og med forskellige målestrategier. Fordelene ved hver 

algoritme er blevet vurderet ved simuleringer af parametre i forbindelse med 

servicekvalitet. Forslagene til kooperative RRM-algoritmer præsenteres og vurderes i 

forhold til forskellige målingsstrategier i kapitel 2. Kapitel 3 foreslår og vurderer RRM-

strategier til understøttelse af skift mellem systemer på inter-og intra-system-niveauer. 

Kapitel 4 foreslår og vurderer overbelastnings-, optagelses- og belastningskontrol i 

forbindelse med inter-system kompatibilitetsproblemer. Kapitel 5 foreslår en 

netværkskontrolleret administration af mobilitet med regelbaserede håndhævelser. 

Kapitel 6 foreslår og vurderer en etapevis adgangskontrolstrategi til understøttelse af 

intra-system kompatibilitetsproblemer. 

• Demonstration af fordelene ved de foreslåede ordninger er opnået ved at 

implementere dem i en realtidssimuleringsplatform. Realtidssimuleringsplatformen er 

en mobil IPv6-baseret softwareimplementering, hvor en IMT-Advanced kandidat-RAN 

er en del af en eksperimentel opsætning og den eksisterende RAN er et 802.11a/b/g 

WLAN-adgangspunkt. Effektiviteten af det foreslåede kooperative RRM er vist for et 
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scenarie af inter-system overdragelse af en bruger med en igangværende realtidsvideo 

streaming-applikation. Realtidsovervågning af netværket er baseret på anvendelse af 

centrale ydelsesindikatorer, med hvilke beslutningsprocessen er styrket med 

computerintelligens. Realtidssimuleringsplatformen præsenteres i kapitel 7. 

De opnåede resultater giver nyttig feedback, der er relevant for design af RRM 

løsninger og som skal overvejes i forbindelse med næste generation af 

kommunikationssystemer. Opfølgende forskning er påtænkt for at bringe de foreslåede 

koncepter ind i en fuldt autonom administrationsstruktur. Fokus er på samarbejde på 

tværs af protokollag som et middel til at optimere den gensidige udveksling af 

oplysninger mellem beslutningsenheder, der er ansvarlige for kooperativ RRM. 
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Chapter 1 

Introduction 
 

This research work focuses on the interworking between heterogeneous radio access 

networks as a means for provision of quality of service (QoS) to mobile users and 

system capacity optimisation. The adopted scenario encompasses interworking between 

legacy and emerging mobile communication systems (i.e., IMT-Advanced candidate 

systems [1]-[5]). The objective was to design a set of specific strategies and algorithms 

for radio access networks (RANs) leading to an efficient use of available radio system 

resources for the support of services and mobile users over heterogeneous networks [6]-

[20].  

1.1 Problem Definition  
This research proposes solutions for multi-link, multi-network radio resource 

provisioning and control. The main goal is to provide common and consistent RRM 

control in an integrated heterogeneous scenario where decisions must be made based on 

information from a multitude of parameters, some not directly mapped to each other and 

belonging to different technology domains and, where the heterogeneity of scenarios 

makes RRM interactions complex and multiple, meaning significant delays to execute 

them, degradation of QoS for mobile users, reduced throughput, unnecessary load 

increase in the networks and so forth. 

 Heterogeneity of networks means that connections span over several networks 

that deploy different radio access and transport technologies and that the networks are 

owned and operated by separate organizations. This indicates four specific cases of 

interaction, namely, single technology-single domain, single technology-multi domain, 

multi technology-single domain, multi technology-multi domain. With the introduction 

and integration of several systems with several modes and several layers, resource 

management becomes a more and more complicated task. For example, handover and 

load sharing algorithms must not only maintain the connection at a reasonable quality, 
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they should also consider whether it would be beneficial to move the connection to 

another system/layer/mode. This decision is not solely based on changing radio 

propagation, but also on system load, operator priorities and service quality parameters.  

 Current RRM solutions consider the single-technology-single-domain case, 

where radio resources are managed solely at the link layer (L2). With a single 

technology but multiple domains it is also possible to have a L2 solution. On the other 

hand in “native-IP” environment this could cause conflicts with the network layer (L3) 

interactions that will be taking place. Therefore communication with L3 entities is very 

important.  

 When multiple technologies are introduced, different link layers (L2) will 

interact with each other and there should be a layer, which will be the bridge between 

the technologies. This layer could be the IP layer (L3) acting through a dedicated 

interface. At L3 a decision can be made for the best resource management across the 

multiple technologies. In the multi technology-multi domain case, L3 decisions are 

needed not only in order to allow for cross-technology RRM, but also to remove any 

inter-domain management conflicts at L3.  

 Therefore, it is almost impossible to guarantee the promised QoS in a multi-

technology and multi-operator environment. In case when the service does not meet the 

promised quality, it is equally difficult to identify the cause for that. 

The key research issues and contributions of this thesis are proposed as solutions to the 

problem defined above. These are listed in Section 1.1.1 below. 

1.1.1 Key Research Issues and Contributions 

The key research issues towards a solution of the defined problem can be summarized 

as follows: 

• Identify, propose, assess and validate RRM algorithms at layer 2 and layer 3 for 

an IMT-Advanced candidate system that supports multi-hop communications 

and is used as the reference system (intra-system interworking). The RRM 

algorithms relate to mobility management, congestion, admission and load 

control of IMT-Advanced mobile users. Further, these consider the state of the 

transport network during the decision making process; 

• Identify, propose and validate cooperative RRM mechanisms and strategies for 

inter-system interworking between legacy systems (e.g., GPRS, UMTS, WLAN) 

and IMT-Advanced systems. The cooperative RRM mechanisms are based on 
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the common RRM (CRRM) [21]-[23] and joint RRM (JRRM) [24]-[25] 

principle and assume tight coupling [26] between the networks.   

• Provide a flexible, generic and scalable framework for support of the 

cooperative RRM mechanisms that does not require changes in the RRM 

architectures of existing RANs and ensures successful interworking in any 

scenario. The framework increases the performance of network segments related 

to RRM and implements inter- and intra-system cooperation at various levels of 

the RAN architecture to ensure effective management of radio resources as a 

prerogative to the provision of seamless mobility, ubiquitous coverage, efficient 

network management and fast network deployment in next generation mobile 

communication systems.   

• Demonstrate the benefits of the proposed mechanisms and framework in terms 

of improved performance. This is achieved through an implementation in a real-

time simulation platform based on Mobile IPv6 and by means of a real-time 

video streaming application. 

1.1.2 Technical Approach 
It is proposed here that cooperation (i.e., RRM) mechanisms for intra-system 

interworking are developed at the radio segment level of the new RANs following a 

combined centralized and distributed approach, while inter-system interworking is 

handled by a central entity located outside of the RAN architecture following a 

centralized approach. The technical approach to the defined problem is shown in Figure 

1-1. 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 The proposed technical approach to Cooperative RRM 
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 Intra-system RRM mechanisms are implemented at network elements of the 

rank of base stations (BSs), relay nodes (RNs) and below. It is possible, however, to 

activate cooperation mechanisms from the network side of the radio access level to 

optimise the overall network and radio performance [i.e., gateway (GW)]. Additionally, 

other elements should also be able to activate them to ensure, for example, end-to-end 

requirements for QoS. 

 Inter-system interworking mechanisms are activated by an entity referred to as 

CoopRRM entity, located outside of the RAN. The GW entity is an anchor point for 

inter-system cooperation and provides the interface towards the CoopRRM entity, the 

Internet, and the operator services. 

The adopted technical approach comprises the following steps: 

• Identification, definition and assessment of RRM algorithms for mobility 

management, congestion, admission and load control for inter-system and intra-

system cooperation. Focus was on defining mechanisms that are common for all 

user scenarios and applications defined for next generation systems [1], [3] 

rather than optimizing per type of algorithm and scenario. The proposed 

algorithms were assessed for different mobility scenarios (macro-cell, micro-

cell, indoor), for a service mix (e.g., conversational, interactive, streaming, 

background) and for different traffic load scenarios (normal, busy, 

emergency/sports event). Results show an improvement of delays, mean user 

throughput, of system capacity for higher loads, and blocking and dropping 

probabilities compared to state of the art proposals. Decision making for the 

activation of a cooperative RRM includes use of triggers and KPIs 

calculation/monitoring. For the calculation of the KPIs a special reward function 

has been defined. The results of this step of the research are included in Chapter 

2, Chapter 3, Chapter 4, partly, and Chapter 6. 

• Investigation of the impact of the proposed RRM algorithms on the proposed 

architecture for cooperation in terms of scalability and flexibility. The resulting 

architecture is described in terms of logical and physical functionalities. The 

following functionalities have been implemented for the cooperative RRM: 

• Functionality for mobility management (e.g., handover);  

• Functionality for congestion, admission and load control; 

• Functionality for QoS management. 
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The proposed RRM algorithms are investigated in further details for the resulting 

architecture and assessed in terms of signaling load for a centralized and distributed 

approach to RRM. The advantages of a joint approach are presented in terms of 

achievable gains. The results of this step of the investigation are included in Chapter 

4. 

• Investigation of the benefits of the proposed interworking strategies for mobility 

management and load and admission control in an IMT-Advanced candidate 

system suitable for multi-hop communications. The results of this investigation 

include a novel proposal for policy-based mobility management (e.g., handover) 

framework mechanism that manages policies related to flow control and user 

context transfer during handover and RAT association, (in Chapter 4) and a 

novel multi-stage admission control based on load dependent decision polling 

that takes into account the available resources both in the RAN and the 

backbone network (in Chapter 5). The results show improvements in terms of 

reduced delays (for user context transfer during radio handover) and achievable 

gains through load balancing and reduced response times (for the multi-stage 

admission control). 

• Validation of the proposed RRM strategies through a heterogeneous realization 

in a real-time simulation platform and for a real-time video streaming 

application. The KPI reward function and decision making process for the 

activation of an RRM algorithm are further investigated. An approach for 

efficient decision making during handover and admission control is proposed 

based on use of computational intelligence (i.e, fuzzy logic). Results are based 

on real-time testing and are in terms of improved performance. This research 

step and the results are included in Chapter 6. 

• Outline of future work as a follow up of the performed research. Future work 

envisions short-term and long-term investigation work towards a completely 

autonomous framework for RRM in the adopted scenarios. Short –term research 

will focus on the role of the BS-BS interface (i.e., wireless versus wired 

interfaces) and its impact on the efficiency of user context transfer during 

handover, the development of the complete mathematical framework for the 

multi-stage admission control that would improve the reported here assessment 

results. Long-term research includes the further development and 

implementation of the decision making framework based on computational 
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intelligence combined with cross-layer design for achieving global QoS in next 

generation communication networks. Future work is described in Chapter 7. 

 

The outlined research topics were addressed by the proposed framework for 

cooperative RRM, which is aligned as much as possible with the proposals envisaged 

by 3GPPP and the ITU for next generation communication systems. 

1.2  Motivation for the Carried Out Research 
This research work was motivated by the trends of convergence and interoperability 

envisioned for current and next generation mobile communication systems [1] and 

implied by the variety of radio access technologies (RATs) emerging because of the 

rising demand for fast, scalable, efficient and robust data transfer over the air. The 

following challenges can be identified: 

• Heterogeneity in ownership, technologies and applications implying the need for  

the following: 

•  Coexistence and interworking between legacy, evolving  and newly 

emerging communication systems and technologies while allowing for self-

contained individual systems so that benefits from previous investements in 

legacy technologies can be further exploited; 

• Coexistence and interworking between different PHY layer modes of the 

same radio system [2] for ubiquitous coverage; 

• Establishment and the maintenance of connections with required quality 

under various scenarios; 

• Reducing the infrastructure costs but achieving higher performance 

leading to new types of network nodes. 

• Optimised control, management and flexibility of the future network 

infrastructure. 

• User-centricity of the communication process requiring resource allocation 

based on individual and specific needs but achieving the following: 

• Uninterrupted coverage even in remote areas and for any application and 

mobility scenario; 

• Global roaming capabilities implying also the need for new business 

models; 

• Fast scalable, and efficient access to system services. 

• Separation between the underlying networked infrastructure and the 

services/applications that requires the  following: 



Chapter 1: Introduction 

 Page 7 (19) 

• Simultaneous use of various transmission technologies for the delivery of 

the same service; 

• Cooperation at vertical level as well as horizontal (i.e., across 

architectures and providers) to allow for the Internet Service Provider (ISP) to 

guarantee the promised quality in a multi-technology and multi-operator 

environment.  

1.3 Background  
The strong demand in wireless systems, including broadband, requires more capacity of 

advanced mobile communication systems and promotes mixed solutions depending on 

the capacity and coverage area required for a certain service.  

 Next generation communication systems are seen as organised in a layered 

structure, comprising of a distribution layer, a cellular layer, a hot spot layer, a personal 

network layer and a fixed (wired) layer [3]. These systems shall also support the use of 

coverage enhancing technologies [3]. However, legacy systems, such as GSM, UMTS, 

and WLAN, would continue to provide services to users. Therefore, a generic 

framework for the support of the interworking between these, essentially, different 

systems is required. 

Interworking between WLAN and UMTS networks has been a research topic 

driven primarily by ETSI / BRAN [26] and 3GPP [4]. The feasibility of UMTS and 

WLAN interworking was drafted in the recommendation 3GPP TR 22.934 [27], where 

not only different levels of interworking but also different environments were defined. 

Broadly, it was classified as loose coupling and tight coupling. From a macro point of 

view the main difference is how and where one RAN is coupled to another network. 

The choice is mainly a trade-off between the required degree of modifications to 

standards, the seamless degree of interworking and the complexity of the common 

infrastructure.  

Substantial effort has been put into the design of cooperation architectures 

supporting the interworking among heterogeneous communication systems. Work has 

been performed in standardization groups [26], [27], and in various EU-funded IST 

projects on architectures and platforms for cooperation schemes between heterogeneous 

RANs [28], [29], [31], [32]. However, the research essentially focused on cooperation 

between UMTS, GSM/GPRS, and WLAN [33]-[37] or between legacy and evolving 

from UMTS networks (i.e., E-UTRAN [5]) [32]. In [38], the gains of a joint RRM 

approach were investigated. This concept was investigated further within the IST 

Project E2R [39] where focus was on coexistence of RATs within the user terminal 
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(terminal reconfigurability). The reconfiguration technology provides adaptation of the 

radio interface to varying RATs, provision of possible applications and services, update 

of software and enabling full exploitation of flexible resources and services of 

heterogeneous networks. Reconfigurable terminals, with embedded radio link layer 

functionalities according to network architecture, will be able to enable cooperation 

between multiple RATs. The IST project AROMA [32] provided a proposal and a 

detailed analysis of algorithms for admission control and cell selection in a 

heterogeneous scenario, also taking into account the available resources in the transport 

network. 

 In the scope of next generation communications research, the IST project 

WINNER [2] proposed an IMT-Advanced [1] candidate system  based on the OFDM 

technology whose system comprises various functions that are intended to avoid data 

loss and minimize delay during handover, as well as ensure coverage in the 

recommended by the ITU deployment scenarios [3]. This covers rural areas and 

provides also a contiguous coverage layer in towns and cities, where it will overlap with 

metropolitan and local area deployments. Another important target is to support the full 

range of mobility scenarios up to high speed trains. One requirement is that a ubiquitous 

radio system has to be self-contained, allowing it to target the chosen requirements 

without the need for interworking with other systems. Another requirement is that 

cooperation, whenever required, will be successfully ensured between any new or 

legacy systems.  

 The proposed RAN architecture is simple and supports a distributed approach to 

functionalities implementation similar to the one adopted by the Third Generation 

Partnership Project (3GPP) [4] for the design of the Long Term Evolution (LTE) [5] 

systems. 

Following the preliminary trends in the 3GPP architecture evolution [4] it is 

noted that the RAN is moving towards an open distributed topology. This is relevant for 

the underlying radio level activation of the resource management regime [6], [42]. 

1.4 Research Scenario  
The reference scenario for the performed research is shown in Figure 1-2. The scenario 

shows two cases of mobility of a user: 1) from an IMT-Advanced candidate system to 

an UMTS or WLAN system, and vice versa, which is requires inter-system cooperation 

and 2) within the IMT-Advanced system, between cells served by different PHY –layer 

modes, which requires intra-system cooperation. 
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 The IMT-Advanced candidate RAN (also assumed as the reference RAN in this 

research work) consists of the following entities: GW, BSs, fixed and mobile RNs 

(FRNs and MRNs, respectively).  The RNs are used to extend the coverage of a BS or 

to give coverage to shadowed zones (i.e., a multi-hop communication system). 

 The protocol stack in the RN is the same as in the BS. As compared to systems 

of previous generations, IMT-Advanced candidate systems have moved the radio-

related functionality closer to the radio interface. The radio interface is evolving 

towards flexible architecture and is designed to operate efficiently for different 

deployment modes spanning over a ubiquitous coverage, such as local area (LA), 

metropolitan area (MA) and wide area (WA) [2]. 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 1-2  Reference research scenario.  

It is proposed that inter-system interworking for the scenario in Figure 1-2 is 

based on the tight coupling principle (i.e., the external entity in charge of inter-system 

interworking will be involved in each RRM decision). Tight coupling is also the 

assumption throughout the thesis. 

 In future heterogeneous wireless networks, RRM must be coordinated across a 

number of access technologies coexisting within the same network. Inter-RRM 

signalling is also required in order to transfer the information between RRM entities 

upon which resource allocation and admission control decisions can be based.  

1.5 Reference Architecture for Cooperative RRM 
The basic reference framework for cooperation based on the reference scenario in Figure 

1-2 is shown in Figure 1-3. 
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The architecture in Figure 1-3 supports a centralised and distributed approach to 

RRM. A centralised approach was proposed for the inter-system cooperation [40], [41], 

for which the main decision making point is the CoopRRM entity located outside of the 

RANs. One requirement of the cooperation architecture is to provide some inter-RAN 

services such as admission control, handover, scheduling, and QoS-based management, 

and other services, such as billing, authentication, authorization. Tight coupling was 

selected as the most suitable degree of coupling between wireless networks and entities 

of the same RAN (e.g., BSs) [42]-[44]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 Basic reference framework for cooperative RRM. 

A specific RRM entity (SRRM) implementing the RAN- specific RRM 

mechanisms is located within each RAN. In a situation, when a local RRM approach is 

not sufficient to ensure seamless user mobility, the decision center would be shifted to 

the CoopRRM that would execute and appropriate algorithm to resolve the occurred 

problem. Thus, the proposed implementation is of generic nature that does not require 

major changes in the individual RAN architectures, and allows for easy inclusion of any 

newly designed RAN.  

The SRRM module located in the legacy RAN (hereafter referred to as SRRML) 

implements two types of functionalities and interfaces, one for traffic monitoring and 

reporting of physical legacy nodes and the other devoted to the direct actuation of the 

RRM algorithms in the legacy RAN nodes. In other words, it translates the CoopRRM 

commands to the legacy RAN. The SRRM in the IMT-Advanced reference RAN 

(hereafter referred to as SRRMW) implements the monitoring and actuation 
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functionalities and also the support of the functionalities related to the inter-RAN 

cooperation and the internal RRM coordination functionality (i.e., SRRMW is 

distributed in the RRM server, GW and BS, respectively). This two-way communication 

is for transferring monitoring information, but also for executing global RRM 

techniques. For the congestion case, the CoopRRM will not be able to change any of the 

parameters of a legacy RAN, but for handover cases the CoopRRM could change some 

RRM parameters in the legacy RANs. For the reference protocol architecture in Figure 

1-4 (e.g., it shows cooperation between the IMT-A reference RAN and UTRAN) the 

arrow pointing to the SRRM of the legacy RAN shows the indirect interaction as a 

result from the shift (handover) of users from the IMT-A reference RAN  to the legacy 

RAN. For example, when the CoopRRM decides for inter-system handover of one user 

to UMTS, after having checked its status, the user will request a radio resource control 

(RRC) session establishment, which is, in this case, the indirect interaction of the 

CoopRRM with the UMTS SRRM. The CoopRRM will also have interfaces with other 

CoopRRM of the same or different operators.  

 

Figure 1-4 Reference protocol architecture for cooperative RRM 

There are two possibilities for the inter-system cooperation. For example, in the 

case of mobility management, the CoopRRM either can advise the SRRM entities only 

before the decision, or the CoopRRM decisions are binding for the SRRM entities.  

This means that inter-system cooperation may be realized also at lower layers, in 

consequence, the SRRM will be associated to or will reside in the corresponding entities 

of the legacy RANs, (i.e., RNC, BTS and MG of UMTS, GSM and IEEE802.11 

networks, respectively.)  For the IMT-A reference RAN, inter-system cooperation 
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functionalities will reside in the GW, which is split into logical functionalities related to 

the user plane (GWUP), composed of those protocols that implement data transfer 

services of the actual user-data, and control plane (GWCP), composed of protocols for 

control of transfer services and connections between the access network and the UT. 

The protocol termination for the user and control planes in the GW in support to inter-

system cooperation is shown in Figure 1-4. The IP convergence layer (IPCL) is the 

protocol proposed for the user plane (UP) and Non-Access Stratum (NAS) is the 

protocol for the control plane (CP) [45]. The NAS is a functional layer in the protocol 

stack that supports signalling and traffic between the core network and the UT [47]. 

Normally, the SRRM will implement the functionality to translate RRM 

messages between the CoopRRM and the UT. The B3G monitor set of the SRRMW will 

include the legacy RANs cells, and the legacy RAN monitor set of the SRRML will 

include the cells for the B3G RAN. The monitoring functionality will initiate a request 

of actuation to the CoopRRM entity, when a trigger is activated by a measurement that 

shows that a threshold is surpassed. 

The handover procedure in this case will be similar to the one used for UMTS–

GSM handover, with messages transmitted by the RANs, for example, [HANDOVER 

FROM UTRAN COMMAND]; this command sends an encapsulated message of the 

other RAN, that contains all the needed information to allow the UT to connect to the 

RAN. It is necessary to update the messages and protocols of the legacy RAN to include 

IMT-A RAN messages (and perhaps other legacy RANs). In this case the SRRM would 

use the monitoring functionality and should interact with the other SRRM entities to 

transmit messages in the other RANs. 

The cooperative RRM mechanisms presented in this thesis exploit two types of 

RRM schemes proposed for interworking, namely: 

• Common Radio Resource Management (CRRM) defined within 3GPP to allow 

better inter-working between UMTS and GSM/GPRS networks [4], [21], [22], 

[23], [43], [44]. 

• Joint Radio Resource Management (JRRM) as defined in [24], [25], [38], [39] 

for inter-working between WLAN (e.g., HIPERLAN2) and UMTS. 

The cooperative RRM framework presented in this thesis adopts for inter-system 

interworking the CRRM model (i.e., a central entity is in charge of RRM decisions) and 

for intra-system interworking, the JRRM model (i.e., a central and internal to the RAN 

entity manages the overall capacity of the basic physical nodes in situations of high 

loads and joint management of traffic streams between entities). Some strategies 
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adopted by the Concurrent RRM [26] approach have also been considered for a totally 

distributed RRM execution.  

The main benefits of evolving the existing approaches are that optimal system 

performance can be achieved with limited changes and already existing functionalities.  

 The location of the RRM functions can be divided between the link layer and the 

network layer, considering the information requirements and functions that are available 

at other layers. The division of the RRM architecture on each layer is based on the 

“target object” or “environment” that will need the RRM function. However, there are 

some cases, where the RRM entity is relevant in both layers (L2 and L3). In these cases, 

the function is divided across both layers with different aspects of the function resident 

in different places coinciding with different “target objects” or “environment”. For 

functions of that kind (that split between two layers) there must be close cooperation 

between layers to ensure efficient RRM control.  

 Benefits of a centralised RRM are achieved at the expense of a higher 

computational complexity since a larger interchange of information among network 

agents increases the signalling. Delay in signalling is higher than in the distributed 

approach, but the reaction time is not as critical because of the vertical handover and 

because the legacy RAN functionalities are slower than the radio functionalities 

envisioned for IMT-Advanced candidate systems.   

It is proposed here that the following entities are implemented to realise the 

functionalities for mobility management, congestion, admission and load control, and 

for QoS management, namely: 

• Handover decision entity for making the final decision regarding the target RAT 

for the UT to handover;  

• Triggers entity for collecting/comparing triggers and deciding whether a 

handover process has to be initiated; 

• Measurements entity for collecting measurements from the current and/or other 

RATs/modes (periodically) and calculating extra values; 

• RATs monitoring and filtering entity to keep track of the available RATs/modes 

as well as keeping a list on the available RATs/modes that each UT can access 

based on user preferences, network operator restrictions, UT capabilities; 

• User preferences entity for keeping track of the user context information such as 

cost, RAT preferences, QoS classes; 

• A central admission control entity, which will be responsible for the final 

decision and located in the CoopRRM or RRM server; 
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• A local admission control entity (in each SRRM) cooperating with the 

measurement entity in each RAN, and checking the different network admission 

criteria, cooperating with the admission control entity in the CoopRRM 

(receiving/sending information) for selecting the ongoing sessions that will 

perform intersystem handover or will degrade their QoS in order to gain the 

needed resource for admitting the target session and for cooperating with other 

possible entities located in the SRRM (i.e. handover entity or QoS management 

entity; 

• Entity responsible for maintaining the handover queue for maintaining a queue 

for the handover sessions that cannot be completed immediately and must remain 

in the queue until the needed resources become available; 

• A network and session manager located at the CoopRRM for prioritising the 

sessions according to their service class and for decisions for assigning them to a 

network that would maintain the QoS requirements of the users. The main function 

of this entity is to build up and maintain an active set of candidate RANs available 

based on the user request and the relevant user profile; 

• A multi-RAN scheduler located at the GW and RRM server to forward the 

packets within the cooperative RAN cluster to one or a set of candidate RANs 

depending on the bearer/service attributes. Further, tight coupling is used to map 

the output of the scheduler in charge of link adaptation to the multi-RAN 

scheduler. 

The impact of the proposed cooperation architecture on the RAN is examined in detail 

in Chapter 2. 

 

 

 

Figure 1-5 is a visual interpretation of the defined in Section 1.1 problem and 

shows the interdependencies between the different contributions proposed in this thesis. 

The thesis proposes a novel framework for RRM that ensures that the given radio 

resources are utilised at different layers of the radio access network (RAN) architecture. 

The individual contributions proposed in the scope of this work represent the various 

chapters of the thesis structure. The organization of this thesis is based on the 

interdependencies of the blocks part of the proposed RRM frameworkand is shown in 

Figure 1-6. 
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Figure 1-5 Topical interdependencies of the proposed RRM framework and contributions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-6 Interdependencies between the Chapters of this thesis. 

 

1.6 Preview of This Thesis 
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This thesis is organized as follows. 

Chapter 2 proposes measurement strategies for cooperative RRM strategies (i.e. inter-

and intra-system cooperation). Measurements are obtained by (real-time) monitoring. 

Strategies, such as neighboring cell lists and key performance indicators (KPIs) can be 

used as triggers that would activate an RRM mechanism depending on the scenarios 

(see Figure 1-5), which are proposed in Section 2.1. Measurement strategies are 

proposed and evaluated in Section 2.2. The importance of triggers for the actuation of 

an RRM algorithm is also analysed. Measurements in a single-RAN scenario will be 

used to activate a generic or specific RRM in support of intra-system and intra-mode 

cooperation, respectively. Measurements are assessed for handover strategies (e.g., 

protocols and algorithms) proposed for inter- and intra-system cooperation in Section 

2.3. Section 2.4 analyses the impact of the proposed schemes on the RAN architecture. 

Section 2.5 concludes the Chapter. 

Chapter 3 proposes and evaluates RRM algorithms for inter-and intra-system 

handover. Inter-system handover is analysed in Section 3.1 for a scenario assuming an 

IMT-Advanced candidate system and a UMTS system. Intra-system handover is 

analysed in Section 3.2. In particular an optimised intraction between RRM functions is 

proposed based on a hybrid approach. Section 3.3 concludes the Chapter. 

Chapter 4 proposes and assesses protocols and algorithms for inter-system admission, 

congestion and load control (see Sections 4.1 and Sections 4.2). An assessment for the 

performance of the proposed algorithms is given in terms of QoS related parameters in 

Section 4.3. A feasibility study for the cooperation impact on the radio layer is also 

given. Section 4.4 concludes the chapter. 

Chapter 5 proposes a joint centralised and distributed approach to cooperation and 

proposes a hybrid approach as a means to achieve scalability in the cooperative RRM 

framework (see Section 5.1).   Section 5.2 assesses the proposed scalable architecture in 

terms of achievable gains and signalling. Here, the multiplexing gain is introduced as a 

benefit from interworking between BS. The scalable architecture allows for a network-

controlled policy-based approach to cooperative RRM. Section 5.3 proposes a novel 

network-controlled policy-based approach to mobility management, focused on policies 

related to RAT association during initial access and user context transfer during radio 

and IP handover. Section 5.4 concludes Chapter 5. 

Chapter 6 proposes a novel approach for admission control in an IMT-A candidate 

system supporting multi-hop communications. The proposed mechanism is based on 

load dependent decision polling and takes into account the load in various parts of the 
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RAN as well as available resources of the backbone network. The scheme is 

investigated in terms of achievable gains from load balancing and BS interworking in 

Section 6.2 and an implementation is proposed and described in Section 6.3. Section 6.4 

concludes the Chapter. 

Chapter 7 proposes an implementation of the cooperative RRM architecture and 

realises this implementation as real-time simulation platform based on Mobile IPv6. 

Section 7.1 gives the motivation for the chosen implementation approach. Section 7.2 

describes the requirements of the chosen implementation. Section 7.3 describes in 

further detail the importance of KPIs for the activation of a cooperative RRM and 

proposes the implementation of the monitoring process. Section 7.4 describes the 

different modules of the real-time simulation platform and their functionalities. Section 

7.5 proposes an implementation of fuzzy logic as an enhancement of the decision 

making process during handover and admission control. The platform is realised both as 

a stand-alone implementation and as an integrated trial where the IMT-A candidate air 

interface is part of a test-bed configuration. This implementation is proposed and 

described in Section 7.6. The proposed algorithms for inter-system handover (Chapter 

3) are assessed in this implementation and an improved performance is shown for a real-

time video streaming application. Section 7.7 concludes the Chapter. 

Chapter 8 concludes the thesis and proposes future short-and long-term research based 

on the achieved results.  

References: 
[1] International Telecommunications Union, ITU, at www.itu.int. 
[2] IST Project WINNER and WINNER II, www.ist-winner.org 
[3] RECOMMENDATION  ITU-R M.1645, “Framework and Overall Objectives of the Future Development  of IMT 2000 and 

Systems Beyond IMT 2000,” At www.itu.int. 
[4] Third Generation Partnership Project, 3GPP at http://www.3gpp.org 
[5] Long Term Evolution, http://www.3gpp.org/Highlights/LTE/LTE.htm 
[6] A. Mihovska, et al., “A Novel Flexible Technology for Intelligent Base Station Architecture Support for 4G Systems,” Proc. 

of WPMC’02, Honolulu, Hawaii, October 2002. 
[7] A. Mihovska, et al, “Towards the Wireless 2010 Vision: A Technology  Roadmap,” in Special Issue on Advances in Wireless 

Communications of  the  Springer International Journal on Wireless Communications, DOI: 10.1007/s11277-
006-9180-0, September 2006.  

[8] A. Mihovska and R. Prasad, “Secure Personal Networks for IMT-Advanced  Connectivity,” in Special Issue of the Springer 
International  Journal on Wireless  Communications, DOI: 10.1007/s11277-008-9485-2, April  2008.  

[9] A. Mihovska, S. Ponnekanti, and R. Prasad, “Ensuring End-to-End QoS Through Dynamically Adaptive RRM Techniques,” 
In Proc Of WPMC’03, October 2003, Yokosuka, Japan. 

[10] A., Mihovska, et al., “Requirements and Algorithms for Cooperation of Heterogeneous Networks,” in Springer International 
Journal On Wireless Personal Communications, DOI: 10.1007/s11277-008-9586-y, September 2008. 

[11]  A., Mihovska; H., Laitinen, P., Eggers, “Location and Time Aware Multi-System Mobile Network,” in Proc. of Mobile 
Location Workshop’03, Aalborg, Denmark, May 2003. 

[12] A. Mihovska, G. Karetsos, S. Ponnekanti, ”RRM Techniques for Heterogenous Wireless Systems,” in Proc. of Mobile Venue 
Workshop, May 2004, Athens, Greece. 

[13] A., Mihovska, S. Kyriazakos, E. Gkroutsiosis and J. M. Pereira, “QoS Management in Heterogeneous Environments,” in 
Proc. of WPMC’05, Aalborg Denmark, September 2005. 

[14] A. Mihovska, S. Kyriazakos, E. Mino, M. Pischella, E. Tragos, V. Sdralia,  “Assessment of RRM Schemes for the Efficient 
Cooperation of RANs: WINNER Requirements,” Proc. of WPMC’05, Aalborg Denmark, September 2005. 



Cooperative Radio Resource Management for Next Generation Networks 

 18 

[15] A. Mihovska, S. Kyriazakos, E. Mino, M. Pischella, E. Tragos, V. Sdralia, “Assessment of Radio Resource Management 
Schemes for Efficient Cooperation of RANs: An Implementation Approach,” in Proc. of IST EVEREST Workshop, November 
2005, Barcelona, Spain. 

[16] A. Mihovska, S. Kyriazakos, and J. M. Pereira, “Algorithms for QoS Management in Heterogeneous Environments,” Proc. of 
WPMC’06, San Diego, California, September 2006. 

[17] A. Mihovska, J. Luo, E. Mino, E. Tragos, C. Mensing, G. Vivier, R. Fracchia,  “Policy-Based Mobility Management for Next 
generation Systems,” Proc. of IST Mobile Summit 2007, Budapest, Hungary, July 2007. 

[18] A. Mihovska, S. Kyriazakos, and N. Prasad, ”A Cognitive Approach to Network Monitoring in Heterogeneous 
Environments,” in Proc. of WPMC’07 ,December 2007, Jaipur, India. 

[19] A. Mihovska, J. Luo, B. Anggorojati, S. Kyriazakos, N. Prasad, “Multi-Stage Admission Control for Load Balancing,” in 
Proc. of WPMC’08, Sept 8-11, 2008, Lapland, Finland. 

[20] A. Mihovska, E. Tragos, S. Kyriazakos, P. Anggraeni, N Prasad, “A Practical Implementation of Cooperative Radio Resource 
Management,” in Proc. of the ATSMA International Networking and Electronic Commerce Research Conference (NAEC 
2008), September 25-28, 2008, in Riva del Garda, Italy. 

