916 research outputs found

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Modelling and estimation of vanadium redox flow batteries: a review

    Get PDF
    Redox flow batteries are one of the most promising technologies for large-scale energy storage, especially in applications based on renewable energies. In this context, considerable efforts have been made in the last few years to overcome the limitations and optimise the performance of this technology, aiming to make it commercially competitive. From the monitoring point of view, one of the biggest challenges is the estimation of the system internal states, such as the state of charge and the state of health, given the complexity of obtaining such information directly from experimental measures. Therefore, many proposals have been recently developed to get rid of such inconvenient measurements and, instead, utilise an algorithm that makes use of a mathematical model in order to rely only on easily measurable variables such as the systemโ€™s voltage and current. This review provides a comprehensive study of the different types of dynamic models available in the literature, together with an analysis of the existing model-based estimation strategies. Finally, a discussion about the remaining challenges and possible future research lines on this field is presented.The research that gave rise to these results received support from โ€œla Caixaโ€ Foundation (ID 100010434. Fellowship code LCF/BQ/DI21/11860023) , the CSIC program for the Spanish Recovery, Transformation and Resilience Plan funded by the Recovery and Resilience Facility of the European Union, established by the Regulation (EU) 2020/2094, CSIC Interdisciplinary Thematic Platform (PTI+) Transiciรณn Energรฉtica Sostenible+ (PTI-TRANSENER+ project TRE2103000), the Spanish Ministry of Science and Innovation (project PID2021-126001OB-C31 funded by MCIN/AEI/10.13039/501100011033 / ERDF,EU) and the Spanish Ministry of Economy and Competitiveness under Project DOVELAR (ref. RTI2018-096001-B-C32).Peer ReviewedPostprint (published version

    ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ ์‹œ์Šคํ…œ์˜ ์œ ์ง€ ๋ณด์ˆ˜ ์ตœ์ ํ™” ๋ฐ ์ˆ˜๋ช… ์ฃผ๊ธฐ ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2019. 2. ์ด์›๋ณด.The equipment and energy systems of most chemical plants have undergone repetitive physical and chemical changes and lead to equipment failure through aging process. Replacement and maintenance management at an appropriate point in time is an important issue in terms of safety, reliability and performance. However, it is difficult to find an optimal solution because there is a trade-off between maintenance cost and system performance. In many cases, operation companies follow expert opinions based on long-term industry experience or forced government policy. For cost-effective management, a quantitative state estimation method and management methodology of the target system is needed. Various monitoring technologies have been introduced from the field, and quantifiable methodologies have been introduced. This can be used to diagnose the current state and to predict the life span. It is useful for decision making of system management. This thesis propose a methodology for lifetime prediction and management optimization in energy storage system and underground piping environment. First part is about online state of health estimation algorithm for energy storage system. Lithium-ion batteries are widely used from portable electronics to auxiliary power supplies for vehicle and renewable power generation. In order for the battery to play a key role as an energy storage device, the state estimation, represented by state of charge and state of health, must be well established. Accurate rigorous dynamic models are essential for predicting the state-of health. There are various models from the first principle partial differential model to the equivalent circuit model for electrochemical phenomena of battery charge / discharge. It is important to simulate the battery dynamic behavior to estimate system state. However, there is a limitation on the calculation load, therefore an equivalent circuit model is widely used for state estimation. Author presents a state of health estimation algorithm for energy storage system. The proposed methodology is intended for state of health estimation under various operating conditions including changes in temperature, current and voltage. Using a recursive estimator, this method estimate the current battery state variable related to battery cell life. State of health estimation algorithm uses estimated capacity as a cell life-time indicator. Adaptive parameters are calibrated by a least sum square error estimation method based on nonlinear programming. The proposed state-of health estimation methodology is validated with cell experimental lithium ion battery pack data under typical operation schedules and demonstration site operating data. The presented results show that the proposed method is appropriate for state of health estimation under various conditions. The suitability of algorithm is demonstrated with on and off line monitoring of new and aged cells using cyclic degradation experiments. The results from diverse experimental data and data of demonstration sites show the appropriateness of the accuracy, robustness. Second part is structural reliability