58 research outputs found

    Boolean Hedonic Games

    Full text link
    We study hedonic games with dichotomous preferences. Hedonic games are cooperative games in which players desire to form coalitions, but only care about the makeup of the coalitions of which they are members; they are indifferent about the makeup of other coalitions. The assumption of dichotomous preferences means that, additionally, each player's preference relation partitions the set of coalitions of which that player is a member into just two equivalence classes: satisfactory and unsatisfactory. A player is indifferent between satisfactory coalitions, and is indifferent between unsatisfactory coalitions, but strictly prefers any satisfactory coalition over any unsatisfactory coalition. We develop a succinct representation for such games, in which each player's preference relation is represented by a propositional formula. We show how solution concepts for hedonic games with dichotomous preferences are characterised by propositional formulas.Comment: This paper was orally presented at the Eleventh Conference on Logic and the Foundations of Game and Decision Theory (LOFT 2014) in Bergen, Norway, July 27-30, 201

    A Complete Solver for Constraint Games

    Full text link
    Game Theory studies situations in which multiple agents having conflicting objectives have to reach a collective decision. The question of a compact representation language for agents utility function is of crucial importance since the classical representation of a nn-players game is given by a nn-dimensional matrix of exponential size for each player. In this paper we use the framework of Constraint Games in which CSP are used to represent utilities. Constraint Programming --including global constraints-- allows to easily give a compact and elegant model to many useful games. Constraint Games come in two flavors: Constraint Satisfaction Games and Constraint Optimization Games, the first one using satisfaction to define boolean utilities. In addition to multimatrix games, it is also possible to model more complex games where hard constraints forbid certain situations. In this paper we study complete search techniques and show that our solver using the compact representation of Constraint Games is faster than the classical game solver Gambit by one to two orders of magnitude.Comment: 17 page

    New Perspectives on Games and Interaction

    Get PDF
    This volume is a collection of papers presented at the 2007 colloquium on new perspectives on games and interaction at the Royal Dutch Academy of Sciences in Amsterdam. The purpose of the colloquium was to clarify the uses of the concepts of game theory, and to identify promising new directions. This important collection testifies to the growing importance of game theory as a tool to capture the concepts of strategy, interaction, argumentation, communication, cooperation and competition. Also, it provides evidence for the richness of game theory and for its impressive and growing application

    Formal methods for analysing, coordinating, and controlling decisions in multi-agent systems

    Get PDF
    Multiagentensysteme sind verteilte (Computer)Systeme, die sich aus autonomen interagierenden Systemkomponenten, bezeichnet als Agenten, zusammensetzen. Sie bieten ein flexibles Framework zur Modellierung und Analyse von interaktiven Systemen, in denen Kooperation, Eigeninteresse und Autonomie eine entscheidende Rolle spielen. Dies ist zum Beispiel der Fall in Smart Grids. Eine Herausforderung in solchen Systemen ist die Kontrolle und die Koordination von Systemausführungen. Agenten handeln autonom und lassen sich daher oftmals nicht direkt kontrollieren, sondern bestenfalls beeinflussen. Aufgrund der Autonomie und des Selbstinteresses, ist es schwierig, angemessene Kontrollmechanismen zu finden. Die vorliegende Arbeit behandelt formale Grundlagen zu den Themen Entscheidungsfindung, Koordination und Kontrolle in Multiagentensystemen. Insbesondere werden in diesem Zusammenhang Logiken zur Analyse und Spezifikation von strategischen Fähigkeiten von Agenten, unter diversen Restriktionen, untersucht. Es werden formale Ansätze zur Beeinflussung und Überwachung von Systemausführungen eingeführt. In einem weiteren Teil der Arbeit wird mittels spieltheoretischer Verfahren analysiert, wie rationale Agenten interagieren und Entscheidungen treffen. Es wird argumentiert, dass formale Methoden und Werkzeuge zur Analyse und Kontrolle von autonomen Systemen entscheidend für deren verlässliche Entwicklung sind.Multi-agent systems (MASs) are distributed (computer) systems composed of autonomously (inter-)acting system components referred to as agents. MASs offer a flexible framework to model and analyse many real world settings in which cooperation, self-interest, and autonomy are crucial elements. A key challenge in such settings is the control and coordination of behavior. However, due to the agents' autonomy behavior can often not be controlled, but at best be influenced in some way or another. For example, agents can be given incentives in order to affect their decision-making in such a way that the emergent behavior of all actors is desirable from the system's perspective. The properties of self-interest and autonomy make it challenging to find appropriate control mechanisms. Existing coordination and control approaches from the distributed system literature are often not applicable due to the lack of direct control on the system components of MASs. New methods and tools are needed. In this thesis formal foundations related to the subjects of decision making, coordination and control in MASs are studied. In particular, we investigate (extensions of) temporal and strategic logics which capture specific capabilities of agents that influence their decision making. We also propose formal approaches to control, coordinate and monitor the emergent behavior in MASs. In the last part of the thesis we analyse how rational agents interact and make decisions using game theoretical methods. We argue that such formal approaches and tools to analyse and control autonomous systems are crucial for the development of reliable and flexible systems and will become even more crucial in the near future

    Reasoning about coalitional agency and ability in the logics of "bringing-it-about"