[21] Release 99, www.3gpp.org/Releases/3GPP_R99-contents.doc 
[22] www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_26/Docs/PDF/SP-040900.pdf 
[23] F., Meago, “Common Radio Resource Management (CRRM)”, COST273, May 2002. 
[24] J., Luo, R., Mukerjee, M., Dillinger, E., Mohyeldin, E., Schulz, “Investigation of Radio Resource Scheduling in WLANs 

Coupled with 3G Cellular Network,” IEE Communications Magazine, June 2003, pp.108-115. 
[25] J., Luo, E., Mohyeldin, N., Motte, and M., Dillinger, “Performance Investigations of ARMH in a Reconfigurable 

Environment,” SCOUT workshop, Paris, 2003. 
[26] ETSI TR 101 957: “Broadband Radio Access Networks (BRAN); HIPERLAN Type2; Requirements and Architectures for 

Interworking between HIPERLAN/2 and 3rd Generation Cellular Systems”, V1.1.1 (2001-08). 
[27] 3GPP TR 22.934, V1.0.0 Feasibility study on 3GPP system to Wireless Local Area Network (WLAN) Interworking Rel-6. 
[28] Evolving Systems Beyond 3G, IST-2000-28584 MIND at http://www.ist-mind.org/. 
[29] IST Project CAUTION, “Capacity Utilization in Cellular Networks of Present and Future Generation,” at 

www.telecom.ece.ntua.gr/CautionPlus/. 
[30] Advanced Radio Resource Management for Wireless Services, IST Project ARROWS, at http://www.arrows-ist.upc.es/. 
[31] Evolutionary Strategies for RRM, IST Project EVEREST, at www.everest-ist.upc.es. 
[32] Advanced Resource Management Solutions for Future All IP Heterogeneous Mobile Radio Environments, IST Project 

AROMA at http://www.aroma-ist.upc.edu/. 
[33] UMTS, at http://www.umts-forum.org. 
[34] HIPERLAN standards, at http:// www.etsi.org/. 
[35] WLAN at http://en.wikipedia.org/wiki/Wireless_LAN. 
[36] GPRS technology at www.gsmworld.com/technology/gprs/index.shtml. 
[37] IEEE 802.11, The Working Group Setting the Standards for Wireless LANs, at http://www.ieee802.org/11. 
[38] IST Project SCOUT, “Smart User-Centric Commuunication Environment,” at http://www.ist-scout.org/. 
[39] IST project E2R, End-to-End reconfigurability, http:// e2r.motlabs.com/ 
[40] M., Lott, et al., “Cooperation of 4G Radio Networks with Legacy Systems,” Proc. of IST Mobile Summit 2005, Dresden, 

Germany, June 2005. 
[41] A., Mihovska, et al., “Assessment of Radio Resource Management Schemes for Efficient Cooperation of RANs,” Proc. of 

WPMC’05, Aalborg, Denmark, September 2005. 
[42] E., Mino, A. Mihovska, et al., “Scalable and Hybrid Radio Resource Management for Future Wireless Networks,” Proc. of 

IST Mobile Summit 07, Budapest, Hungary, July 2007. 
[43] UTRAN Radio Resource Control Protocol Specification , TS 25.331, V 5.6.0, at www.3gpp.org,  September 2003. 
[44] UTRAN Radio Interface Protocol Architecture, Release 5, TS 25.301, V 5.2.0, www.3gpp.org, September 2002. 
[45] A. Mihovska, et al. ” Practical Implementation of Cooperative Radio Resource Management, ” accepted for publication in 

Proc. Of  the 2008 Networking and Electronic Commerce Research Conference (NAEC 2008), to be held in September 25-28, 
2008, in Riva del Garda, Italy. 

[46] A. Mihovska, et al., ”D4.8.2: Cooperation Schemes Validation,” Deliverable 4.8.2, IST project WINNER II at www.ist-
winner.org. 

[47] IST project WINNER II, Deliverable 6.13.14, “WINNER II System Project Description,” November 2007. 

 

 

 

 

 

 

 



Chapter 1: Introduction 

 Page 19 (19) 

 

 

 



 

 Page 19 (38) 

 
 
 
 
 

Chapter 2 
 

Measurement Strategies for Cooperative RRM 
 
This Chapter proposes the measurement strategies for the cooperative RRM framework 

and evaluates it for RRM algorithms proposed here for inter-and intra-system handover 

as part of mobility management for IMT-A mobile users. Handover here is understood 

as the switching process between two radio systems (inter-system handover) or between 

two cells of the same/different mode/radio access system (intra-system handover). 

Further, the proposed RRM framework is applicable to inter-system interworking 

regardless of the type of the involved systems. The measurement strategies and 

proposed handover algorithms are assessed for different scenarios. 

The protocol part of the proposed RRM algorithms includes specifications of the 

messages exchanged between the involved entities, the frequency of these messages and 

the associated interfaces. 

The RRM functions rely on measurements performed by the RRM specific 

protocols. Measurements can be performed in a different way and they have to be 

reported in such a way that comparison of the obtained values is possible. The following 

measurements strategies are proposed in support of the RRM framework:  

• Key performance indicators (KPIs); 

• Neighbouring cell lists; 

• Triggers; 

• Measurements from use of location information. 

 

Chapter 2 investigates what measurements should be considered with the 

cooperative RRM framework proposed in this thesis, and proposes what quantities 

should be measured, how frequently, and how measurements should be reported in 

order to trigger a given RRM algorithm. The proposed measurement strategies are 

assessed proposed here handover protocols and algorithms. 

Further to the realization of RRM techniques, the location of the RRM functions is 

also studied. A combined centralised and distributed approach is proposed. Therefore, 
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the proposed RRM algorithms are made consistent with the specifics of the RAN 

architectures of the investigated IMT-A reference system and the RANs of the legacy 

systems. The location of the RRM functions within the network architecture is an 

essential issue and can affect the performance if causing significant signalling and 

delays. In a centralised architecture, a central entity monitors and makes decisions 

regarding the allocation of resources and the user terminal (UT) has a minimal 

participation. In a distributed RRM architecture, the decision entities for each RRM 

function are located to different nodes, including the UT. A hybrid approach is also 

proposed, and there the decision levels of the same RRM functionality that can be active 

at different timescales are allocated to different nodes. The impact of the proposed 

algorithms on the proposed cooperation architecture is also studied in Chapter 2.  

Chapter 2 is organised as follows. Section 2.1 defines the scenarios for inter- and 

intra-system cooperation. Section 2.2 defines, proposes, and analyses measurements 

strategies for the actuation of cooperative RRM. An optimised approach to monitoring 

for getting measurements based on computational intelligence is also proposed. 

Location information as another advanced methodology for obtaining of correct 

measurements is also proposed and investigated. Section 2.3 concludes the Chapter. 

2.1  Scenarios for Intra-System and Inter-System Cooperation  
The general scenario for the investigated cooperative RRM was shown in Chapter 1, 

Figure 1-1 and Figure 1-2 from two perspectives: inter-system and intra-system 

cooperation. To ensure simplicity and scalability of the RRM framework, it is proposed 

here that the RRM functions maybe shared between the two cases. This was shown in 

Figure 1-4.  

 Here, it is proposed that RRM functions are divided into cooperative, generic 

and specific RRM functions. The interdependencies among these three types of RRM 

mechanisms was shown in Figure 1-5. Figure 2-1 shows here the location of the three 

categories of RRM functions in the hierarchy of the physical RAN entities. 

Cooperative RRM functions are the functions used for inter-system cooperation. 

These functions reside at the CoopRRM entity and at the GW. Some cooperative RRM 

functions may reside also at the RRM server. These functions include inter-system 

handover, congestion, admission and load control and RAN selection, unified QoS 

control and authorisation, authentication and accounting (AAA) proxy1. 

 
                                                             
1 The unified QoS control and AAA proxy functions are not a part of the technical details of this thesis but are 

included for completeness. 



Chapter 2: Measurement Strategies for Cooperative RRM       

 Page 21 (38) 

 
 

Figure 2-1 Location of RRM functions in the reference architecture. 

Generic RRM functions may overlap with some specific RRM functions, where 

the generic RRM will administrate a specific RRM function. An example could be 

power control where the generic part may specify an interval of admissible power 

allocations (e.g., regulated by some maximum induced inter-cell interference). The 

specific part performs the actual power allocation within these limits. Even though some 

functions may be regarded as being generic, these will still rely on measurements 

performed by the specific RRM protocols. As the underlying PHY transmission modes 

may rely on totally different principles (e.g., duplexing schemes) they may perform 

measurements in a different manner and will have to be reported in such a way that they 

could be compared to one another. In any case, both the generic and specific RRM 

functions are intended for intra-system cooperation, and therefore, are proposed to be 

embedded into the RAN architecture [1]-[4]. 

Generic RRM functions are shared between the different types of BSs proposed 

for the reference RAN system (see Figure 1-2 and 1-3) or used for their coordination. 

Therefore, these functions are also referred to as mode generic functions. The generic 

RRM functions include intra-system handover (both inter- and intra-mode), intra-system 

congestion, admission and load control, cell/BS selection, flow control and buffer 
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management. Other functions, not part of the technical proposal of this thesis but 

included for completeness are spectrum mapping and allocation and link adaptation. 

Specific RRM functions are embedded at the RRM server (e.g., resource 

partitioning) and at BS and RN. These functions include power control, link adaptation 

and packet scheduling. 

The interdependency between the three proposed types of RRM functions was 

shown in Figure 1-5 as a hierarchical architecture. 

The cooperative RRM functions are acting in a centralised approach (i.e., in line 

with the concept of common radio resource management [5]-[7]) and are highest in the 

framework hierarchy. The generic and specific RRM functions are acting in a 

centralised or distributed fashion in accordance with the load of the network (i.e., 

medium to high loads and low load, correspondingly).  

In order to avoid extensive delays in the decision making and signalling overload a 

solution could be to bring some of the CP functions closer to the BSs, adding more 

complexity to the BSs and therefore increasing their cost [8]. Assuming that the BSWA 

overlaps the MA and LA (see Figure 1-2), the extra functionality can be restricted to the 

BSWA. In [8], the vision for the next generation communication systems is that the cells 

of the different deployment scenarios will coexist and overlap, either completely or 

partially. This feature is used in favour of the proposed here RRM architecture as the 

mode generic CP functions that concern the coordination of the different BSs could be 

moved to the BSWA making it responsible for the control and allocation of resources in 

the WA cell including all BSLA that fall within its coverage. A requirement for such an 

approach would be the definition of a communication link between the BSWA and the 

BSLA. This link could be either wired or wireless. The investigation of the effect of the 

type of BS communication link is proposed in Chapter 4 in relation to a policy proposed 

for user context transfer during radio handover and is intended for detailed 

investigations as a follow up of this research work (see Chapter 7). 

Table 2-1 summarises the requirements for the different BSs that serve three 

deployment areas (BSWA, BSMA and BSLA) in terms of type of physical layer mode, 

spectrum, mobility and the data rate offered by the deployment cell [3]. 

The corresponding cooperation mechanism (i.e. mode generic or specific) relies on 

the type of deployment of the BS, rather than the type of PHY layer mode used by the 

BS. As shown in Table 2-1, medium- to high-speed users (>70 km/h) can only be served 

by a WA deployment. 
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Therefore, the user speed is a parameter that can force UT handover. Future 

systems may deploy a hybrid information system (HIS) in combination with RRM 

mechanisms to identify and restore the user profiles, where the mobility parameters 

such as velocity and mobility as well the relative location with respect to the network 

deployment are stored [4]. This is also a main capability for use of location-based 

handover as will be explain in this Chapter 2. 

Table 2-1 

Types of Base 
Station 

PHY layer 
mode used 

Spectrum Mobility 
support 

Data rate Cell size 

 BSWA FDD Licensed High 
<350 km/h 

Medium (FDD) High 

BSMA FDD and TDD Licensed Medium 
<70 km/h 

Medium (FDD) or Highest  
(TDD) 

Medium 

BSLA TDD Licensed and 
unlicensed 

Low 
< 5km/h 

Highest (TDD) Low 

 
 

It can be assumed that high data rate services of the type of high quality video 

streaming and highly interactive multimedia, identified as key for future systems  [9], 

[10], would be served only by LA deployment, but an important factor to be taken into 

account is that the maximum data rate offered to one user depends on the cell 

congestion, and, therefore,  sometimes the maximum data rate could be offered by a 

MA or WA deployment.  

For a system of ubiquitous coverage, intra-system cooperation then would mean 

cooperation between the BSWA, BSMA, and BSLA and specific to the intra-system 

cooperation RRM mechanisms would be required.  

2.2 Monitoring and Actuation of Cooperation Mechanisms 

2.2.1 Measurements 
 
The quality indication for the choice of the most suitable RAN/cell for a given service 

requested by a user is obtained from measurements on the current and target 

networks/cells. RRM mechanisms require as much input information as possible. Some 

examples of the useful metrics are cell load, amount of free capacity, location, velocity 

and environment of the user, the terminal capabilities, the handover statistics, and so 

forth. Measurements can be performed either in the BS, or in the UT. A summary of the 

measurements that are performed in currently available wireless systems, 

GSM/GPRS/EDGE, UMTS and WLAN, as well as some additional measurements that 

could be used in inter-system RRM can be found in [1], [11]. Specifically, cell load and 

free capacity have been defined for UMTS, GSM/GPRS/EDGE and WLAN. Several 
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important requirements for measurements in the referenced here RAN were deduced 

from a study on legacy RAT measurements. 

 For inter-system and inter-mode RRM at least the following information should 

be obtained from measurements: 

• Signal strength measurements; 

• Transmitted power measurements; 

• Quality measurements; 

• Cell load measurements. 

Further, each cell of the RAN mode should transmit a beacon that the UTs 

attached to other systems can listen to and measure, in order to prepare the handover 

to/from the system or between the different cells [12], [13]. It is proposed here that the 

inter-system handover should be consistent with the inter-system handover already 

defined in legacy systems (for instance, handover from UMTS to another RAN) [6]. 

The UTs connected to one RAN should be able to measure the other RANs efficiently 

[12]. 

2.2.1.1 Neighbouring Cell Lists 
 
In order to ease and improve inter-system and inter-mode measurements for RRM 

algorithms by use of prior knowledge of the relevant parameters, it was proposed in [13] 

to use neighbouring cells lists. Neighbouring cell lists could be either broadcast, on the 

RAN broadcast control channel (BCCH), or sent in dedicated signalling messages. For a 

broadcast neighbouring cell list, all the UTs served by a cell will measure the same 

neighbouring cells. This can be used if neighbouring cell lists are of low size, (e.g., if 

the target cells cover the whole primary cell area.) However, if the primary cell covers 

too many candidate target cells, then dedicated messages are needed, for each UT, to 

indicate specific neighbouring cell lists corresponding to its position. The detailed 

advantages and disadvantages of each method are listed in [13] and an elaborate study is 

available in [14]. Here only the main points are given. 

Broadcast of neighbouring cell lists at cell level decreases signalling and can be 

configured during the deployment process of the network, directly in the operational 

maintenance controller (OMC) [12], [14]. However, it leads to a quite large definition of 

neighbouring cells, as the neighbouring cells that are broadcast should cover the whole 

serving area. Dedicated signalling messages require a controller to dynamically update 

neighbouring cell lists, UT per UT. It may consequently be quite costly in terms of 

processing and signalling. Nevertheless, this solution enables to define neighbouring 
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cell lists dynamically and consequently to take into account several types of dynamic 

information (e.g., user’s service, cells load, and so forth) and is assumed here. The more 

information is known on the UT and the multi-system environment, the smaller the 

number of neighbouring cells to measure can be.  

During inter-system handover it is required to modify the corresponding RATs 

neighbouring cell lists definitions when they exist to include their cells. For all 

measurements cases related to inter-system and intra-system handover, the average 

neighbouring cell lists size necessary for the broadcast at cell level were evaluated [11], 

[13], [14], in order to conclude whether dedicated signalling messages are required or 

not. It appears that dedicated messages are necessary for handover from WA 

cells/macro-cells to LA cells/micro-cells. The CoopRRM entity then is responsible for 

computing neighbouring cell lists for inter-system handover, whereas the SRRM entities 

(see Figure 1-3) are responsible for computing neighbouring cell lists for the inter-mode 

handover. Location information could be an input to build neighbouring cell lists at the 

UT level, when dedicated neighbouring cell lists are required [15], [16]. Besides, the 

size of the neighbouring cell lists could be adapted depending on the current situation; 

the size can be reduced if the UT is in an emergency situation and needs to perform 

inter-system or inter-mode handover as soon as possible, or increased (or kept at 

broadcast level) if the UT has the capability to perform inter-system or inter-mode 

measurements without degradation. 

 2.2.1.1.1 Use of Neighbouring Cell Lists for Inter-System Handover 
 
As an example of the use of neighbouring cell lists during inter-system handover, Figure 

2-2 shows the proposed general scheme for the algorithm.  

 

 

 

 

 

 

 

 

 

 

Figure 2-2 General algorithm for inter-system handover.  
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 The proposed inter-system handover algorithm is a cooperative RRM algorithm 

with two phases: first the decision to trigger the handover and prepare it, then the 

selection of the most suitable target network to execute the handover to. Both criteria 

can be based on various inputs from measurements coming from UTs or the networks, 

or services attributes. Once the target network for handover has been selected by the 

handover algorithm, the admission control on that target network will check if the call 

or session can actually be accepted. If not, another system must be chosen, but the 

handover algorithm should be defined so as to minimize the rejection of calls/ sessions 

by the admission control. 

The information available at each relevant entity (e.g., BS in the reference 

architecture or RNC in UMTS) can be obtained by the CoopRRM entity via the SRRM 

entity.  Consequently, we assume that the CoopRRM will easily obtain load information 

on the different cells of the RANs. We also assume that QoS information is available at 

the CoopRRM for each user (i.e., QoS requirements) and for each system (i.e., the 

ability to fulfil the QoS requirements of the user). This information is dynamically 

updated through the SRRM information exchange.  

As a consequence, the only limiting factor for the inter-system handover algortihm 

is the information that can only be obtained through measurements at the UT. Signal 

strength and signal quality measurements may be difficult and long to perform, 

especially in multi-system environment, however, these are required in most handover 

algorithms. It is necessary to assess that, if the UT performs a handover to a given cell, 

its signal strength or quality will be enough to ensure the viability of its QoS. In specific 

cases, such as indoor cells, or during a handover from a WA cell to a LA cell, signal 

strength or quality measurements are absolutely necessary in order to choose the most 

suitable cell for handover. It is not possible to rely on localization information only. 

Neighbouring cell lists, on the other hand, enable to restrict the number of cells to 

measure, while still being certain that the signal strength or quality on the target cell for 

handover will be enough. For this reason, neighbouring cell lists are integrated into 

inter-system and intra-system handover schemes, in order to optimize the measurements 

performed for the handover algorithm. If the handover algorithm requires signal 

strength or quality information obtained by the UT, and if the handover trigger is based 

only on information of the current system, once the handover trigger has happened, the 

following procedure shall take place in relation to the algorithm proposed in Figure 2-2: 
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• Obtain the neighbouring cell list of the UT, on the target system. We 

assume that there is only one target system (which may have been chosen 

previously). 

• If the handover algorithm is based on signal measurements only, perform 

signal measurements on the neighbouring cells of the target system (and also 

on the primary system if required) and deduce a handover decision. 

• If the handover algorithm is based on signal measurements and other 

information, which may be cell load or QoS, check the other information first. 

Cell load and QoS information are directly available through the SRRM. If, 

among the neighbouring cells, some of them do not fulfil the load or QoS 

requirements of the algorithm, then these cells shall be discarded from the 

neighbouring cell list. It is not necessary to perform signal measurements on 

these cells, as the handover algorithm will not choose them for target cell in the 

end. Consequently, we obtain a sub-list of neighbouring cells on which signal 

measurements are performed. Then, depending on the algorithm, the target cell 

is chosen from all the obtained information. 

2.2.1.1.2  Optimisation of Inter-System Handover based on Neighboruing Cell 
Lists 

 
Let assume that after the delay necessary to perform signal or quality measurements, the 

load and QoS information on the neighbouring cells has not changed sufficiently and 

that the load and QoS conditions are still fulfilled. 

The measurements procedures with the limiting assumptions would trigger the 

handover algorithm as shown in Figure 2-3. 

If the inter-system handover algorithm is triggered by events on the current and the 

target systems (periodic triggers), it is necessary to obtain information on the target 

system periodically.  If this information contains signal measurement information, then 

the following actions must be performed: 

• At each period T, the neighbouring cell list is updated (if it is necessary);  

• If triggering is based on load and/or QoS, check these requirements on the 

neighbouring cell lists, in order to discard those that do not fulfill them; 

• Then perform signal measurements on the remaining neighbouring cell lists. 
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Figure 2-3 Inter-system handover with measurements limitation. 

The proposed optimization enables to make use of the CoopRRM functionality 

efficiently. It is independent of the handover algorithm, and of the final handover 

decision. The inter-system handover will then be initiated as shown in Figure 2-4. The 

procedure is also valid for the initialisation of intra-system handover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 Initiation of inter- and intra-system handover with optimized measurements procedure. 
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Here, the process is described for the case of inter-system handover between the 

reference IMT-A system and UMTS as the legacy system. However, all three types of 

RRM algorithms are involved in the process. The following information exchange is 

required for establishing the new connection on the UMTS system: 

• The mode-specific RRM residing in the BS detects a situation in which the 

UT service requirements cannot be satisfied in any other transmission mode 

(e.g., loss of coverage or QoS degradation). 

• The BS sends an indication message with measurements and statistics to the 

GW/CoopRRM along with an inter-system handover request. 

• The CoopRRM uses periodic or ad-hoc measurements on the other (legacy) 

RAN candidates to take a decision on handover. In case of ad-hoc 

measurements, the CoopRRM sends a measurement request to the specific 

RRM entity (SRRML) of the target legacy RAN, and this entity answers with a 

measurement report. 

• If the CoopRRM decides to handover to UMTS, the CoopRRM sends a 

HO_request message to the UMTS SRRML, indicating the identity of the UT 

and other useful information (e.g., QoS requirements). 

• SRRML sends a Hard_HO_request message to L3 of the UMTS core 

network. 

L3 of the core network sends a Hard_HO request message to L3 of the UTRAN 

that starts the transition from idle mode to CELL_DCH state for that UT. 

Consequently, a new message between the CoopRRM and L3 of the CN (or of the 

UTRAN) is exchanged, as well as a new message between the CoopRRM and the 

SRRML. This is shown in Figure 2-6. Another approach would be for the CoopRRM to 

only suggest candidate RANs/cells for inter-system handover to the inter-system 

handover functionality residing in the BS/GW2. Then, the final decision is taken by the 

BS/GW where all information about the candidate cells and candidate RANs must be 

collected before making a decision. 

The message exchange for the measurements during inter-system handover is 

shown in Figure 2-5. Each system (i.e. RNC in the case of UMTS) will have to send 

periodically or on request a message containing measurements information to the 

SRRM, which will then have to send another message with this information to the 

CoopRRM.  

                                                             
2 This was explained partially in Chapter 1 
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The efficiency and the delay will depend on the location of the SRRM. The closer 

it is to the RAN, the less the delay from signalling and the faster the decisions. If 

information to the SRRM is sent periodically without any filtering, then the SRRM only 

sends information to the CoopRRM on request. 

 

 

 

 

 

 

 

 

 

 

Figure 2-5 Message exchange during inter-system handover. 

This is how the functions for inter-system cooperation can be brought closer to the 

radio interface. This would decrease the signalling load between the SRRM and the 

CoopRRM. 

2.2.1.2 Use of Measurements Strategy for the Initiation of Handover 

 

In the following, three algorithms are proposed based on the adopted measurements 

strategy in support of inter-system handover. The handover is triggered based on 

measurements on the current system only. The measurements are used to establish the 

coverage criteria status and the load status. It is not necessary to perform measurements 

on candidate target system(s) before the handover decision has been taken. 
 

2.2.1.2.1 Handover from Current System/Cell to Target System/Cell Based on 
Coverage Criteria 

 
IF MBest,Current < ThCurrent,1 , where M is signal strength and Th threshold for coverage; 

  THEN measurements are triggered on the neighbouring cells identified for the target 

system. 

IF MBest,Current < ThCurrent,2 and MBest,Target > ThTarget ; 

 THEN handover is performed to the best measured neighbouring cell. 
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With this algorithm, as only coverage information is used, it is not possible to 

restrict the neighbouring cell lists because of the need for load or QoS information. 

Measurements on all neighbouring cell lists will be performed. It is consequently very 

important, for this handover algorithm, to define neighbouring cell lists as accurately as 

possible. 

2.2.1.2.2 Handover from Current System/Cell to Target System/Cell based on Coverage 
and Load Criteria 

 
Two possible algorithms are proposed. The first one does not use load as discriminating 

information, but as ordering information. Consequently, it is not possible to use it in 

order to discard neighbouring cells.  

AlgoLoad(1) 
IF MBest,Current < ThCurrent,1  
 

THEN ask for the list of neighbouring cells on the target system and perform 
measurements on these cells. 

 
If MBest,Current < ThCurrent,2 and Mcelli,Target > ThTarget  
 
Then  
 

  

Handover will be performed to Celli of the target system with the lowest load 

among the cells that have sufficient coverage level (defined by ThTarget). 
 

The second algorithm uses load (i.e., L) as a criteria to only keep cells with low 

enough load. AlgoLoad(1) can be rewritten in order to decrease the number of 

neighbouring cells to measure. 

 

AlgoLoad(2) 
If MBest,Current < ThCurrent,1  

 
Then ask for the list of neighbouring cells on the target system. 
 
If MBest,Current < ThCurrent,2  
 

For each of these cells Celli, if LCelli, Target > Thload  

 
*Then discard Celli from the list of neighbouring cells. 
 
*Perform measurements on the remaining neighbouring cells. 
*Then keep Cellj,  
 
  if Mcellj,Target > ThTarget 

 
  *Perform handover to Cellj with the best level. 



Cooperative Radio Resource Management for Next Generation Networks 

 32 

Because handover triggers have to be signalled to the UT, it could be a benefit to 

be informed prior to actually reaching the cell. Outside the cell coverage area no 

measurements would be available.  

It is very important to accurately use the measurement information in relation to 

handover. If a trigger is issued too early, the number of unnecessary handovers will be 

higher and this is cost-inefficient. Therefore, it is necessary to identify correctly the 

threshold value, which would be used as a reference value for comparison of the results 

from the performed measurements. The proposed above algorithms have been used for 

different threshold values to show the claimed requirements. The results are shown in 

terms of distribution of the handover triggers in Figure 2-6. 

 

 

Figure 2-6 Distribution of handover triggers for different threshold values. 

It can be seen that increase in the threshold increases the number of handovers that 

are triggered too early. With low thresholds it is possible that triggers are generated very 

late. This due to the fact that within the cell the measurement density is not constant, 

therefore some jitter is experienced. If the threshold drops down and is within the same 

order as the jitter it is possible that the threshold is passed very late. 

Because handover triggers have to be signalled to the UT, it could be beneficial to 

be informed prior to actually reaching the RAN/cell. Outside the cell coverage area no 

measurements would be available.  

2.2.1.3 Key Performance Indicators (KPIs) 
 
The KPIs are a common way to provide knowledge about the network or link status. 

The KPIs include relevant to both radio and network performance information. This 

information is normally obtained by performing periodic measurements. KPIs are a set 

of measurements used to keep track of a network status over the time. T Therefore, 

KPIs have been used in relation to the proposed here RRM algorithms.  
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The KPIs are composed of several raw counters or other measurements collected 

from the network because a single measurement can be too detailed to be used as a KPI. 

KPIs are split in two types depending on whether they describe the network’s resources 

or the delivered QoS. The main KPIs related to QoS can be measured in any type of 

packet-switched network.  

From a mathematical point of view, a KPI is a function F: Rn  > R such that [17]:  

KPI = F(reward1,…, rewardn)                                                                                                     (2-1), 

where rewardi is a performance variable. A performance variable is a generic definition 

that can be used to represent dependability and performability variables as well. It is 

strictly related to the modeling tool, in which it is calculated. A performance variable 

allows for the specification of a measure on one or both of the following: 

• The states of the model, giving a rate reward performance variable. A rate 

reward is a function of the state of the system at an instant of time. 

• Action completions, giving an impulse reward performance variable. An 

impulse reward is a function of the state of the system and the identity of an 

action that completes, and is evaluated when a particular action completes. 

 

A performance variable can be measured at an instant of time, measured in steady 

state, accumulated over a period of time, or accumulated over a time-averaged period of 

time. Once the rate and impulse rewards are defined, the desired statistics on the 

measure must be specified (mean, variance, distribution of the measure, or the 

probability of the measure falling within a specified range) [17]. 

The most important KPIs used for support of the proposed here RRM framework 

are the delay, expressed as the time needed for one packet of data (or a flow) to get from 

one point to another; the jitter, expressed as the delay variation of the received packets 

(inter-RAN flows) over time; the peak user data throughput, expressed as the maximum 

rate achieved during the transmission of data in the network; and the mean user data 

throughput, expressed as the average rate achieved during the transmission of data in 

the network [16], [18]. Here, one simple example of how to model the delay for the 

purpose of assessing its dependence on the network load is presented [19].  

As the delay varies exponentially with the load of the network [20] a dependency 

can be derived to obtain a relation between load and delay. In a low network load 

situation, the delay value (τ) can be represented as a typical delay ( ). When the load 

increases and gets in the congestion zone, the delay value then augments very quickly. 
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The formula considers the influence of a congestion threshold parameter (CT) that 

shows when the congestion zone will be reached. Once this critical value has been 

reached, the CoopRRM entity will receive a request for handling the arisen congestion 

situation and an algorithm will be activated. Assuming that no significant change in 

delay may occur before the 40% load value is reached and that the higher delay value 

(i.e., for the 100% load value) must remain coherent for the chosen scenario, the delay 

can be expressed by the following Equation (2-2):  

                                                                     (2-2); 

where  is the typical delay value in ms; L is the load value in percentage of 

the total capacity of the cell;  is a parameter, depending on the chosen congestion 

threshold and is expressed in percentage of the total capacity as given by Equation (2-3) 

 

                                                                                   (2-3); 

The congestion threshold, CT, is the load value, expressed in percentage of the 

total capacity, chosen to identify a congestion situation, and is used to indicate the upper 

congestion limit. The load, L, is defined in a generic way, as a function of the total 

capacity and is given by: 

                                                                                     (2-4); 

where Ln is the load of the nth cell; Cn is the total capacity of the nth cell; Nnu is the 

total number of users running applications in the nth cell; and DRi is the data rate of the 

ith user.  

The delay variations in a network with depending on the network 

load, L, are shown in Figure 2-7.  

For congestion thresholds defined to be very high (e.g., 85%), the delay variations 

are less obvious because the network will be able to handle higher loads. For low 

congestion thresholds, the delay will be more obvious, and this would trigger an RRM 

algorithm request sooner. Therefore, for higher accuracy, it is very important to define 

the initial thresholds with a good prior knowledge of the network behaviour in different 

scenarios. 
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Figure 2-7 Variation of the delay caused by different loads on the network. 

2.2.1.3.1 KPI Calculation for Cooperative RRM 
 

The main KPIs related to cooperative RRM can be measured in any type of packet-

switched network. The KPIs calculated for the performance of the reference IMT-

Advanced RAN serve as an indicator for the user-perceived QoS  and achievable system 

capacity. The KPIs are are defined as follows: 

• Delay [ms].  

The delay, (which can be referred to as latency in the case of WLAN or a system 

operating in a short-range mode), expresses the time needed for one packet of data to 

get from one designed point to another. The round-trip delay is measured by the time 

taken for sending a packet that is returned to the sender. From this, the one-way delay 

can be calculated, being half of the round-trip delay. A delay much longer than expected 

indicates congestion in the network. The way the delay is modelled here was described 

in Equation 2-2. 

• Jitter [ms] 

Jitter represents the delay variation of the received packets over time. Packets sent 

at a constant rate are not necessarily received at a constant rate, due to the network 

behaviour (e.g., a congestion situation). Jitter is the measure in time of the irregularity 

of the packets transmission. Jitter effects can be cancelled through the use of a buffer at 

the receiving end. 

Several formulas for jitter calculation can be defined. Jitter can first be calculated 

as a raw spreading of the delay around the expected delay: 
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                                                                                                (2-5);                                                                                                

where  N is the number of transmitted packets;  is the delay in seconds of the nth 

received packet; and  is the expected delay in seconds. 

If no expected delay is available, another reference must be chosen, for example 

the delay of the first received packet. The formula becomes: 

                                                                                                        (2-6); 

 
where  N is the number of transmitted packets;  is the delay in seconds of the 

nth received packet; and  is the delay in seconds of the first received packet.  

Jitter can also be calculated with reference to a mean delay of the previously 

received packet, using a recursive formula:  
 

                                                                          (2-7); 

where N is the number of transmitted packets;  is the delay in seconds of the nth 

received packet;  is the delay in seconds of the ith received packet. 

Equation 2-7 has the advantage of providing a value of jitter for each received 

packet, without having to wait for the end of the transmission of the group of packets. 

This can be interesting especially because the information should be available at each 

moment of time. Moreover, it may be important to calculate the absolute jitter. Indeed, 

with the formulas defining the raw jitter (see Equations 2-5 and 2-6) the delays of 

packets arriving late can be minimized by the delays of packets arriving early, and 

information might be hidden. That is why the absolute jitter is also defined, which will 

have in any case a value equal or greater than the raw jitter. The formulas are given, 

respectively, for jitter with reference to an expected delay (see Equation 2-8); jitter with 

reference to the first arriving packet delay (see Equation 2-9) and jitter with reference to 

mean delay (see Equation 2-10): 

 

                                                                                                   (2-8); 
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                                                                                             (2-9); 

 

                                                              (2-10). 

 
• Peak user data throughput [bps] 

 
Peak user data throughput is the measure of the maximum rate achieved during the 

transmission of data in the network. This KPI must refer to a single user. For this 

measurement, an instantaneous user data throughput must be available from the 

network, i.e., an instantaneous value of the data rate for each user. 

The peak user data throughput calculation is based on the 

dependency  where IUDT(t) is the instantaneous user data 

throughput function, in bps. 

• Mean user data throughput [bps] 
 
Mean user data throughput is the measure of the average rate achieved during the 

transmission of data in the network. This KPI must also refer to a single user. 

The calculation is made by comparing the size of the transmitted data with the 

time of transmission of these data, both for uplink and downlink. The calculation may 

also be done with an integration of the instantaneous user data throughput function. 

The mean user data throughput is calculated separately for the UL and DL (see 

Equation 2-12 and Equation 2-13, respectively): 
 

                                                                           (2-11); 

 

                                                                     (2-12); 

 
Interesting KPIs concerning the network status are the available bandwidth and 

the throughput. In the context of the RRM framework proposed here, the bandwidth 

does not represent a range of frequencies but is employed in a data rate sense. A given 

frequency range can bear a corresponding data rate, depending on the used coding 

scheme and multiplexing technique, however, bandwidth, in the data rate sense, is the 

speed at which a network element can forward traffic. It has two characteristics – 
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physical and available, and both of them are independent of end hosts and protocol 

types.  

The physical bandwidth or capacity (C) is the maximum number of bits per second 

that a network element can transfer. The physical bandwidth of an end-to-end path is 

determined by the slowest network element along this path. Here, an utilisation (U) 

factor is defined (see Equation 2-13) indicative of the percentage of capacity consumed 

by the aggregated traffic on a link or path: 

                                                                                                    (2-13); 

    

The available bandwidth (A) is the capacity minus U as defined in Equation 2-14 

over a given time interval: 

 

                                                               

                                                                             (2-14); 
  

Where ts is the time at which the measurement starts and te is the time at which the 

measurement ends. 

• Throughput [bps].  

Throughput is the amount of data that is successfully sent from one host to another via a 

network. It may be limited by every component along the path from source to 

destination host, including all hardware and software. Throughput also has two 

characteristics – achievable throughput and maximum throughput. Achievable 

throughput is the throughput between two end points under a completely defined set of 

conditions, such as transmission protocol, end host hardware, operating system, tuning 

method and parameters, etc. This characteristic represents the performance that an 

application in this specific setting might achieve. Therefore, the available bandwidth is a 

measurement that indicates whether there are still resources in the network that the users 

can exploit. The achievable throughput can be low even if there is still available 

bandwidth, for example, this is the case when a network element is limitative.  

There are two ways of estimating the available bandwidth: the passive 

measurement, which consists in using the existing data transmission history, and the 

active probing, which consists in creating the situation in which it will be possible to 

measure the available bandwidth. The principle is that the sender sends a pair of packets 
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echoed back by the receiver. By measuring the changes in the packet spacing, the sender 

can estimate the bandwidth properties of the path [21]. The available bandwidth is a  

dynamic property depending on many factors [21]. 
 

• Network load [%]. 

The load of the network describes how much the network is utilised over time, in 

term of resources. Existing definitions for the calculation of the load of a network are 

very different depending on the type of network dealt with [21]. In GPRS, it is only the 

ratio between available time slots and the total number of time slots. In WLAN, it is 

done either like in GPRS or with a ratio between collisions and transmissions. In 

UMTS, the definition is much more complicated as it embeds the influence of noise and 

of interferences, with different calculations for UL and DL.  