model for quantification about underground pipeline risk. Since the long term usage and irregular inspection activities about detection of corrosion defect, catastrophic accidents have been increasing in underground pipelines. Underground pipeline network is a complex infrastructure system that has significant impact on the economic, environmental and social aspects of modern societies. Reliability based quantitative risk assessment model is useful for underground pipeline involving uncertainties. Firstly, main pipeline failure threats and failure modes are defined. External corrosion is time-dependent factor and equipment impact is time-independent factor. The limit state function for each failure cause is defined and the accident probability is calculated by Monte Carlo simulation. Simplified consequence model is used for quantification about expected failure cost. It is applied to an existing underground pipeline for several fluids in Ulsan industrial complex. This study would contribute to introduce quantitative results to prioritize pipeline management with relative risk comparisons Third part is maintenance optimization about aged underground pipeline system. In order to detect and respond to faults causing major accidents, high resolution devices such as ILI(Inline inspection), Hydrostatic Testing, and External Corrosion Direct Assessment(ECDA) can be used. The proposed method demonstrates the structural adequacy of a pipeline by making an explicit estimate of its reliability and comparing it to a specified reliability target. Structural reliability analysis is obtaining wider acceptance as a basis for evaluating pipeline integrity and these methods are ideally suited to managing metal corrosion damage as identified risk reduction strategies. The essence of this approach is to combine deterministic failure models with maintenance data and the pipeline attributes, experimental corrosion growth rate database, and the uncertainties inherent in this information. The calculated failure probability suggests the basis for informed decisions on which defects to repair, when to repair them and when to re-inspect or replace them. This work could contribute to state estimation and control of the lithium ion battery for the energy storage system. Also, maintenance optimization model helps pipeline decision-maker determine which integrity action is better option based on total cost and risk.ํ™”ํ•™๊ณต์žฅ ๋‚ด ์žฅ์น˜ ๋ฐ ์—๋„ˆ์ง€ ์‹œ์Šคํ…œ์€ ๋ฐ˜๋ณต์ ์ธ ์‚ฌ์šฉ์œผ๋กœ ๋ฌผ๋ฆฌํ™”ํ•™์  ๋ณ€ํ™”๋ฅผ ๊ฒช์œผ๋ฉฐ ๋…ธํ›„ํ™”๋˜๊ณ  ์„ค๊ณ„ ์ˆ˜๋ช…์— ๊ฐ€๊นŒ์›Œ์ง€๊ฒŒ ๋œ๋‹ค. ์ ์ ˆํ•œ ์‹œ์ ์— ์žฅ๋น„ ๊ต์ฒด์™€ ๋ณด์ˆ˜ ๊ด€๋ฆฌ๋Š” ์•ˆ์ „๊ณผ ์‹ ๋ขฐ๋„, ์ „์ฒด ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•˜๋Š” ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ๋ณด์ˆ˜ ๋น„์šฉ๊ณผ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋Š” ๊ฒƒ ์‚ฌ์ด์—๋Š” ํŠธ๋ ˆ์ด๋“œ ์˜คํ”„๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด์— ๋Œ€ํ•œ ์ตœ์ ์ ์„ ์ฐพ๋Š” ๊ฒƒ์€ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ๋งŽ์€ ๊ฒฝ์šฐ์— ์šด์˜ํšŒ์‚ฌ์—์„œ๋Š” ๊ฒฝํ—˜์— ๊ธฐ๋ฐ˜ํ•œ ์ „๋ฌธ๊ฐ€ ์˜๊ฒฌ์„ ๋”ฐ๋ฅด๊ฑฐ๋‚˜, ์ •๋ถ€์ฐจ์›์˜ ์•ˆ์ „๊ด€๋ฆฌ ์ •์ฑ… ์ตœ์†Œ ๊ธฐ์ค€์— ๋งž์ถ”์–ด ์ง„ํ–‰ํ•œ๋‹ค. ๋น„์šฉํšจ์œจ์  ๊ด€๋ฆฌ๋ฅผ ์œ„ํ•˜์—ฌ ์ •๋Ÿ‰์ ์ธ ์ƒํƒœ ์ถ”์ • ๊ธฐ๋ฒ•์ด๋‚˜ ์œ ์ง€๋ณด์ˆ˜ ๊ด€๋ฆฌ ๋ฐฉ๋ฒ•๋ก ์€ ํ•„์š”ํ•˜๋‹ค. ๋งŽ์€ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ์ˆ ์ด ๊ฐœ๋ฐœ๋˜์–ด์ง€๊ณ  ์žˆ๊ณ  ์ ์ฐจ ์‹ค์‹œ๊ฐ„ ์ธก์ • ๋ฐฉ๋ฒ•์ด๋‚˜ ์„ผ์„œ ๊ธฐ์ˆ ์ด ๋ฐœ๋‹ฌ ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์—ฌ์ „ํžˆ ์ง์ ‘ ์ธก์ • ๋ฐ ๊ฒ€์‚ฌ ์ด์ „ ์žฅ๋น„์˜ ์ˆ˜๋ช… ์˜ˆ์ธก๊ณผ ์‹œ์Šคํ…œ ๊ด€๋ฆฌ์— ๋Œ€ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ๋„์šธ ๋ฐฉ๋ฒ•๋ก ์€ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ˆ˜๋ช…์˜ˆ์ธก ๋ฐฉ๋ฒ•๋ก ๊ณผ ์ง€ํ•˜๋งค์„ค๋ฐฐ๊ด€์˜ ๊ด€๋ฆฌ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ์žฅ์—์„œ๋Š” ์—๋„ˆ์ง€ ์ €์žฅ์‹œ์Šคํ…œ ์šด์ „ํŒจํ„ด์— ์ ํ•ฉํ•œ ๋ฐฐํ„ฐ๋ฆฌ SOH ์ถ”์ • ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ๋Š” ์ด๋™๊ฐ€๋Šฅ ์ „์ž์žฅ์น˜์—์„œ๋ถ€ํ„ฐ ์ž๋™์ฐจ ๋ฐ ์‹ ์žฌ์ƒ๋ฐœ์ „ ๋“ฑ์˜ ๋ณด์กฐ ์ „๋ ฅ ์ €์žฅ์žฅ์น˜๋กœ์„œ ํ™œ์šฉ์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ๋ฐฐํ„ฐ๋ฆฌ๊ฐ€ ์ •์ƒ์ ์ธ ์—ญํ• ์„ ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ SOC์™€ SOH์˜ ์ •ํ™•ํ•œ ์ถ”์ •์ด ์ค‘์š”ํ•˜๋‹ค. ์ •ํ™•ํ•œ ๋™์  ๋ชจ๋ธ์€ SOH ์˜ˆ์ธก์„ ์œ„ํ•˜์—ฌ ํ•„์ˆ˜์ ์ด๋‹ค. BMS์—๋Š” ๊ณ„์‚ฐ ๋กœ๋“œ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ƒํƒœ ์ถ”์ •์„ ์œ„ํ•˜์—ฌ ๊ณ„์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๋น„๊ต์  ์ ์€ ๋“ฑ๊ฐ€ํšŒ๋กœ ๋ชจ๋ธ์ด ์‚ฌ์šฉ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” SOH ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์‹œํ•˜๊ณ , ์…€ ๋ฐ ์‹ค์ฆ ์‚ฌ์ดํŠธ ๋ฐ์ดํ„ฐ๋กœ ๊ฒ€์ฆํ•œ๋‹ค. ๋ฐ˜๋ณต ์˜ˆ์ธก๊ธฐ์™€ ๊ด€์ธก๊ธฐ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜์—ฌ SOH๋ฅผ ์ถ”์ •์„ ํ†ตํ•˜์—ฌ ํ˜„์žฌ์˜ ๋ฐฐํ„ฐ๋ฆฌ ์ƒํƒœ๋ฅผ ์ œ์‹œํ•œ๋‹ค. SOH ์˜ˆ์ธก ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์šฉ๋Ÿ‰์„ ์ค‘์š” ์ƒํƒœ๋ณ€์ˆ˜๋กœ ํ•˜์—ฌ ์˜ˆ์ธก๋œ๋‹ค. ์ œ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์—์„œ๋Š” SOH๋ฅผ ์ •ํ™•ํžˆ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ™•์žฅ์นผ๋งŒํ•„ํ„ฐ๋ฅผ ๋„์ž…ํ•˜์—ฌ ๋ฐฐํ„ฐ๋ฆฌ ์ƒํƒœ๋ณ€์ˆ˜๋“ค์„ ์ •ํ™•ํžˆ ์˜ˆ์ธกํ•˜๊ณ  ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ SOH๋ฅผ ์ถ”์ •ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์žฅ์€ ๊ตฌ์กฐ ์‹ ๋ขฐ๋„ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ ์ง€ํ•˜๋ฐฐ๊ด€์˜ ์ •๋Ÿ‰์  ์œ„ํ—˜์„ฑ ๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•œ๋‹ค. ๋ฐฐ๊ด€์˜ ์žฅ๊ธฐ ์‚ฌ์šฉ๊ณผ ๋ถˆ๊ทœ์น™ํ•œ ๊ฒ€์‚ฌ/๋ณด์ˆ˜ ํ™œ๋™์— ๋Œ€ํ•œ ๋ถˆํ™•์‹ค์„ฑ์€ ์ง€ํ•˜๋ฐฐ๊ด€ ์•ˆ์ „ ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๋Š” ์š”์ธ์ด๋‹ค. ์‚ฐ์—…๋‹จ์ง€ ๋‚ด์˜ ์ง€ํ•˜๋ฐฐ๊ด€ ๋„คํŠธ์›Œํฌ๋Š” ๋ณต์žกํ•œ ์ธํ”„๋ผ๋ฅผ ๊ฐ–์ถ”๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ๊ณ  ๋ฐœ์ƒ์‹œ ๊ฒฝ์ œ์ , ํ™˜๊ฒฝ์ , ์‚ฌํšŒ์ ์œผ๋กœ ํฐ ์œ„ํ˜‘์š”์†Œ๊ฐ€ ๋œ๋‹ค. ์‹ ๋ขฐ๋„ ๊ธฐ๋ฐ˜ ์ •๋Ÿ‰์  ์œ„ํ—˜๋„ ๋ชจ๋ธ์€ ์ง€ํ•˜๋ฐฐ๊ด€์˜ ํฐ ๋ถˆํ™•์‹ค์„ฑ ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜๋Š”๋ฐ ์œ ์šฉํ•œ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ๋ฐฐ๊ด€ ์‚ฌ๊ณ  ์œ„ํ˜‘์š”์ธ๊ณผ ์‚ฌ๊ณ  ๋ชจ๋“œ๋ฅผ ์ •์˜ํ•˜๊ณ , ๋ถ€์‹๊ณผ ํƒ€๊ณต์‚ฌ์— ์ด๋ฅด๋Š” ์‹œ๊ฐ„ ์˜์กด์ , ๋น„์˜์กด์  ์š”์†Œ๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ํ•œ๊ณ„์ƒํƒœํ•จ์ˆ˜๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์—ฐ๊ฐ„ ์‚ฌ๊ณ ํ™•๋ฅ ์ด ์œ ์ถ”๋˜๋ฉฐ ์‚ฌ๊ณ  ์˜ํ–ฅ๊ฑฐ๋ฆฌ ๋ฐ ๋ˆ„์ถœ๋Ÿ‰ ๊ณ„์‚ฐ ๋ชจ๋ธ๊ณผ ํ•ฉํ•˜์—ฌ ์ •๋Ÿ‰์  ์œ„ํ—˜์„ฑ ๋ถ„์„์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐฐ๊ด€์— ์กด์žฌํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์งˆ๋“ค์— ๋Œ€ํ•˜์—ฌ ์ผ€์ด์Šค ์Šคํ„ฐ๋””๋ฅผ ์ง„ํ–‰ํ•˜์—ฌ ์ •๋Ÿ‰ํ™”๋œ ์œ„ํ—˜๋„์— ๊ทผ๊ฑฐํ•˜์—ฌ ๋ฐฐ๊ด€๊ด€๋ฆฌ ์šฐ์„ ์ˆœ์œ„๋ฅผ ์ •ํ•˜๋Š” ์˜์‚ฌ๊ฒฐ์ •์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ธ๋ฒˆ์งธ ์žฅ์€ ๋…ธํ›„ํ™”๋œ ๋ฐฐ๊ด€ ์‹œ์Šคํ…œ์˜ ๊ด€๋ฆฌ ์ตœ์ ํ™”์— ๋Œ€ํ•œ ๋‚ด์šฉ์ด๋‹ค. ์‚ฌ๊ณ ์˜ ์œ„ํ—˜์„ฑ์„ ๋ฏธ์—ฐ์— ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ฒ€์‚ฌ, ๋ณด์ˆ˜ ๋ฐฉ๋ฒ•๋ก ์ด ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ด์— ๋Œ€ํ•œ ํšจ๊ณผ๊ฐ€ ์œ„ํ—˜์„ฑ๊ณผ ์–ด๋–ป๊ฒŒ ๊ด€๋ จ๋˜์–ด์„œ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ์•Œ๊ธฐ ์–ด๋ ต๋‹ค. ๋Œ€๋ถ€๋ถ„ ๊ฒฝํ—˜์ ์œผ๋กœ ํ˜น์€ ์ œ๋„์ ์ธ ๋ฐฉ์•ˆ์„ ํ†ตํ•˜์—ฌ ๋ณด์ˆ˜์ ์ธ ์•ˆ์ „๊ด€๋ฆฌ๋ฅผ ์ง„ํ–‰ํ•˜๋Š” ํ•œ๊ณ„์„ฑ์ด ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ํ† ๋Œ€๋กœ ํ•˜์—ฌ ์•ˆ์ „๊ด€๋ฆฌ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์‹ค์ œ์ ์ธ ๋ถ€์‹ ๊ด€๋ฆฌ์— ์˜ํ–ฅ ์ •๋„๋ฅผ ์ •๋Ÿ‰ํ™” ํ•œ๋‹ค. ์‹ ๋ขฐ๋„ ๋ชฉํ‘œ์™€ ์ œ์•ˆ ๋˜์–ด์ง„ ์˜ˆ์‚ฐ ๋“ฑ์„ ์ œํ•œ์กฐ๊ฑด์œผ๋กœ ํ•˜๋Š” ์ตœ์ ํ™”๋ฅผ ์‹ค์‹œํ•˜์—ฌ ์ตœ์ ์˜ ๊ฒ€์‚ฌ ์ฃผ๊ธฐ, ์ตœ์ ์˜ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•๋ก ์„ ํ™•์ธํ•œ๋‹ค. ์œ„ ์—ฐ๊ตฌ๋ฅผ ํ† ๋Œ€๋กœ ๊ฐœ์„ ๋œ ๋ฆฌํŠฌ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์˜จ๋ผ์ธ ์ƒํƒœ์ถ”์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ œ์‹œํ•˜๊ณ  ์œ„ํ—˜๋„ ํ™˜์‚ฐ ๋น„์šฉ์„ ๊ฒฐํ•ฉํ•œ ๊ตฌ์กฐ ์‹ ๋ขฐ๋„ ๋ชจ๋ธ๋กœ ์ง€ํ•˜๋ฐฐ๊ด€ ๊ด€๋ฆฌ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค.Abstract i Contents vi List of Figures ix List of Tables xii CHAPTER 1. Introduction 14 1.1. Research motivation 14 1.2. Research objectives 19 1.3. Outline of the thesis 20 CHAPTER 2. Lithium ion battery modeling and state of health Estimation 21 2.1. Background 21 2.2. Literature Review 22 2.2.1. Battery model 23 2.2.2. Qualitative comparative review of state of health estimation algorithm 29 2.3. Previous estimation algorithm 32 2.3.1. Nonlinear State estimation method 32 2.3.2. Sliding mode observer 35 2.3.3. Proposed Algorithm 37 2.3.4. Uncertainty Factors for SOH estimation in ESS 42 2.4. Data acquisition 44 2.4.1. Lithium ion battery specification 45 2.4.2. ESS Experimental setup 47 2.4.3. Sensitivity Analysis for Model Parameter 54 2.5. Result and Discussion 59 2.5.1. Estimation results of battery model 59 2.5.2. Estimation results of proposed method 63 2.6. Conclusion 68 CHAPTER 3. Reliability estimation modeling for quantitative risk assessment about underground pipeline 69 3.1. Introduction 69 3.2. Uncertainties in underground pipeline system 72 3.3. Probabilistic based Quantitative Risk Assessment Model 73 3.3.1. Structural Reliability Assessment 73 3.3.2. Failure mode 75 3.3.3. Limit state function and variables 79 3.3.4. Reliability Target 86 3.3.5. Failure frequency modeling 90 3.3.6. Consequence modeling 95 3.3.7. Simulation method 101 3.4. Case study 103 3.4.1. Statistical review of Industrial complex underground pipeline 103 3.5. Result and discussion 107 3.5.1. Estimation result of failure probability 107 3.5.1. Estimation result validation 118 CHAPTER 4. Maintenance optimization methodology for cost effective underground pipeline management 120 4.1. Introduction 120 4.2. Problem Definition 124 4.3. Maintenance scenario analysis modeling 126 4.3.1. Methodology description 128 4.3.2. Cost modeling 129 4.3.3. Maintenance mitigation model 132 4.4. Case study 136 4.5. Results 138 4.5.1. Result of optimal re-inspection period 138 4.5.2. Result of optimal maintenance actions 144 CHAPTER 5. Concluding Remarks 145 References 147Docto