    Get PDF
    The logics of "bringing-it-about" have been part of a prominent tradition for the formalization of individual and institutional agency. They are the logics to talk about what states of affairs an acting entity brings about while abstracting away from the means of action. Elgesem\u27s proposal analyzes the agency of individual agents as the goal-directed manifestation of an individual ability. It has become an authoritative modern reference. The first contribution of this paper is to extend Elgesem\u27s logic of individual agency and ability to coalitions. We present a general theory and later propose several possible specializations. As a second contribution, we offer algorithms to reason with the logics of bringing-it-about and we analyze their computational complexity

    Seeing, Knowing, doing : case studies in modal logic

    Get PDF
    Dans le domaine des jeux vidéos par exemple, surtout des jeux de rôles, les personnages virtuels perçoivent un environnement, en tirent des connaissances puis effectuent des actions selon leur besoin. De même en robotique, un robot perçoit son environnement à l'aide de capteurs/caméras, établit une base de connaissances et effectuent des mouvements etc. La description des comportements de ces agents virtuels et leurs raisonnements peut s'effectuer à l'aide d'un langage logique. Dans cette thèse, on se propose de modéliser les trois aspects "voir", "savoir" et "faire" et leurs interactions à l'aide de la logique modale. Dans une première partie, on modélise des agents dans un espace géométrique puis on définit une relation épistémique qui tient compte des positions et du regard des agents. Dans une seconde partie, on revisite la logique des actions "STIT" (see-to-it-that ou "faire en sorte que") qui permet de faire la différence entre les principes "de re" et "de dicto", contrairement à d'autres logiques modales des actions. Dans une troisième partie, on s'intéresse à modéliser quelques aspects de la théorie des jeux dans une variante de la logique "STIT" ainsi que des émotions contre-factuelles comme le regret. Tout au long de cette thèse, on s'efforcera de s'intéresser aux aspects logiques comme les complétudes des axiomatisations et la complexité du problème de satisfiabilité d'une formule logique. L'intégration des trois concepts "voir", "savoir" et "faire" dans une et une seule logique est évoquée en conclusion et reste une question ouverte.Agents are entities who perceive their environment and who perform actions. For instance in role playing video games, ennemies are agents who perceive some part of the virtual world and who can attack or launch a sortilege. Another example may concern robot assistance for disabled people: the robot perceives obstacles of the world and can alert humans or help them. Here, we try to give formal tools to model knowledge reasoning about the perception of their environment and about actions based, on modal logic. First, we give combine the standard epistemic modal logic with perception constructions of the form (agent a sees agent b). We give a semantics in terms of position and orientation of the agents in the space that can be a line (Lineland) or a plane (Flatland). Concerning Lineland, we provide a complete axiomatization and an optimal procedure for model-checking and satisfiability problem. Concerning Flatland, we show that both model-checking and satisfiability problem are decidable but the exact complexities and the axiomatization remain open problems. Thus, the logics of Lineland and Flatland are completely a new approach: their syntax is epistemic but their semantics concern spatial reasoning. Secondly, we study on the logic of agency ``see-to-it-that'' STIT made up of construction of the form [J]A standing for ``the coalition of agents J sees to it that A''. Our interest is motivated: STIT is strictly more expressive that standard modal logic for agency like Coalition Logic CL or Alternating-time Temporal Logic ATL. In CL or ATL the ``de re'' and ``de dicto'' problem is quite difficult and technical whereas if we combine STIT-operators with epistemic operators, we can solve it in a natural way. However this strong expressivity has a prize: the general version of STIT is undecidable. That is why we focus on some syntactic fragments of STIT: either we restrict the allowed coalitions J in constructions [J]A or we restrict the nesting of modal STIT-operators. We provide axiomatizations and complexity results. Finally, we give flavour to epistemic modal logic by adding STIT-operators. The logic STIT is suitable to express counterfactual statements like ``agent a could have choosen an action such that A have been true''. Thus we show how to model counterfactual emotions like regret, rejoicing, disappointment and elation in this framework. We also model epistemic games by adapting the logic STIT by giving explicitely names of actions in the language. In this framework, we can model the notion of rational agents but other kind of behaviour like altruism etc., Nash equilibrium and iterated deletion of strictly dominated strategies

    Dependency in Cooperative Boolean Games

    Get PDF
    Cooperative boolean games are coalitional games with both goals and costs associated to actions, and dependence networks for boolean games are a kind of social networks representing how the actions of other agents have an influence on the achievement of an agent’s goal. In this paper, we introduce two new types of dependence networks, called the abstract dependence network and the refined dependence network. Moreover, we show that the notion of stability is complete with respect to the solution concept of the core in the case of cooperative boolean games with costly actions. We present a reduction, called Δ-reduction, to pass from a cooperative boolean game G to game G′ without loosing solutions

    Strategic Abilities of Asynchronous Agents: Semantic Side Effects and How to Tame Them

    Get PDF
    Recently, we have proposed a framework for verification of agents' abilities in asynchronous multi-agent systems, together with an algorithm for automated reduction of models. The semantics was built on the modeling tradition of distributed systems. As we show here, this can sometimes lead to counterintuitive interpretation of formulas when reasoning about the outcome of strategies. First, the semantics disregards finite paths, and thus yields unnatural evaluation of strategies with deadlocks. Secondly, the semantic representations do not allow to capture the asymmetry between proactive agents and the recipients of their choices. We propose how to avoid the problems by a suitable extension of the representations and change of the execution semantics for asynchronous MAS. We also prove that the model reduction scheme still works in the modified framework
    • …
    corecore