In order to simplify and generalise the load computation that would allow for 

assessment of the proposed RRM framework in generic terms, the load is defined as in 

Equation 2-4, i.e. only with respect to the bandwidth metric in the data rate sense.  In 

this way, a simple definition is obtained that can be used with all modes. Load then 

describes the utilisation of the network capacity, in other words, the quantity of 

occupied bandwidth. 

With this assumption, the value of the network load is obtained by adding the 

value of the bandwidth used by each user at a time. 

KPIs are used for the monitoring process for the implementation of the proposed 

RRM framework as a real-time simulation platform. The calculation procedure for the 

KPI aggregation is proposed in Chapter 5. 

2.2.1.4 Triggers for Cooperation Mechanisms 
 
A trigger is a network measurement that indicates changes of setup or surrounding 

conditions based on which a cooperation mechanism is activated, if the pre-determined 

threshold has been reached. There are different types of triggers, physical-layer based 

L2 triggers, algorithm-based L2 triggers, and so forth. A detailed analysis of the 

selection procedure of triggers is available in [13]. Here, triggers are proposed for the 

proposed cooperative RRM framework.  

2.2.1.4.1 General Triggers 
The triggers used in support of the proposed RRM framework have been classified into 

two main groups. The first group consists of triggers that necessitate handover and 

therefore if a handover does not take place the call will be dropped. The second group 

contains triggers that can cause a handover but if this handover is not performed the call 
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will not necessarily be dropped. The two trigger groups are summarised in Table 2-2 for 

the case of inter-and intra-system handover. 

  Table 2-2 Groups of Triggers for Inter-system/Intra-system Handover 

Triggers that necessitate handover Triggers that cause a handover 
Signal strength Cell load of current and target networks 
Interference level Compatibility of user preferences 
BER/PER Data rate requirements 
Carrier-to-interference(CI) ratio  QoS requirements and violations of these 
UT velocity Policy of the operators 
 Location of UT 

 
 

2.2.1.3.2 Triggers in an Interference Constrained Environment 
In an interference-constrained environment, assuming cognitive-radio enabled UTs, 

several layer 1 and layer 2 performance measures can be used to trigger inter-system or 

intra-cell handover (i.e., between BSs serving different deployment areas).  

The signal level measure alone may not necessarily reflect the level of interference 

between the devices operating in the same band and the UT that needs to handover, 

therefore, the number of the packets retransmitted at the MAC layer can be used as a 

measure of the number of packets that have been discarded due to packet collisions. 

When the number of packets exceeds the threshold value, the UT may trigger a 

handover.  

This measure captures the percentage of the packet loss at the receiver. In addition, 

this measure can indirectly provide information about the packet collisions at the 

receiver at the other end. For example, if a mobile device correctly receives data packets 

but observes that the BS is trying to send the same data packets several times, it means 

that the acknowledgements are lost at the BS. In that case, the cognitive-radio enabled 

device can trigger a handover [22]. This decision process can be assisted further by 

capturing the specific application requirements in terms of bandwidth, delay, and packet 

loss that also relate to the overall QoS the user expects that we can refer to as quality of 

information (QoI) [22], [23]. Different threshold requirements can be devised and 

quickly evaluated by means of inference and learning techniques implemented at the 

convergence layer and these results can be made available at the lower layers (e.g., link 

layer). For example, to support better a real-time video streaming application, the delay 

between each packet received can be monitored and a handover can be triggered if the 

delay variance (jitter) goes beyond a pre-defined threshold. 

2.2.2 Enhanced Collection of Measurements 
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The monitoring process for the collection of measurements can be provided with a self-

learning capability that uses outcomes of decisions and observations and learns from 

these to characterize and predict the system or user behaviour and thus decrease the 

number of required handovers, i.e., user-context transfers. Intelligent monitoring and 

self-learning is possible by introducing the following additional functionalities: 

• Cognitive sensing in the radio segment; 

• Collecting and mining information and status from the network and full 

detection functions; 

• Cognitive learning at decision level (located in the CoopRRM entity). 

 

For the implementation of intelligent monitoring within the RRM framework, (see 

Figure 2-1) it is proposed to provide the  BS and GW nodes with autonomous 

management functionalities based on use of cognitive radio technology and cognitive 

routing, elevating the process of traditional network management to a cognitive state for 

improved network performance (e.g., improved handover performance) [22], [24]. The 

proposed implementation is shown in Figure 2-8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Proposed implementation of ‘cognitive’ monitoring. 

Based on the input received from the monitoring sub-network, the main 

monitoring module and the CoopRRM perform decision-making processes in order to 

identify suitable strategies to relief the effects of the congestion that can occur when the 

traffic load is increased with new admission requests. To that, they have available a set 

of RRM techniques, (RMTs), which represent the means by which the allocation of 
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resources to the incoming traffic can be arranged in order to optimise resource 

utilization. 

In order to achieve a quick reaction to the network overloads, the approach 

followed is to have a more refined decision-making within the monitoring module (see 

Figure 1-4). To reduce the complexity to a manageable level, it is proposed to introduce 

complementary decision-making functionalities into each module of the RRM engine, 

including the enhancement of the CoopRRM module.  

Figure 2-9 shows the implementation of a learning block at the CoopRRM entity. 

In order to elevate the network management process to a cognitive state, the decision 

making process is assisted by use of fuzzy logic rules. 

 

 

 

Figure 2-9 Enhanced decision making for the collection of measurements by use of fuzzy logic rules. 

Fuzzy logic [25] is a simple and fast solution to provide a conclusion from 

imprecise, noisy or incomplete inputs. Fuzzy logic is based on simple “IF X AND Y 

THEN Z” rules rather than complicated mathematical models. System behaviour can be 

tuned, simply by modifying the appropriate rules and it is possible to compare quantities 

from heterogeneous RANs. In complex systems, fuzzy models, based on simple IF-

THEN rules, give more easily assimilated information than precise models. 

Nevertheless, rules definition requires a good knowledge of the systems and prior field 

experience. Therefore, learning techniques are needed to provide full knowledge about 

the system parameters. 

Fuzzy logic has been proposed here to enhance the monitoring process for the 

aggregation of KPI values.  

The proposed implementation of an enhanced CoopRRM block based on use of 

fuzzy logic is shown in Figure 2-10. 

Cooperative RRM techniques will be activated in the case of an inter-system 

interworking (e.g., inter-system handover). Fuzzy logic rules for cooperative RRM will 

be defined as an input to the fuzzy logic controller. Two typical fuzzy control systems 

are prevalent currently, the Mamdani type [25] and the Takagi-Sugeno (T-S) type [25], 

[26]. Mamdani type fuzzy systems employ fuzzy sets in the consequent part of the rules, 

whereas the T-S fuzzy control systems employ function of the input fuzzy linguistic 

variables as the consequent of the rules. 
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Figure 2-10 Enhanced decision making at CoopRRM entity based on use of fuzzy logic. 

Here, a Mamdani type fuzzy control system for cooperative RRM is proposed. 

This means that the rule format for the cooperative RRM (RRM-g, see Chapter 7) rules 

will be defined as follows: 

 

RRM-gRj: IF x1 is A1j and x2 is A2j and ………,and xn is Anj 

       THEN  y is Bj, j= 0, 1, 2, …., M,  

 

where xi for I 0 1, 2, …, n          are linguistic input variables; 

            Aij for i=1, 2, …., n         are input fuzzy sets; 

            y                                       is a linguistic output variable; 

 Bj                                                        is the output fuzzy set, and 

 M                                      is the number of fuzzy rules. 

 

The obtained measurements and monitoring information are detailed and 

membership functions per measurements are determined with values as relative 

members of a given set of values within an interval referred to as fuzzy set [25], [27]. A 

fuzzy set A is a set of ordered pairs given by the relationship in Equation 2-15: 

                                                                                                  (2-15); 

where X is a universal set of objects and lies in the closed interval of [0, 1] and is 

the grade of membership of the object x in A. Then the membership function is 

characterized by the following mapping as defined in Equation 2-16: 

                                                                                                          (2-16); 
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where x is a real number describing an object or its attribute and A is the subset of X. 

A detailed explanation of how membership functions are constructed and their 

representation by mathematical functions is available in [25]. 

When the rules are fed into the Mamdani fuzzy controller, the fuzzy inference 

engine will compute initially the truth values, then the contribution of each rule, and 

finally the rules will be aggregated to generate a fuzzy control signal.  

The rules are applied and mapped to the logical inputs. The output is a set of 

triplets made up of a cooperative RRM-g decision and an evaluation degree. Based on 

the evaluation degree, a decision is taken for the most suitable outcome of the requested 

cooperative RRM-g process.  

As an example of an enhanced decision-making process, a congestion handling 

procedure is proposed. In this case the decision-making system is used to trigger an 

algorithm that guarantees QoS to new and already connected users. The following input 

is decisive for triggering of the algorithm: 

• Congestion / No Congestion; 

• Throughput (LOW, HIGH); 

• History of rejected user (LOW, HIGH); 

• Number of occurrence “decrease lowest priority of undecreased session bit 

rate by half”; 

• Number of occurrence “Drop lowest priority”. 
 

The resulting actions will be: 

• Reject / Accept user (from HO or from new session); 

• Increase OR Decrease lowest priority undecreased session bit rate by half; 

• Drop lowest priority. 

 

The input parameters can be processed by means of the fuzzy logic rules. Possible 

rules for congestion detection are shown in Table 2-3. 

Table 2-3 Rules for Cooperative RRM for Handling of Congestion 

 No Congestion Congestion 
Throughput < Capacity 
threshold 
AND  
Load < Congestion Threshold 

Increase bit rate starting from 
high priority session/user to the 
lowest one * 

CONGESTION RESOLUTION 
PROCESS 

Throughput = Capacity 
threshold 

N/A CONGESTION RESOLUTION 
PROCESS 

 

The following decision-making rule is applied: 
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IF  congestion  is  LOW  AND  system  throughput  <  capacity  AND  load  < 
congestion threshold THEN increase bit rate until Throughput = Capacity. 

 

In case the congestion cannot be handled otherwise then by performing inter-

system handover then the decision will be based on the following rule: 
 
IF (current system = RAN1) AND (UT velocity = LOW) AND (RAN2 coverage = 
MEDIUM OR HIGH) AND (RAN2 load = LOW OR MEDIUM) THEN (handover to 
RAN2). 
 

In this case we assume that the parameters triggering handover are the UT 

velocity3, the coverage and the load. This is shown in Table 2-4. 

Table 2-4 Rules for Inter-System Handover 

 

Current signal strength Current load UT velocity Best target 
signal level 

Best 
target 
load 

Handover decision  

LOW  HIGH >LOW <HIGH YES 
 HIGH  >LOW <HIGH YES 
HIGH LOW HIGH   NO 
    LOW HIGH NO 

 

The advantage of use of fuzzy logic-based rules is that this approach complies with the 

generic character of the proposed RRM framework. In addition, other advantages are 

that the decision response time can be reduced, and the overall TCP throughput can be 

enhanced [16].  

 Another way to autonomously perform measurements in the destination 

network, in order to collect required for handover decisions data, is by the UT itself. If 

this procedure shall take place during an ongoing connection, two transceivers are 

required, which enhances the complexity of the UT and is not regarded in further detail 

here. If no ongoing connection is active, the UT may switch to another network in order 

to derive respective measurements at arbitrary times. Nevertheless, to prevent the UT 

from being paged from its current system while scanning another one, respective 

signalling indicating some kind of sleeping and temporary non-availability is necessary. 

If the UT demands for up to date information on other networks in order to guarantee 

the best QoS to the user, the aforementioned signalling/scanning procedure needs to be 

repeated on a regular basis resulting in transfer overhead that does not even pay off if 

the conditions in the possible destination network are too bad and thus no handover 

takes place. 

                                                             
3 The user velocity in this general case is not critical but needs to be considered when identifying the most suitable 

target RAN/cell 
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2.2.3  Measurements based on Location Information 
 
Information about a target RAN/cell can be gathered also by foreign-party-based 

measurements [2], [4], [28]. The idea is that a nearby located UT of the other system 

makes a status report and transfers this report by the GW to the currently employed 

network. Hence, an overview of the conditions of possible destination systems is 

provided without the need for leaving the current system. Even if the existence of other 

systems is announced in the broadcast channel, the question remains, which link 

conditions the UT can expect if it really changes to the announced system. Thus, 

information about other systems as well as their link conditions needs to be provided. It 

must be noted that it here it is not explicitly proposed to include inter-system 

information in current broadcast transmissions. It is proposed to employ measurements 

taken by other parties. The interesting aspect concerning the gathering of those 

measurement reports is that they do not need to be rendered explicitly. The idea is to 

exploit available information, (e.g., signaling information with the original purpose to 

adjust power control mechanisms or link adaptation). The challenging task is how to 

process, recycle and supply the information. It was proposed in [2], [13] to use the 

Hybrid Information System (HIS) concept for this. 

Figure 2-11  shows the information exchange during a handover based on the use 

of the proposed RRM framework and employment of the HIS. 
 

 
 

Figure 2-11 Exchange of handover reports between systems by use of location information available 
through the HIS. 

Each active UT reports about the current link condition (1) according to the 

procedure proposed in Figure 2-4. Together with the measurement report the location of 

the reporting UT is stored in a database (DB) (2). A UT that intends to perform an inter-
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system handover sends a request to its BS, see (3). The BS acquires the corresponding 

measurement report from the DB, depending on the current location of the UT, (4), and 

signals the HO decision (respectively related information that allows the UT to take the 

decision) to the UT (5). The UT can then perform the handover, which is marked by 

step (6). 

Measurements that are inherently available for each system are made available to 

support the inter-working between the heterogeneous systems. Depending on the new 

target system and the current location of the UT, the UT is supplied with state reports of 

the same system type (i.e. intra-system handover) or for the different systems available 

(i.e., inter-system handover). Handover that exploits the location of the UT for the 

decision making is referred to as location-based handover.  

The HIS is both, an intelligent concept facilitating inter-system cooperation and a 

means to allow for context transfer between different systems. The HIS entails a 

decision unit that takes into account trigger origins as input and produces handover 

recommendations (i.e., handover triggers) as output. The advantage is that the HIS is 

not restricted to local and system specific trigger origins. Besides incorporation of a 

multiple number of systems, HIS supports load balancing and joint RRM, RRM 

techniques that are employed in the proposed cooperative RRM framework. Further, 

due to its backbone connection (see Figure 2-11), specific user preferences may be 

requested (e.g., from the home network provider) and incorporated in any decision 

process. Thus, the HIS supports intelligent inter-system-control by combined evaluation 

of various trigger origins. The elements of the DB proposed for the HIS are described in 

detail in [1], [2], [13], [14]. Here, it is only sufficient to mention that it allows the 

storage of short-, mid-, and long term data. This is an important property for the 

proposed here RRM framework because it allows to employ information for decision 

making based on the specific scenario of the moment. For example, short-term data is 

employed for real-time requests, while long-term data is employed for less time critical 

scenarios (i.e., static information for predictable actions). 

With this classification, the different sets of data can be applied to different the 

different types of RRM algorithms using the information from the HIS as input to KPI 

calculations. To increase the coverage or adapt to different loads in a system, an 

algorithm that dynamically adjusts the down-tilt of the BS antennae may be employed 

[29]. This algorithm can use the mid-term or long-term data as input to its calculations. 

To support cooperative, generic and specific algorithms (e.g, handover, link adaptation 
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or power control), short-term or mid-term data would be used. The classification of the 

data used for support of cooperative RRM, is given in Table 2-5. 

Table 2-5 Types of HIS Data for Cooperative RRM 

Short-term data 
 

Mid-term data Long-term data: 

– Support of ongoing handover 
execution 

– Decision basis for time 
critical handover 

– ‘Short’ life cycle 

– Fading, shadowing and other 
propagation effects included 

– High variance over time 

– based on short-term data 

– averaged/extracted from 
short-term data 

– quasi-static character since 
short-term fading 
-> excluded 

– cell breathing 
-> still included 

– shadowing included 

– cell breathing -> excluded 

– based on mid-term 

– Period: >= 1day 

– Periodicity given? 
(e.g., regular football 
matches) 

– Used f. network optimization 

• Coverage 

• Detection of shadowed 
areas 

 

It must be mentioned that accuracy is crucial when employing location 

information for decision making [6], [16]. The less accurate and precise the location 

information is, the larger the difference between the anticipated, (i.e., retrieved) 

measurement report, and the real link condition in the target system after the handover.  
 

2.2.3.1 Use of HIS for Cooperative RRM 
 
The HIS information here is used to assist the decision during intra-system handover. 

Figure 2-12 shows a scenario which requires that an inter-mode handover decision for a 

user initially connected to the BSWA. 

  Based on location-related measurement reports the HIS calculates cell borders 

and signals a UT to handover as soon as the target cell is reached. UTs that are located 

near the cell borders and that do not move too fast can be identified easily by the HIS. 

These UTs may in principle be used by other UTs currently outside the cell coverage to 

enable communication to the other modes (WMs). The HIS informs the UTs that are 

leaving the cell about a possible topology within their vicinity to establish 

communication with that attachment point. In that way measurement reports for areas 

outside the cell coverage may be gathered. These reports may then be used to determine 

the link quality outside the cell coverage to recommend the modes and hence the 

possible attachment points to the arriving UTs.  

It should be noted that link quality measurements lose much of their relevance 

with varying position information. To solve this problem in general, each measurement 
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needs to be associated not only with the position of the UT but also with the current 

position of different attachment points including fixed and mobile relays (see Figure 2-

14). 

 

Figure 2-12 Identification of possible attachment point. 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2-13  Triggering of handover for different deployment scenarios with information from HIS.  

To overcome an increase in data complexity, probabilistic statements based on 

measurements and basic assumptions for the signal range of currently available points 

can be considered. 

The following are examples of how to find the optimal handover points between 

RNs and BSs. This type of optimisation was not investigated further in the scope of this 

research work but is mentioned here for completeness: 
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Figure 2-14  Optimization of RN-BS handoff point  

 

• Frame measurement report. Frame measurements can be used to easily 

gather received power histograms (RPIs) for different source stations. Thereby 

measurements are only made during frame transmissions and are each associated 

with the MAC address of the frame source. This is especially useful to perform 

measurements for a multiple stations simultaneously. If relay and access point 

operate on the same channel both signal strengths can be measured 

simultaneously. 

• Channel load report. This measurement both takes into account the 

physical carrier-sense mechanisms (clear channel assessment – CCA [36]) as 

well as the virtual carrier-sense mechanisms (network allocation vector – NAV 

[37]), to determine the current channel utilization. This is especially useful to 

estimate the available system capacity. 

• Medium sensing time report. The channel load report gives information on 

the current channel use. The medium sensing time report gives more detailed 

information by not only indicating a percentage of the used channel but 

reporting a histogram of sensing times, which allows for a more sophisticated 

view on the channel status and thus for an estimation on the expected packet 

delay [38], [39]. 
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• STA statistics report. This measurement can be used to query different 

counters within the UT, such as retry, multiple retry and failed counters. This 

allows for information gathering that does not only account for the physical 

layer but incorporates the link layer as well [40]. 

 

It is possible to perform position-based handover decisions using the Centre of 

Gravity (CoG) algorithm [14], [41]. The CoG algorithm was designed to compensate 

effects of ‘misleading’ measurements introduced to the database by erroneous positions. 

Thereby ‘misleading’ measurements are measurements that actually have been recorded 

inside the cell coverage. Due to positioning errors, associated coordinates reported 

along with the measurements indicate positions outside the actual coverage area. 

‘Correct’ measurements suffer from the same positioning error but the reported position 

effectively is inside the cell coverage area. The CoG algorithm exploits the fact that the 

density of ’misleading’ measurements is lower than the density of ‘correct’ 

measurements. When a UT is approaching the cell boarder, the algorithm calculates the 

distance from the terminal to the CoG. The CoG algorithm not only gives a scalar 

distance, but returns a vector towards the centre of gravity. This allows for estimation 

whether the UT is moving towards the cell centre or whether it is just passing by. 

Accordingly, it may be applied in the context of ping-pong handover avoidance [42].  

Figure 2-15 shows how the position of the UT can be determined to decide 

whether the UT is within the coverage area.  

 

Figure 2-15 Determining the position of the UT by use of CoG. 
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The decision area is drawn around the UT position. For Figure 2-15 the radius of 

the area was chosen at 5m. The algorithm is applied to the erroneous positions 

associated with each measurement report. 

Incorporating more information sources into the handover decision will further 

optimize the resource utilization. This means that more measurements from the attached 

communication system will be incorporated and that in addition to these estimations of 

the current network state, the user profiles, the current QoS demands and the operator 

policies need to be taken into account, too. Systematic combination of both physical 

measurements and the guidelines that are defined in the operator policies can be 

successfully handled by a well defined framework. In cellular-network-based 

positioning the localization process is generally based on measurements in terms of 

Time of Arrival (ToA), Time Difference of Arrival (TDoA), Angle of Arrival (AoA), 

and/or Received Signal Strength (RSS), processed by the network or UT [43]. 

Another proposed solution is based on the Global Navigation Satellite Systems 

(GNSSs) [45]. 

For a general solution a hybrid approach is suitable depending on the UT position 

and the environmental conditions. Usually, as much as possible, available information 

sources should be used for positioning. In WA scenarios where good LoS access to the 

satellites is possible, a GNSS-based solution is the best choice with supporting 

information and measurements from the RAN. In LA or indoor scenarios, where no 

satellite signals are available, a pure RAN-based location determination is necessary. In 

MA, it could be a RAN-based solution where – if available - GNSSs signals are used to 

improve the positioning of the UT. Again, the limiting factors in these scenarios are 

determined by non-LoS and multipath effects [3], [13], [14]. 

Generally, the location estimation can be done within the UT using measurements 

and information sent by a location service support function, or within the location 

service support using measurements sent by the UT and/or BSs and relay nodes 

involved in the location estimation process. The best stand-alone based performance can 

be obtained by including timing measurements of the UT. In-band timing measurements 

in cellular-network-based positioning are usually based on TDOA measurements. 

Figure 2-16 shows the cumulative density function (CDF) of the estimated 

positioning errors where the performance of GNSS (i.e., Minn algorithm), investigated 

in detail in [46], is tested in a cellular network environment under multipath conditions 

and the parameters given in [44]. The bandwidth is 50MHz, which results in a chip 

duration of . From a positioning point of view this chip duration yields an 
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equivalent chip length of 6m. The system combines GNSS measurements with two 

TDOA measurements taken from simulations with a MIMO channel model, developed 

for an IMT-Advanced candidate system [16], in the base coverage MA scenario. All 

measurements are integrated in an extended Kalman filter (EKF) tracking algorithm 

where a pedestrian user is assumed [46]. Furthermore, a carrier-frequency offset of  

 is assumed and is normalized to the subcarrier spacing. NLOS propagation is 

not investigated here. For positioning the strongest three BSs are used and an averaging 

is performed over 100 synchronization symbols, which are equivalent to about 0.5s, i.e., 

every 0.5s new TDOA estimates are available. Additionally, an SNR at the cell edge of 

-5dB is assumed with a cell radius of R = 500m. 

 

 

Figure 2-16 CDF for satellite-based positioning, combination of GNSS with two TDOA 
measurements in MA scenario. 

For optimum GNSS conditions (free space), the 90%-error is below 7.5m and it 

can be seen that the performance gain by additional TDOA measurements is small when 

enough satellites, (i.e., at least four), are available for LoS. However, for only three or 

two satellites the performance can be increased and the lack of satellites can be 

compensated by the RAN TDOA measurements. For instance, in 90% of the cases the 

error can be reduced from below 80m to below 60m if only three satellites are available, 

for two visible satellites the performance gain by additional TDOA measurements is 

even higher. 

Except for Cell ID, all possible inputs for the location determination process rely 

on link-level physical layer measurements. However, all methods provide different 

performance in terms of accuracy, frequency, reliability, and complexity. Furthermore, 
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some of them strongly depend on the capabilities of the UT. For instance, AOA requires 

multiple antennas at the BS and/or the UT, and GNSS requires modifications at least at 

the UT. If these hardware requirements are fulfilled, the performance of the location 

determination process will be fulfilled. In [46] it was shown that location information 

should be provided for all UTs in the RAN. 

Use of position information to manage radio resources is attractive but also a 

sensitive new field. The fact is that exploitation of location information requires new 

regulative actions, legislation and self-commitments. Supervision to avoid possible 

illegal and unethical use of personal information is also imperative. 

2.3 Conclusions 
 

This chapter proposed scenarios and measurements strategies for the actuation of 

cooperative RRM mechanisms for inter-system and intra-system interworking. It was 

shown that cooperation is required on three levels, supported by cooperative, mode 

generic and mode specific RRM mechanisms. Such an approach has benefits for 

emerging communication systems, because the proposed framework ensures the 

coexistence with legacy systems.   The proposed RRM framework is based on the 

proposal for a flat distributed RAN envisioned for next generation systems and already 

approved for LTE. Further, it ensures that active inter-connections between relevant 

RRM entities are maintained at the desired cooperation level. The inter-node 

connectivity provides interworking, which in turn provides potential performance gains. 

An important advantage for inter-system cooperation can be derived from the use 

of measurements and triggers. Use of positioning technologies for deriving precise 

location information can be well exploited for support of individual user needs related 

to QoS. Further, operators can improve the network management by being able to 

reduce the number of unnecessary handovers. The location of the HIS functionality 

depends on the architecture and system deployment. In relationship to the proposed 

cooperation architecture, the HIS can be implemented through a central approach where 

the HIS can be located in the CoopRRM or a distributed approach where the HIS 

entities are distributed between the CoopRRM and the SRRM. 

Different QoS requirements for different applications require a flexible and 

scalable RAN. Flexibility can be introduced by use of location information Applications 

that can use the location of the UT could be: point-to-point navigation, emergency call 

handling, location-based handover, or location-based service provisioning. In order to 

cater for different QoS demands, the location information should also be scalable in 
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order to provide for the appropriate accuracy for the involved UTs with different 

profiles. Generally, the location estimation can be done within the UT using 

measurements and information sent by the location service support function, or within 

the location service support using measurements sent by the UT and/or BSs and relay 

nodes involved in the location estimation process. The best stand-alone based 

performance can be obtained by including timing measurements of the UT. In-band 

timing measurements in cellular network based positioning are usually based on TDOA 

measurements. These are based on the idea to find the starting point (TOA) of the 

incident OFDM signals to estimate distances between the UT and the BSs using the 

included pilot sequences. If the GNSS based positioning information is included (GPS, 

Galileo), the performance can be further improved. 

The following Chapter 3 and Chapter 4 propose cooperative RRM algorithms in 

support of QoS, network management and user mobility. Those algorithms are based on 

the measurement strategies proposed and analysed in this Chapter. 
 
References: 
 
[1] E. Mino, A., Mihovska, et al., “D4.2 Impact of Cooperation Schemes between RANs,” Deliverable 4.2, IST Project 

WINNER, February 2005. 
[2] M., Lott, A., Mihovska, et al., “Cooperation of 4G Radio Networks with Legacy Systems,” Proc. of IST Mobile Summit 2005, 

Dresden, Germany, June 2005. 
[3] E. Mino, A., Mihovska, et al., “ D 4.8.1 WINNER II Intramode and Intermode Cooperation Schemes Definition,” Deliverable 

D4.8.1, IST Project WINNER II, June 2006. 
[4] M. Lott, V. Sdralia, M. Pischella, D. Lugara, A. Mihovska, S. Ponnekanti, E. Tragos, E. Mino, “Cooperation Mechanisms for 

Efficient Resource Management between 4G and legacy RANs,” Wireless World Research Forum (WWRF), 13th meeting, 
Seoul, Korea, March  2005. 

[5] Release 99, www.3gpp.org/Releases/3GPP_R99-contents.doc 
[6] www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_26/Docs/PDF/SP-040900.pdf 
[7] F., Meago, “Common Radio Resource Management (CRRM)”, COST273, May 2002. 
[8] IST project WINNER II, Deliverable D6.13.8, Final System Concept, November 2007. 
[9] P., Gelpi, A., Mihovska , A., Lazanakis , G., Karetsos, B., Hunt, J., Henriksson , P., Oillikainen, and L., Moretti,  “Scenarios 

from the WINNER  Project: Process and Initial Results,”  Wireless World Research Forum (WWRF), 11th meeting, Oslo, 
Norway, June 2004. 

[10] P., Karamolegkos, E., Tragos, A., Mihovska, et al., “A Methodology for User Requirements Definition in the Wireless 
World,” Proc. of IST Mobile Summit 2006, Mykonos, Greece, June 2006. 

[11] E., Mino, A., Mihovska, et al., “D 4.1: Identification and Definition of Cooperation Schemes between RANs,” Deliverable 
4.1, IST Project WINNER, June 2004. 

[12] 3GPP TS 25.215, 3GPP; Technical Specification Group Radio Access Network; Physical layer - Measurements (FDD), 
Release 6, V6.4.0, 2005-09. 

[13] E., Mino, A., Mihovska, et al., D4.3, “Identification, Definition and Assessment of Cooperation Schemes between RANs,” 
Deliverable 4.3 IST project WINNER, June 2005. 

[14] E., Mino, A., Mihovska, et al., D4.4, “Impact of Cooperation Schemes between RANs—A Final Study,” Deliverable 4.4 IST 
Project WINNER, November 2005. 

[15] A., Mihovska, et al., “Policy-Based Mobility Management for Next generation Systems,” Proc. of IST Mobile Summit 2007, 
Budapest, Hungary, July 2007. 

[16] A., Mihovska, et al., “Requirements and Algorithms for Cooperation of Heterogeneous Radio Access Networks,” accepted for 
publication in the Springer International Journal on Wireless Personal Communications (ID WIRE 391) 2008. 

[17] A., Bondavalli, “Model-Based Validation Activities,” IST Project CAUTION, October 2003. 
[18] A., Mihovska, et al., “QoS Management in Heterogeneous Environments,” Proc. of WPMC’05, Aalborg Denmark, September 

2005. 
[19] A. Mihovska, et al., “Algorithms for QoS Management in Heterogeneous Environments,” Proc. of WPMC’06, San Diego, 

California, September 2006. 
[20] X., Fang and D., Ghosal, “Analyzing Packet Delay Across A GSM/GPRS Network”, IEEE 2003 



Cooperative Radio Resource Management for Next Generation Networks 

 56 

[21] S., Kyriazakos and G., Karetsos, Practical Radio Resource Management in Wireless Systems, Norwood MA: Artech House 
2004. 

[22] A. Mihovska, ”Cognitive Ubiquitous Mobile Communications,” 2nd CTIF Workshop, Aalborg, Denmark, May 2007. 
[23] Mitola, J. III, Cognitive Radio Architecture, Wiley Publishers, 2006. 
[24] A., Mihovska, et al., “Cooperative Radio Resource Management for Heterogeneous Networks,” Chapter in the book on 

Cooperative Wireless Communications, to be published by Auerbach Publications, CRC Press, Taylor&Francis Group in July 
2008. 

[25] H., T., Nguyen, and E., A., Walker, A First Course in Fuzzy Logic, Chapman & Hall/CRC, Taylor & Francis Group, 2006. 
[26] A., Konar, Computational Intelligence: Principles, Techniques and Applications, Springer-Verlag 2005: Berlin-Heidelberg. 
[27] D., Dubois and H., Prade, “Fuzzy Sets and Systems: Theory and Applications,” Academic Press, October 1980. 
[28] A., Mihovska; H., Laitinen, and P., Eggers, “Location and Time Aware Multi-System Mobile Network,” Proc. of Mobile 

Location Workshop’03, Aalborg, Denmark, May 2003. 
[29] http://www.terabeam.com/support/calculations/antenna-downtilt.php. 
[30] RECOMMENDATION  ITU-R M.1645, “Framework and Overall Objectives of the Future Development  of IMT 2000 and 

Systems Beyond IMT 2000,” At www.itu.int. 
[31] netlab18.cis.nctu.edu.tw/html/wlan_course/powerpoint/802.11f%20-%20IAPP.pdf. 
[32] A.-G. Acx, A. Mihovska, et al., “D1.3 Final Usage Scenarios,” Deliverable 1.3, IST 2003-507581 Project WINNER, at 

www.ist-winner.org. 
[33] D. Tse, and P. Viswanath, Fundamentals of Wireless Communications, Cambridge University Press 2005. 
[34] R. Prasad, W. Mohr, and W. Konhäuser, Third Generation Mobile Communication Systems, Artech House 2000. 
[35] M., Cheung and J., W., Mark, “Resource Allocation in Wireless Networks Based on Joint Packet/Call Levels QoS 

Constraints,” in Proc. of IEEE Global Telecommunications Conference (GLOBECOM ’00), San Francisco, California, 
November–December 2000, Vol. 1, pp. 271–275. 

[36] I., Ramachandran and S., Roy, “On the Impact of Clear Channel Assessment on the MAC Performance,” Proc. Of 
GLOBECOM, San Francisco, California, November 2006. 

[37] H.-H., Liu, J.-L.C., Wu, and W.-Y., Chen, “New Frame-Based Network Allocation Vector for 802.11b Multirate WLANs,” 
Proc. Of IEE Communications, Volume 149, No. 3, June 2002. 

[38] W., Ye, and J., Heidemann, “ Medium Access Control in Wireless Sensor Networks, ”Report, October 2003 at 
www.isi.edu/~weiye/pub/isi-tr-580.pdf. 

[39] J., Kowalski, US Patent  20060046688, “Medium Sensing Histogram for WLAN Resource Reporting,” February 2006. 
[40] S. Black, “IEEE P802.11 Wireless LANs” Comment Resolution, March 2004. 
[41] G., Landi, “Properties of the Centre of Gravity Algorithm,” Proc of Como Communications, October 2003. 
[42] W.-I., Kim et al., “Ping-Pong Avoidance Algorithm for Vertical Handover in Wireless Overlay Networks,” IEEE 2007, pp. 

1509-1512 
[43] F., Gustafsson and F., Gunnarsson, “Mobile Positioning Using Wireless Networks,” IEEE Signal Processing Magazine, July 

2005, Vol. 22, No. 4. 
[44] IST project WINNER, Deliverable 6.13.7, “WINNER Test Scenarios and Calibration Case Issues,” December 2006 at 

www.ist-winner.org. 
[45] B., W., Parkinson and J., J., Spilker Jr., “Global Positioning System: Theory and Applications, Volume 1,” Progress in 

Astronautics and Aeronautics, Volume 163, 1996. 
[46] E. Mino, A. Mihovska, et al., IST-4-027756 WINNER II D4.8.3 “Integration of cooperation on WINNER II System 

Concept,”  November 2007. 
 

 
 
 
 



 

 Page 57 (20) 

 
 
 
 
 
 
 
 

Chapter 3 
 

Cooperative RRM for Handover 
 

This Chapter proposes and evaluates RRM algorithms for inter-and intra-system 

handover. The proposed algorithms are assessed based on the proposed in Chapter 2 

measurements strategies and follow the adopted in Chapter 2 framework for cooperative 

RRM. 

Further to the realization of RRM techniques for handover, the location of the 

RRM functions is also studied. A combined centralised and distributed approach is 

proposed. Therefore, the proposed RRM algorithms are made consistent with the 

specifics of the RAN architectures of the investigated IMT-A reference system (see 

Figure 2-1) and the RANs of the legacy systems. The location of the RRM functions 

within the network architecture is an essential issue and can affect the performance if 

causing significant signalling and delays. In a centralised architecture, a central entity 

monitors and makes decisions regarding the allocation of resources and the user 

terminal (UT) has a minimal participation. In a distributed RRM architecture, the 

decision entities for each RRM function are located to different nodes, including the 

UT. A hybrid approach is also proposed, and there the decision levels of the same RRM 

functionality that can be active at different timescales are allocated to different nodes. 

