14,664 research outputs found

    Get a grip: Analysis of muscle activity and perceived comfort in using stylus grips

    Get PDF
    The design of handwriting instruments has been based primarily on touch, feel, aesthetics, and muscle exertion. Previous studies make it clear that different pen characteristics have to be considered along with hand-instrument interaction in the design of writing instruments. This should include pens designed for touch screens and computer based writing surfaces. Hence, this study focuses primarily on evaluating grip style’s impact on user comfort and muscle activity associated with handgrip while using a stylus-pen. Surface EMG measures were taken approximate to the adductor pollicis, flexor digitorum, and extensor indicis of eight participants while they performed writing, drawing, and point-and-click tasks on a tablet using a standard stylus and two grip options. Participants were also timed and surveyed on comfort level for each trial. Results of this study indicate that participants overall felt using a grip was more comfortable than using a stylus alone. The claw grip was the preferred choice for writing and drawing, and the crossover grip was preferred for pointing and clicking. There was reduction in muscle activity of the extensor indicis using the claw or crossover grip for the drawing and point and click tasks. The reduced muscle activity and the perceived comfort shows the claw grip to be a viable option for improving comfort for writing or drawing on a touchscreen device

    Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    Get PDF
    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated

    An advanced technology space station for the year 2025, study and concepts

    Get PDF
    A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations

    Wrist-worn pervasive gaze interaction

    Get PDF
    This paper addresses gaze interaction for smart home control, conducted from a wrist-worn unit. First we asked ten people to enact the gaze movements they would propose for e.g. opening a door or adjusting the room temperature. On basis of their suggestions we built and tested different versions of a prototype applying off-screen stroke input. Command prompts were given to twenty participants by text or arrow displays. The success rate achieved by the end of their first encounter with the system was 46% in average; it took them 1.28 seconds to connect with the system and 1.29 seconds to make a correct selection. Their subjective evaluations were positive with regard to the speed of the interaction. We conclude that gaze gesture input seems feasible for fast and brief remote control of smart home technology provided that robustness of tracking is improved

    Exploring the effects of replicating shape, weight and recoil effects on VR shooting controllers

    Get PDF
    Commercial Virtual Reality (VR) controllers with realistic force feedback are becoming available, to increase the realism and immersion of first-person shooting (FPS) games in VR. These controllers attempt to mimic not only the shape and weight of real guns but also their recoil effects (linear force feedback parallel to the barrel, when the gun is shot). As these controllers become more popular and affordable, this paper investigates the actual effects that these properties (shape, weight, and especially directional force feedback) have on performance for general VR users (e.g. users with no marksmanship experience), drawing conclusions for both consumers and device manufacturers. We created a prototype replicating the properties exploited by commercial VR controllers (i.e. shape, weight and adjustable force feedback) and used it to assess the effect of these parameters in user performance, across a series of user studies. We first analysed the benefits on user performance of adding weight and shape vs a conventional controller (e.g. Vive controller). We then explore the implications of adding linear force feedback (LFF), as well as replicating the shape and weight. Our studies show negligible effects on the immediate shooting performance with some improvements in subjective appreciation, which are already present with low levels of LFF. While higher levels of LFF do not increase subjective appreciations any further, they lead users to reach their maximum distance skillset more quickly. This indicates that while adding low levels of LFF can be enough to influence user’s immersion/engagement for gaming contexts, controllers with higher levels of LFF might be better suited for training environments and/or when dealing with particularly demanding aiming tasks

    Barehand Mode Switching in Touch and Mid-Air Interfaces

    Get PDF
    Raskin defines a mode as a distinct setting within an interface where the same user input will produce results different to those it would produce in other settings. Most interfaces have multiple modes in which input is mapped to different actions, and, mode-switching is simply the transition from one mode to another. In touch interfaces, the current mode can change how a single touch is interpreted: for example, it could draw a line, pan the canvas, select a shape, or enter a command. In Virtual Reality (VR), a hand gesture-based 3D modelling application may have different modes for object creation, selection, and transformation. Depending on the mode, the movement of the hand is interpreted differently. However, one of the crucial factors determining the effectiveness of an interface is user productivity. Mode-switching time of different input techniques, either in a touch interface or in a mid-air interface, affects user productivity. Moreover, when touch and mid-air interfaces like VR are combined, making informed decisions pertaining to the mode assignment gets even more complicated. This thesis provides an empirical investigation to characterize the mode switching phenomenon in barehand touch-based and mid-air interfaces. It explores the potential of using these input spaces together for a productivity application in VR. And, it concludes with a step towards defining and evaluating the multi-faceted mode concept, its characteristics and its utility, when designing user interfaces more generally

    In-Air Un-Instrumented Pointing Performance

    Get PDF
    I present an analysis of in-air un-instrumented pointing and selection. I look at the performance of these systems and how this performance can be improved, with the eventual goal that their throughput reaches that of the mouse. Many potential limiting factors were explored, such as latency, selection reliability, and elbow stabilization. I found that the un-instrumented in-air pointing as currently implemented performed significantly worse, at less than 75% of mouse throughput. Yet, my research shows that this value can potentially reach mouse-like levels with lower system latencies, user training, and potentially improved finger tracking. Even without these improvements, the large range of applications for un-instrumented 3D hand tracking makes this technology still an attractive option for user interfaces

    Master of Science

    Get PDF
    thesisHaptic feedback in modern game controllers is limited to vibrotactile feedback. The addition of skin-stretch feedback would significantly improve the type and quality of haptic feedback provided by game controllers. Skin-stretch feedback requires small forces (around a few newtons) and translations (as small as 0.5 mm) to provide identifiable direction cues. Prior work has developed skin-stretch mechanisms in two form factors: a flat form factor and a tall but compact (cubic) form factor. These mechanisms have been shown to be effective actuators for skin-stretch feedback, and are small enough to fit inside of a game controller. Additional prior work has shown that the cubic skin-stretch mechanism can be integrated into a thumb joystick for use with game controllers. This thesis presents the design, characterization, and testing of two skin-stretch game controllers. The first game controller provides skin stretch via a 2-axis mechanism integrated into its thumb joysticks. This controller uses the cubic skin-stretch mechanism to drive the skin stretch. Concerns that users' motions of the joystick could negatively impact the saliency of skin stretch rendered from the joystick prompted the design of a controller that provides 2-axis skin stretch to users' middle fingers on the back side of the controller. Two experiments were conducted with the two controllers. One experiment had participants identify the direction of skin stretch from a selection of 8 possible directions. This test compared users' accuracies with both controllers, and with five different finger restraints on the back-tactor controller. Results show that users' identification accuracy was similar across feedback conditions. A second experiment used skin stretch to rotationally guide participants to a randomized target angle. Three different feedback strategies were tested. Results showed that a strategy called sinusoidal feedback, which provided feedback that varied in frequency and amplitude as a function of the user's relative position to the tactor, performed significantly better on all performance metrics than the other feedback strategies. It is important to note that the sinusoidal feedback only requires two 1-axis skin-stretch actuators, which are spatially separated, in order to provide feedback. The other lower performing feedback strategies used two 2-axis skin-stretch actuators
    • …
    corecore