653 research outputs found

    The short and long of it: neural correlates of temporal-order memory for autobiographical events

    Get PDF
    Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events

    On the encoding of natural music in computational models and human brains

    Get PDF
    This article discusses recent developments and advances in the neuroscience of music to understand the nature of musical emotion. In particular, it highlights how system identification techniques and computational models of music have advanced our understanding of how the human brain processes the textures and structures of music and how the processed information evokes emotions. Musical models relate physical properties of stimuli to internal representations called features, and predictive models relate features to neural or behavioral responses and test their predictions against independent unseen data. The new frameworks do not require orthogonalized stimuli in controlled experiments to establish reproducible knowledge, which has opened up a new wave of naturalistic neuroscience. The current review focuses on how this trend has transformed the domain of the neuroscience of music

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Statistical approaches for resting state fMRI data analysis

    Get PDF
    This doctoral dissertation investigates the methodology to explore brain dynamics from resting state fMRI data. A standard resting state fMRI study gives rise to massive amounts of noisy data with a complicated spatio-temporal correlation structure. There are two main objectives in the analysis of these noisy data: establishing the link between neural activity and the measured signal, and determining distributed brain networks that correspond to brain function. These measures can then be used as indicators of psychological, cognitive or pathological states. Two main issues will be addressed: retrieving and interpreting the hemodynamic response function (HRF) at rest, and dealing with the redundancy inherent to fMRI data. Novel approaches are introduced, discussed and validated on simulated data and on real datasets, in health and disease, in order to track modulation of brain dynamics and HRF across different pathophysiological conditions

    Vocal fold vibratory and acoustic features in fatigued Karaoke singers

    Get PDF
    Session 3aMU - Musical Acoustics and Speech Communication: Singing Voice in Asian CulturesKaraoke is a popular singing entertainment particularly in Asia and is gaining more popularity in the rest of world. In Karaoke, an amateur singer sings with the background music and video (usually guided by the lyric captions on the video screen) played by Karaoke machine, using a microphone and an amplification system. As the Karaoke singers usually have no formal training, they may be more vulnerable to vocal fatigue as they may overuse and/or misuse their voices in the intensive and extensive singing activities. It is unclear whether vocal fatigue is accompanied by any vibration pattern or physiological changes of vocal folds. In this study, 20 participants aged from 18 to 23 years with normal voice were recruited to participate in an prolonged singing task, which induced vocal fatigue. High speed laryngscopic imaging and acoustic signals were recorded before and after the singing task. Images of /i/ phonation were quantitatively analyzed using the High Speed Video Processing (HSVP) program (Yiu, et al. 2010). It was found that the glottis became relatively narrower following fatigue, while the acoustic signals were not sensitive to measure change following fatigue. © 2012 Acoustical Society of Americapublished_or_final_versio

    Functional Magnetic Resonance Imaging

    Get PDF
    "Functional Magnetic Resonance Imaging - Advanced Neuroimaging Applications" is a concise book on applied methods of fMRI used in assessment of cognitive functions in brain and neuropsychological evaluation using motor-sensory activities, language, orthographic disabilities in children. The book will serve the purpose of applied neuropsychological evaluation methods in neuropsychological research projects, as well as relatively experienced psychologists and neuroscientists. Chapters are arranged in the order of basic concepts of fMRI and physiological basis of fMRI after event-related stimulus in first two chapters followed by new concepts of fMRI applied in constraint-induced movement therapy; reliability analysis; refractory SMA epilepsy; consciousness states; rule-guided behavioral analysis; orthographic frequency neighbor analysis for phonological activation; and quantitative multimodal spectroscopic fMRI to evaluate different neuropsychological states

    Neuroinformatics in Functional Neuroimaging

    Get PDF
    This Ph.D. thesis proposes methods for information retrieval in functional neuroimaging through automatic computerized authority identification, and searching and cleaning in a neuroscience database. Authorities are found through cocitation analysis of the citation pattern among scientific articles. Based on data from a single scientific journal it is shown that multivariate analyses are able to determine group structure that is interpretable as particular “known ” subgroups in functional neuroimaging. Methods for text analysis are suggested that use a combination of content and links, in the form of the terms in scientific documents and scientific citations, respectively. These included context sensitive author ranking and automatic labeling of axes and groups in connection with multivariate analyses of link data. Talairach foci from the BrainMap ™ database are modeled with conditional probability density models useful for exploratory functional volumes modeling. A further application is shown with conditional outlier detection where abnormal entries in the BrainMap ™ database are spotted using kernel density modeling and the redundancy between anatomical labels and spatial Talairach coordinates. This represents a combination of simple term and spatial modeling. The specific outliers that were found in the BrainMap ™ database constituted among others: Entry errors, errors in the article and unusual terminology

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks

    Multiple Media Correlation: Theory and Applications

    Get PDF
    This thesis introduces multiple media correlation, a new technology for the automatic alignment of multiple media objects such as text, audio, and video. This research began with the question: what can be learned when multiple multimedia components are analyzed simultaneously? Most ongoing research in computational multimedia has focused on queries, indexing, and retrieval within a single media type. Video is compressed and searched independently of audio, text is indexed without regard to temporal relationships it may have to other media data. Multiple media correlation provides a framework for locating and exploiting correlations between multiple, potentially heterogeneous, media streams. The goal is computed synchronization, the determination of temporal and spatial alignments that optimize a correlation function and indicate commonality and synchronization between media objects. The model also provides a basis for comparison of media in unrelated domains. There are many real-world applications for this technology, including speaker localization, musical score alignment, and degraded media realignment. Two applications, text-to-speech alignment and parallel text alignment, are described in detail with experimental validation. Text-to-speech alignment computes the alignment between a textual transcript and speech-based audio. The presented solutions are effective for a wide variety of content and are useful not only for retrieval of content, but in support of automatic captioning of movies and video. Parallel text alignment provides a tool for the comparison of alternative translations of the same document that is particularly useful to the classics scholar interested in comparing translation techniques or styles. The results presented in this thesis include (a) new media models more useful in analysis applications, (b) a theoretical model for multiple media correlation, (c) two practical application solutions that have wide-spread applicability, and (d) Xtrieve, a multimedia database retrieval system that demonstrates this new technology and demonstrates application of multiple media correlation to information retrieval. This thesis demonstrates that computed alignment of media objects is practical and can provide immediate solutions to many information retrieval and content presentation problems. It also introduces a new area for research in media data analysis
    • …
    corecore