The impact of the proposed algorithms on the proposed cooperation architecture is also 

studied in this Chapter. 

This Chapter is organised as follows. Section 3.1 proposes and evaluates RRM 

algorithms for inter-system handover. The assumed scenario is for inter-system 

handover between an IMT-A candidate system and an UMTS system. The assessment 

investigates the effect of the network load and load thresholds on the process of inter-

system handover for different numbers of UTs. Section 3.2 proposes RRM algorithms 

for intra-system handover. The proposed intra-system handover algorithms include 

inter-mode and intra-mode algorithms as part of the generic and specific RRM 
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algorithms of the proposed RRM framework, correspondingly (see Chapter 1 and 

Chapter 2).  

3.1  Inter-System Handover 
 
The scenario for inter-system handover algorithm assumes interworking between two 

RANs. RAN1 is an IMT-A candidate system operating in short-range mode (i.e., served 

by BSLA) and RAN2 is an UMTS system. In general, the proposed scenario is in 

accordance with the one shown in Figure 1-2 and the protocol reference scenario shown 

in Figure 1-4. The inter-system handover procedure is considered at Layer 2 (MAC 

level). The goal is to satisfy the UT requirements by choosing the appropriate serving 

system. For this purpose, the inter-system handover algorithm is defined based on 

coverage and load criteria. The UT performance indicators [1] will have impact on the 

variation of the load threshold that triggers the handover from RAN2 to RAN1 (called 

UMTS_HO_Load_thr). The performance indicator is either the throughput or the 

sojourn time on each RAN. If the objective is to guarantee the accessibility to real-time 

services over UMTS, then the sojourn time on UMTS can be chosen as a quality 

indicator. Otherwise, the overall throughput is considered. 

The following inter-system handover policy is studied: UTs are transferred to 

RAN1 as soon as coverage and load conditions are satisfied. The goal is to maximize 

their throughput. In order to apply the handover policy, a threshold is defined on the 

UMTS load that triggers handovers from RAN2 to RAN1. This threshold is denoted as 

UMTS_HO_Load_thr. If the UMTS_HO_Load_thr is high, UTs are still attached to 

UMTS until the system overloads.  

If UMTS_HO_Load_thr is low, handovers to RAN1 become almost immediate. 

The advantage is that the UTs profit from higher throughputs on the RAN1. 

The algorithm is generic and could be applied in both directions: from UMTS to 

RAN1 and from RAN1 to UMTS. Hereafter, the algorithm is described for handover 

from RAN2 to RAN1 in order to keep things clear and accurate. The following 

handover algorithm aggregates the proposed coverage and load criteria:  
For each test period, for each UT:  
*Find out the best received cell of the active set: celli. 
 *Find out the cell with the lowest load: cellj among the cells of the active sets. 
   * Find the BSla  the best received by the UT among the neighbouring BSla. 
IF ((Power received from celli < UMTS_coverage_threshold) OR (Load of cellj>UMTS_ load_threshold)  
THEN 
*Trigger measurements on RAN1 
 
At measurements end: 
IF ((Power received from celli < UMTS_coverage_threshold) OR (Load of cellj>UMTS_ load_threshold)  
THEN 
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*Create the list of target BSla verifying the threshold conditions on coverage and load.  
*Find the target BSla the best received by the UT among the aforementioned list. 
*Trigger a handover to this BSla. 

 

The used coverage metric is CPICH Ec/N0 (the received energy per chip divided 

by the power density in the band) [1] for UMTS and the signal strength for RAN1. They 

are both reported by the UT. The load on UMTS is defined as the ratio of the downlink 

power to the maximal downlink power: 

                                         (3-1); 

 

The load on RAN1 is defined as the BSLA buffer occupation or:  
 

                        (3-2) 

The overall downlink throughput is the throughput perceived by the UT over the 

whole activity time, on both UMTS and RAN1. It is computed as the data volume 

received from both RANs divided by the total downlink activity time:  
 

                           (3-3) 

For the evaluation of the performance of the proposed algorithm, three central and 

12 neighbouring UMTS cells are considered. Within each of the three central cells, 

there are three LA cells. All UTs move at 3 kmph. UTs connect to UMTS first. They 

request a downlink radio access bearer (RAB) of 384 Kbps and an uplink RAB of 128 

Kbps on UMTS. The maximum data rate of a BSLA is 2 Mbps. The traffic model for 

each UT consists of a downlink FTP service (100% get). The FTP server sends files of 

400 Kb with an inter-request time of 100s. 

Simulations are performed for different values of UMTS_HO_Load_thr within the 

following set of values: {90, 80, 70, 60, 50, 40, 30, 20, 15}. The number of UTs varies 

from 5 to 25 at a step of 5. UMTS_HO_Load_thr has an impact on the variation on the 

overall throughput and the time spent on UMTS or different numbers of UTs. The 

handover policy consists in maximizing the overall throughput by triggering handovers 

from UMTS to RAN1. For this purpose, the UMTS_HO_Load_thr is decreased.  Figure 

3-1 shows the overall downlink throughput as a function of UMTS_HO_Load_thr for 

different numbers of UTs.  
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Figure 3-1 Overall load-based downlink throughput for different numbers of UTs. 

There are two phases in the overall throughput evolution graph. During the first 

phase, the throughput is almost constant when UMTS_HO_Load_thr has low values. 

During, the second phase, the low value of UMTS_HO_Load_thr implies immediately 

the increase of the number of load-dependent handovers from UMTS to RAN1 and 

consequently the overall throughput increases. Figure 3-2 shows the ratio of load-

dependent handovers from UMTS to RAN1 (e.g., IMT-A LA) versus 

UMTS_HO_Load_thr for different numbers of UTs. For the same threshold value, the 

throughput increases when the number of UTs goes up from 5 to 20 UTs. This is due to 

the fact that the more UTs are on UMTS, the faster the handover threshold is reached. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Percentage of load-based handovers from UMTS to IMT-A LA for different numbers of 
UTs. 
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Consequently, the handovers to RAN1 are frequent and the overall throughput 

increases. When the number of UTs reaches 20 to 25, the throughput slows down. The 

reason is that the BSLA capacity is shared by more users, which leads to an overall 

throughput decrease. Then, for 25 UTs, the throughput increases again.  In this case, 

some UTs are blocked due to the admission control and load control algorithms. 

Figure 3-3 shows the ratio of sojourn time spent on UMTS versus 

UMTS_HO_Load_thr for different numbers of UTs. For a ratio of total duration on 

UMTS for 5 to 25 UTs, the sojourn time on UMTS increases with 

UMTS_HO_Load_thr, which is justified. For values of the UMTS_HO_Load_thr 

between 15 and 40 or 50 (according to the number of UTs), the sojourn time on UMTS 

increases rapidly and then becomes almost constant. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 Load-based sojourn time spent on the network for different numbers of UTs . 

Use of thresholds together with cooperative RRM algorithms is complex 

especially in a multi-system context. For each system, many algorithm parameters 

should be fixed: selection, access control and mobility algorithms thresholds. These 

different thresholds are correlated and should be set jointly. Moreover, the inter-system 

mobility algorithm parameters must be correlated with the RRM thresholds of each 

system. 

3.2  Intra- System Handover 
 

This section proposes handover algorithms for the cooperation between RRM entities of 

the same system as proposed for IMT-Advanced candidate systems [2]. In principle, the 
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concepts described for the cooperation between different RANs were extended to enable 

the cooperation inside the same RAN. The higher layer triggers are expected to be 

activated either by BS calculations on the cell status, or by information sent by the 

monitoring entities [3]. In this context the proposed general handover algorithm in 

Figure 2-2 is applicable also for support of intra-system handover. Intra-system 

handover will involve generic and specific RRM algorithms. Because the BS of IMT-

Advanced candidate systems will serve different deployments [2], [4], two specific 

intra-system handover cases can be considered, namely: (1) when the handover takes 

place between BS serving the same deployment (intra-mode handover), and (2) when 

the handover takes place between BS serving different deployment areas (inter-mode 

handover). Complete details about the ‘mode’ concept are available in [2]. 

A handover process can be triggered by periodic measurements and by a higher 

layer trigger (e.g., cell load), then the UT requests to the network elements information 

on the possible cells of the same mode or different modes, or different RANs. 

Depending on the type of handover; intra-mode, inter-mode or inter-system, this 

information will be provided by a specific entity: the BSs, GW/SRRM or CoopRRM, 

correspondingly. In particular, inter-mode decision will be advised by the following 

entities: 

• BSWA/BSMA will be deciding the handover between a LA and WA/MA; 

• GW/SRRM will be deciding the handover between WA and MA. 

 

 If we follow a self-organized and partially distributed approach the intra-mode 

handover decision could be taken by the BSs /UTs of the same mode, in a similar way 

to the current 802.11 standards, i.e., without a central entity. The BSs, of the same mode 

in the same deployment zone, could use a protocol to exchange control messages 

between them, in a similar way that the 802.11 access points (APs) use the Inter-Access 

Point Protocol (IAPP), to give a continuous coverage in support of terminal mobility 

[5].     

3.2.1  Intra-Mode Handover 
 

There are three possibilities for intra-mode handover: between BSs of the same 

deployment  type, between RNs and between RN and BSs of the same deployment. This 

type of handover includes the intra-cell handover where the user remains in the same 

mode (e.g., the change of frequency in the same cell) and the inter-cell handover 

between cells of the same mode. The basic trigger for inter-cell handover is the received 
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signal strength, but also, the load of the neighbouring cells, congestion situations, 

increased interference, the location of the user, etc. The intra-mode handover (between 

RNs and/or BSs), for example, could be triggered when the received signal strength 

(RSS) is below a fixed specified minimum value.   

In the active state, when a data flow is requested by the UT or the network, this 

data flow is mapped to a service class. In [6], [7], [8] 18 service classes were proposed 

as exemplary for an IMT-A candidate systems. These service classes could be served by 

WA, MA or LA. In the case when the UT would be served by an adequate deployment 

scenario, as default, the UT will try to handover to a neighbouring cell of the same 

mode when an intra-mode trigger is activated.  Only in the case when there are no cells 

of the same mode available, or when some specific inter-mode triggers are activated, the 

UT will handover to other mode or even another RAN (e.g., increase or decrease of UT 

velocity). The group of triggers were described in Chapter 2. 

Figure 3-4 proposes the actions for the intra-mode algorithm, assuming that two 

different cells (current and target cells) can provide the QoS requirements related to the 

service requested by the user. The handover is based on the criteria of coverage and load 

as proposed in Chapter 2. 

 

 
 

Figure 3-4 Intra-mode handover algorithm. 

It should be noted that the threshold for the load criteria can be absolute or 

relative, if it is possible to compare directly the load. The criteria to choose the users 

(and their number) that perform the handover can be services-based criteria (e.g., 
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speech users perform handover first, then another service, etc.), or resources-based 

criteria (i.e., the users consuming a lot of resources are transferred first, etc.) or users-

based criteria (i.e., low-priority users are forced to handover first). In Figure 3-4 the UT 

performs periodic measurements and, when a trigger for intra-mode handover is 

activated, the signals from the neighboring cells lists are measured and the target cells 

are ranked. The admission control algorithm decides whether to accept or reject the user 

to the new cell; if the admission decision is positive the user performs the handover. 

Otherwise, it selects another cell from the target list and so on, until either the user is 

accepted in a cell or the user is rejected. The associated signalling with the intra-mode 

handover is shown in Figure 3-5. 

 
 

Figure 3-5 Signaling during intra-mode handover. 

Upon receiving an intra-mode handover trigger, the current BS (BScur) gets the list 

of the neighbouring cells from the HIS and sends it to the UT. Now the UT knows, for 

which cells to measure the signal strength it receives and sends the measurements back 

to the BScur. The BScur then makes a list of the possible target cells and sends the 
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handover request to the new target BS (BStarg1). Then the AC on that BS is activated. If 

the admission is rejected then the BScur sends the handover (HO) request to the next 

target BS (BStarg2). When the AC accepts the handover, the BStarg2 sends the HO request 

acceptance message to the BScur, which sends the HO command to the UT. Then the UT 

sends the HO completed message to the target BS to request radio resources and the 

BStarg response and sends also a HO completed message to the BScur to release the radio 

resources of the UT. The BScur acknowledges and releases the radio resources and the 

handover is completed. 

3.2.2  Inter-Mode Handover 
 
An inter-mode handover includes the handover from a BSWA of a WA deployment 

scenario (or BSMA of a metropolitan area deployment) to a BSMA (or a BSLA of a LA 

deployment scenario) and vice versa, correspondingly [9]. The intra-mode handover is a 

sub-set of the inter-mode handover. This is shown in Figure 3-6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Inter-mode handover flow chart including the relationship to the intra-mode handover. 
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Inter-mode handover can be activated by the need for higher data rate services 

(e.g., handover from the WA to LA) or UT velocity (e.g., handover from the LA to the 

WA). After the initial selection of the service class and the associated modes to an user 

data flow, the UT will be maintained in this mode, until some changes would occur in 

the UT environment or data flow. When no cell is available then the cell of other RANs 

would be checked, in this case the cell selecting process in the legacy RAN will be 

similar to the inter-mode handover process. 

Inter-mode handover could be initiated by the UT or the BS to which the user is 

initially connected. In this process, the BSWA is the BS that coordinates the handover 

procedure. The BSWA receives the request from the current BS for an inter-mode 

handover, gets the measurements from the UT and the current BS (i.e., BScur(LA)) and 

decides the list of modes and BSs of each mode that are suitable for the user. Then all 

the messages are exchanged via the BSWA in order to complete the handover.  

Inter-mode handover is triggered by low signal strength and quality (BER) and cell 

congestion triggers. There are specific triggers that directly activate inter-mode 

handover as, for example, new services request/release and velocity changes. 

When there is an inter-mode handover trigger, the algorithm tries to find the best 

suitable mode for the user to handover to. This decision is based on several criteria 

which were analyzed above and also on the trigger that requested the handover. The 

target modes (if there is more than one suitable) are listed and ordered by preference 

according to the above criteria. For the selected mode a list of target cells is created and 

it is checked with the AC to which cell the user can be admitted. The associated 

signalling to inter-mode handover is shown in Figure 3-7. In this case the handover is 

from a BSWA (or a BSMA) to a BSMA (or a BSLA) and vice versa, correspondingly. The 

BSWA is coordinating the handover procedure. The BSWA receives the request from the 

current BS for an inter-mode handover, gets the measurements from the UT and the 

BScur and decides the list of modes and BS of each mode that are suitable for the user. 

Then all the messages are exchanged via the BSWA in order to complete the handover. 

Taking into account that the BSMA can control several RNs, it is foreseen that the BSMA 

could control also several BSLA. Therefore the BSMA will have the same control 

functionality as the BSWA. This is in essence a decentralised hierarchical approach to 

intra-system interworking.  Centralised and decentralised approaches are playing an 

important role in the research proposed in later chapters. 
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Figure 3-7 Signaling during inter-mode handover. 

3.2.3  Hierarchical Control Architecture for Intra-System Handover 
 

A decentralized and hierarchical mode control architecture is proposed for the intra-

system RRM algorithms, which would improve the efficiency of the handovers. In such 

an approach, the inter-mode handover decision is taken by the BSWA/MA that controls 

several BSLA. In this approach the GW node will be limited to coordinate a set of BSWA 

or BSMA. With other words, the GW would govern over a pool of BS, which would also 

decrease the need for handovers when a UT is roaming within such a pool of BS.  This 

is shown in Figure 3-8.  
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Figure 3-8 Concept of a hierarchical control for generic RRM. 

 The benefit of the proposed hierarchical control architecture in Figure 3-8 is that 

mode generic control plane functions that concern the coordination of the different 

modes/BSs could be moved to the BSWA and BSMA, making them responsible for the 

control and allocation of resources per WA cell including all BSLA that fall within its 

coverage. 

A requirement for such an approach would be the definition of a communication 

link between the BSWA and BSLA, this link could be either wired or wireless (e.g. part of 

the WA mode interface). 

 3.2.3.1 Hierarchical Control Architecture Involving Several GWs 

 

Several GWs can be employed for optimizing the GW pool capacity. The GW is an 

anchor point for external routing, and also is the bridge between the UT and the operator 

services and Internet, through the IG interface. Adding or removing GWs can help 

balance the load between GWs. Finally, it provides redundancy, that is, in the case of a 

GW failure, the users can be handed over to any other GWs in the pool, and at the same 

time load balancing between GWs can easily be achieved.  Load balancing strategies are 

proposed in Chapter 6. 

The GW association will be preserved even when a user handovers to a BS that is 

controlled by a different GW, belonging to the same pool. In that case, a change of the 

IP address is not necessary. This is the basic idea for the proposed pool of GWs that are 

connected to the BSs through a routing function that enables the process described 

above. This concept is shown in Figure 3-9. 
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Figure 3-9 Pool of GWs communicating through a routing function. 

3.2.3.1 Communication between BS during intra-system interworking 
 
The intra-system interworking is based on two connection solutions, i.e., through the 

backbone network provided by the BSs connections and, in addition, over the air 

interface between overlapping BSs. The BS-BS interface is viewed as beneficial for the 

communication between BSs that belong to two pools of GWs in the context of 

opportunistic communications [10]. The latter functionality can be included as an 

optional and on demand functionality1. This is a proposal in line with the concept of the 

Hierarchical Cell Structures (HCS) [11]. The only difference is the proposed over-the-

air communication between BSs. The proposed scenario is shown in Figure 3-10. 

 

 

 

 

 

 

 

 

 

 

Figure 3-10 Proposed scenario for interworking between BSs. 
                                                             
1 The most efficient way to for inter-BS communication in support of RRM actions is planned as a follow up work of 

this thesis and is explained in Chapter 7. Chapter 4 presents a preliminary proposal for efficient BS-BS 
communication in support of user context transfer during handover. 
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The process is described for the message exchange scenario shown in Figure 3-7. 

The UT requests the approximated inter-mode measurements from the BSLA after 

the activation of a pre-trigger. For example, if a PHY-layer trigger is activated based on 

intra-mode measurements performed by the UT then the rule bit error rate 

(BER)>pre_trigger_limit initiates the exchange of measurements with the BSLA while 

BER>trigger_limit>pre_trigger_limit necessitates the handover to WA). 

After the UT has sent its intra-mode measurements to the BSLA, it would request 

the approximate measurements for the BSWA. These measurements, however, will not 

be used to request a handover unless a trigger that necessitates the handover is activated 

(see Chapter 2). The UT might need to perform inter-mode measurements itself in the 

case when a trigger that necessitates the handover occurs before a pre-trigger (e.g., fast 

increase in the UT velocity) or the last pre-trigger occurred some time ago (the duration 

of this timeout will be based on the air interface specifications) and therefore the inter-

mode measurements are not considered valid. Based on the BSWA cell and BSLA cell 

information, the BSLA decides whether to accept, to decline or to queue the UT 

handover request. To inform a UT that is within the range of a MA/WA cell, a beacon 

signal should be sent periodically by the BSWA. Upon the receipt of the beacon, the UT 

could perform any further measurements preparing for an inter-mode handover. 

Therefore, such a handover is initiated by the BS rather than the UT.  

In Figure 3-11, handovers are performed based on the proposed intra-system RRM 

algorithm and are triggered by a value of the throughput, which is measured in Mbps. 

The scenario is the same of Figure 3-10 when two BSLA are in the vicinity of the BSWA. 

 

 

 

 

 

 

 

 

 

Figure 3-11 Intra-system handover algorithm triggered by residual throughput. 

When the throughput achievable from a LA connection decreases, the UT will 

handover to WA and similarly, when it comes close to the BSLA it would handover to it. 
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A beacon will be transmitted on the broadcast channel common for all system 

modes and, therefore, the UTs will be able to receive cell information in whichever 

mode they operate at any time. This could be implemented by having the BSLA 

transmitting on the broadcast frequency of the BSWA (but adding complexity to the 

BSLA because a second transmitter must be added) or by switching between the modes. 

Furthermore, whenever the BSLA will transmit, only UTs within the LA cell will receive 

the beacon. Because all BS (BSWA and BSLA) within a WA-cell coverage will transmit 

information on the broadcast channel, synchronisation between the BSs is required. It is 

proposed here that each BS is allocated periodically the same timeslots of the frame [9]. 

In particular, the BSWA will be responsible for allocating these timeslots flexibly. 

For example, assuming a MAC frame of k timeslots and i BSLA, the frame can be 

equally divided to (i+1) parts, which will be allocated by the BSWA ( k> (i+1) ). In 

another implementation, the BSWA will allocate a whole frame per BSLA in a Round 

Robin fashion [12]. Finally, the BSWA could dynamically allocate frames or timeslots 

according to requirements for broadcasting information. The broadcast beacon should at 

least include information on the current LA cell identification number. Further to the 

common broadcast channel, a second broadcast channel just for the MA/WA cell where 

the beacon is also transmitted for the terminals that are already at MA/WA mode is 

needed. As the path from the BS to the UT might not be direct, the information message 

should also include any nodes identification number which can be added on the beacon 

as each node propagates it. Other useful information that could be included would be 

the functionality of each RN, conventional or cooperative. This will assist the UT to 

identify the number of hops as well as what relay functionality is available. Therefore, 

the UT might receive as many beacons as the number of links from the BS. The 

advantage of this method is that the UT will know how many paths (this is in effect 

routing information) are available to it as well as which is the best link (between last 

relay and UT), (e.g., by calculating the BER of the beacon message). This information 

and the number/type of hops between the BSLA and the UT could be a parameter for 

deciding on which path to send/receive information. In addition the information form 

neighbouring cell lists can assist the handover process (see Section 2.2.1 of Chapter 2). 

3.3 Impact on Cooperation Architecture 
 

To enable the implementation of the proposed RRM framework, it is proposed that the 

CoopRRM has interfaces with other CoopRRM of the same or different operators.  
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Further, it is proposed that the logical functionality of the CoopRRM is divided in 

a common part (RRM-g) and a specific part (RRM-s) for each RAN with the common 

part containing the functionalities common to all RANs. The RRM-g provides a 

common interface towards upper layer functions/protocols. The specific part handles the 

specific details of each RAN. 

In summary, it is proposed that the SRRM module (i.e., RRM Server and GW) 

includes the following functionalities: 

• Receive real time traffic measurement; 

• Calculate KPIs; 

• Forward alarms to CoopRRM; 

• Provide status to CoopRRM on demand; 

• Enable RRM-s. 
 
 

The alarm and status information provide the driven force for the handling of the 

cooperation between the RANs. This information is passed from the SRRM as 

structured format-based information and would be referred to as radio resource control 

(RRC) signalling. Explicit RRM functions use the RRC signalling and implement a set 

of suitable functions to support intelligent admission of calls and sessions. They control 

the distribution and the association of traffic, power and the variances of those, for an 

optimized usage of radio resources and maximized system capacity. Control refers to 

the decision made by the measuring station or remote entity to adjust the radio resources 

based on the reported measurements, or to activate the RRM functions. Further, the 

RRC communicates the adjustments to the logical entities using standardized primitives. 

The RRC includes measurements, exchange and control of radio resource-related 

indicators and commands between the RAN and UTs.  The measurements are the 

determining values of standardized radio resource indicators that measure or assist in 

estimation of the available (and potentially available) radio resources.  

In the control plane, the IGB establishes a flow context in a BS by a GW. The BSs 

informs the GWs about the user mobility (e.g., handover and paging updates). Similarly, 

the BS provides means to forward the paging messages to a certain UT. 

In order to provide for scalability and flexibility of the proposed RRM 

architecture, it is proposed that a combined centralised and distributed approach is used 

at different layers of the framework. The dotted lines in Figure 2-1 showed the 

signalling of the optional RRM entities, which when activated would act in a centralised 

manner. Inter-system cooperation would always be performed in a centralised way, 
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whereas, intra-system cooperation will be handled in a distributed manner for low 

traffic loads. Therefore, the IGB interface is defined as the logical interface between the 

GW and BS (mode-generic and mode-specific RRM for low loads). The IRRM interface 

will be active for medium to high loads. Use of the optional entities is CAPEX efficient 

for real network deployment. The analysis of the degree of efficiency, however, has not 

been included here. In terms of delivering QoS, such an approach can guarantee that for 

dense areas with users demanding high QoS, a centralised approach will be able to 

guarantee the QoS.  

The RRM server can give potential gains provided by the centralised JRRM 

through the interfaces between the RRM server and the BSs. The system capacity gain 

obtained from the deployment of the RRM server is in principle the enlargement of the 

number of operational servers from the queuing model viewpoint, which therefore 

results in a higher trunking gain. The potential gains from alternatively allocating the 

resources to call units among the interworking coexisting BSs and the realisable load 

balancing effect are studied further in Chapter 4 and Chapter 5.  

From this point on, the definition/understanding of centralized and decentralized 

RRM is the following. 

• Decentralized RRM means that decisions are taken at cell level by the BS, 

independently from other cells. Information from other cells, (e.g., measurements), can 

be considered in the decision process.  

• Centralized RRM means decisions are at least influenced (even though not 

necessarily made) by RRM entities located higher in the network hierarchy and consider 

information reported from other cells/RANs.  

3.3.1  Inter-Function Cooperation for a Hybrid Approach 
 
It is proposed to optimise the interworking among the proposed RRM functions by a 

hybrid approach in support of intra-system interworking. This optimization is shown in 

Figure 3-12. Because congestion control itself is not an explicit function which evokes 

explicit air interface updates, it is classified as a network function. Explicit RRM 

functions use the RRC signaling and implement a set of suitable functions to support 

intelligent admission of calls and sessions. In a situation of high load to medium load, 

the congestion function may trigger (network-triggered) handovers by shifting some 

selected users to another cell/mode or frequency in order to avoid the congested state. 

To handle the handover process, the RRM functions need the explicit RRC messages, 

which are termed as ‘explicit function through the air’. 
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Figure 3-12 Optimised interworking among the RRM functions. 

The numbers attributed to the functions follow the sequence of functions execution 

for a congested state or a scenario of very high load. 

To demonstrate the interworking among the RRM function in the three different 

approaches and map them to the required RRC signalling, the centralised, distributed 

and hybrid approaches are proposed and analysed for intra-system handover. This is 

further detailed in Chapter 5.  

3.4 Conclusions 
 

This chapter proposed cooperative RRM mechanisms for inter-system and intra-system 

interworking. It was shown that cooperation is required on three levels, supported by 

cooperative, mode generic and mode specific RRM mechanisms. Such an approach has 

benefits for emerging communication systems, because the proposed framework ensures 

the coexistence with legacy systems.   The proposed RRM framework is based on the 

proposal for a flat distributed RAN envisioned for next generation systems and already 

approved for LTE. Further it ensures that active inter-connections between relevant 

RRM entities are maintained at the desired by the cooperation level. The inter-node 

connectivity provides interworking, which in turn provides potential performance gains. 

An important advantage for inter-system cooperation can be derived from the use 

of measurements and triggers. Use of positioning technologies for deriving precise 

location information can be well exploited for support of individual user needs related 

to QoS. Further, operators can improve the network management by being able to 

reduce the number of unnecessary handovers. The location of the HIS functionality 
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depends on the architecture and system deployment. In relationship to the proposed 

cooperation architecture, the HIS can be implemented through a central approach where 

the HIS can be located in the CoopRRM or a distributed approach where the HIS 

entities are distributed between the CoopRRM and the SRRM. 

Inter-system cooperation is best coordinated by a centralised approach and by an 

entity located externally to the RANs. Inter-system RRM mechanisms including 

congestion, admission and load control can reduce the percentage of blocked and 

dropped users even for scenarios of high traffic load. The advantage of the proposed 

here inter-system cooperation mechanisms is mainly that they allow for decision 

making based on generic factors, such as the load of the system, while considering the 

individual user and service characteristics. In a heterogeneous mobile environment, it is 

difficult to rely on exact mathematical descriptions or on prior knowledge for all of the 

processes and interactions in each system and therefore, this approach allows for 

scalability of the framework. Further, a large portion of the information related to the 

system performance and radio resources allocation is to be found in the users and 

applications of that system. With other words, the proposed mechanisms allow for data 

from the edge of the system to be combined with data from other parts of the system 

thus understanding the complete sequence of events. 

Cooperation can be assisted further by introducing a combined centralised and 

distributed (i.e. hybrid) approach to cooperation for support of intra-system cooperation 

and for introducing scalability of the architecture, which is important for network 

migration. A policy-based management framework based on this combined approach is 

proposed in Chapter 5, whereas a novel multi-stage admission control algorithm, also 

based ont eh combined RRM approach is proposed in Chapter 6.  
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Chapter 4 

Cooperative RRM Algorithms for Congestion, Admission and Load 
Control 
 

This Chapter proposes the protocols in support of cooperative RRM algorithms for 

admission, congestion and load control. The algorithms then are assessed for a scenario 

of inter-system interworking for medium to high load (i.e., busy hour). In the 

cooperative RRM framework, these algorithms are closely interacting with each other to 

provide for QoS management including network capacity optimisation. Chapter 2 (see 

Figure 2-7) showed the variations of the delay depending on the chosen congestion 

threshold and exercised load. It was shown that excessive loading leads to a higher 

delay value and consequently into drop of the throughput. Admission control (AC) in 

this context refers to a functionality, which grants or rejects user requests based on the 

network resource availability, which in turn depends on the pre-defined load/congestion 

thresholds and the instantaneous load values. In broad terms, AC limits the access to 

some resource such that the load on that resource remains limited. Different load 

situations will affect the network functionalities differently. Careful handling of the load 

and admission control strategies can also help reduce the number of unnecessary 

handovers. Therefore, the proposed congestion, admission and load control algorithms 

are also distinguished as cooperative, mode generic and mode specific. The scope of this 

research work extends only to the cooperative and mode generic algorithms. Mode 

specific algorithms are primarily targeting the transmission control functionality at 

lower layers, and are therefore, not in the scope of this research work. 

 This Chapter is organised as follows. Section 4.1 proposes a cooperative 

admission control algorithm and analyses its relationship to the system loads. This 

analysis is used later for the assessment model. Section 4.2 proposes a cooperative 

congestion control algorithm. Again, it is analysed in relationship to the system loads. 

Section 4.3 assesses the proposed algorithms in terms of achievable system capacity and 

QoS. Section 4.4 analyses the impact of the proposed algorithms on the RRM 

architecture. Section 4.5 concludes the Chapter. 
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4.1 Cooperative Admission Control 
 

Figure 4-1 shows the proposed AC algorithm for cooperation between different RANs.  

 
 

Figure 4-1 AC algorithm for cooperation between RANs. 
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 It is based on a centralised approach with the main functionalities residing at the 

CoopRRM entity. The algorithm is triggered when a new session request arrives at the 

AC entity. A “new session request” can be a request from a new or a handover session.  

 When a new request arrives at the AC entity, then the algorithm will be executed 

in order to decide whether there is a RAN/RAT that can meet the session requirements 

and if the session can be served by that RAN/RAT. 

First the characteristics of the session are determined. At this step the algorithm 

checks the requirements of the session, by means of resources. 

The session declares its type, bandwidth requirement, delay sensitivity, and so 

forth. The session is then matched assigned a priority according to the service class it 

belongs to, the user profile and so forth.  In order to select an appropriate RAN, the 

algorithm makes a list of the candidate serving RANs and candidate cells for each 

network.  

The lists contain the candidate networks and cells capable of providing the 

requested session service and they are ordered in a way that fulfills the service 

requirements in each network. For example, in GSM/GPRS candidate cells are the ones 

that provide coverage at the point where the user is located, that means that the BCCH 

Rxlev value is greater than a defined threshold [1]. In UMTS, at the point where the user 

is located, the Eb/No of the cell must be above a specific value and the transmission 

power requested to the user by the power control loop has to be lower than the 

maximum allowed value for that user [2]. In WLAN the coverage is reached when the 

received power is above a minimum value [3]. 

The decision to admit or reject a user is based on a calculation of the load and 

comparing it to a predefined threshold. This was also described in Chapter 2. Each of 

the RANs calculates the load in a way reflecting the specifics of the interwokring RAN 

architecture. This action is performed by the SRRM entity belonging to each RAN. 

The algorithm in Figure 4-1 will maximize the number of admitted or in-session 

traffic sources supported over the RANs, while guaranteeing their QoS requirements 

and ensuring that the new connection does not affect the QoS of the ongoing 

connections. The decisions to accept or reject a new connection are based on the 

characteristics of the RAN. The algorithm assumes that degradation of the QoS of some 

users is acceptable provided that their QoS requirements are not violated. 

For the assessment of the algorithm in Figure 4-1 the scenario assumes an IMT-A 

candidate RAN interworking with legacy RANs, such as GSM/GPRS, UMTS, and 

WLAN 802.11.  
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Users are admitted based on how this would affect the total load of the network; or 

the load must stay under the pre-defined load threshold (Lth) value: 
 

  Load  <  Lth                                                             (4-1);  

  
where Lth  is different for  the different types of networks. 

As a basis, the load is defined from the average number of UTs requesting service 

or the average arrival rate, λ [users/sec], and the average time a UT requires service or 

the holding time, T [sec]. A channel kept busy for one hour is defined as one Erlang [4]. 

If the average arrival rate during a short time interval t is λt, then assuming Poisson 

distribution of service requests, the probability P(n, t) for n calls to arrive at time 

interval t is given by Equation (4-2): 

 

 

                                                                                                             (4-2) 

Assuming µ to be the service rate, the probability of each call to terminate at time t 

is then µt. Thus, the probability that a given call requires service for a time t is given by: 

                                                                                                               (4-3) 

                                                                                                

In GSM/GPRS, the load can be computed based on the number of occupied time 

slots (TSused) compared to the total number of time slots (TSmax) in a cell and 

considering the number of reserved slots. This means that a new user can be admitted if 

not all the time slots are occupied by other users.  

The load of the GSM/GPRS network is computed according to Equation 4-4: 

 

          (4-4); 

 

where                        

                  (4-5);  

The final expression for the load of the GSM network is: 
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             (4-6). 

  
If all the timeslots are occupied, then TSused = TSmax. This means that in the situation 

where all the timeslots are occupied by users, the load of the network is 100%. If this 

situation occurs, no more users can be admitted to the network and a congestion control 

algorithm is activated to resolve the situation.  

 For the UMTS network the load is computed both for the uplink and downlink 

separately [2]. A user is admitted in the network if both uplink and downlink criteria are 

met. In the uplink, the criteria will be related to the received interference. During the 

planning phase of an UMTS network, the operator defines a maximum load for the 

network, given by ŋmax. If there are K admitted users in the system already, then another 

request for admission should meet the Equation 4-7: 
 

                                    (4-7); 

where, 
  ,    and                 

 
ηUL is the load of all the already admitted users in the uplink; PR is the received 

power from the users in the cell and χ is the interference level coming from the 

neighboring cells. Δη is the load increase that will be caused if the new user is admitted 

to the system. W is the chip rate, (Eb / No)k+1 is the target signal to noise ratio (SNR) of 

the new service, Rb,k+1 is the transmission rate of the new user and υk+1 is the activity 

factor of the new user’s traffic source. If several service classes with different 

characteristics are assumed, then Equation (4-8) holds: 

           (4-8); 

where PRi is the received power of the users of the service class i who are in the 

same cell as the new user. 

Then a user is admitted in the network only when the load increase caused by the 

new connection does not make the current load of the network exceed the maximum 

load defined by the network operator. As a different criterion, one can consider the 
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interference level of the network [2]. The UL noise increase due to the new user 

admission is defined as: 
 

                    (4-9); 

 
where Iintra is the interference level caused by the users allocated in the same cell, 

Iinter is the interference level caused by users in the neighboring cells and PN the noise 

power level. For assessing the AC algorithm of Figure 4-1, the Iintra level is defined to 

incorporate the number of service classes defined for the IMT-Advanced reference 

architecture [5]: 
 

                                                             (4-10);                                             

where IRi is the interference of the users of the service class i who are in the same 

cell as the new user. Thus, in order to check if the new user can be admitted or not in the 

network, the decision would be based on whether the following condition holds: 
 

                                                         (4-11);  
          

 

where Itotal is obtained from the received total wideband power, PRX , as in  
 

         (4-12); 

 
Pu is the received power of the new user, and ΔI is the increase in the interference 

caused by the new user and defined by: 

         (4-13); 

with Δη the load increase defined in Equation 4-7.  

