5,293 research outputs found

    A formal soundness proof of region-based memory management for object-oriented paradigm.

    Get PDF
    Region-based memory management has been proposed as a viable alternative to garbage collection for real-time applications and embedded software. In our previous work we have developed a region type inference algorithm that provides an automatic compile-time region-based memory management for object-oriented paradigm. In this work we present a formal soundness proof of the region type system that is the target of our region inference. More precisely, we prove that the object-oriented programs accepted by our region type system achieve region-based memory management in a safe way. That means, the regions follow a stack-of-regions discipline and regions deallocation never create dangling references in the store and on the program stack. Our contribution is to provide a simple syntactic proof that is based on induction and follows the standard steps of a type safety proof. In contrast the previous safety proofs provided for other region type systems employ quite elaborate techniques

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200

    A framework for deadlock detection in core ABS

    Get PDF
    We present a framework for statically detecting deadlocks in a concurrent object-oriented language with asynchronous method calls and cooperative scheduling of method activations. Since this language features recursion and dynamic resource creation, deadlock detection is extremely complex and state-of-the-art solutions either give imprecise answers or do not scale. In order to augment precision and scalability we propose a modular framework that allows several techniques to be combined. The basic component of the framework is a front-end inference algorithm that extracts abstract behavioural descriptions of methods, called contracts, which retain resource dependency information. This component is integrated with a number of possible different back-ends that analyse contracts and derive deadlock information. As a proof-of-concept, we discuss two such back-ends: (i) an evaluator that computes a fixpoint semantics and (ii) an evaluator using abstract model checking.Comment: Software and Systems Modeling, Springer Verlag, 201

    Provably correct Java implementations of Spi Calculus security protocols specifications

    Get PDF
    Spi Calculus is an untyped high level modeling language for security protocols, used for formal protocols specification and verification. In this paper, a type system for the Spi Calculus and a translation function are formally defined, in order to formalize the refinement of a Spi Calculus specification into a Java implementation. The Java implementation generated by the translation function uses a custom Java library. Formal conditions on such library are stated, so that, if the library implementation code satisfies such conditions, then the generated Java implementation correctly simulates the Spi Calculus specification. A verified implementation of part of the custom library is further presente

    On Automating the Doctrine of Double Effect

    Full text link
    The doctrine of double effect (DDE\mathcal{DDE}) is a long-studied ethical principle that governs when actions that have both positive and negative effects are to be allowed. The goal in this paper is to automate DDE\mathcal{DDE}. We briefly present DDE\mathcal{DDE}, and use a first-order modal logic, the deontic cognitive event calculus, as our framework to formalize the doctrine. We present formalizations of increasingly stronger versions of the principle, including what is known as the doctrine of triple effect. We then use our framework to simulate successfully scenarios that have been used to test for the presence of the principle in human subjects. Our framework can be used in two different modes: One can use it to build DDE\mathcal{DDE}-compliant autonomous systems from scratch, or one can use it to verify that a given AI system is DDE\mathcal{DDE}-compliant, by applying a DDE\mathcal{DDE} layer on an existing system or model. For the latter mode, the underlying AI system can be built using any architecture (planners, deep neural networks, bayesian networks, knowledge-representation systems, or a hybrid); as long as the system exposes a few parameters in its model, such verification is possible. The role of the DDE\mathcal{DDE} layer here is akin to a (dynamic or static) software verifier that examines existing software modules. Finally, we end by presenting initial work on how one can apply our DDE\mathcal{DDE} layer to the STRIPS-style planning model, and to a modified POMDP model.This is preliminary work to illustrate the feasibility of the second mode, and we hope that our initial sketches can be useful for other researchers in incorporating DDE in their own frameworks.Comment: 26th International Joint Conference on Artificial Intelligence 2017; Special Track on AI & Autonom
    corecore