    Modeling and control of fuel cell-battery hybrid energy sources

    Get PDF
    Environmental, political, and availability concerns regarding fossil fuels in recent decades have garnered substantial research and development in the area of alternative energy systems. Among various alternative energy systems, fuel cells and batteries have attracted significant attention both in academia and industry considering their superior performances and numerous advantages. In this dissertation, the modeling and control of these two electrochemical sources as the main constituents of fuel cell-battery hybrid energy sources are studied with ultimate goals of improving their performance, reducing their development and operational costs and consequently, easing their widespread commercialization. More specifically, Paper I provides a comprehensive background and literature review about Li-ion battery and its Battery Management System (BMS). Furthermore, the development of an experimental BMS design testbench is introduced in this paper. Paper II discusses the design of a novel observer for Li-ion battery State of Charge (SOC) estimation, as one of the most important functionalities of BMSs. Paper III addresses the control-oriented modeling and analysis of open-cathode fuel cells in order to provide a comprehensive system-level understanding of their real-time operation and to establish a basis for control design. Finally, in Paper IV a feedback controller, combined with a novel output-injection observer, is designed and implemented for open-cathode fuel cell temperature control. It is shown that temperature control not only ensures the fuel cell temperature reference is properly maintained, but, along with an uncertainty estimator, can also be used to adaptively stabilize the output voltage --Abstract, page iv