 Thus, the uplink decision criteria are defined as in Equation 4-9 and Equation 4-

11. The thresholds defined by Equation 4-7 and Equation 4-11 are not constant, and 

they depend on the type of service class. Users from different service classes will have 

different thresholds, so the system will be able to admit higher priority users above 
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lower priority users and depending on how they affect the thresholds.  It is important 

that the thresholds are very well defined to avoid instability of the system [6]. 

In the DL the maximum transmitted power is shared among all the users located in 

the same cell. Also, the specific location of each user plays an important role and 

determines the amount of interference. The main criterion for the AC, therefore, is the 

transmitted power and not the load factor, as it was defined for the UL. The decision 

will be based on Equation 4-14: 

        (4-14); 

where, 

                                                                                   (4-15);       

 
PAV is the average transmitted power during the last T frames, ΔPT(i) is the power 

increase estimation caused by the new user and PT(i) is the threshold for the admission. 

An approximation of ΔPT can be found from proposed algorithms [7], [8]. The 

calculation for ΔPT adopted here is estimated with the power demand of previous users 

in a window of T frames: 

                                                                          (4-16);                                                                     

 
ni-j is the number of users transmitting in the (i-j)-th frame, T the averaging period (in 

frames) and PTi is the transmitted power to each user in the cell expressed by: 
 

                                                                  (4-17); 

where PT is the transmitted power, χi is the inter-cell interference to the user i, 

Lp(di) is the path loss at distance di, r the coding rate and PN the background noise. SF 
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compares the bit duration to the chip period and ρ is the orthogonal factor since 

orthogonal codes are used in the DL direction.  

A “pessimistic” estimation of the ΔPT value would assume the 90% of the required 

transmitted power per user or  

 

                                                                           (4-18); 

where CDF is the cumulative distribution function derived from the probability 

density function (PDF) of the required transmitted powers to each user in the cell, PT. 

For the WLAN the decision is taken based on the user receiving power. The 

number of users that are being served by a WLAN access point (AP) and the amount 

and type of traffic of the radio interface play an important role in determining the load 

of the WLAN system [9].  

In the 802.11e standard each service set has up to four different access categories 

with different priorities [10]. The method that is being proposed here takes into account 

the different priorities of the access categories and requires that each station measures 

the traffic condition (traffic load) on the wireless link. Two criteria are used here for 

making the decision about admitting a new user in the network. The first criterion is the 

relative occupied bandwidth, Boccu. In this method, the AC mechanism uses a time 

window in order to measure the amount of time used for transmission during a period T. 

This is the time when the wireless medium is busy, regardless of the fact whether the 

transmission has been successful or not. T is defined as follows: 
 

           (4-19); 

 

where ti is the occupied time of the i-th transmission. Then the relative occupied 

bandwidth can be computed as follows: 
 

                                                                                                   (4-20); 

                                                                                                           

The relative occupied bandwidth indicates the percentage of time that the wireless 

medium is busy (is being used). We define two thresholds here, Blo and Bup. 
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If Boccu  > Bup then the wireless medium is in a congestion situation and the 

congestion control must take place. At this situation, no new users can be admitted in 

the network. 

If Boccu < Blo, there are free timeslots for new users. New users can be admitted to 

the network according to their priority.  

If Blo  ≤  Boccu ≤  Bup the wireless medium is close to congestion and only users 

with high priority are admitted to the network. 

Boccu is computed at every period T and compared to the predefined thresholds. 

The algorithm could be easily implemented in the 802.11e network, because the 

enhanced distributed coordination function (EDCF) uses CSMA/CA medium access 

protocol, where a station has to sense the medium and check the network allocation 

vector (NAV) in order to see if the medium is idle for transmission of data [11]. The 

commonly used beacon interval of 802.11 could be used as the sampling period T. 

The second criterion is the average collision ratio, Rc. In this method the AC 

mechanism uses a time window to measure the average collision ratio during a period T. 

The average collision ratio is defined as the number of collisions that have occurred 

during this period over the total number of transmissions (including retransmissions). 

The average collision ratio can be considered as a measure for the traffic load of the 

wireless medium. The average collision ratio, Rc, can be defined by: 
 

                                                                                                                        (4-21);                                                          

where Nc is the number of collisions in the period T and Nt is the total number of 

transmissions in that period. 

Each station in the service set computes its own collision ratio Rc. Two thresholds, 

Rlo and Rup can be defined here (similar to the bandwidth). The following rules apply: 

If Rc > Rup, the network is overloaded and the congestion control mechanism is 

activated. No new users are admitted in the network. 

If Rc < Rlo, the network can receive new users without degradation of the 

performance. 

If Rlo ≤ Rc ≤ Rup the network is at an optimal state. At this situation no new users 

can be admitted to the network without degrading the QoS of the already admitted 

users. In this situation we allow only high priority users to be admitted to the network, 

by degrading the QoS of low priority already admitted users. 
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The 802.11e network already has the parameter of the total number of 

retransmissions. Even though it includes the retransmissions due to collision and the 

retransmissions because of received erroneous frames, the number of retransmissions 

could be a rough estimation of the collision rate (especially when the frame error rate is 

very small).Also here, the beacon interval of the 802.11 networks can be used as the 

period T [9].  

The AC algorithm in Figure 4-1 is based on a very tight cooperation between the 

RANs in order to know at any time the characteristics of every legacy RAN. Therefore, 

the AC entity imposes requirements on the measurement entity. These requirements will 

be used as inputs for the AC algorithm in order to make the decisions about the session 

requests. The AC entity should be able to know at any specific time the condition of 

every RAN in terms of resources, such as occupied and available channels, number of 

connections per cell, load per cell, power and bandwidth availability of each cell etc. 

Inability to obtain this information would lead to wrong decisions and degradation of 

the QoS.                       

To assess the algorithm in Figure 4-1, a user generator was assumed that generates 

users with different characteristics and requesting sessions from the networks in specific 

locations. The users have the following characteristics: 

 

userID, new/HO user, time_of_request, x_pos, y_pos, service_req, RAN_req, 

priority and call_duration 

 

 New users would want to establish a connection with one network and request 

admission for a new service, and handover users are the ones that would need to 

perform a handover. For the assessment it is considered that a new user would be 

accepted to the network. Based on the location of the user and taking into account the 

characteristics of the session the algorithm searches for a network and cells that are not 

overloaded and that can provide the user with the best QoS, either by selecting cells that 

are not overloaded or by performing several actions in order to gain the needed load in 

those cells (e.g., congestion control algorithm). 

4.2 Cooperative Congestion Control 
 
The cooperative congestion control based on the proposed AC is shown in Figure 4-2. A 

network is congested when the available resources are not sufficient to satisfy the 

experienced traffic load.  
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Figure 4-2 Congestion control algorithm for inter-system cooperation  

There are two ways to induce congestion: 

1. The network experiments a traffic overload that cannot be totally covered by the 

available resources, because the traffic rapidly increases inside a group of contiguous 
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cells. This is the case of an emergency situation (e.g., earthquake, major terrorist attack) 

or of an extraordinary accumulation of user requests because of special events (e.g., 

sport events, New Year’s Eve); 

2.  An outage occurs. An outage is the unavailability of (part of) the network resources, 

typically because of malfunctions somewhere. The outage is distinguished as:  

 a) Total outage when the network is completely blocked and the on-going data 

transmissions are interrupted. This happens, for example, when the antenna of a cell is 

damaged and then no signals are sent or received; 

 b) Partial outage when only some of the resources are not available. This 

happens, for example, when some traffic channels are not properly working. The global 

service is still available but it operates in a degraded manner. 

The above congestion situations in each RAN are solved by the specific for this 

RAN congestion control algorithms residing at the SRRM entities. For example, 

congestion in the UMTS network is solved based on the mechanism proposed in [12], 

and in the 802.11e system based on mechanisms proposed in [9], [11], [13]. For the 

reference IMT-A RAN adopted for the assessment, the congestion control mechanism 

monitors the network and if an overload situation occurs it would attempt to decrease 

the load of the network by performing several actions. One of these actions includes the 

activation of a reactive load control algorithm  residing at the GW or SRRM entity, The 

reactive load control procedure is shown in Figure 4-3.  

 

 

 

 

 

 

 
Figure 4-3 Reactive load control at GW and SRRM entity. 

Figure 4-4 shows the proposed interworking between the load control algorithms 

residing at different levels of the RAN hierarchy. 

Mode specific load control will reside at the BS entity based on thresholds 

indicative for the radio resource usage. A mode generic load control will also reside at 

the BS entity but will be active only at low network loads (below Lth ) whereas for 

medium to high loads, the control algorithms residing at RRMServer (i.e., SRRM) and 
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GW will be activated. A novel multi-stage admission and load control algorithm based 

on the interworking introduced here is proposed in Chapter 6. 

Different priorities can be assigned to the various steps of the load control to 

decide on, which action should be taken first in a given situation. These have not been 

assessed here.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4-4 Reactive load control algorithm for the inter-system cooperation. 

 

By admitting users automatically without AC, the load of the cells increases 

without controlling it. When the load reaches or exceeds a certain defined threshold then 

congestion control is triggered in order to decongest the cell/RAN. To reduce the 

complexity for the simulation scenario, the morphology of the cells was not considered, 

and square cells were assumed. A square-shaped cell is characterised by the topology 

shown in Figure 4-5 [4]. 
 

 

 

 

 

 

 

Figure 4-5 Topology of a square-shaped cell. 



Chapter 4: Cooperative RRM for Congestion, Admission and Load Control 

 90 

For example, the handover rate in a square-shaped cell can be calculated as 

follows. A handover can occur on one of the sides of the square (i.e., cell), R1 or R2. 

Then the handover rate λH can be defined as: 
 

                                                                                                                                               (4-22). 

 

If the area A = R1 R2 is assumed constant, then differentiation with respect to R1 

and R2 gives: 
 

                                                                       and                                                                  (4-23) .    

 

Then the total handover rate λH can be expressed as follows: 

                                                                                                                                  (4-24); 

 

                                                                                                                                              

For θ = 0, λH is minimised. 

4.3 Assessment Results 
A total of 25 square-shaped cells were used for the simulations. The topology considers 

an IMT-A RAN and legacy RANs (i.e., GSM/GPRS, UMTS and WLAN 802.11b 

hotspots). The topology layout is shown in Figure 4-6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 Topology for assessment of cooperative RRM. 
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 The following cells have been used: 8 GPRS, 4 UMTS, 6 WLAN hotspots, 5 IMT-A 

LA  and 1 IMT-A WA. The area of study is limited to the highest coverage area. This 

means that the whole area of study is entirely covered by the one IMT-A WA cell. The 

positioning of the cells is done by placing the upper left vertex of the square-shaped cell 

in the area of study. It is further assumed that all legacy RANs have the same capacity 

and that the IMT-A RAN has twice the capacity. To determine the total capacity Ctotal of 

the network, it has been assumed that a maximum of 5 000 users can be served within 

one hour. The total capacity value is calculated as in Equation 4-25: 
 

     (4-25); 

where NU_max is the maximum number of users (i.e., 5 000); NSC is the total 

number of service classes (i.e., 18); fi is the penetration factor of the ith service class; 

DRi is the simulated data rate of the ith service class, in Mbps; TDi is the typical 

duration, or expected download time, of the ith application, in seconds; FD is the full 

duration of the time interval, in seconds (i.e., 3600). The total capacity of the entire 

network was calculated as 2.625 Mbps. The load is calculated independently from 

Equation 2-4 for each cell. It is expressed as the occupation of the total capacity of the 

cell, and the load value is then comprised between 0 and 100. The calculation of the 

load for the IMT-A candidate RAN assumed here, takes into account only the 

bandwidth metric, in the data rate sense. For simplicity matters the same process has 

been applied to other RANs. This allows the algorithm to work with a generic formula. 

Moreover it provides load values that are coherent for the simulation, i.e., the load 

values for each RAN are comparable since they do not come from totally different 

calculations. The typical delay values were calculated by taking into account the method 

described in Chapter 2. 

The simulations were based on the service classes defined in, [5], [15], [16], [17]. 

The service classes are shown again in Table 4-1 and Table 4-2. The requirements for 

each service class have been defined based on a thorough literature survey and public 

data from reports of the UMTS forum, 3GPP bodies, WiMAX forum, IST EU-funded 

projects and mapped to WINNER system requirements. 
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Table 4-1  Service Classes Characteristics  

ID description Priority Duration(sec) 
(min-max) 

Data 
rate(kbps) 

(min – max) 

BER  
(min – max) 

Delay(msec) 
(min – max) 

SC1 Large files 
exchange 

8 50MB 500MB 1000 50000 1,00E-
06 

1,00E-
06 

200  

SC2 High quality 
video 

streaming 

6 300 600 2000 40000 1,00E-
09 

1,00E-
09 

200  

SC3 LAN access 
and file 
service 

4 120 300 500 50000 1,00E-
06 

1,00E-
06 

100 200 

SC4 Interactive 
ultra high 

media 

1 120 500 1000 50000 1,00E-
03 

1,00E-
06 

20 100 

SC5 Lightweight 
browsing 

5 300 900 64 512 1,00E-
06 

1,00E-
06 

200  

SC6 Data and 
media 

telephony 

2 60 120 64 512 1,00E-
03 

1,00E-
06 

100 200 

SC7 Simple 
telephony and 

messaging 

3 10 120 8 64 1,00E-
03 

1,00E-
06 

100 200 

SC8 Multimedia 
messaging 

7 5 15 8 64 1,00E-
06 

1,00E-
09 

200  

 

Table 4-2 Mapping of Service Classes to RANs 

 

Class 
ID 

Class name GPRS UMTS WLAN IMT-A 

SC1 Large files exchange - - - X 
SC2 high quality video streaming - - - X 
SC3 LAN access and file service - - x X 
SC4 interactive ultra high media - - x X 
SC5 Lightweight browsing - x x X 
SC6 data and media telephony - x x X 
SC7 simple telephony and messaging x x x x 
SC8 multimedia messaging x x x X 

 

The assessment results are based on 8 service classes common to all RANs. The 

priorities are determined taking into account the needs in terms of interactivity (i.e., the 

maximum tolerable delay), and the resources in terms of throughput. Application 

priority will then refer to the priority of the service class that the application belongs to. 

Users running applications of high data rate would possibly require more resources and 

therefore, the service priority will be of a higher rank. Table 4-2 maps the service 

classes to the capabilities of the RANs assumed for the simulations. This allows for 

predicting, which networks will be able to serve a given user, and only those would be 
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checked by the algorithm. The most important parameter for the assessment results is 

the generated traffic. 

The average duration of a call is computed from the duration defined for each 

session and from the size of the data that has to be exchanged according to the service 

class. These numbers are subjective and some of them extracted from the data rate that 

is defined for each class and the size of the data. From these and from the probability 

weight defined for each call, an average duration of the calls (i.e., the holding time at 

the BS) is computed as equal to 200 sec. 

In the assessment results the average traffic generated in each cell is given by the 

equivalent throughput (see Figures 4-7 to 4-11). The values are a conversion of circuit 

switch Erlang into throughput based on the data summarised in Table 4-3. The Erlang as 

an expression of the channel capacity was introduced in relation to the average arrival 

rate earlier. Here the blocking probability [18] is defined based on Equation 4-1 to 

express the amount of offered traffic in Erlangs and the probability that an incoming call 

is being blocked. It is given by Equation 4-26: 

                                                                                                             (4-26), 

where PB is the blocking probability, A is the offered traffic in Erlangs, and N is the 

number of traffic channels available. One Erlang is one continuously used traffic 

channel, so during any given period (i.e., 3600s) if a user talks for half the time, there 

would be a generation 0.5E. If there are 10 users all talking for half the time, the total 

traffic load would be 5E.  

 The efficiency can be calculated as the ratio of the total amount of non-blocked 

traffic and the system capacity as defined by Equation 4-25. 

  The average equivalent throughput per cell for the scenario here is calculated by 

multiplying the Erlangs of each call by the throughput of the service class of the call 

with a distribution factor of 50%. The results are summarised in Table 4-3. 

Table 4-3 Traffic Generated in a Cell 

 
λ (incoming 
users/sec) 

Average equivalent 
throughput/cell (kbps) 

Average equivalent 
Erlangs/cell 

0,5 1.323,82 4,14 
0,6 1.588,58 4,97 
0,7 1.853,34 5,80 
0,8 2.118,10 6,63 
0,9 2.382,87 7,46 
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1 2.647,63 8,29 
1,5 3.971,45 12,43 
2 5.295,26 16,58 
5 13.238,15 41,44 

10 26.476,30 82,88 
15 39.714,45 124,31 

 
 

For example, the IMT-A RAN was assumed with throughput of 50 Mbps. 

 The AC algorithm was assessed in terms of the blocking probability of a call, the 

number of users performing inter-system handover, and the number of users decreasing 

their QoS in order to admit a new user and the number of users restoring their QoS 

(when the load of the network allows that) for different loads. Four parameters were 

used to define each cell: the RAN and mode type, the cell coverage, the cell location 

and the cell capacity. With this information every cell can be uniquely identified. All the 

cells have the same coverage area and capacity value. The AC and load control 

algorithms are based on a centralised decision. 

  Figure 4-7 a) and b) shows the blocking probability for the case of AC and load 

control without QoS renegotiation in relationship to the average throughput per cell. 
 

 
   a)      b) 

Figure 4-7 AC without QoS negotiation: a) Distribution of users depending on the amount of traffic 
per cell and b) Parameters of the algorithm. 

The AC and load control algorithms perform optimally for low traffic (low 

average throughput/cell) and very good for rather heavy traffic (over 10 Mbps/cell). For 

1.5 Mbps, the blocking probability is only 0.275 % (admission probability 99.725 %) 

and for 13 Mbps, the blocking probability is only 18.5 % (admission probability 

81.5%). The algorithm results in a very low blocking probability when we have low or 

medium traffic, but although the blocking probability is still very low, it increases 

logarithmically with the amount of traffic. In Figure 4-7 b) the parameters of the AC are 

shown for the number of users (y-axis) and the traffic per cell (x-axis). The more traffic 



Cooperative Radio Resource Management for Next Generation Systems         

 Page 95 (19) 

we have in the cells, the more users are forced to handover to other networks, and the 

more users are blocked 

The blocking probability for renegotiated QoS, just as in Figure 4-7 is estimated 

for different amounts of traffic per cell. Figure 4-8 shows that the blocking probability 

decreases when QoS is renegotiated. The blocking probability is above 10% for 

extremely heavy incoming new traffic per second (>10 Mbps/s). The assumed high 

values of incoming traffic were used to show that the algorithm performs well in 

extreme conditions. This in turn shows that the proposed framework is suitable for 

inclusion of systems with characteristics identified for next generation. For normal or 

medium-heavy incoming traffic, the blocking probability is around 2-3%. 
 

 

 

 

 

 

 

 

 

 

Figure 4-8 AC algorithm performance for renegotiated QoS . 

In order to show the effect of the threshold values on the performance of the 

algorithm, four different load thresholds, 0.7, 0.75, 0.8 and 0.85 have been assumed 

corresponding to the percentage of used network capacity. For very high thresholds (i.e., 

> 0.8 or 80% use of the network capacity), however, the blocking probability is close to 

the estimate when no QoS renegotiation is applied. In the case of QoS renegotiation 

with high threshold, the QoS for almost every user that has had the QoS decreased after 

a very short time (almost immediately) will be restored, as opposed to the case when no 

QoS renegotiation is employed.  

The algorithm performs very well not only for light traffic, but also for heavy 

traffic. With the use of QoS renegotiation, it is quite possible for new requests to be 

accepted to the network. Figure 4-9 shows the performance of the load control 

algorithm for different amounts of incoming traffic per cell.  

For low traffic the percentage of the users forced to handover is low, however, this 

number increases as the traffic becomes heavier. The percentage of users decreasing 

their QoS and restoring it later also increases, but at a slow pace. This is because if the 
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traffic is very heavy, even the rapid decreasing of the data rate of some users will not be 

efficient to resolve a congestion situation. With the increase in traffic, more users will 

have to be dropped. 

 
 

 

 

 

 

 

 

 

 

 

Figure 4-9 Probabilities of dropped users and users forced to handover when executing the 
proposed load control algorithm.  

Therefore, the percentage of the users that restore their QoS (in terms of data rate) 

depends on the total number of users. The percentage of the users that would restore 

their QoS in relationship with the number of users that had their QoS decreased depends 

on the threshold value. The threshold for restoring the QoS is assumed 0.85. The 

heavier the traffic, the fewer users restore their QoS. That occurs due to the very high 

load of the cells. 

Figure 4-10 shows the percentage of users, for which the QoS was restored. For a 

threshold value set at 0.7, only 6.7% of the users restore their QoS. For threshold values 

at 0.75 44% of the users restore their QoS, for thresholds at 0.8, 87% of users restore 

their QoS, and for 0.85, a 93.2% of the users restore their data rate. This means that high 

threshold values will allow for a larger number of users to restore their data rates. 
 

 

 

 

 

 

 

 
 
 

 
Figure 4-10 Percentage of users restoring their QoS for different threshold values. 
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Figure 4-11 shows the percentage of restored QoS for a fixed threshold value of 

the congestion at 0.85 and for different values of the average equivalent throughput per 

cell. Figure 4-11 shows that when the incoming traffic is heavy, a smaller number of 

users would restore their QoS. This is done in order to prevent that the system goes into 

congestion state. 

For a realistic approach to QoS provision, both application and user priorities were 

considered. This means that a set of possible services was associated with each user 

profile. User profiles and application profiles can be stored in a database located outside 

the RAN and similar to the HIS database. The database would be beneficial also for a 

policy-based approach to mobility management (see Chapter 4).  
 

 
 

Figure 4-11 Percentage of users restoring their QoS for a congestion threshold at 0.85 and different 
amount of incoming traffic. 

A default user profile is useful in order to minimize the probability of unnecessary 

handover when the user first requests an application. This type of information is referred 

to as static.  

A complete user profile will include also dynamic information describing user 

activity in the network (i.e., mobility pattern, current connection at the moment of a 

service request). The static information includes the following: 

• User ID as the identification of the user, among the different connected 

users; 

• User subscription profile with information about the operator to which the 

user belongs to and the type of contract the user has. This information is used to 

know if the user can be granted access to the network and/or requested service. 

The user would be able to access a network if the network belongs either to his 

operator or to an operator that has agreement with the home operator. 

Information about the agreements between the operators is stored in the database 
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associated with the CoopRRM. This information is central in the process of 

assigning user priorities. Users can be identified based on signal characteristics 

mapped onto subscription profiles. 

• User origin, which describes whether the user comes from a handover 

process initiated on another network or is a new user. A user coming from a 

handover session will typically have higher priority than a user requesting a new 

session. 

• User miscellaneous information, which is meant to describe an “emergency” 

user. An emergency user is someone that would be highly prioritized because of 

his/her key role during emergencies (e.g. policemen, hospital emergency 

workers, firemen). 
 

The dynamic information for a user includes the following: 

• Knowledge about the RAN, to which the user is currently connected. 

• User KPIs to assess the QoS the user is provided with. 

• Ongoing applications to assess the resource consumption of the user.  

• Application requests that are an indicator about the resources a user will 

need. 

• User location 

•  User priority level. 

  

The priority levels of the simulated users are shown in Table 4-4. 

Table 4-4 User Priority levels  

 
 
 

Each application requested by a user will be associated with specific information 

forming a unique application profile. This information includes the following: 

• Application ID is created by concatenating the user ID and the application 

rank of request. For example, if the user U1 requests a fifth application, this 

application’s ID will be U1_5. In this way, for a user connection, each 

application will have a unique ID. 
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• Application service class that serves to determine the requirements in terms 

of rate, delay, mobility and range, and then to identify the resources needed for 

its operation. The service class of the application is also used to identify the 

compatible legacy RANs that can host the application. 

• Application priority, which represents the priority level of the application, 

depending on its level of interactivity and rate requirement. The priorities are 

shown in Table 4-1. The dynamic information related to the application 

profiles includes the expected download time which is determined based on the 

duration for which we expect the user to use an application, on the type of 

application and of the size of the file to be transferred. Also, here the signaling 

and protocol overheads can significantly affect the desired download times. 
 

The prioritization process adopted for the simulations will consider that the user 

priority is more important than the application priority1. To describe mathematically the 

relationship between user and application priorities, each user level is associated with a 

ten value, and each application level is associated with a unit value. By adding the two 

values, we get a total value that describes the global prioritization level of a known 

application used by a known user. In the case when two global levels are equal, the first 

arrived is first served. Global priority levels are sorted in an ordered table from high to 

low priority, or from the lowest global value to the highest. This priority table is 

updated each time a user requests a new application, during the admission control 

process.  

In the following the cooperative congestion control algorithms are assessed for the 

scenario of ‘busy hour’. The goal is to evaluate the algorithms in terms of connected, 

blocked and dropped users. The distribution of the users for the scenario of ‘busy hour’ 

is shown in Table 4-5. Table 4-6 gives the user profiles associated to each service class. 

 

Table 4-5 Distribution of Users during ‘Busy Hour’ 

Service Class Number of users  
per service class 

Number of users 
per group 

Penetration  
factor 

SC6 336 56 6, 71 
SC4 18 3 0,36 
SC7 846 141 16,91 
SC5, SC2, SC1 60 10 1,20 
SC3 1530 255 30,58 
SC8 198 33 3,96 
Total 5004 Total 100,00 

                                                             
1 User priority is considered more important because it includes the user subscription profile. A user that does not 

belong to the IMT-A RAN will not be admitted to the network and will be handled immediately by a legacy RAN. 



Chapter 4: Cooperative RRM for Congestion, Admission and Load Control 

 100 

 
 

Table 4-6 User Profiles Associated to Service Classes 

 
User 
priority 

User 
profile 

Associated service 
class 

1 UP 1 SC5, SC2, SC1 
2 UP 2 SC4, SC6, SC3,  
3 UP3 SC7, SC8 

 
The traffic generator generates a busy-hour traffic with an assumed number of 

incoming users about 5000 per hour. The number of connected users and their 

distribution according to profiles is shown in Figure 4-12.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12 Number of connected users with and without CAC algorithms for different congestion 
thresholds. 

The connections are given for different congestion thresholds. If the congestion 

thresholds are set low the number of connected users is lower and users with the highest 

priority are granted connection first. 

Figure 4-13 gives the percentage of rejected users for each user category and 

congestion thresholds.  

The number of rejected users of the highest priority is very low and when CAC 

algorithms are applied even negligible. Figure 4-14 shows the percentage of dropped 

users when the cooperative algorithms are applied. The highest priority users are the 

ones associated to less demanding service classes in terms of bandwidth (e.g., simple 

telephony and messaging, multimedia messaging). When the congestion threshold is set 

low (i.e., at 70%) the largest percentage of dropped users is in this category. This is 

because dropping of users is performed under action of the congestion control 

algorithm. 
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Figure 4-13 Percentage of rejected users for different user categories and congestion thresholds.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-14 Percentage of dropped users for different user categories and congestion thresholds. 

For high congestion thresholds, the percentage of dropped users belonging to the 

category 3 is very low but this is in accordance with the policy of operators to always 

reserve some capacity for simple services. 

Finally, Figure 4-15 shows the results for the mean user throughput for different 

congestion thresholds and different traffic load scenarios.  

The results have been generated to give an overall assessment of the benefits of 

use of cooperative congestion, admission and load control algorithms based on KPI 

aggregation. The mean user throughput is a KPI measured in [bps] and calculated by 

comparing the size of the transmitted data with the time of transmission of the data, or 

as given by Equation 4-27: 
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                                                                             (4-27) 

 

Especially for heavy loads (‘busy hour’), cooperative RRM algorithms are very 

important for optimised use of network capacity and QoS to users. Heavy loads would 

‘slow’ the network down and reduce the number of handled users if QoS should be 

preserved. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15 MUT for different congestion thresholds and traffic load scenarios 

  

Monitoring of the MUT together with other KPIs, such as available bandwidth and 

throughput, has been proposed as a practical implementation and described in Chapter 

7. 

4.4 Conclusions 
 

One requirement of the cooperation architecture is to provide some inter- and intra-

RAN services such as: admission control, handover, scheduling, and QoS based 

management, and other services, such as billing, authentication, authorization. This 

Chapter proposed and assessed cooperative algorithms for admission, congestion and 

load control in the scope of next generation systems. Very tight coupling was selected 

as the for the integration of the interworking systems and cooperative RRM 

components. The coupling point for cooperative admission, congestion and load control 

is the CoopRRM or the SRRM in order to provide for an RRM framework based on the 

CRRM approach. This type of coupling is suitable for performing cooperative RM 

functions because when new and legacy systems interwork they would also have 
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overlapping areas of coverage. The GW pools can be beneficial for providing loose 

coupling possibilities in support of mobility management. 

The algorithms were assessed in terms of blocking and dropping probabilities to 

account for the achievable loads in a given traffic load scenario. 

 It can be concluded that for the proposed framework load control compared to 

congestion control is more multi-entity related. This conclusion is used for the proposed 

in Chapter 5 multi-stage admission control.  The simulation results justified that the 

proposed RRM framework introduces performance gains and scalability for catering for 

the future network and service requirements.  
 
References: 
 
[1] A. Mehrorta, GSM System Engineering, Artech House 1997. 
[2] R. Prasad, W. Mohr, and W. Konhäuser, Third Generation Mobile Communication Systems, Artech House 2000. 
[3] A. R. Prasad, and N. R. Prasad, 802.11 WLANs and IP Networking, Artech House 2005. 
[4] S., Kyriazakos and G., Karetsos, Practical Radio Resource Management in Wireless Systems, Norwood MA: Artech House 

2004. 
[5] A.-G. Acx, A. Mihovska, et al., “D1.3 Final Usage Scenarios,” Deliverable 1.3, IST 2004-507581 Project WINNER, at 

www.ist-winner.org. 
[6] Pedrycz, W., and Vasiliakos, A., Computsational Intelligence in Telecommunication Networks, Chapter 5: Congestion 

Control, CRC Press, Florida 2001. 
[7] J. Perez-Romero, et al., “An Admission Control Algorithm to Manage High Bit Rate Static Users in W-CDMA,” 13th IST 

Mobile & Wireless Communications Summit 2004, June 2004, Lyon, France. 
[8] C. Lindemann, M. Lohmann, and A. Thuemmler, “Adaptive Call Admission Control for QoS/Revenue Optimization in 

CDMA Cellular Networks,” Wireless Networks, Vol.10, Issue 4, p.457-472, 2004 ISSN:1022-038. 
[9] D. Gu, and J. Zhang, “A New Measurement-Based Admission Control Method for IEEE802.11 Wireless Local Area 

Networks,” Proc. of IEEE 2003 PIMRC, Bejing, China, 2003. 
[10] S. Black, “IEEE P802.11 Wireless LANs” Comment Resolution, March 2004. 
[11] M. Frikha, et al., “Enhancing 802.11e Standard in Congested Environments,” in Proc. of  IEEE AICT-ICIW’06, February 

2006. 
[12] J. Pérez-Romero, et al., “On Managing Radio Network Congestion In UTRA-FDD,” 
[13] Q. Ni, L. Romdhani, and T. Turletti, “A Survey of QoS Enhancements for IEEE 802.11 Wireless LAN,” Wiley Journal of 

Wireless Communication and Mobile Computing (JWCMC), John Wiley and Sons Ltd., 2004; Volume 4, Issue 5: 547-566. 
[14] A., Mihovska, et al., “Requirements and Algorithms for Cooperation of Heterogeneous Radio Access Networks,” accepted for 

publication in the Springer International Journal on Wireless Personal Communications (ID WIRE 391) 2008. 
[15] E., Mino, A., Mihovska, et al., D4.4, “Impact of Cooperation Schemes between RANs—A Final Study,” Deliverable 4.4 IST 

Project WINNER, November 2005. 
[16] A. Mihovska, et al., “Algorithms for QoS Management in Heterogeneous Environments,” Proc. of WPMC’06, San Diego, 

California, September 2006. 
[17] P., Karamolegkos, E., Tragos, A., Mihovska, et al., “A Methodology for User Requirements Definition in the Wireless 

World,” Proc. of IST Mobile Summit 2006, Mykonos, Greece, June 2006. 
[18] W. Webb, The Complete Wireless Communication Professional, Artech House 1999. 
[19] A., Mihovska, et al., “Assessment of Radio Resource Management Schemes for Efficient Cooperation of RANs,” Proc. of 

WPMC’05, Aalborg, Denmark, September 2005. 
 
 

 
 
 
 



 

 Page 104 (27) 

 
 
 
 
 
 

Chapter 5 
 

Policy-based Framework for Intra-System Cooperation 
 

This Chapter proposes a policy-based framework for intra-system cooperation. The 

proposed framework is based on the protocols and mechanisms proposed in Chapter 2 

and uses the advantages of the proposed there combined centralized and distributed 

approach to RRM (i.e., handover). Further, the framework uses the advantages of the 

data base located outside of the RAN and referred to as home subscriber server (HSS), 

and the one located partially in the GW (see Figure 2-1).  

The goal of the proposed framework is to find an optimal trade-off between the 

use of centralised and distributed RRM for support of mobility management inside the 

RAN. 

 In particular the policy-based framework has been proposed in support of the 

following mobility management functionalities:  

• RAT/BS association and selection for optimized handover control; 

• User context transfer during IP and radio handover; 

• Handover priority setting; 

• Flow establishment and QoS class setting. 

 

This Chapter is organised as follows. Section 5.1 defines the scenarios for policy-

based mobility management. The scenarios consider interactions of mobility functions 

and interactions of flow handling functions related to congestion control algorithms. 

These scenarios serve as a basis for the proposed policy-based RRM framework. 

Section 5.2 proposes the strategy for RAT/BS association in order to provide for 

optimised intra-system handover control. Two strategies are proposed, one based on 

individual differentiation of the RATs/BS, and another one based on group 

differentiation. It is shown that the individual approach can be beneficial for introducing 

self-management into the BS.  Section 5.3 proposes a strategy for user context transfer 

in two scenarios: during IP and during radio handover. The dependency of the delay and 
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totally transferred data is shown to depend on the polling times. Further, the strategy is 

based on a hybrid approach to user context transfer that involves a mandatory context 

transfer function which forwards only the buffered radio link control service data units 

(RLC SDUs) and an optional context transfer function which forwards also buffered 

RLC protocol data units (PDUs) in order to reduce handover delays. Section 5.4 

proposes a strategy to handover priority setting and flow establishment and control. 

Section 5.5 concludes the Chapter. 

5.1 Scenarios for Policy-Based Management 
To enable efficient signaling and management between network and UT, all profiles are 

captured in the home operator domain for all the registered UTs [1]-[6] . The RAN is 

responsible for enforcement of the policy determined by the core network. The policy 

management is distributed between the HSS and the GW [2]. Further, mobility in the 

RAN is supported by traffic and control signalling from the UT to the BS that the UT is 

connected to, and also by the BS to BS control signalling. To ensure flexibility of the 

architecture, logical functionalities of the physical entities can be grouped according to 

the situation [1].  

The scenario assumes that the interactions of the mobility management functions 

are as proposed in Figure 5-1. The interactions were derived from the required 

procedures identified for idle and active UTs in the scope of IMT-A candidate systems 

[1], [5]. Therefore, Figure 5-1 does not represent a complete view with all state-

transitions but is rather simplified. 

After power on, the UT is authenticated and authorized, a paging area update is 

performed (both interacting with the UT register function) and an UT micro mobility 

anchor is created. In idle mode only paging area updates and macro mobility functions 

are performed by the UT if the UT detects respective movements.  

