31 research outputs found

    Evaluating Model Mismatch Impacting CACC Controllers in Mixed Traffic using a Driving Simulator

    Get PDF
    International audienceAt early market penetration, automated vehicles will share the road with legacy vehicles. For a safe transportation system, automated vehicle controllers therefore need to estimate the behavior of the legacy vehicles. However, mismatches between the estimated and real human behaviors can lead to inefficient control inputs, and even collisions in the worst case. In this paper, we propose a framework for evaluating the impact of model mismatch by interfacing a controller under test with a driving simulator. As a proof-of-concept, an algorithm based on Model Predictive Control (MPC) is evaluated in a braking scenario. We show how model mismatch between estimated and real human behavior can lead to a decrease in avoided collisions by almost 46%, and an increase in discomfort by almost 91%. Model mismatch is therefore non-negligible and the proposed framework is a unique method to evaluate them

    A New Safety Objective for the Calibration of the Intelligent Driver Model

    Full text link
    The intelligent driver model (IDM) is one of the most widely used car-following (CF) models in recent years. The parameters of this model have been calibrated using real trajectories obtained from naturalistic driving ,driving simulator experiment and drone data. An important aspect of the model calibration process is defining the main objective of the calibration. This objective, influences the objective function and the performance measure for the calibration. For example, to calibrate CF models, the objective is usually to minimize the error in measured spacing or speed while important safety aspects of the models such as the collision avoidance mechanisms are ignored. For such models, there is no guarantee that the calibrated parameters will preserve the safety properties of the model since they are not explicitly taken into account. To explicitly account for the safety properties during calibration, this paper proposes a simple objective function which minimizes both the error in the actual measured spacing (as it is currently done) and the error in the dynamic safety spacing (desired minimum gap) derived from the collision free property of the IDM model. The proposed objective function is used to calibrate two variants of the IDM using vehicle trajectories obtained with drone from a Dutch highway. The calibration performance is then compared in terms of the error in actual spacing and time gap. The results show that the proposed safety objective 15 function leads to lower errors in spacing and time gap compared to when minimizing for only spacing and preserves collision property of the IDM.Comment: To be submitted to the Transportation Research Records Journa

    Buffer-Aided Model Predictive Controller to Mitigate Model Mismatches and Localization Errors

    Get PDF
    Any vehicle needs to be aware of its localization, destination, and neighboring vehicles\u27 state information for collision free navigation. A centralized controller computes controls for cooperative adaptive cruise control (CACC) vehicles based on the assumed behavior of manually driven vehicles (MDVs) in a mixed vehicle scenario. The assumed behavior of the MDVs may be different from the actual behavior, which gives rise to a model mismatch. The use of erroneous localization information can generate erroneous controls. The presence of a model mismatch and the use of erroneous controls could potentially result into collisions. A controller robust to issues such as localization errors and model mismatches is thus required. This paper proposes a robust model predictive controller, which accounts for localization errors and mitigates model mismatches. Future control values computed by the centralized controller are shared with CACC vehicles and are stored in a buffer. Due to large localization errors or model mismatches when control computations are infeasible, control values from the buffer are used. Simulation results show that the proposed robust controller with buffer can avoid almost the same number of collisions in a scenario impacted by localization errors as that in a scenario with no localization errors despite model mismatch

    Modelling Eco-Driving Support System for Microscopic Traffic Simulation

    Get PDF
    Microscopic traffic simulation is an ideal tool for investigating the network level impacts of eco-driving in different networks and traffic conditions, under varying penetration rates and driver compliance rates. The reliability of the traffic simulation results however rely on the accurate representation of the simulation of the driver support system and the response of the driver to the eco-driving advice, as well as on a realistic modelling and calibration of the driver’s behaviour. The state-of-the-art microscopic traffic simulation models however exclude detailed modelling of the driver response to eco-driver support systems. This paper fills in this research gap by presenting a framework for extending state-of-the-art traffic simulation models with sub models for drivers’ compliance to advice from an advisory eco-driving support systems. The developed simulation framework includes among others a model of driver’s compliance with the advice given by the system, a gear shifting model and a simplified model for estimating vehicles maximum possible acceleration. Data from field operational tests with a full advisory eco-driving system developed within the ecoDriver project was used to calibrate the developed compliance models. A set of verification simulations used to illustrate the effect of the combination of the ecoDriver system and drivers’ compliance to the advices are also presented

    An Investigation into the Appropriateness of Car-Following Models in Assessing Autonomous Vehicles

    Get PDF
    The dramatic progress of Intelligent Transportation Systems (ITS) has made autodriving technology extensively emphasised. Various models have been developed for the aim of modelling the behaviour of autonomous vehicles and their impacts on traffic, although there is still a lot to be researched about the technology. There are three main features that need to be represented in any car-following model to enable it to model autonomous vehicles: desired time gap, collision avoidance system and sensor detection range. Most available car-following models satisfy the first feature, most of the available car-following models do not satisfy the second feature and only few models satisfy the third feature. Therefore, conclusions from such models must be taken cautiously. Any of these models could be considered for updating to include a collision avoidance-system module, in order to be able to model autonomous vehicles. The Helly model is car-following model that has a simple structure and is sometimes used as the controller for Autonomous Vehicles (AV), but it does not have a collision avoidance concept. In this paper, the Helly model, which is a very commonly used classic car-following model is assessed and examined for possible update for the purpose of using it to model autonomous vehicles more efficiently. This involves assessing the parameters of the model and investigating the possible update of the model to include a collision avoidance-system module. There are two procedures that have been investigated in this paper to assess the Helly model to allow for a more realistic modelling of autonomous vehicles. The first technique is to investigate and assess the values of the parameters of the model. The second procedure is to modify the formula of that model to include a collision avoidance system. The results show that the performance of the modified full-range Auto Cruising Control (FACC) Helly model is superior to the other models in almost all situations and for almost all time-gap settings. Only the Alexandros E. Papacharalampous’s Model (A.E.P.) controller seems to perform slightly better than the (FACC) Helly model. Therefore, it is reasonable to suggest that the (FACC) Helly model be recommended as the most accurate model to use to represent autonomous vehicles in microsimulations, and that it should be further investigated
    corecore