    Industrial applications of the Kalman filter:a review

    Get PDF
    International audienc

    Modelling and estimation in lithium-ion batteries: a literature review

    Get PDF
    Lithium-ion batteries are widely recognised as the leading technology for electrochemical energy storage. Their applications in the automotive industry and integration with renewable energy grids highlight their current significance and anticipate their substantial future impact. However, battery management systems, which are in charge of the monitoring and control of batteries, need to consider several states, like the state of charge and the state of health, which cannot be directly measured. To estimate these indicators, algorithms utilising mathematical models of the battery and basic measurements like voltage, current or temperature are employed. This review focuses on a comprehensive examination of various models, from complex but close to the physicochemical phenomena to computationally simpler but ignorant of the physics; the estimation problem and a formal basis for the development of algorithms; and algorithms used in Li-ion battery monitoring. The objective is to provide a practical guide that elucidates the different models and helps to navigate the different existing estimation techniques, simplifying the process for the development of new Li-ion battery applications.This research received support from the Spanish Ministry of Science and Innovation under projects MAFALDA (PID2021-126001OB-C31 funded by MCIN/AEI/10.13039/501100011033/ ERDF,EU) and MASHED (TED2021-129927B-I00), and by FI Joan Orรณ grant (code 2023 FI-1 00827), cofinanced by the European Union.Peer ReviewedPostprint (published version

    A novel safety assurance method based on the compound equivalent modeling and iterate reduce particleโ€adaptive Kalman filtering for the unmanned aerial vehicle lithium ion batteries.

    Get PDF
    The safety assurance is very important for the unmanned aerial vehicle lithium ion batteries, in which the state of charge estimation is the basis of its energy management and safety protection. A new equivalent modeling method is proposed for the mathematical expression of different structural characteristics, and an improved reduce particle-adaptive Kalman filtering model is designed and built, in which the incorporate multiple featured information is absorbed to explore the optimal representation by abandoning the redundant and abnormal information. And then, the multiple parameter identification is investigated that has the ability of adapting the current varying conditions, according to which the hybrid pulse power characterization test is accommodated. As can be known from the experimental results, the polynomial fitting treatment is carried out by conducting the curve fitting treatment and the maximum estimation error of the closed-circuit-voltage is 0.48% and its state of charge estimation error is lower than 0.30% in the hybrid pulse power characterization test, which is also within 2.00% under complex current varying working conditions. The iterate calculation process is conducted for the unmanned aerial vehicle lithium ion batteries together with the compound equivalent modeling, realizing its adaptive power state estimation and safety protection effectively

    A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states

    Get PDF
    This paper presents a systematic review for the most commonly used lumped-parameter equivalent circuit model structures in lithium-ion battery energy storage applications. These models include the Combined model, Rint model, two hysteresis models, Randles' model, a modified Randles' model and two resistor-capacitor (RC) network models with and without hysteresis included. Two variations of the lithium-ion cell chemistry, namely the lithium-ion iron phosphate (LiFePO4) and lithium nickel-manganese-cobalt oxide (LiNMC) are used for testing purposes. The model parameters and states are recursively estimated using a nonlinear system identification technique based on the dual Extended Kalman Filter (dual-EKF) algorithm. The dynamic performance of the model structures are verified using the results obtained from a self-designed pulsed-current test and an electric vehicle (EV) drive cycle based on the New European Drive Cycle (NEDC) profile over a range of operating temperatures. Analysis on the ten model structures are conducted with respect to state-of-charge (SOC) and state-of-power (SOP) estimation with erroneous initial conditions. Comparatively, both RC model structures provide the best dynamic performance, with an outstanding SOC estimation accuracy. For those cell chemistries with large inherent hysteresis levels (e.g. LiFePO4), the RC model with only one time constant is combined with a dynamic hysteresis model to further enhance the performance of the SOC estimator
    • โ€ฆ
    corecore