Both, the network and the UT can trigger a state change from idle to active mode. 

In the network this is initiated by the UT anchor point function that triggers respective 

paging, in the UT this is done by direct cell selection and by performing the related 

admission control. In this case data is exchanged with the UT register function and the 

UTN micro mobility anchor. 

In active mode the handover function decides about handover from one BS to 

another. If the decision was taken two processes run in parallel. The network performs 

the necessary routing changes and context transfers while the UT associates with the 

new cell. Finally the routing over the radio interface is updated. 
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This description assumes a single link between a UT and a BS. The need to 

support multiple links for one UT to multiple BS is for further study and is partially 

investigated in relation to the proposed in Chapter 4  RAT/BS association strategies. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 Scenario of mobility management interactions. 

The procedure given here is based on the assumption that there is an UT active 

state where the network has detailed knowledge about the cell association and an UT 

idle state where only the rough location is known in order to enable power saving in the 

UT. The relation between the mobility functions is denoted by the text given at the 

arrows. 
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ingress point of the RAN and the scheduler. The right part shows the congestion 

avoidance control functions and the flow establishment and release function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 Flow handling interactions for congestion control 

New incoming packets are analysed and assigned to flows. If there is no existing 

flow, the flow establishment function invokes flow admission control to decide on 

acceptance of the new flow [1], [14], [15]. If positive, the new flow will be established 

and header compression and per-flow policy enforcement functions are configured. This 

and all following packets of this flow pass the header compression and policing 

functions. Directly before the packets are transferred to the MAC, the packet rate over 

the air is measured and the activity state of the flow is detected by the flow monitoring 

function. After a flow has become inactive, flow monitoring triggers the release of the 

flow.  

The load supervision gathers the flow specific load information of all monitoring 

functions and evaluates the load situation of the cell. After exceeding of thresholds 

(overload warning and overload indication), load balancing is invoked which decides on 

the countermeasures to resolve the overload situation. The requesting of handover of 
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flows to other cells or traffic reassignment to another BS as a means for QoS handling 

are assumed for the proposed policy-based RRM framework. If none of these exist, load 

has to be reduced, by changing the QoS policing parameters up to dropping all packets 

of a flow. 

A protocol reference architecture is proposed to comply with interactions defined 

by the two scenarios [14], [15]. This architecture is shown in Figure 5-3 a) for the user 

plane interactions, and b) for the control plane interactions. 

 

 

 

 

 

 

                         a)                                                             b) 

Figure 5-3 Protocol reference architecture for the proposed scenarios. 

In Figure 5-3 a) in the case of transfer of user data, the IP convergence layer 

(IPCL) adapts the higher-layers data flows (e.g., IP packets) to the transmission modes 

of the radio link control (RLC) layer, establishing the transfer data protocol with a peer 

IPCL entity, compressing the long IP headers and ciphering the IP payload. A user 

plane connection (i.e., an IPCL layer session) can generate several RLC layer flows 

using different QoS classes (see  

Figure 5-2). The IPCL layer protocol performs a two-fold function: it takes care of 

the transfer of user plane data between two IPCL layers in different nodes (e.g. in the 

UT and the GW) and of the IPCL services for handover [1], [2]. Transmission of user 

data means that the IPCL receives an IPCL SDU and forwards it to the RLC layer and 

vice versa. In this way TCP [7] /UDP /IP packets [8] are transmitted as IPCL PDU 

packets (composed of an IPCL header and an IPCL SDU). An RLC entity 

receives/delivers RLC SDUs from/to upper layer and sends/receives RLC PDUs to/from 

its peer RLC entity via lower layers. The problem arising from this architecture scenario 

is that because the RLC protocol terminates in the BS, the automatic repeat request 

(ARQ) mechanism normally employed to support TCP performance is not sufficient to 

support lossless mobility support [9], [10], [11], [12], [13].  

In the control plane [Figure 5-3 b)], there is a Non Access Stratum (NAS) protocol 

over the radio access protocols terminating at the GW. The NAS control protocol is 

important in reference to a number of functions related to radio access (e.g., paging) [1]. 
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The radio resource control (RRC) layer handles the controlling functions and signalling 

to one dedicated UT (in RRC active mode), paging of idle UTs and broadcasting of 

system information. Most of the RRM functions proposed in Chapter 2 are performed 

based on the RRC messages. 

5.2  Policy for Handover Control during RAT/BS Association  
The objective of the proposed policy is to provide for handover control during RAT 

association in an indoor scenario. It is based on the defined mobility scenario 

interactions in Figure 5-1. A hierarchical control structure was proposed in Chapter 3 in 

compliance with the requirements identified for next generation systems, which 

assumes that BSWA would overlap the coverage of the BSLA. This means that UTs on 

the border of the coverage of the BSLA would also connect to the BSWA and maintain 

simultaneous links. This leads to unnecessary resource use. The proposed here strategy 

differentiates UTs during their initial association according to the probability of 

performing a handover to the BSWA and connects those UTs directly to the BSWA. The 

scenario is shown in Figure 5-4. 

 

 

 

 

 

 

 

 
 
 
 

Figure 5-4 Coverage area of BSLA including border BSLA. 

In the assumed scenario, several exits are available and the BSs are spread almost 

uniformly inside the building. Figure 5-4 shows the BSs, from which the UTs may 

potentially lose their LA coverage as dark circles. These BSs are referred to as border 

BSs. 

In order to differentiate the BSsLA, several metrics can be used. Here the following 

assumptions are made:  

• A central entity is in charge of the handover; 

• The handover area is handled by the strategies discussed earlier and the 

handover procedure itself is already defined. 
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The applied metrics are group differentiation and individual differentiation. 

5.2.1 Group Differentiation 
 
In this case, for each BSLAi, i = 1,.., N, the  probability Pi  is defined as the probability 

that UTs, associated to the BSLAi would perform a handover from the LA to the WA 

domain. Pi is updated each time a handover is completed. The sum of the probability 

over all the BSs is equal to 1 or   

                                                                                                (5-1) 

 
 Let k be the kth handover from a BSLA to a BSWA. Then for each BSi the 

probability for performing a handover, is defined as:  

 

         for ,                                                     (5-2); 

where 
 

  

 
 

Here, two policies are introduced for the initialization of the error probability. The 

first policy intializes all probabilities, for k = 1, to the same value: 

                                                                                                           (5-3) 

 

If the central entity that is in charge of the handover (i.e., RRM server) is aware of 

the LA network topology and the locations of the BS, the probabilities for k = 1 may be 

initialized based on this information. For example, let Ω denote the set of border BSsLA. 

In Figure 5-4, the cardinal of the set Ω is equal to 5. In this case, a relevant initialization 

is as given by Equation 5-4: 

   with                                                                          (5-4) 
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Convergence to stable probabilities is quite rapid for both types of initialization. 

Sometimes, it may be useful to reinitialize the probabilities during the process, after p 

handovers. The value of p may be configurable.  

Finally, each Q handovers or each T seconds (or minutes), the state of each access 

point is updated according to:  

• If  , then BSi is declared as border BS; 

• Otherwise, BSi is set to non-border BS; where γ is a threshold, typically of 

10-3.   
 

Each UT associated to a border BS is required by the RRM server entity to set up 

two active links, on the LA and the WA networks, respectively. This means that each 

UT, associated to a border BS, has to be authenticated and registered on both networks. 

On the other hand, if an UT is attached to a non border BS, then it may release its WA 

link, as it will probably not be handed over to the WA domain. The BS states and 

associated probabilities are stored in a database at the RRM server entity. Consequently, 

the activation or not of the WA link may be ordered by the RRM server, as soon as a 

change in the BS states is detected, instead of considering a periodic update.  

If a BSsLA is added, removed or even moved in the LA domain, after a few 

iterations its probability will rapidly converge to a stable state, which will reflect its new 

location. Such dynamic update is a kind of self-organization of the BSsLA. Moreover, 

the database containing the probability associated to each BS may be used to monitor 

the LA network. After a few iterations, if the network is stable (e.g., BSs are not moved 

or removed), it is possible to draw a map with the BSs location and check if this map is 

coherent or not. High probabilities may be used to detect abnormal handovers due for 

example to a malfunctioning of a BS.  

5.2.2 Individual Differentiation 
 

In the group differentiation metrics, the sum of probability over all the BSs is equal to 

1. The applied condition for executing the policy, rated the distance of each BSLA to the 

WA domain, in relation to each other. In other words, when a handover towards BSWA 

occurs for one specific BS, it affects the probability related to all other BSLA. 

An alternative is to define an absolute probability associated to every BSLA, 

characterizing the probability that users associated to it will require a handover to the 

BSWA. For a given BSi, four types of events can occur: 

• Incoming session initiated within the  BSLA coverage; 
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• Incoming session resulting from a handover (session already existing outside 

the BSLA coverage). The latter could be subdivided into: (i) intra LA; (ii) 

handover from WA. The number of these events is denoted as Ai; 

• Terminating session within BSLA coverage; 

• Terminating session due to handover. Here, again, two events can be 

distinguished: (i) intra LA handover and (ii) handover to WA. The occurrences 

of these events are denoted as Bi. 
 

From the above, Equation 5-5 defines the absolute probability for the occurrence 

of a handover as: 

,                                                                                                               (5-5); 

where Ei denotes the total number of events, as defined above, for the BSi. Pi then 

characterizes the “distance” of BSLAi to the BSWA.  

Without any a priori information about the BSs location, the initial probability 

could be set as 0.5 (no specific preference). This probability is then used to determine 

whether or not the terminal should keep/initiate its WA session alive, when associating 

with a specific BS. 

 Other metrics to differentiate the BSs are possible. The idea is to use any 

suitable metrics to differentiate the BSs in order to reflect that handover to/from a BSWA 

does not occur with the same probability for the different BSsLA. Such method is 

suitable for a system without strong central control and O&M interworking [5] . The 

heuristic probability updates provide awareness of the handover tendencies, thus 

realising a self-learning RAT association mechanism.   

5.2.3 Advanced Function for Handover Optimisation 
 

It is further proposed to implement a similar method in the RRMserver entity as an 

advanced function for the handover process. The method would optimise the trigger for 

the handover (see Figure 2-7). The proposed method, based on a “relative” location of 

the BSLA to the BSWA, can limit the useless handover preparations and conversely 

anticipate handover when it is most likely required.  

The following shows the effect of a network performance trigger that combines the 

measured SINR and the network load. The metric used to activate the trigger is the 

residual throughput and is defined as:  

Data Rate * (1 – PER) * (1 – Channel Occupation)                                           (5-6) 
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 The word “residual” means in this context, that if a part of network resource is 

already occupied by other users, then the handover decision is only based on the 

remaining available for this UT bandwidth. The handover trigger is based on a 

comparison between the estimation of the residual throughput on the current cell (i.e., 

current_residual_throughput) with the one that could be achieved on another cell (i.e., 

target_residual_throughput).  

If the ratio between target_residual_throughput and current_residual_throughput 

is bigger than the following pre-defined threshold: 

 

target_residual_throughput/current_residual_throughput  > throughput_threshold 

 

then the handover is triggered. 

To derive the Data Rate, the Channel Occupation and the PER, the UT performs 

measurements in the used cells and on broadcast messages sent by the BSs of 

neighbouring cells (see Chapter 2). To show the effect of this trigger, the above scenario 

is modified to involve three UTs; UT1 and UT2 are initially in the coverage overlap 

area of the BSWA and later move towards the center of the area covered by the BSLA; 

UT3 is always located inside the building (coverage of BSLA). Figure 5-5 shows the 

triggering of the handover based on the measured by UT2 throughput on the physical 

link and without setting a threshold (i.e., threshold → ∞). 

 

Figure 5-5 Handover triggered by measured throughput 

 
The UT initially connected to the BSWA, continues to use it until 190s, and then 

switches to the BSLA.  Figure 5-5 shows how the throughput estimate in the WA reduces 

as the UT moves away from the BSWA. At 180s the UT enters the coverage of the BSLA 

and starts to estimate the throughput on that mode. The LA throughput increases as the 
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UT approaches the BSLA and at 190s it outcomes the WA throughput and thus the 

handover from WA mode to LA mode is performed. 

Figure 5-6 shows the results for a threshold based on the measured network load 

(i.e., bandwidth occupation) as the advanced metric to trigger handover.  

 
Figure 5-6 Effect of bandwidth occupation as a trigger of handover. 

 The bandwidth occupation on the WA decreases when the UTs handover to the 

LA mode (i.e., the UT3 performs handover at 135s while the UT2 at 190s). It is obvious 

that such an approach in fact balances the network load.  

It can be concluded that use of network load as a trigger is better from network 

capacity optimization point of view, whereas, the throughput measure is more efficient 

for the individual UT differentiation. 

Combined use of triggers and policy strategies can enhance the handover process, 

while keeping the process transparent to the user. The above strategy can also be 

applied in the context of inter-system handover between a WA system and a short-range 

system when the additional delays can be expected from the processes of registration, 

authentication, authorization and so forth. For the inter-mode scenario security and 

registration procedure may be less stringent as one can imagine that a single operator 

controls the various types of deployment. However, a scenario when several operators 

are active in the LA deployment, the security procedures must be applied. 

5.3 Network-Controlled Flow Control for User Context Transfer 
  

In a flat architecture [4], [5], an intra-system handover (between BSs) of a UT takes 

place by switching a tunnel in an anchor point in an anchor node (i.e., GW). The context 

of a UT for the architecture shown in Figure 2-1 is established mostly in the GW after 
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successful initial access [4]. It is conceptually separated from the flow contexts of this 

UT in order to enable individual routing of these flows through different cells [2]. The 

user context might be kept centrally in the RAN or moved from BS to BS in the case of 

a handover. The user context contains all information related to a UT in the system: 

user-id; flows associated to the user; physical context information, (e.g., location, 

direction of movement, speed).  

5.3.1 Radio and IP Handover  
 

The context of a flow is established and released by the flow establishment/release function (see  

Figure 5-2). If a flow should be moved from one BS to another, the context of the flow 

has to be transferred to the new BS. This might happen in the case of radio handover 

due to a changed radio link condition or if multiple radio links are available to the UT 

(overlay cells) due to the shift of load between the cells. 

The transfer could happen within a one domain (micro-mobility) or between two 

domains (macro-mobility). In the case of macro-mobility, IP handover is required. 

Chapter 3 introduced the concept of pool of GWs (see Figure 3-8 and Figure 3-9) made 

possible by the proposed cooperative RRM framework. This concept minimizes the 

need for an IP handover (i.e., macro-mobility). Therefore, the GW association will be 

preserved even when a UT performs a handover to a BS that is controlled by a different 

GW. In that case, a change of the IP address is not necessary. To preserve the scalability 

of the GWs, a shift in the user context is necessary from the highly loaded GWs to the 

less loaded GWs. This is performed by the load balancing algorithm, (introduced in 

Chapter 4 and further enhanced in Chapter 6). In that case two handovers will be 

performed; an IP and a radio handover (i.e. hybrid handover). The required minimum 

signaling during hybrid handover is shown in Figure 5-7. 

The IP handover will be performed when the user changes GWs and this would 

result in a change of the IP address. Radio handover also is performed when the user 

changes the BS to which the UT is connected and a new connection to a BS that is 

controlled by the other GW is established. 
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Figure 5-7 Required signaling during hybrid handover. 

The context transfer of control information is needed to make the handover 

decisions, and to avoid re-establishment and re-authentication of connections. 

The context transfer of user plane information is needed because there is no flow 

control similar to the functionality of the Iub interface in UTRAN [16]-[18] envisioned 

for the RAN of IMT-A candidate systems [4], [5] where fast connections must be 

maintained throughout the system, which results in large amount of data being buffered 

at the BS. RLC SDU context transfer was proposed for the LTE system [19], [20]. 

It is proposed here based on the protocol reference architecture in Figure 5-3 that 

user context transfer during radio handover is performed by forwarding of user data in 

the following two ways: 

• Forwarding of buffered RLC SDUs as a required function; 

• Forwarding of buffered RLC PDUs as an additional function in order to 

decrease delays due to retransmissions that have occurred during handover. 
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The forwarding process is further assisted by a proposed policy-based flow control 

mechanism that serves to avoid overflows of buffered data at the BS and GW. 

5.3.2 Message Exchange for Policy-Based Flow Control 
 

Due to the capacity difference between the GW and BS, overflow of user plane data at 

the BS might happen for a single UT or a group of UTs. It is proposed here that if the 

BS detects that the buffered data of a particular flow is rapidly increasing and 

approaching the buffer limit, it would issue an explicit signal to the GW to suspend the 

forwarding to the BS, in addition to preventive buffer management policies such as 

random early dropping (RED) [21], [22]. This explicit signalling conveys two fields, 

one is necessarily the identifier of the IPCL data flow of the UT (see Figure 5-3) that is 

approaching the buffering limit, and the other is a command that requests the GW to 

suspend or to resume the data forwarding to the BS. Such a command is identified by 

the IPCL layer in the GW, so it would temporarily hold its PDUs in the buffer, instead 

of forwarding them immediately to the RLC in the BS after the processing of SDUs. If 

later the congestion state for the flow at the BS is alleviated, the BS could again send a 

recovery message that informs the GW to increase the forwarding rate. 

A possible solution is to use GW-BS flow control signalling. The GW-BS flow 

control signalling during handover is implemented with the XON/XOFF flow control 

[23]. This proposed implementation is shown in Figure 5-8.  

It is assumed that at the start of the handover at least one downlink (DL) packet 

flow is in process prior to the handover, and that the QoS requirements of the UT for 

on-going packet flows are known at the GW. 

During the handover preparation, the sequence number of the last packet in each 

QoS flow assumed to be successfully transmitted to the UT is also sent to the source 

BS. The BS-GW signalling is utilized to help maintain the in-sequence delivery of IPCL 

PDUs from the GW to the BS. The source BS also has to notify the GW about the 

switching of the data forwarding path after the handover to the target BS is completed. 

Before the notification of the path switching, the GW would still forward the IPCL 

PDUs to the source BS, which then needs to be tunnelled by the source BS to the target 

BS. If the forwarding of the data is not finished before the path switching, new IPCL 

PDUs from the GW might arrive at the target BS before some of the previous IPCL 

PDUs from the source BS. The RLC layer on the target BS cannot recover the original 
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order of the IPCL PDUs, unless it could probe into the IPCL header to obtain the 

sequence number information, which violates the layering paradigm. 

 

 
 

Figure 5-8 GW-BS Flow Control Signalling during Handover. 

The source BS could request the GW to stop forwarding further IPCL data to it, to 

avoid unnecessary tunnelling of the PDUs to the target BS. In addition, the source BS 

should notify the GW about the path switching after it has forwarded all the buffered 

RLC SDUs/PDUs to the target BS. As a result, the forwarded data from the source BS 

always comes earlier than further IPCL data from the GW to the target BS, so that in-

sequence delivery could be preserved. In the whole handover process, the network 

policy classifies users that allow higher QoS tolerance, and, therefore, may support the 

flow control. 

In the proposed here XON/XOFF flow control mechanism the receiver 

distinguishes only two different states: ‘ready’ and ‘not ready’ to accept data. 

XON/XOFF represents the command to suspend/resume data forwarding from the GW 
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to the BS. The transmitter, upon acquiring a ‘ready’ signal, transmits data at an arbitrary 

rate until it acquires a ‘not-ready’ signal. 

After that the transmitter does not transmit any data packets until a ‘ready’ signal 

is again acquired. 

The delays associated with the proposed signaling is shown in Figure4-9. 

 

 

 

 

 

 

 

 

 

Figure 5-9 Delays associated with user context transfer signaling. 

 
Another possibility is to transmit user data in another type of frame than the 

frames required for executing flow control. This means that flow control can be based 

on out-of-band signalling (similar to the use in HDLC protocols). The receiver then will 

issue ‘receive-not-ready’ frame when all its buffers are full. As soon as it can accept 

new data, the receiver sends a ‘receive-ready’ frame. This frame contains also the 

sequence number of the next expected data frame.  A high-level goal should be to 

minimize the amount of out-of-band signalling and should preferably be restricted to 

information that is beneficial for the receiver to know before decoding the received 

packet. 

Instead of having a simple flag to stop/resume the GW-BS data forwarding, the BS 

could also advertise a receiving window size to the GW, so that the IPCL layer on the 

GW would only forward as much data as allowed by the receiving window of the BS. 

Such an advertisement of receiving window by the BS to the GW could be updated 

periodically or be event driven, (e.g., in case of handover or other situations that 

suddenly decrease the air interface data rate for a particular UT). 

The flow control procedure can be further enhanced by introducing flow control 

policies based on the QoS requirements of each flow that is buffered at the GW prior to 

handover. Flows can be distinguished as time-critical (i.e., for real-time applications of 

the conversational or streaming classes) or non-time critical (i.e., associated to a 
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background or interactive service class, e.g., download of a file, email). Further, flows 

can be critical, which means that such a flow would require secure delivery (i.e., a low 

drop probability and relatively slow context transfer would be expected). For each flow 

a specific buffering policy would be executed at the GW. 

This topic is envisioned for further work. 

5.3.3 Policy-Based Forwarding of RLC SDU and RLC PDU 
 

This Section  investigates the effect of RLC context transfer of RLC PDUs, in addition 

to RLC SDUs, for reducing the delays due to handover. Further, it proposes strategies 

for the two types of proposed forwarding that comply with the specifics of the proposed 

RRM architecture. 

5.3.3.1 Policy for RLC SDU Context Transfer 

 

During RLC SDU context transfer, all data stored in the SDU buffer of BScurr is 

transferred to the SDU buffer of the BStarg. No particular processing of the SDUs is 

required. The SDUs are embedded in context datagrams and then are transferred to the 

BStarg. This process is shown in Figure 5-10. 

The following policy is proposed for forwarding of outstanding data in the buffers 

of the old BS. 

In the DL:  

• Before handover, the RLC receiver, in the UT, transmits a status message to 

the source BS. 

• During handover, the RLC sender, in the source BS, forwards all buffered 

RLC SDUs to the target BS. 

• After handover, the target BS transmits all RLC SDUs that were forwarded 

from the source BS to the UT. 
 

In the uplink (UL):  

• Before handover, the RLC receiver in the source BS forwards all 

successfully received RLC SDUs to IPCL in the GW.   

• After handover, the UT transmits RLC SDUs. 
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Figure 5-10  Forwarding of RLC SDUs. 

 

In order to avoid inconsistent states between sender and receiver before handover, 

it is proposed here that in the DL, the RLC receiver in the UT is instructed from higher 

layers to transmit a status message to the source BS before handover. If the status 

message is successfully received, some RLC SDUs may get acknowledged and less 

RLC SDUs may need to be forwarded. If the status message is lost, RLC SDUs that 

have already been successfully received may unnecessarily be forwarded and 

retransmitted. The status message can be formulated as shown in Figure 5-11. 

 

 

 

 

 

 

 

 

 

Figure 5-11 Structure of a status message. 

Data forwarding, such as context transfer of RLC SDUs, increases performance 

significantly [24]-[26]. The gain from data forwarding is higher when a lot of data is 

buffered at the BS. Bandwidth, error rate and round trip time have an impact on the pipe 

capacity. If the pipe capacity increases, then more data is buffered in the source BS and, 

hence, more data are lost if buffers are discarded instead of forwarded during handover 

[26]. 

The extra delay caused by the unnecessary retransmission of RLC SDUs may have 

a negative impact on the performance of higher layer protocols. New data is delayed, if 
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the buffered RLC SDUs are retransmitted first. Therefore, it is proposed that RLC 

PDUs are also forwarded in some cases.  
 

5.3.3.2Policy for RLC SDU and RLC PDU context transfer 

 

When both RLC SDUs and RLC PDUs are forwarded, the RLC SDUs are divided in 

smaller sizes of RLC PDUs. This is shown in Figure 5-12. 

 

 

 

 

 

 

 

Figure 5-12 RLC SDU division in RLC PDUs. 

 

With RLC PDU context transfer, if RLC SDUs are divided into many RLC PDUs 

of smaller size and only a few of the RLC PDUs that belong to one and the same RLC 

SDU are lost, then it is not necessary to retransmit the whole RLC SDU (as it is if only 

context transfer of RLC SDUs is performed). 

The following policy is proposed for the forwarding of RLC PDUs. 

In DL:  

• Before handover, the RLC receiver in the UT transmits a status message to 

the source BS. 

• During handover, the RLC sender in the source BS forwards buffered RLC 

SDUs and RLC PDUs in the transmission queue to the target BS. Also the RLC 

state is transferred.  

• After handover, the UT transmits a status message to the target BS, and the 

forwarded RLC PDUs that have not yet successfully received by the UT are 

transmitted. 

 

In UL: 

• Before handover, the RLC receiver in the source BS transmits all 

successfully received RLC SDUs to IPCL in the GW and any remaining RLC 

PDUs to the target BS. Also RLC state is transferred.  
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• After handover, the target BS transmits a status message to the UT. The UT 

continues to transmit RLC SDUs and unacknowledged RLC PDUs. 
 

Just as for RLC SDU context transfer, inconsistent states should be avoided if 

possible. Therefore, it is proposed that, in the DL, the RLC receiver in the UT is 

instructed from higher layers to transmit a status message to the source BS before 

handover. 

In the UL, this seems less important, since the RLC sender remains in the same 

node, the UT, after handover. It is further proposed that higher layers instruct the RLC 

receivers to transmit a status message after handover. If the sender fails to get status 

before handover, unnecessary retransmission could be avoided with a status message 

after handover. 

5.3.3.3 Efficiency of the Proposed Policies 

 

RLC PDU context transfer may also be efficient even if there is a one-to-one mapping 

between RLC SDUs and RLC PDUs.  The benefit is explained as follows. 

If assumed that the receiver has successfully received a number of RLC PDUs 

before handover, but the sender has not received any status information, which could 

occur if a poll request or status message is lost, or if the poll interval is long. If only 

RLC SDU context transfer is applied, then the received but unacknowledged RLC 

SDUs need to be retransmitted after handover even though it is unnecessary, since they 

were successfully received already before handover. With RLC PDU context transfer, 

on the other hand, the sender could poll the receiver after handover and get status 

information about the successfully received data. Thus, unnecessary retransmissions 

could be avoided. 

5.3.3.3.1 Polling Requests and Status Messages 
 

One of the more important questions regarding the efficiency of RLC is how often poll 

requests and status messages should be exchanged. Too frequent transmissions waste 

radio resources, increase power usage, and may even trigger unnecessary 

retransmissions [27]. Too infrequent transmissions may instead stall the RLC 

transmission window, which may result in under utilisation of the radio link. In 3GPP 

RLC [20], a multitude of options for polling are specified, some of which are one-shot 

(when some condition becomes true, e.g., last PDU in buffer) and others which are 

recurrent (expiry of poll timer and periodic polling). Incorrect configuration may cause 
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deadlock. Recurrent polling is required to avoid deadlock [28]. In order to avoid too 

frequent transmissions, a poll prohibit timer and a status report prohibit timer can be 

used. A poll prohibit timer sets the limit for the minimum interval that is allowed 

between two poll requests, and a status report prohibit timer between two status reports. 

Here a polling with a poll timer is proposed. Then the amount of outstanding data 

that is buffered in the source BS at handover depends on the available bandwidth, the 

delay and the setting of the poll timer,  where b is the available bandwidth, 

d is the one way delay over the radio link, and  is the timeout value of the poll timer. 

The amount of outstanding data is the product between the bandwidth and the time 

required to transmit the data, which is the timeout value, , and the time it takes to 

transmit a poll request and to get a status message back, . Data are assumed to be 

transmitted also while the poll request and status report are exchanged. When the RLC 

sender receives the status report, it determines if retransmissions are needed or if new 

data can be transmitted. 

In the following, it is assumed that all data transmitted before the poll timer 

expires, are successfully received before handover, but that the status message has not 

reached the sender. This is not expected to occur often, but when it does occur, then the 

delay may be reduced if RLC PDU context transfer is used. Furthermore, it is assumed 

that there are always enough data available to fully utilise the radio link, and that the 

RLC transmission window is large enough not to get stalled. If only RLC SDU context 

transfer is applied, then the RLC state is reset due to handover and all forwarded RLC 

SDUs will be transmitted again to the UT, even though they were successfully received 

before handover. The time required to retransmit all outstanding data on the new path 

may be longer or shorter than the time to transmit the data over the old path, depending 

on the delay on the new path. In case of a BSi-BSjRN handover, for example, the delay 

would be longer on the new path, and in case of a BSiRN-BSj it would be shorter. 

  If the delay is the same as before, then it will take T + d + d to retransmit the data 

and to exchange poll request and a status message. Thus, it takes T + d + d before the 

RLC sender receives the status message about a successful transmission and can start to 

transmit new data. The delay may be reduced and unnecessary retransmission may be 

avoided, if RLC PDU context transfer is used and a status message is transmitted 

immediately after handover is completed. If the status message reaches the RLC sender, 

no retransmission is needed, since all outstanding data were successfully received 

already before handover. With RLC PDU context transfer, the RLC sender will receive 
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the status message about successful transmission after d instead, which is a shorter delay 

than with RLC SDU context transfer. 

Figure 5-13 and Figure 5-14 show the outstanding data before handover as a 

function of the poll timer for different values of the bandwidth and the delay. Larger 

delays are handled better with more bandwidth. A delay of 5 ms is typical for a direct 

communication between a UT and a BS. A delay of 20 ms can be expected when there 

are RNs on the communication path. With a poll timer set to 100 ms, b = 10 Mbps, and 

d = 20 ms, the outstanding data is 700 kbits. 
 

 
Figure 5-13 Outstanding data before handover for b= 5 Mbps and different delays. 

 

 
Figure 5-14 Outstanding data before handover for b= 10 Mbps and different delays. 
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Figure 5-15 shows the time before new data can be transmitted after handover. 

With only RLC SDU context transfer, transfer of new data could start only after 140 ms, 

after the forwarded but already received data are retransmitted to the UT (provided that 

the new path has the same characteristics). With RLC PDU context transfer, and 

assuming that a status message is transmitted immediately after handover, transfer of 

new data can instead starts already after 20 ms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5-15 Time before new data can be transmitted after handover 

Therefore, it is beneficial to employ RLC PDU context transfer for large amounts 

of data to be transferred. If only RLC SDU context transfer is applied, then the extra 

delay caused by the unnecessary retransmission of RLC SDUs may have a negative 

impact on the performance of higher layer protocols. New data is delayed, if the 

buffered RLC SDUs are retransmitted first. Depending on the relation between the 

delay and the TCP retransmission timer, this may lead to TCP retransmission timeout 

and that data will be unnecessarily retransmitted also by TCP. 

For low amounts of buffered data RLC SDU context transfer would be sufficient. 

5.3.3.3.2 In Sequence Delivery and Duplicate Detection 
 

An important function for the IPCL is to provide in-sequence delivery of upper layer 

PDUs. In the DL, data may arrive out-of-order to the target BS, if the data transmitted 

directly from the GW to the target BS arrives before the data that are forwarded from 

the source to the target BS during handover. In the UL, the GW may receive data out-

of-order, if there are gaps in the data transmitted from the source BS before handover 

and retransmissions of the missing data arrive from the target BS after handover [24]. 
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Solutions to reorder out-of-order data are considered in newer versions of the LTE 

specifications [20]. 

In the context of the proposed RRM framework, performance degradation due to 

in order delivery would not be very severe because IPCL terminates in the GW and UT 

(see Figure 5-3). Out-of-order data, however, should be avoided whenever possible, 

because out-of-order data increases delay on higher protocol layers. 

In [24] a separate service class for forwarded data is proposed. To reduce delay of 

forwarded data, the scheduler in the target BS is proposed to give priority to forwarded 

data. In [26] forwarded data is proposed to be prioritized over data from the GW in the 

target BS for transmission to the UT (which will only work if the buffer of forwarded 

data is not emptied before all forwarded data have been received). Here, it is proposed 

that forwarded data are prioritized, in order to avoid out-of-order data. 

In the UL, the IPCL in the GW should remove duplicates before data are delivered 

to higher layers.  

In the DL, there are two alternatives:  

1. RLC in the target BS uses the IPCL sequence number to detect duplicated 

IPCL PDUs. 

2. The IPCL in the UT detects and removes duplicated IPCL PDUs. 

 

On one side, if alternative 1 is used and the RLC in the BS performs duplicate 

detection, then RLC has to look into the IPCL sequence numbers, which violates the 

protocol layering. On the other hand, if alternative 2 is used and IPCL in the UT 

performs duplicate detection, then the layering is preserved, but duplicates are 

transmitted all the way over the air to the UT. If there is enough capacity between the 

BS and the UT, then the UT could detect and remove duplicates and violation of 

protocol layering could be avoided. Duplicates are not expected to occur often. 

Therefore, it is recommended that IPCL in the UT performs duplicate detection. In 

environments, in which duplicates occur frequently, RLC in the BS could perform 

duplicate detection as a value added function. 

5.4  Handover Priority Setting 
 

According to the service profile the user registered, direction of handover can be 

controlled by the policy. Let user A and B be both subscribers. A subscribes to lower 

class; on the contrary B is rather a premium user. In that case, ranking of the handover 

candidate cell list can be differently ordered, e.g. user A has rank: LA cell x   LA cell 
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y  WA cell z; however user B is allowed to set handover list with ranking WA cell z 

 LA cell x –LA cell y. Context of A has also higher priorities than B to be transferred 

between neighbouring cells. 

 The handover priority setting helps the QoS guarantee for super class users. In 

this context a flow admission control function is proposed. This is a function, which 

grants or rejects requests based on the network resource availability and their priority. In 

broad terms, flow admission control limits the access to some resource such that the 

load on that resource remains limited. The actions of a flow admission control are 

shown in Figure 5-16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16 Flow admission control function 

 
Further, a handover priority policy can be used in the case when there are several 

downlink connections (corresponding to the connections from BS to many UTs or to the 

connections of different services). In this case, the downlink TCP connection, which is 

about to perform handover process is given the highest priority. This connection is 

given highest priority by different known techniques depending on the systems, such as 

by allocating higher bandwidth, higher downlink bursts, or higher number of downlink 

subcarriers in OFDM(A) systems [5]. The technique in a way ‘labels’ the link layer 

segments to indicate their priority. This scheme can also be implemented to the uplink 

connection. The labels are based on the BS ID. 

The required message exchange is shown in Figure 5-17. 
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Figure 5-17 Message exchange for handover priority policy. 

The purpose of this approach is to empty the buffers at the BS as soon as possible. 

Therefore, when handover happens, there will be no / small number of downlink TCP 

packets left in the BS buffer, hence reducing the number of TCP packet losses due to 

handover. This approach is suitable for multi-hop communication systems because it 

makes the sender aware that some of the occurred delays are not caused by congestions 

but by several hops on the transmission path. 

This scheme is an event-driven based scheme, which means that the prioritization 

can be initiated (e.g. based on the signal strength value from the BS received by the 

corresponding UT). 

5.5 Conclusions 
Next generation systems offer new possibilities for advanced radio resource 

management. The flat architecture proposed for the RAN for IMT-Advanced candidate 

systems has been exploited to advance further the proposed concept of intra-system 

interworking between RRM components and the location of these functionalities. In 

particular, intra-system interworking can benefit from a combined centralized and 

distributed approach. The properties of a hybrid approach to intra-system RRM were 

used to propose strategies for the support of mobility management interactions (e.g., 

RAT/BS association) and as a means to improve the handover efficiency, for the 
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support of flow establishment and release as a means to improve the efficiency of user 

context transfer during intra-system handover. It was proposed that user context transfer 

is based on a mandatory and an additional functionalities and it was shown that it is 

useful to employ the additional functionality for selected cases which involve larger 

delays on the one-hop link. Future work envisions the enhancement of the proposed 

strategy to activate the additional functionality to flows based on their QoS 

characteristics. Finally, it was shown that for multi-hop communications, a labeling of 

the link layer transmissions by the proposed handover priority policy can prove 

beneficial to TCP performance for the case when several simultaneous downlinks exist. 

This approach is in line with the proposed physical layer characteristics (e.g., OFDMA) 

for IMT-A candidate systems.  
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Chapter 6 
  

 

Multi-Stage Admission Control 
 
This Chapter proposes and evaluates a novel multi-stage distributed admission control 

algorithm based on the proposed in Chapter 2-Chapter 5 intra-system cooperative RRM 

framework. In particular, the interworking between RRM functionalities for congestion, 

admission and load control located at the RN, BS, GW, and the RRMServer are 

exploited. The proposed multi-stage admission control mechanism is also suitable for a 

multi-hop communication system.  

The proposed algorithm uses the concept of hybrid RRM to provide for load 

balancing and faster response time to admission requests of users in a next generation 

system. In a scenario, where a high throughput demanding session/call is subject to be 

admitted, it would not be sufficient only to check the load or capacity within the RAN, 

since the backhauling or the core network might be the bottleneck. Backhaul lack of 

resources has been considered in [1], [2] for the cell selection process. There, it was 

claimed that resource limitations in the transport network may result in blocking of new 

sessions and/or service degradation in terms of delay and packet error rate during an 

overload. The hybrid RRM approach proposed earlier allows that the multi-stage 

admission control takes into account the available in the backbone resources together 

with the available in the RAN resources for a decision based on the measured load.   

 The proposed admission control mechanism is load-dependent and it uses 

decision polling based on the load in entities located at different levels of the RAN 

architecture hierarchy. Thus it is based on information sharing at different levels of the 

RAN architecture. Load sharing is an important technique that improves distributed 

system performance by letting a group of entities in a system share their performance 

[3]. By load sharing, a better utilization of resources at all the entities of the RAN, and 

consequently, a high system throughput or short response time of user requests can be 

achieved. Most of the load-sharing algorithms are designed for tightly coupled 

distributed systems [4]. 
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 Load sharing has been exploited in single layers [5] and between mobile systems 

for reducing the number of unnecessary handovers for already connected users. 

Traditionally, load sharing algorithms are based on the token-passing paradigm.  

 Here, it is proposed that the load information is shared by passing a token 

between the RNs, BS and the GW (see Figure 2-1), thereby, considering the load status 

at cell and system level.  A token is assigned to the entity with the highest load, this 

entity becomes the token holder who would be the one to respond upon an admission 

request. Each admission request to a token holder will issue a flag that reflects the load 

level in this entity, which in turn would activate a sequence of admission control actions 

related to the admission of a user to the network, i.e., the ranking of the intermediate 

decisions is dynamic.  

The proposed mechanism aims at distributing as much as possible the radio load 

among the serving entities so that users can be more uniformly distributed in the 

network and served at an acceptable QoS. 

This Chapter is organised as follows. Section 6.1 describes the scenarios for the 

multi-stage admission control. Section 6.2 gives the mathematical framework for the 

proposed mechanism. The proposed multi-stage admission control is implemented and 

evaluated in terms of faster response to user admission requests and gain from load 

balancing. The assessment is given in Section 6.4.  Section 6.5 concludes the Chapter. 

6.1  Scenarios for Multi-Stage Admission Control 
 

The scenario for multi-stage admission control is shown in Figure 6-1. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Token setting entities for multi-stage admission control. 

It assumes two types of token setting entities: 
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1. Token setters for situations of low loads based on the distributed RRM 

framework (indicated by firm lines). In this case the decision framework 

includes the GW, BS, and RN. 

2. Token setters for situations of medium to high load based on the centralized 

RRM framework (indicated by dotted lines). In this case the decisions are 

taken by the CoopRRM and RRM Server.  

 

The proposed multi-stage admission control framework has the advantage of 

preserving the individual behaviour of the entities but exploiting the benefits for 

information sharing for ensuring load balancing through interworking between these 

entities. 

6.1.1 Token Setting for Sequential Flag for Single-Hop 
When token setting is applied in a single-hop scenario, the admission control function is 

distributed among the BS and the GW. The BS takes care of the radio part during 

admission control, while the GW takes care of congestion avoidance within the core 

network or other sub-networks.  

If assumed that the decision made by the BS is D1, and the decision performed 

by the GW is D2, then a user N will be rejected when Di = 0 and accepted when Di = 1, 

with i = 1 or 2.  The final decision for the incoming call will be a Boolean operation: 

 

Dfinal = D1 AND D2                                                                           (6-1) 

 
Admission control is not immediately performed if a ‘green flag’ is received; 

instead this case will require further checking of the most instantaneous situation. In the 

case of a ‘red flag’, a rejection command is immediately issued without checking the 

available capacity or bearer. A ‘yellow flag’ will be sent when a shared resource can be 

repartitioned. This mechanism is shown in Figure 6-1 for a sent ‘red flag’. In this case, 

the GW holds the token, and after identifying that no resource is available in the 

backbone it sends a ‘red flag’ to the BS, to which an admission request is made, and it 

in its turn issues the rejection command. 

Along with the rejection command, the GW may provide other candidate BSs 

information of the BSs pool interconnecting to the GW. In this way a three-fold benefit 

can be achieved: load balancing among the BSs, a higher user satisfaction, since the 

rejection will be a ‘soft’ command, and a relaxation of the load on the IBB interface. 
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The distributed AC functions can be ranked according to different criteria. The 

token will determine the sequence of the AC depending on the criteria upon which the 

tokens have been set. One criterion is the system load. For the scenario in Figure 6-1 the 

current load of the RAN is low, and the BS has relatively high capacity. At the same 

time, the GW identifies a higher probability in congestion in the backbone or a 

limitation from other sub-networks, which the expected traffic has to go through. In that 

case, the GW holds the token to perform the congestion prediction first before the radio 

admission control is performed. The token assigned to the GW will be ranked higher. 

The token assignment can be also service dependent. For example, if an 

incoming high rate data service (e.g., high FTP) needs different token assignment, such 

as voice like service, it would require an early check at the GW (i.e., high data rate 

services can cause congestion on backhaul), while low data rate real-time service would 

require an early check at the BS.  

If an incoming session is expected to add too much load in terms of data rate to 

the backbone network or to other sub-networks, the GW will send the ‘red-flag’ to the 

corresponding BS where the UT is connecting to. The BS then immediately rejects the 

session.  

If the GW identifies that the capacity in the backbone is sufficient, it would issue 

a ‘green flag’. After receiving the ‘green-flag’, the BS would check if the available 

resources are sufficient for the incoming call, and admit the user if this is the case. An 

alternative sequence of events will include a cell reselection admission control 

algorithm or resource repartitioning. 

6.1.2 Token Setting for Sequential Flag for Multi-Hop Scenario 
 

In the multi-hop scenario shown in Figure 6-2 the admission control mechanism takes 

into account the intermediate relaying capacity between the RNs and between the RN 

and the BS. The procedures are pretty much identical to the ones explained for the 

single-hop scenario. For the multi-hop scenario it is necessary to check the available 

capacities of all segments of all possible routing paths between the UT and the BS 

before an admission command is generated. The segments are defined according to the 

direct connections among the RNs and the BS. The token holder is given considering a 

downlink (DL)/uplink (UL) transmission and the RN closest to the to-be-admitted UT. 

This is shown in Figure 6-3. 
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Figure 6-2 Segments and token holder in a multi-hop scenario. 

 

 
 

Figure 6-3 Yellow-’ (Soft)-flag and piggy-packed ‘green flag’ along with resource partitioning. 

For an FDD system [6], the capacities of the UL and DL will be different, which 

makes the token holder assignment also different. For example, in the poorest link in the 

UL from the RN2 point of view is S12U, therefore the token is assigned to RN2; 

however, in the DL, the poorest link is S01D respective to RN2, therefore, the token is 

assigned to BS.   

When RN2 identifies a lack of resource for the incoming calls (bottleneck 

identified or Step 1), it sends immediately a ‘yellow-flag’ (soft-flag) with its 

marker/header to the central resource control unit in the cell (typically the BS) as Step 2 

in Figure 6-3. The BS checks with the GW about the core network resource and 
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repartitions the resources and at the same time confirms to the RN2 by sending the 

‘green flag’. RN2 then admits the UT when it confirms that the resources are sufficient. 

In this case, the resources among the involved entities are shared. The gain 

achieved by load sharing is analysed later in this Chapter. For each RN, the optimal 

routing paths for any potential incoming sessions can be restored. Throughout the path, 

the bottleneck will be identified according to the QoS expected from the incoming calls 

(service context). The ‘red’ or ‘green flag’ goes always to the next decision maker. 

However, the ‘yellow-flag’ (soft-flag) is among the coupled entities that may perform a 

resource repartitioning in order to allow the incoming calls. 

6.2  Gain Analysis for Load Sharing 
 

For the multi-stage admission control, load sharing is analysed between cooperative 

intra-system entities (e.g., GWs, BSs and RNs). First an expression for the load is 

derived that is common to all entities. 

6.2.1 Derivation of Load Definition 
 
To obtain an expression for the load that would be common to all entities involved in 

the multi-stage admission control, it is proposed that the cell/system load can be 

modelled as an exponential distribution with a parameter called weight of noise rise, 

modelling the sensitivity of mutual interference or that Equation 6-2 holds: 

                                                                                                          (6-2); 

 
where n is the number of traffic units added to the network; and a is the weight 

of the noise rise. Different deployment modes have different noise rise curves due to the 

properties given by the physical modes [6].   

Noise sources (e.g., UTs) may be characterised by the maximum amount of 

noise power or power spectral density that can be passed to a load [7]. As an example, 

the users’ transmission power increase due to a new user in a CDMA cellular system 

depends directly on the current uplink noise rise [8]. This is also the reason why the 

load, L, can be related to the noise rise. A dependency is also given by the pole equation 

[9], [10].             

Suppose the noise power density is  with the bandwidth , then the noise 

power is as in Equation 6-3: 
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                                                                                                   (6-3) 

A parameter called noise rise can be named, such as: 

                                                                                         

where the interference I is defined by: 

                                                                                             (6-4) 

where  is a coefficient that calculates the actual interference and j is the 

index for the users in the service area each transmitting with power . 

If  is adopted as the SNR for user j, then it can be calculated that  

                                   (6-5); 

The load factor for user j is given by: 

                                                                                                    (6-6) 

By combining Equation 6-6 and Equation 6-7 together, the noise rise definition 

in Equation 6-4 can be redefined to include the load value as: 

                                                                     (6-7). 

If  exists, then the interference increment can be obtained as: 

  (6-8) 

 

The weight of noise rise can be defined as  

                                                                                                             (6-9),  

such that the system load can be modelled as simple exponential function. 

Therefore, in case the number of links increases by 1, Equation 6-9 can be rewritten as: 
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                                                                       (6-10) 

     If it is assumed that the system load can be modelled by interefence as an 

exponential function or that: 

                                                                                                           (6-11); 

where  γ the weight of noise rise, and  n the number of current users/radio 

connections. 

Using Taylor series, Equation 6-12 can be rewritten as: 

                     (6-12) 

 

It can be seen that system load can be modelled by exponential increase by 

introducing a weight of noise rise factor depending on the number of users/radio links. 

This means that the definition of Equation 6-1 holds. 

6.2.2 Gain from Load Sharing 
 
The gain analysis assumes that on the average the number of active calls remains 

constant and that each BS has the same capacity. The decision load is defined as the 

admission request intensity per time unit.                                                                                    

The model of the load (related to noise rise) for a single cell was given by 

Equation 6-2.                                                                                                            

Suppose that the load contribution (additional load) can be distributed over two 

GWs/BSs/RNs, or , where m is the amount of incoming traffic units to an 

entity. For the individual BS, the load increase of the cell where all the traffic is added 

to is then given by: 

                                                                                          (6-13)                                                                          

with i the entity index. In the following description, superior ‘′’ denotes that the 

added traffic is not distributed, i.e. the incoming traffic with units m is only added to a 

single BS; superior ‘′′’ is used to show that the load is balanced over two entities. 

For the traffic distribution case, the load values in the entities are calculated as:         

       and                                                     (6-14).                                                                
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Let  and the traffic is added to a single entity. Without losing the 

generality, we assume that entity 1 receives all the added traffic, its load is therefore as 

in Equation 4-7: 

                                                      (6-15) 

 

For the case that traffic is added to both entities, the load increase is given by:  
 

                                               (6-16)                       

with . With the assumed condition , and , 

the ratio between the added loads for the load sharing scenario and the single cell 

scenario is as in:  

                                                                             (6-17) 

Finally, the gain for load balancing is obtained as by: 

                                               (6-18)                        

As a > 0,  and ,  so that . 

 

Figure 6-4 to Figure 6-8 show the results based on the gain analysis described 

above for different values of n and m, where the contribution to the load in traffic units 

is expressed as the average arrival rate of users at the BS or at the GW pool of BSs.  

For all values of m and n, there is a gain from load balancing as compared to the 

results for the case when a single BS takes all the incoming traffic. Increase of the value 

of m does not change the effect from the proposed algorithm. In case when the average 

arrival rate is very low (i.e., n = 0.5), the load is not very high even without the use of 

load balancing, which is visible from the graph in Figure 6-4. 
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Figure 6-4 Effect of load balancing for m= 1, n= 0.5 

 

Figure 6-5 Effect of load balancing for m= 1, n = 1 

 

Figure 6-6 Effect of load balancing for  m=1, n = 2 
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Figure 6-7 Effect of load balancing for m = 2, n = 0.5 

 

 

Figure 6-8 Effect of load balancing for m = 2 and n = 1 

The effect from load balancing is more obvious in a case when the average 

arrival rate of users to a serving area is higher. It can be seen that the gain from load 

balancing is higher for larger values of n which leads to an overall load increase for a 

single BS of at least 20% when no balancing is applied. 

6.2.3 Gain from Interworking between BSs 
 

Further gain can be obtained from interworking between entities (e.g., BS and RNs), 

Such gain is referred to as multiplexing gain and it is achievable through the proposed 

hybrid RRM framework for cooperation which uses the advantages of a centralised and 
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distributed RRM, in particular related to scheduling of users after a load sharing 

decision. 

Assuming that all users have the same QoS demands, irrespective to the user 

queue, by assigning the resource (i.e. ensuring radio access) to the user with best 

channel capacity, multiuser diversity gain can be obtained [11]. Such gain is obtainable 

by employing the mechanism of joint radio resource management for the scheduling as 

proposed in [12]-[16]. 

The more resources are available for a system, the higher the multiuser diversity 

gain that can be obtained. 

Theoretically, it can be assumed that for all the users to be scheduled a Signal to 

Interference plus Noise Ratio (SINR) density function can be defined as . The 

complimentary Cumulative Density Function (CDF) for a SINR threshold  then can 

be defined as: 

                                                                                        (6-19) 

If assumed that a total of N users is controlled by the scheduler, then the 

probability that at least one user will have a CDF higher than the threshold value is: 

                                                                            (6-20) 

If the SINR is assumed Rayleigh distributed without co-channel interference and 

shadowing effect for all UTs, then the multiuser diversity gain can be derived from the 

probability distribution plot. The obtainable gain plotted for four UTs under the above 

assumptions is shown in Figure 6-9. 

 

 

 

 

 

 

 

 

 

Figure 6-9 Multiuser diversity gain for four UTs. 
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In the following it is exploited that when a BS is operating on its own, it can be 

viewed as a single server [16]. Then it can assign the radio resources in terms of a small 

period of time (i.e. time transmission interval, TTI) to a UT when it needs to be served. 

For a system with a single server, the average response time for a UT that 

requires service time x can be derived as: 

 

                                                                                                  (6-21); 

where ,   indicates the capacity offered by the system, is the 

data amount to be transmitted by the service,  is the arrival rate for the service 

controlled by the BS [17]. 

If N BSs are interworking at a scheduling level with each other and if the 

packets can be scheduled at each TTI to the UTs controlled by all of them, then, the 

average response time for a joint scheduling  T(J) is given by: 

              with                                                   (6-22); 

When the N BSs are not able to interwork at the scheduling level, the response 

time is the average of the response time of each BS, or the response time for the case of 

non-joint scheduling T(N) is defined as in: 

                                                                                           (6-23). 

Due to the nature of the response time, the denominators in both Equation 6-23 

and Equation 6-24 must be positive, therefore a condition is defined that      . 

The gain thus obtained is achieved by multiplexing of the resources from the 

interworking N BSs, therefore, this gain is termed as multiplexing gain. It allows 

toallocate the managed radio resources to the involved traffic in order to minimise the 

overall system load.  

In terms of load balancing, this gain can provide benefits to the distribution of 

the SINR in interference constrained environments. These benefits are shown in Figure 

6-10 for the SINR distribution of an OFDMA-TDMA based system where the load 

indicates what percentage of the resources in the coverage area are utilised on average. 

In one case the system uses about 20% of the available resources, in the other case, 80% 

of the available resources are in use.  
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Figure 6-10 Effect on SINR distribution from load sharing. 

From Figure 6-10 it can be seen that higher loads (when load balancing is not 

employed) lead to wider distribution of the SINR. With gain from load balancing 

through multiplexing gain, resources are shared in a balanced way because the response 

time for serving the users is reduced. At the same time less users are assigned to each 

entity (e.g., BS) 

 The performance of the system in general can be further improved by use of 

techniques, such as multiple input multiple output (MIMO) [18], adaptive modulation 

and coding, interference mitigation techniques [6] and so forth. 

6.3  Implementation for the Token Setting 
 

It is proposed to organise the RRM entities (see Figure 6-1) in a logical ring. The 

proposed implementation is restricted to the single-hop scenario (i.e., RNs are not 

included). The entities are interrogated (load is polled) every Tu seconds. As this 

scenario corresponds to resource partitioning within the RAN (intra-RAN resource 

partitioning), the time for allocating the resources will be in the order of seconds. 

Therefore, the polling time can be assumed in this order. Addition, removal and handoff 

of users will reorganise the load values for each entity and this will affect the token 

rotation (and change the values of the token rotation table.) The flowchart for the token 

passing is shown in Figure 6-11. 

The default token can be set during the network planning and the maintenance 

phase. When the load and capacity change in the system, the default token can be 
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reallocated to the most severe entity following the principles/mechanisms described in 

the previous sections.  

 

Figure 6-11 Flow chart for the token passing mechanism.  

For a scenario of a GW pooling three BS together (see Chapter 2), the token 

passing can be implemented as shown in Figure 6-12. 

 

 

Figure 6-12 Entities and interfaces that involved in the token passing; and message fields of 
LoadMsg and TokenMsg. 

The update of the load information is shown in Figure 6-13. 

If the load in the BS is lower than that in the GW then the token is assigned to 

the BS. The applied rule can be expressed as follows:  

                                                                (6-24) 
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In this case, the BS will directly issue a token to GW whether it is a green, 

yellow, or red flag.  

 

 

Figure 6-13 Implementation of the LoadInfoMsg. 

If the load in the BS is higher than the load in the GW, then the token is assigned 

to the GW. The rule becomes as follows:  

                                                              (6-25) 

In this case, the BS will just compare with the value Threshold_Load, and 

produce a D1. Because the BS does not issue any flag or token, when it is forwarded to 

the GW, the GW already knows that a token or a flag, must be issued. 

Figure 6-14 and Figure 6-15 show the flow charts of the admission control 

processes for the cases when the token holder is the GW and the BS, respectively. 

 

 

Figure 6-14 Admission control sequence when the token holder is the GW. 
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Figure 6-15 Admission control sequence when the token holder is the BS. 

Figure 6-16 show an example of the follow up action after a decision is made in 

the case when the token holder has been the GW. 

 

 
 

Figure 6-16 Follow up actions on a decision by the GW. 

6.4  Conclusions 
This Chapter proposed and analysed an algorithm that executes a load-dependent 

sequence of decision polling, i.e., the ranking of the intermediate decisions is dynamic. 

The algorithm considers that even if the decision is a successful admission in one part of 

the network (e.g., RAN) it might result in congestion in the core network.  For a 
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scenario of a relay-enhanced network with multi-hop, where a wireless backbone 

provides connectivity and the far hops may not provide sufficient capacity for each 

segment of the end–to–end routing path, the proposed multi-stage admission control has 

benefits both for users by providing them with QoS and for network owners.  

 The proposed mechanism provides for a balanced load of the involved entities. 

Due to the balance, each entity has a lower load; therefore a potential decrease of the 

response time of the network entity can be obtained. (e.g., 10 requests per second in 

classic solution can be reduced to 5 requests per second to one entity). With use of the 

multi-stage admission control, hectic inter-GW-BS context transfer is avoided. For 

example, for new calls or sessions to be admitted, an acknowledgement (ACK) must be 

received through the IGB and IWU interfaces. This is an advantage for the case when the 

GW is the limiting factor, then, a traditional admission control performed only at the BS 

might result in a biased/wrong decision, which in turn will trigger user context transfer 

reallocation from the GW to the BS. There is also a potential reduction in air interface 

signaling.  

In the proposed admission control architecture the interface between the BS 

(IBB) is key to providing inter-BSs control and negotiation functions, like active mode 

mobility, interference management, spectrum functions, and load balance. It is for 

further work to investigate what information can be beneficial to signal over this 

interface to optimise the proposed multi-stage admission control. 

 If we view the radio system as a finite-state machine assuming a Poisson 

distribution of user arrivals and an exponential user service time, the trunking gain for 

can be obtained by a multi-dimensional Markov model. Such investigation can be 

beneficial to optimizing the proposed multi-stage admission control mechanism and 

extending the investigation to a scenario of inter-system cooperation. This mathematical 

framework is envisioned as part of the planned future work. 
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Chapter 7  

Real-Time Simulation Platform for Cooperative RRM 
 

This Chapter proposes an implementation for the cooperative RRM framework as a 

real- time simulation platform. The real-time simulation platform is implemented to 

allow for practical performance evaluation and testing of the proposed in Chapter 2-

Chapter 4 RRM framework. The proposed implementation realises the framework as a 

combination of simulation and testbed contexts. The wireless emulator proposed here is 

an experimental study of the cooperative RRM mechanisms and how they apply in the 

context of next generation systems.  

 The platform supports the inter-working between a next generation RAN and 

legacy systems (i.e., WLAN, UMTS, GPRS). The platform is based on real-time 

monitoring of the RANs. The platform demonstrates in real-time application the 

advantages of the proposed cooperative RRM functionalities for the provision of quality 

of service (QoS) and congestion management. Another objective for the real-time 

simulation was to prove the generic nature of the proposed RRM framework. Results 

are shown in terms of capacity enhancements achievable through use of cooperative 

RRM in different types of systems (e.g, IMT-A and WLAN) and different deployments 

of the IMT-Advanced system. 

The implementation supports user mobility in a heterogeneous scenario (e.g., 

inter-system handover), as well as mobility within the RAN (inter-mode handover).  

This Chapter describes the practical implementation of the RRM platform and 

the demonstration set up at a low level. The platform is evaluated for three traffic load 

scenarios (TLSs) and shows the performance of the RRM framework in a WA and LA 

deployment for a selected number of services and in terms of handling of higher system 

loads. The performance is compared to the performance of a WLAN system. Finally, 

results are shown also in real-time for a high quality video streaming application for a 

scenario of inter-system handover as a means for congestion management. 
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This Chapter is organized as follows. Section 7.1 gives the motivation for the 

implementation. Section 7.2 defines the measurement framework and requirements for 

the real-time implementation. Section 7.3 describes the functionalities and their 

interaction for the implementation of the platform components, including split into 

modules, interfaces, messages exchanged, flow charts and tables. Section 7.4 gives the 

results and their assessment. Section 7.5 concludes the Chapter. 

7.1 Motivation for a Real-Time Simulation 
 
The real-time simulation implementation proposed here was selected as an accurate, 

convenient and cost-effective solution to evaluate the protocols in real-time. 

 Simulators cannot reliably represent reality because intrinsically such models are 

based on problem simplification and abstraction, focusing only on a specific protocol or 

algorithmic function of great interest, each time. A testbed implementation is an 

expensive way of performance evaluation that gives a possibility for real-time element 

operations but some drawbacks are that a testbed can become useless and create 

misleading results if some specific network conditions and traffic dynamics never occur 

during a test. Also, any testbed trial is dependent on the operating system that hosts it. If 

some software modules required for a trial have not been implemented, it may be time 

wasteful to program all of them. Furthermore, setting up a wireless testbed, in particular 

for the evaluation of the cooperative RRM proposed here, requires that several software 

modules related to the wired and the wireless domain are available, in order to ease the 

integration process. 

Although, performance evaluation results were already presented in the previous 

chapters based on use of simulation tools (e.g., C++, OPNET and OMNET), the real-

time simulation platform offers an added value by allowing for evaluation based on 

actual protocol implementations and applications. The air interface of the reference 

IMT-A system belongs to a testbed configuration while the BSs, GW and CoopRRM 

(see Figure 2-1) operations are simulated on a computer that acts like a real entity 

controlling any other element of the platform. Therefore, the BS, GW and CoopRRM 

behaviour of the system is said to be emulated rather that simulated. Wireless network 

emulators have been extensively deployed worldwide [1]. 

The protocol reference architecture used for the real-time implementation is the 

one shown in Figure 1-4. 
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7.2  Measurements and Requirements for the Real-Time 
Simulation  
 

The objective of the real-time simulation is to emulate a scenario where a UT will be 

able to initiate a request of a service with the following requirements: 

1. Always connected; 

2. Best coverage (strongest signal); 

3. Best available bandwidth; 

4. Best available QoS. 

 

From the network point of view the system should handle all traffic through the 

proposed in Chapter 2 cooperative RRM mechanisms in order to: 

• Decongest an area either as part of a single RAN or as part of an area 

covered by multiple RANs; 

• Help the initiation of a handover. 

 

For example, for a congestion situation, based on the input received from the 

monitoring sub-network, the main monitoring module and the CoopRRM perform 

decision-making processes to identify suitable strategies to relief the effects of the 

congestion. To that, they have available a set of RRM management techniques, (RMTs), 

which represent the means by which the allocation of resources to the incoming traffic 

can be arranged in order to optimize resource utilization. 

The topology of the proposed real-time RRM implementation is shown in Figure 

7-1.  

 
 

Figure 7-1 Topology of the real-time simulation platform for cooperative RRM. 
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The platform can function as a stand-alone or as an integrated implementation. 

In the stand-alone implementation the IMT-A candidate RAN can be emulated by an 

access point of the type 802.11a/b/g. In the integrated topology (Figure 5-1), the IMT-A 

candidate RAN is emulated by a testbed configuration. Therefore, the integrated 

implementation includes additional entities, such as the antennas for the transmission 

and the reception, a receiver terminal and an entity that controls the transmission 

antennas at the BS. This last entity is responsible for the management of the 

transmitters; it gets the measurements from the radio link and sends them to the BS. In 

this way, the RRM platform knows at any given time the RTTMs of the radio link. The 

receiver PHY entity is the entity that controls and manages the receiver antenna and it is 

connected with the RRM platform UT as a network interface card, in order to forward 

the packets to and from the UT.  

The SRRMW functionality has been implemented in the BS/GW physical entity 

and, the SRRML functionality has been implemented in the CoopRRM physical entity. 

This was done to simplify the set up for actual demonstrations. In the stand-alone 

implementation the BS and a GW monitor the state of the system and send alarms and 

reports to the CoopRRM through the CPW interface. The BS and GW communicate 

through the Ca interface. 

The legacy RAN is emulated in both cases as a WLAN based on the 802.11g 

wireless standard, and comprises also an SRRML module that monitors the system state 

and informs accordingly the CoopRRM through the CPL interface. The UT is capable of 

connecting to all the modes of the WRAN and the legacy RAN, using a high-level 

application that exchanges XML formatted messages with the CoopRRM. 

The integrated implementation was used to show results in terms of user –

perceived QoS for a real-time high quality video streaming. An HDTV camera captures 

video and sends it to the application server that streams it to the UT. The UT has two 

network interfaces, an Ethernet card and a wireless card. When the UT is connected to 

RAN 2, the Ethernet card is enabled and the wireless is disabled and the opposite 

happens when the terminal is connected to the legacy network through the access point.  

The implementation of the individual modules is proposed in Section 7.3. 

7.2.1  System Requirements 
 
The following technical assumptions were made related to the emulation of the IMT-A 

RAN, to be able to realise a stand-alone implementation for the cooperative RRM 
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architecture. To be able to emulate the chosen reference IMT-A RAN as an adaptive 

system operating in the three main scenarios (i.e., LA, MA, and WA), the characteristics 

were assumed as shown in Table 7-1. 

Table 7-1  

Parameters for the Emulated Reference RAN 

Parameter FDD mode (2 x 20 MHz) 

TDD mode  
(unpairded 100 
MHz) 

Center frequency (GHz) 4.2 (UL), 5.0 (DL) 5.0 
Number of subcarriers in 
OFDM 512 2048 
FFT BW (MHz) 20 100 
Signal BW (MHz) 16,25 81,25 
Number of subcarriers in use 416 1664 
Subcarrier spacing (Hz) 39062,5 48828,125 
OFDM symbol length 
(excluding guardtime) (ms) 25,6 20,48 
Guardtime / cyclic prefix (ms) 3,2 1,28 
Total OFDM symbol length 
(ms) 28,8 21,76 
Chunk length in OFDM 
symbols 12 5 
Chunk duration (ms) 345,6 108,8 
Physical chunk size (KHz x 
ms) 312.5 x 345.6 781.25 x 108.8 
Chunk size in symbols 96 80 
   
Duplex guard time or 
transition gap TX/RX (ms) - 19,2 
OFDM symbols per frame 
(UL or DL) 12 15 
Chunks per sub-frame (UL or 
DL) 52 312 
Frame duration (ms) 691,2 691,2 
BCCH duration (ms)   
RAC duration (ms)   
Control super-frame duration 172,8 130,56 
Frames per super-frame 8 8 
Super-frame duration 
excluding control (ms) 5,5296 5,5296 

Modulation alphabet and  
coding schemes Bits per symbol Coding rate 

QPSK 1/2 2 0,5 
QPSK 3/4 2 0,75 
16QAM 1/2 4 0,5 
16QAM 3/4 4 0,75 
64QAM 2/3 6 0,67 
64QAM 3/4 6 0,75 
   
   

Raw Bit Rate per Chunk (Kbps) 

Modulation alphabet and  
coding schemes FDD mode (2 x 20 MHz) 

TDD mode 
(unpairded 100 
MHz) 

QPSK 1/2 278 735 
QPSK 3/4 417 1103 
16QAM 1/2 556 1471 
16QAM 3/4 833 2206 
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64QAM 2/3 1111 2941 
64QAM 3/4 1250 3309 
   
   

Aggregated DL or UL Raw Bit Rate per Frame (Mbps) (DL and UL for 1:1 
asymmetry) 

Modulation alphabet and 
 coding schemes FDD mode (2 x 20 MHz) 

TDD mode 
(unpairded 100 
MHz) 

QPSK 1/2 14,44 36,11 
QPSK 3/4 21,67 54,17 
16QAM 1/2 28,89 72,22 
16QAM 3/4 43,33 108,33 
64QAM 2/3 57,78 144,44 
64QAM 3/4 65,00 162,50 
   
   
Aggregated Raw Bit Rate per Frame (Mbps) (DL and UL for 1:1 asymmetry) 

Modulation alphabet and  
coding schemes FDD mode (2 x 20 MHz) 

TDD mode 
(unpairded 100 
MHz) 

QPSK 1/2 14,44 72,22 
QPSK 3/4 21,67 108,33 
16QAM 1/2 28,89 144,44 
16QAM 3/4 43,33 216,67 
64QAM 2/3 57,78 288,89 
64QAM 3/4 65,00 325,00 
   

 

The following system modes were assumed: time division duplex and frequency 

division duplex (TDD and FDD, respectively) with exemplary raw data rates for TDD 

of 100 MHz and for FDD of 2x20 MHz. The following calculation metrics were 

assumed for calculating the BER per chunk, subframe and frames, (see Equations 7-1 to 

7-5), respectively: 
 

                      (7-1) 

                                (7-2) 

 

                            (7-3) 

                                                     (7-4) 

 

                                                  (7-5) 

 

The above parameters are used to determine the status of the IMT-A candidate 

RAN. 
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To assess the performance of the proposed RRM framework, different user 

classes, with different service characteristics were identified for the IMT-A candidate 

system and derived from [2]. The groups of service classes and their characteristics 

were defined in Chapter 3 (see Table 3-1).  

The IMT-A system modes were emulated with an access point into which three 

modes are imported and controlled by a workstation (i.e., the BS), emulating the IMT-A 

RAN. An integrated implementation provides an emulator of the IMT-A air interface as 

a testbed configuration. This was used to assess the user-perceived QoS. 

7.2.2 Performance Requirements  
 
The performance measurement is an effective means of scanning the whole network at 

any time and systematically searching for errors, bottlenecks and suspicious behaviour. 

Chapter 2 proposed KPI aggregation to deal with the many input and output parameters 

indicative for the network performance and as a means to assist the RRM decision 

process with a minimum set of metrics for tracking the system progress towards a 

performance target [3].  

 The most important KPIs used in the real-time RRM framework implementation 

are the delay, expressed as the time needed for one packet of data (or a flow) to get from 

one point to another; the jitter, expressed as the delay variation of the received packets 

(inter-RAN flows) over time; the peak user data throughput, expressed as the maximum 

rate achieved during the transmission of data in the network; and the mean user data 

throughput, expressed as the average rate achieved during the transmission of data in 

the network. These KPIs were defined in Chapter 2, Section 2.2.1.3, (see Equation 2-2 

to Equation 2-14). 

 Equation 2-4 defined the load L in a generic way as a function of the total 

capacity. The definition was obtained by a defined dependency between the load L and 

the delay (τ). If the maximum load at which a system can function without entering a 

congestion state is given by Lth, in a low network load situation, or L < Lth, the delay 

value (τ) can be represented as a typical delay (τtyp ). When the load increases and gets 

in the congestion zone, the delay value then augments very quickly. The formula in 

Equation 2-4 considered the influence of a congestion threshold parameter (CT) that 

showed when the congestion zone would be reached. In the scope of the cooperative 

RRM investigated in the real-time platform implementation, once this critical value has 
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been reached, the CoopRRM entity will receive a request for handling the arisen 

congestion situation and an algorithm will be activated. The congestion threshold, CT, is 

the load value L, expressed in percentage of the total capacity, chosen to identify a 

congestion situation, and is used to indicate the upper congestion limit. 

 The measurements defined below are used in the proposed implementation to 

detect the status of the system. In addition, these can also be classified as triggers that 

can necessitate or cause handover, as explained in Chapter 2. 

To ensure real-time monitoring functionality for the support of inter- and intra-

system cooperation, the following measurements are provided to the SRRM/CoopRRM 

(see Figure 1-4) as a minimum required information.  

A very important measurement is the received signal strength in the UT, the 

interference level and the C/I ratio. This allows for concluding on the reception quality 

of the actual configuration and the possibility (or the necessity) of doing a handover to 

other cell or a RAT. In the IMT-A system, these measurements are based on the UL and 

DL synchronization pilots and are performed by either the UT, BS/RN, on the IMT-A 

RAN, but also on the legacy RANs, when necessary. Three different types of 

measurements should be available intra-frequency, inter-frequency and inter-system, the 

last one requires a multi-mode UT.  

The transmitted power of the BS/UT is reported to the SRRM/CoopRRM 

entites. This is just a report of the transmitted power setting in a precise moment. 

Pathloss measurements can also be measured as the difference between the transmitted 

power and the received signal strength.  

 For the execution of the RRM mechanisms related to QoS some quality 

measurements are also needed. These are a measure for the quality offered and 

perceived by the UT and GW and to compare it with the required quality. 

Measurements are performed on the user data flow in order to determine the QoS level 

and compare it with pre-determined thresholds. The QoS indicators are the block error 

rate (BLER), the retransmitted block rate or the bit rate at different layers level (e.g., the 

PHY layer with instantaneous bit rate, MAC layer with throughput or IP layer level). 

For the IMT-A RAN these are performed by the UT and GW. 

For all the RRM mechanisms the cell load measurement is common. The cell 

load corresponds to the currently used resources in comparison to the available in the 

RAN resources, at different levels.  The cell load is measured at the PHY layer as the 

transmitted power or it can be derived from the bit rate, the number of used chunks, etc. 
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For the legacy RANs the cell load is defined in accordance with the specifics of that 

RAN (see Chapter 2), but in general, it is considered how the measured load compares 

to a predefined threshold, or whether Load  <  Lth.  

The UT velocity and location are two needed measurements for the execution 

of the location-based mechanisms. This is important for the RAN/cell selection during 

handover. As a minimum requirement the system should know to which BS/RAN the 

UT will be attached and what is the coverage area of the serving BS, a more detailed 

position determination should be performed by the GW, using the received signal 

strength measurements or satellite measurements (GPS) . 

The KPIs are calculated based on the performed measurements, after performing 

an aggregation procedure and the outputs are forwarded to the CoopRRM.  

The aggregation procedure is based on the reward function defined in Equation 

2-1 and consists in applying the function by taking as an input the tuple (KPI1,…, KPIk) 

and producing as an output a real value. From the aggregation the general set of KPIs 

for each system are obtained as (KPIRAN1,…, KPIRANr) and, finally, a general KPI 

showing the overall system behaviour (KPIoverall-system). This is the KPI that would 

trigger a decision and a corresponding RRM mechanism.  

7.2.3 Traffic Load Scenarios 
 
The traffic load scenarios (TLSs) were defined in Chapter 2 in relation to the theoretical 

assessment of the proposed cooperation mechanisms (i.e., congestion, admission and 

load control). The TLSs are used in the real-time implementation as categorisation of 

congestion situations and are based on parameters that introduce load augmentation. 

The TLSs are also associated with three service sets in the real-time implementation. 

This approach was adopted so that the TLSs are system-independent, which is important 

considering the generic nature of the proposed cooperation mechanisms. 

 The TLSs are used as an indicator of which RRM technique must be selected to 

resolve an occurred congestion or load situation. This is achieved by associating a 

‘High-Medium-Low (H-M-L)’ values for KPI parameter as defined in Section 7.2 and 

indicating the resources availability, the user-perceived QoS and the level of congestion. 

To determine the system states, the TLSs are represented by a logical tree, where the 

outcome of the KPIs calculation generates a certain TLS. This is shown in Figure 7-2 

where the number of generated states during the TLS is 27 [2].  
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 The KPIs related to QoS (i.e., delay, jitter, etc) require that the RRM technique 

can improve the QoS state if the final calculation indicates a ‘high’ state for the TLS. 

Each of the states at each level requires the execution of  a generic or cooperative RRM 

technique. 

 In the proposed real-time implementation, the TLS are generated by the process 

shown in Figure 7-3. To manage the resources for a given TLS, users are prioritised 

according to a user and application prioritisation process as specified in Table 3-4 to 

Table 3-6. By submitting all these values different kinds of traffic were emulated and 

more freedom was ensured for creating different types of traffic. A ‘medium’ or ‘high’ 

state generates an alarm message that triggers a suitable RRM technique. The alarm 

message is based on the values of the calculated KPIs. This is achieved by the 

monitoring process. 
 

 

 

 

 

 

 

 

 

 

 

Figure 7-2 Logical tree for TLSs evaluation. 

   

 For the evaluation of the real-time RRM platform, three TLSs describing the 

resources availability in terms of load, congestion, and mean user and data throughput 

were defined: normal hour (low), busy hour (medium) and emergency (high). The TLS 

corresponding to one of the three TLSs is translated into the number of users. Different 

user classes, with different service and radio capabilities were identified for the IMT-A 

candidate system and derived from [5], (see also Chapter 3). The set of possible services 

was associated with a given user profile. 

  The alarm message generated by a ‘high’ state has a structure as shown in 

Figure 7-4.  Similar interface architectures can be developed for a query network 

parameter message or user information message [2]. The relationship between the alarm 
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generated because of a ‘high’ state detected by the monitoring process is described in 

Figure 7-5. 

 Each KPI is calculated separately and compared with the given thresholds 

provided from the operator. An ‘alarm’ (AL) is created when these values are within the 

‘red’ dots. Within an interval (in Figure 7-5 this time is set to be 20s) the KPIs that 

show after an initial calculation an ‘alarm’ value are recalculated. The ‘green’ dots 

indicate a relaxed KPI value after the recalculation that does not generate an alarm 

message. If recalculation still indicates that the KPIs are close or larger than the pre-

defined threshold, an alarm message is generated with a structure depending on the type 

of KPI that has triggered it. 

 

Figure 7-3 TLS generation and selection process. 
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Figure 7-4 Structure of an alarm message. 

 
  

 

 
 

 

 

 

Figure 7-5 Monitoring, calculation of KPIs and a generation of an alarm message. 

Calculation of the KPIs is one of the major roles of the monitoring unit. In the 

proposed implementation the message exchanges between different entities are xml-

based and are transported over the TCP/IP protocol. This is further explained in the 

following sections. 

7.3  Functionalities of Implemented RRM Modules 
The functionalities described for each RRM module are the ones used for the real-time 

implementation.  

7.3.1 CoopRRM Functionalities 
It is proposed that the logical functionality of the CoopRRM is divided in a 

cooperative/generic part (RRM-g) and a specific part (RRM-s) for each RAN with the 

RRM-g part containing the functionalities common to all RANs. The RRM-g provides a 

common interface towards upper layer functions/protocols. The RRM-s handles the 
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specific details of each RAN. The RRM-g is used to handle the UT in order to provide 

the desired bandwidth and QoS demanded for a service. 

The first task of the CoopRRM is to control the network status and alarm 

information, the second one is the handling of the RRM and the third one is the 

handling of the on-demand requests from the UT. For example, during inter-system 

handover (ISHO) from the WRAN to a legacy RAN, the CoopRRM requests from the 

SRRML an approval of the authentication for a specific user before the handover. This 

requires the following interactions. First, either the SRRMW or the SRRML sends an 

alarm to the CoopRRM, indicating the RAN status and user information. This 

information is filtered and upon the result, the CoopRRM executes an RRM-g technique 

in order to initiate inter-system handover. 

The alarm and status information provide the driven force for the handling of the 

cooperation between the WRAN and the legacy systems. In summary, the CoopRRM 

implements the following fucntionalities: 

• Receive alarms from SRRMW and SRRML; 

• Demand the status from the monitoring unit; 

• Demand status from the SRRM; 

• Provide authentication; 

• Enable RRM-g. 

 

The internal structure of the CoopRRM is shown in Figure 7-6. 

The CoopRRM includes the following modules: 

• Service Handler (SHM); 

• RRM-g; 

• Status Collector (SCM). 
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Figure 7-6 Internal structure of the CoopRRM module. 

The SHM is in charge to change the modes of the CoopRRM. The modes are 

three, the first one is the passive mode where the CoopRRM waits for any of the signals 

from the interfaces, the second one is the monitoring where the CoopRRM waits by 

counting down a specific amount of time and the third one is the active where there is 

an ongoing process. The SHM, also creates and handles the cases that are driven from 

the input of each interface. 

7.3.2  SRRMW Functionalities 
 
The SRRMW implements the monitoring unit and the RRM-s unit. It accepts 

information from the GW in a structured format. This information is in a form, which 

cannot be used directly from the CoopRRM. The calculation of the KPIs is a major 

functionality of the monitoring unit. Its role is more passive than active, while 

constantly reading the flow of information from the GW, it calculates the KPIs, and 

outputs the results to the RRM-s unit or the CoopRRM. The results require that the 

monitoring unit is implemented in two different sub-entities. The first is driven by the 

monitoring unit, where in every cycle of calculation, a comparison of the results is 

performed between each KPI and the predefined threshold values. When the value of 

the calculation is above or lower than the threshold value, (the latter is based on whether 

the KPI is increased or decreased to the maximum value), then alarm signals are created 

and a list of the current information is sent to the RRM-s for local management inside 

WINNER or to CoopRRM for global management. The list contains a summary 

between the time of calculation which happens in the monitoring unit by providing 

information on the KPIs, the number of users that are currently connected, the type of 

service per user and the current mode of the Base Station. The second section of the 

Monitoring Unit is the on demand request for status driven from the Coop-RRM. The 
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information exchange is the same as before but the only difference is the type of 

message that has arrived at the Coop-RRM.  

The RRM-s unit performs the specific RRM techniques for handling user 

requests inside WINNER, for performing intra-mode handovers (IMHO). It also gets 

alarms which trigger the RRM-s techniques for managing the performance of the 

network. If the RRM-s techniques are not successful then the alarms are forwarded to 

the CoopRRM for triggering of the RRM-g techniques. The functionalities of the 

SRRMW entity can be summarised as follows: 

• Receive real-time traffic measurements; 

• Calculate KPIs; 

• Forward alarms to CoopRRM; 

• Provide status to CoopRRM on demand; 

• Enable RRM-s. 

 

The internal structure of the SRRMW module is shown in Figure 7-7. 

 
 

Figure 7-7 Structure of SRRMW. 

The required computing power for the SRRMW is quite high, because of the 

implementation of the monitoring process and the execution of RRM-s techniques. 

Therefore, the number of other processes going through this module is downsized to a 

minimum. The processes are based upon the sequence of monitoring data, process 

information, and execution and the interfaces Ca and CPW. The SRRMW receives RTTM 

reports and stores the values locally. The messages are grouped hierarchically and based 

on the identification sequence from the BS. The grouping is continuous per BS mode. A 

hierarchical group provides faster search results for further processing of the messages 

and for later use based on the demands of the CoopRRM. 
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7.3.3 SRRML Functionalities 
 

The SRRML functionality provides only status information towards the CoopRRM. In 

order to enable this two-way communication from both sides, an extra interface is 

required. During a monitoring procedure, the SRRM will forward alarms to the 

CoopRRM and at the same time the CoopRRM is able to request on demand the status 

information from the SRRML. The procedure is exactly the same as it is between the 

CoopRRM and the monitoring unit on the WRAN side. In summary, the SRRML 

provides the following functionalities: 

• Provides status on demand to CoopRRM; 

• Forwards alarm to CoopRRM. 
 

 The monitoring process for the SRRML is similar to the one described for the 

SRRMW. In order to fulfill the requirements of calculation of the KPIs, each message is 

labeled with a unique queue number and time/date information. When a specified 

amount of messages have been stored locally and the window for processing the results 

has collected the information, the actual process starts and each  KPI is calculated based 

on formulas. Each KPI is compared with a list of thresholds, specified and provided by 

the network operator. When the value of a KPI is over or under the limit of a threshold 

depending on the type of the threshold, the SRRML sends an alarm message describing 

the congested situation, and providing the hierarchical information of the BS and user 

information. This message in turn is sent to the CoopRRM. The SRRML communicates 

through the CPL interface that is TCP/IP based. The internal structure for the SRRML is 

shown in Figure 7-8. 

 

Figure 7-8 Structure of SRRML. 

7.3.4 User Terminal (UT) 
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The UT is platform-independent, while the only limitations are the hardware 

capabilities and the number of simultaneously active connections. The capabilities of 

the UT are divided into two sections. The UT is able to request a handover, which 

requires communication with the SRRMW or the CoopRRM. This communication will 

be done through the GW/RRMserver by sending special messages in a structured XML 

format. At the same time the UT is able to receive acknowledgements from the SRRMW 

or the CoopRRM which is another XML-structured message providing an approval of 

the request and a summary of information of the handover command. A very important 

functionality of the UT is the new service request, where the user will request a new 

service and this message is sent to the GW or the CoopRRM for handling the request. In 

summary, the UT implements the following fucntionalities: 

• Communication with CoopRRM and BS/RRM Server/GW (request for 

handover) 

• Receive handover command; 

• Send new service request. 

 

In the practical implementation, the UT will run the following processes: 

• Service request: this is the process that will make the new service request 

for the user. The UT will have a graphical user interface (GUI) through which 

the user can select the desired service. Then this process will recognize the 

service and it will forward the request to the BS/RRM Server when the UT is 

connected to a WINNER mode. 

• Network selection: Network selection is activated as a result of the scanning 

process, and then computes and evaluates the scanning reports according to the 

selected service. Subsequently, a decision is taken whether an inter-system or 

intra-system handover is required. The request is forwarded to the CoopRRM. 

The internal structure of the UT is shown in Figure 7-9.  

 

The Service Request Module (SRM) is the module that requests a new service for 

an ongoing user. The SRM sends the request for a new service to the CoopRRM entity, 

with all the necessary user and requested service information.  
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Figure 7-9 Internal structure of the UT. 

The Handover Module (HOM) is the module that requests an ISHO/IMHO to the 

CoopRRM or SRRMW and performs it (UT-initiated handover). The module gets the 

commands either through the GW (for the IMHO) or directly from the CoopRRM (for 

the ISHO) and it will perform the handover commands, which change the mode of the 

WLAN card (a/b/g) in order to perform an IMHO or to change the network (IP, etc.) 

between the IMT-A system and the WLAN system. The HOM is connected to the 

scanning module (SM) for the support of the UT-initiated handover. The UT will be 

capable of scanning the spectrum for all the networks that are available. The SM 

implements a scanning function. The results of the scanning are forwarded to the HOM 

to decide if handover is necessary. The Location-Based Module (LBM) collects location 

information for the UT.  

7.3.5 BS and GW 
The BS and GW modules are implemented as one entity. This entity implements the 

following processes: 

• TLS – traffic generator; 

• Link controller;  

• New user request; 

• Mode changer; 

• Measurement receiver. 

 

 The GW is in charge of the interoperability between the BS and the rest of the 

RAN elements. Its main task is the decoding of the network specific information. The 

GW extracts information about RTTMs from the BS on predefined intervals configured 

by the system. The RTTMs are an indicator for the network parameters and actual 
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operating modes of the reference WRAN. A selection of RTTMs that would be sent via 

a dedicated interface are summarized in Table 7-2.  

Table 7-2 

Summary of RTTMs Obtained from the BS 
 

RTTM  Type 
RTTM1 Latency per user 
RTTM2 Latency 
RTTM3 Erroneous UL packets per user 
RTTM4 Total UL packets per user 
RTTM5 Erroneous DL packets per user 
RTTM6 Total DL packets per user 
RTTM7 Erroneous UL packets 
RTTM8 Total UL packets 
RTTM9 Erroneous DL packets 
RTTM10 Total DL packets 
RTTM11 Lost UL packets per user 
RTTM12 Lost DL packets per user 
RTTM13 Lost UL packets 
RTTM14 Lost DL packets 
RTTM15 Peak throughput per user 
RTTM16 Average throughput per user 
RTTM17 UL payload data (Kbytes) 
RTTM18 DL payload data (Kbytes) 

 

The different TLS are associated to different values of the 

bandwidth/delay/jitter. This process generates the traffic on the link according to the 

selected TLS and reports to the link controller, in order to change the state of the BS. 

The results of the TLS are forwarded to the reporting module that sends the RTTMs to 

the SRRMW. These RTTMs are also the ones stored locally in the SRRMW. 

The messages are grouped hierarchically and based on the identification 

sequence from the BS. The grouping is continuous per BS mode. A hierarchical group 

provides faster search results for further processing of the messages and for later use 

based on the demands of the CoopRRM. Continuously, the process of ‘receive’ and 

‘calculate’ is straightforward because there is not any major event that would cause an 

‘H’ state, even if the messages are sent asynchronously. In order to fulfill the 

requirement of calculation and produce the specified KPIs, each message is labeled with 

a unique queue number and time/date information. When a specified amount of 

messages have been stored locally and the process window has closed, the actual 

process of KPI calculation starts. 



Chapter 7: Real-Time Simulation Platform for Cooperative RRM 

 
 
 

170 

7.3.6 Signaling Associated with the RRM in the Real-Time Simulation 
 

The required signalling during an inter-system handover is shown in Figure 7-10. 

 

Figure 7-10 Required signaling for the handling of a new service request that initiates an inter-
system handover. 

 The BS/GW receives from the UT the request for the new service and forwards 

all the necessary information (i.e. user, IP address, location, service, mode, etc.) to the 

SRRM entity, which knows the status of the network. The BS/GW sends all the time the 

RTTMs to the SRRMW, which is aware of the status of the RAN modes. The BS/GW 

gets the decision of the admission (or not) from the SRRMW entity. This decision will 

include information about the mode that will serve the user, so the BS/GW 

selects/changes the mode of the user. The BS/GW sends the ACK to the user about the 

admission to the network and the information about the required mode.  

 If the service request cannot be handled inside the IMT-A RAN, then the 

SRRMW forwards the request to the CoopRRM entity for ISHO. The GW then receives 

a command to change the mode of the BS. The ISHO command to the UT is sent from 

the CoopRRM, directly.  

If a congestion situation occurs, the SRRMW executes the local RRM-s 

techniques for decongesting the network or performing inter-mode handover (IMHO). 

This again is based on received RTTMs from the GW. Based on the collected RTTMs 

the GW has collected from the access point, the SRRMW calculates the KPIs. If the 

local techniques are not sufficient to handle the situation, the SRRMW sends an alarm 

message to the CoopRRM, for higher level central management (ISHO).  

The GW then receives a command to change the mode of the BS. The ISHO 

command to the UT is sent from the CoopRRM, directly. The signaling for handling a 

congestion alarm is shown in Figure 7-11. 
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Figure 7-11 Required signaling for the handling of a congestion alarm. 

7.4  Results 
The real-time simulator was used to assess the cooperative and generic RRM algorithms 

for three TLSs. In particular, the action of the congestion control mechanism was 

investigated. The objective is to observe to what extent the proposed RRM framework is 

effective to handle a congestion situation and what are the approximate congestion 

thresholds for different system loads. The KPIs related to the load, delay, jitter and 

throughput were observed in real-time as shown in Figure 7-12. On the left side there 

are the statistics coming from the BS and then they are computed together with other 

network statistics and data and the network’s KPIs on the right are extracted. The bars 

on the right are green when the network is in normal condition and are becoming red 

when there is an overload or critical to overload condition.  

 The network is congested when the available resources are not sufficient to 

satisfy the experienced traffic load.  

 Two congestion scenarios were observed: 

1. The network experiments a traffic overload that cannot be totally covered by the 

available resources, because the traffic rapidly increases inside a group of contiguous 

cells. This corresponds to the TLS ‘sports event’; 

2.  An outage occurs because of unavailability of (part of) the network resources, 

typically because of malfunctions somewhere. 
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Figure 7-12 Real-time observation of KPIs (in SRRMW) module. 

 Figure 7-13 a) shows the behaviour of the system for congestion during outage. 

In such a situation the triggered alarm activates initially a specific or generic RRM 

mechanism (e.g., intra-system handover).   

 
   a)     b) 

Figure 7-13 Congestion caused by outage: a) before RRM and b) after RRM. 

 In Figure 7-13 the outageReactionTime parameter is set to 30 seconds. After this 

period, some active users will be switched to a different cell and the congestion 

thresholds will be dropped. This is shown in Figure 7-13 b). In both figures, the 

congestion has been investigated for different number of users that are forced to 

perform handover to a different cell. 

 Based on the load-congestion dependency defined in Equation 2-4, congestion 

can be detected caused by traffic overload and such a situation would trigger an alarm 

that would activate a cooperative RRM mechanism.   
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Figure 7-14 shows the mean user throughput as a function of the congestion threshold 

for different traffic loads. 
 

 

 

 

 

 

 

 

 

Figure 7-14 Congestion handling as a function of the mean user throughput in the IMT-A RAN (AP 
operating in LA configuration) 

In ‘normal’ hour the initial number of users requesting connections is low, 

therefore, the total amount of data transferred is not very high. However, the 

cooperative RRM algorithms are beneficial for high traffic loads (‘sports event’) when 

even for a system operating close to maximum capacity the realizable mean user 

throughput is still higher than the one for normal hour. The cooperative RRM performs 

best for a system operating at a 70% of the total capacity, which could be also a suitable 

value for Lth. 

A ‘busy hour’ means that a larger number of users are being connected to the 

system. Figure 7-15 shows that the cooperative RRM framework allows that more users 

are getting connected in the busy hour, which is due to the activation of the 

corresponding load and admission control strategies.  

The values of the mean user throughput are also higher because the variety of 

accessed services is also higher. Figure 7-16 and Figure 7-17 show the efficiency of the 

RRM framework for two operation configurations, WA and LA, correspondingly. 
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Figure 7-15 Cooperative RRM active during congestion caused by traffic overload in the IMT-A 
RAN (operating in a WA configuration). 

 

 

Figure 7-16 Cooperative RRM active during congestion caused by traffic overload in the IMT-A 
RAN (operating in a LA configuration). 

 

 

Figure 7-17 Cooperative RRM active during congestion caused by traffic overload in the WLAN. 

 The differences between the TLS values for a given CT are small, which is due 

to the higher capacity capabilities of the IMT-A air interface. The cooperative RRM 

manages to maintain higher loads for longer time before congestion occurs. When L > 

Lth, intra-system handover or QoS degradation mechanisms are required as part of the 

cooperative RRM to bring the system to the normal state. As a comparison Figure 7-17 

gives the values for the WLAN. 

 In the WLAN case, because of the reduced air interface capabilities, the system 

experiences congestion faster for the same number of users despite the implemented 
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cooperative RRM framework. However, this shows that the proposed RRM framework 

is generic in nature and applicable to any type of system. Namely, there is still 

improvement for high CT values for an operation in ‘normal hour’. The gathered 

RTTMs from both the WRAN and WLAN networks are shown in Figure 7-18. 
 

 

Figure 7-18 RTTM statisitics gatherd for the two systems. 

 It must be noted that similar results were obtained when inter-system handover 

was performed [6]. The congestion thresholds were restorable for both cases but within 

the limits shown in Figure 7-16 and Figure 7-17, respectively. In both cases, handover 

was performed rather fast (within 20 ms). However, because of the specific RRM for 

each system the QoS restorable for the legacy RAN users would be lower than for the 

IMT-A candidate system. The user perceived QoS in real-time is shown in Figure 7-19 

for the IMT-A RAN and in Figure 7-20 for the WLAN (after a inter-system handover).  

 When the user is connected to the WLAN there is a loss in data throughput of 

about 6-8 Mbps, which is due to the lower capabilities of the air interface, which cannot 

be resolved by the cooperative RRM framework. The high quality video that was 

transmitted needed more than 29 Mbps throughput. The WLAN that was used had a 

maximum throughput of 22 Mbps with the best conditions (maximum transmit power, 

no collisions, no interferences, very small distance between the access point and the 

receiver, etc). 
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Figure 7-19 Quality of a real-time video streaming application through the IMT-A RAN. 

 

 
 
 

Figure 7-20 Quality of the real-time video streaming application through the WLAN (after inter-
system handover). 

 

The IMT-A RAN had a maximum throughput of 100 Mbps. The WLAN is not 

capable of meeting the throughput requirements of that high quality video, which results 

in loss of packets, delays and many collisions in the access point, therefore, an inter-

system handover to a RAN with lower throughput would result in a reduced QoS 

perceived by the user. 
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7.5  Conclusions 
The work described in this Chapter proposed a proof-of-concept for the validation of 

cooperative, generic and specific RRM mechanisms proposed in the context of next 

generation systems. 

It was shown that a new type of RRM framework is needed for an IMT-A candidate 

systems to address the specifics of a distributed and flat RAN architecture and enhanced 

air interface capabilities. Further, it is required that RRM mechanisms in the context of 

next generation systems must be generic related to inter-system interworking. Intra-

system interworking can be based on generic and specific RRM mechanisms benefiting 

from a combined distributed and centralised approach.  

With the introduction and integration of several systems with several modes and 

several layers, resource management becomes a more and more complicated task. 

Handover and load sharing algorithms must not only maintain the connection at a 

reasonable quality, they should also consider whether it would be beneficial to move the 

connection to another system/layer/mode. This decision is not solely based on changing 

radio propagation, anymore, but also on system load, operator priorities and service 

quality parameters. 

The proposed implementation provides a basis for further enhancements in terms 

of multiple legacy RANs and real-time traffic generation.  

The real-time simulation platform is capable of the following: 

• Show the difference in the performance between the IMT-A candidate 

system and the best available legacy system (i.e., WLAN); 

• Show an improved QoS that the IMT-A candidate system provides to the 

users; 

• Emulate the cooperation architecture for the cooperation between 

heterogeneous RANs; 

• Implement and evaluate the cooperation mechanisms; 

• Show that the cooperation between an IMT-A candidate systems and legacy 

RANs is feasible; 

• Implement and evaluate the cooperation between transmission modes of the 

same RAN. 

The implementation can be used for generating results in terms of optimised 

measurements and triggers for handover, as well as in terms of improved throughput 
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(i.e., reduced delays). The most important feature of the implementation is its generic 

nature, allowing for the inclusion of entities both horizontally (same architectural level, 

e.g., routing, intelligent modules) as well as vertically (e.g., implementation of a 

backbone network with QoS mechanisms). 

As part of the future work, the trial platform will include a multiple 

system/operator scenario, where resources are shared between two operators and 

advanced spectrum sharing techniques are considered for the IMT-Advanced candidate 

system. The goal is to assess the framework in terms of additional capacity 

enhancements based on the resource release at lower layers. This would allow to 

investigate the effect on the congestion when suddenly more resources are released from 

spectrum aggregation. Future work plans to investigate the proposed RRM framework 

and its behaviour for this particular case.  

To realize mobility based on Mobile IPv6, the original implementation must be 

split in three different IP domains. However, this requires the implementation of an 

additional entity that has routing functionalities and three different network interfaces 

for routing the traffic between the network domains. It is presumed that the 

implementation does not require particular changes in the RRM-s or RRM-g 

mechanisms. Rather, it would give the advantage of taking into consideration the 

available transport resources in the decision making process. This should be a part of 

the decision for admission control during inter-system handover. This, however, 

together with the jitter that can occur during handover because of of packets arriving 

pout of order, would change the delay curve, and might affect the load/delay 

dependence used in the proposed validation.  

Further, when using Mobile IP, jitter in accordance with the order of arrival of 

the received packets during handover can occur, which will be visible as peaks in the 

delay curve. It is presumed that the jitter from Mobile IPv6 will give slightly different 

results for the load/delay dependence. 
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Chapter 8 

Conclusions and Future Work 
 

This Chapter summarizes the contributions of each chapter and proposes the follow up 

work that builds upon the achieved results towards the further development of the RRM 

framework.  

 This thesis investigated the fundamental benefits of a novel approach to RRM to 

ensure the interworking between IMT-A candidate systems and legacy systems, as well 

as the interworking within the reference IMT-A candidate system in support of user 

mobility and QoS. The main achievement of the performed work is a qualified basic 

RRM concept that includes the latest advancements in the area of radio access 

technologies and is based on three types of RRM mechanisms: cooperative, generic and 

specific.  

 The proposed RRM mechanisms are used to ensure an appropriate system/RAT 

selection that guarantees QoS to users as well as efficient network management. The 

mechanisms are based on a set of selection criteria. This thesis considered the load, the 

mean user throughput, the distance to the BS, the signal strength and the type of 

services as the main selection criteria for executing an RRM mechanism. 

 The proposed general concept for RRM in support of inter- and intra-system 

interworking and applicable to next generation radio access systems is based on a three-

layer RRM framework, comprising cooperative, generic and specific RRM 

mechanisms. The developed concept operates at L2 and L3 of the protocol stack. In 

particular, cooperative and generic RRM mechanisms were investigated in relationship 

to the inter- and intra-system interworking and with the objective to demonstrate the 

benefits of the proposed RRM framework. Detailed investigation of specific RRM 

mechanisms was not in the scope of this thesis. The performed work included also an 

experimental set up for cooperative and generic RRM as part of the investigation. 

 It was shown that a combined centralised and distributed approach to RRM 

provides scalability and flexibility of the proposed RRM framework. Further, this is an 
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optimal approach for next generation radio access systems, which would be foreseen of 

a distributed and flat RAN architecture.  

 Distributed RRM was proposed for intra-system interworking in situations of 

low-to-medium loads as a way to shorten the response time to service requests and 

system performance handlings. In situations of medium-to-high load a centralised 

approach will be more beneficial even if this means an increased signalling overhead. A 

centralised entity will help to balance the loads and maintain the system stabilities. 

 Inter-system interworking requires a centralised approach. It was proposed that 

the control as a principle is performed by an entity located outside the RANs to 

maintain the generic character of the proposed RRM framework and to maintain the 

original RAN architecture of the legacy systems. Inter-system interworking relies on 

cooperative RRM. New systems can benefit by the combined distributed/centralised 

RRM approach, which allows that the cooperative RRM functions are implemented at 

lower layers and closer to the air interface (i.e., located in the optional RRM server).  

 It was shown that significant capacity enhancements, expressed in terms of 

achievable loads, and number of connected, blocked and dropped users are achievable 

through the proposed RRM framework compared to the case when the proposed 

mechanisms were not implemented. Further, it was shown that there is an important 

dependency between the performance of the proposed RRM algorithms and the triggers 

for their execution.  

 Further improvements can be achieved by adding more accuracy to the decision-

making process. An approach based on use of fuzzy logic was proposed for improving 

the decision process during inter-system handover. 

 The combined centralised and distributed RRM approach can be investigated 

further in terms of achievable trunking gains from spectrum aggregation. During 

spectrum aggregation, different parts of the spectrum can be shared and aggregated 

dynamically to utilize the spectrum as efficiently and fairly as possible. Results reported 

in literature have shown improvement in information throughput of around 200% in a 

bandwidth limited network. Spectrum aggregation has been adopted as a way to reuse 

spectrum that is currently allocated to second and third generation wireless 

communication systems and to allow IMT-A system to operate in multiple bands. Those 

systems can use the multiple bands for balancing the load of the networks or for 

providing required QoS levels. It is also predicted that some of these bands, might be 

dedicated to specific services or operators, and that other bands, might be shared 

between different operators and/or different services (e.g. mobile communications and 
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fixed satellite services (FSS)).  In this context, the future research proposed here 

considers a multiple system/operator scenario, where resources are shared between two 

systems/operators and advanced spectrum sharing techniques are considered for the 

IMT-Advanced candidate system. Spectrum aggregation would give a resource release 

at lower layers. The proposed in this thesis RRM framework allows for resource release 

at L2 and L3. The achievable gains will be assessed for different scenarios and a trade 

off function will be established for each of them. In some cases, sufficient 

congestion/load release can be achieved only by use of spectrum aggregation. The 

research will determine a cost function that will consider the hardware restrictions, 

added signaling overheads and delays. This function will be added to the decision 

process for scenarios requiring cooperative, generic and specific RRM for an optimized 

approach.   

 It was shown that choosing the correct trigger for a given scenario can bring 

improvements in performance of about 10% and vice versa. Choosing a trigger 

threshold accurately, results in significant decrease of unnecessary handovers. Use of 

location information, can further enhance the triggering of an RRM mechanism and thus 

improve system performance. The choice of a trigger and the accuracy in determining 

which trigger should activate the execution of a certain RRM mechanism can be 

improved by use of navigation technologies and by introducing computational 

intelligence to the decision process.   

 It was shown that the proposed RRM framework allows for policy-based RRM 

mechanisms as an additional improvement of system performance. Policies were 

proposed for RAT association and user context transfer in support of mobility 

management (intra-system handover). The policies can be applied also to inter-system 

mobility management.  

 Group or individual differentiation was proposed for RAT association in a 

scenario of a WA BS overlapping a LA BS.  Allowing the UT to connect to the BS 

based on the likelihood that a handover to the WA would be performed because of 

mobility and service characteristics can decrease the number of unnecessary 

simultaneous connections. Future work includes an implementation of the proposed 

strategies into a simulation tool and comparison of the achieved results in terms of 

achievable resource release (i.e., decreasing the number of unnecessary handovers and 

simultaneous connections), especially in the context of multi-mode terminals. Further, 

positioning technologies will be included into the model to more accurately determine 

the position of each user terminal. The proposed differentiation strategies offer benefits 
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in the context of self-management of BSs. These benefits also will be investigated 

within the scope of future work.  

 Context transfer has advantages and disadvantages, however, based on the 

network architecture, it was shown that new network functions can be introduced to 

enable algorithm-diversity that can provide user-centric and service-centric QoS 

provisioning using policy enforcement. As a first step to achieving diversity, SDU and 

PDU RLC user context transfer was proposed for radio and IP handover in support of 

TCP performance. The proposed policies were investigated for different amounts of 

data to be transferred, different link delays and different polling times. It was shown that 

the size of the SDU and PDU packets can influence the delay and provide for improved 

L2 support for high data rates. 

 Therefore, it would be beneficial to investigate further optimisation policies of 

the RLC headers to achieve a flexible SDU and PDU size. Context transfer then can be 

investigated for different SDU and PDU sizes depending on the service requirements 

and amount of data to be transferred. These investigations would link the SDU and PDU 

RLC packets size to the particular service context.  

 The role of the type of Ibb and Ig interface in the scope of the proposed policy 

during user context transfer for radio and IP handover will also be investigated as part 

of future work as a further study of the interactions between RRM entities within the 

RAN. For example, inter GW-BS interworking considers both traffic behaviour and the 

system capacity (i.e., inter-system, inter-mode and intra-mode RRM). The Ibb is a multi-

to-multi interface. The interface supports distributed RRM functions, such as active 

mode mobility, interference management schemes, and other distributed inter-BS 

control and negotiation functions (for example, load balancing). Several spectrum 

functions are located in the BS that would potentially need this interface. 

 Communication between BSs in the scope of the IMT-Advanced systems is 

important because the IMT-A RAN architecture allows that one BS controls another 

one. Added to an operation in the high frequency range (e.g., 5 GHz) this means that 

over-the-air-interface for BS-BS communication will not be reliable for non line-of-

sight situations. Future research would seek the trade off between the type of interface 

for a given RRM scenario. 

 The proposed RRM framework was investigated further in the context of load 

and admission control. A multi-stage admission control mechanism was proposed as a 

way to decrease the response times to service requests while balancing the load among 

the BSs. The proposed multi-stage admission control is particularly beneficial to a 
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multi-hop communication system, where the coverage is extended based on use of 

relays. A complete implementation of the proposed algorithm will allow for 

performance assessment and optimisation of the strategies in different situations. 

Balanced loads lead to an improvement of the SINR distribution of about 30%.  

  Follow up work utilizes the enhancements achieved through the proposed intra-

system RRM mechanisms (at L2 and L3) in combination with enhancements at lower 

layers. The wireless link exhibits a time-varying quality due to fading, shadowing, in 

addition to multi-user interference. To cope with this variability of the wireless channel, 

techniques have been developed either at the physical layer or the MAC layer. The main 

shortcoming of the strictly based PHY layer approaches is that they do not take into 

account the impact on the upper layers, while the main shortcoming of strict layering 

MAC layer based schemes is that they are based on “hard” channels, i.e. they use very 

limited information from the physical layer. This implies that the throughput achievable 

at the upper layers is only a small fraction of the capacity offered by the PHY layer. 

 As a first step, a joint time-frequency resource allocation on the DL of an 

OFDMA system is investigated with the proposed multi-stage admission control. Focus 

is on decreasing the blocking and dropping probabilities while satisfying a larger 

number of user requests (i.e., QoS for connected users is not degraded). The proposed 

research will include as a second step the investigation of strategies such as 

computational intelligence for the calculation of a priority function. As a third-step the 

research will focus on a combination of allocation and degradation strategies, including 

cell selection. 

 An experimental set up combined the proposed inter-and intra-system RRM 

mechanisms to demonstrate the benefits of the proposed RRM framework in terms of 

user-perceived QoS. This was shown for a real-time high quality video streaming. 

 Further, capacity enhancements were shown in terms of mean user throughput 

and congestion management with use of the proposed RRM framework. Future work 

will implement computational intelligence and introduce a number set of real-time 

access technologies to observe the performance of the proposed RRM framework. 
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