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Abstract

This Ph.D. thesis proposes methods for information retrieval in functional neuroimaging through automatic computerized
authority identification, and searching and cleaning in a neuroscience database.

Authorities are found through cocitation analysis of the citation pattern among scientific articles. Based on data froma
single scientific journal it is shown that multivariate analyses are able to determine group structure that is interpretable as
particular “known” subgroups in functional neuroimaging.Methods for text analysis are suggested that use a combination
of content and links, in the form of the terms in scientific documents and scientific citations, respectively. These included
context sensitive author rankingand automatic labeling of axes and groups in connection withmultivariate analyses of
link data.

Talairach foci from the BrainMap™ database are modeled withconditional probability density models useful for ex-
ploratory functional volumes modeling. A further application is shown withconditional outlier detectionwhere abnormal
entries in the BrainMap™ database are spotted using kernel density modeling and the redundancy between anatomical
labels and spatial Talairach coordinates. This representsa combination of simple term and spatial modeling. The specific
outliers that were found in the BrainMap™ database constituted among others: Entry errors, errors in the article and
unusual terminology.

Statistical analysis and visualization have received muchattention in neuroinformatics for functional neuroimaging
and a large set of methods have been developed. Some of the most important analysis methods are reviewed with emphasis
on cluster analysis, singular value decomposition, Molgedey-Schuster independent component analysis and linear models
with FIR-filters. Furthermore, canonical ridge analysis isintroduced as a mean for analysis of singular data. It can be
viewed as a regularized canonical correlation analysis andin the limit of infinite regularization this is similar to a type of
partial least squares. The model is also related to redundancy analysis, thus canonical ridge analysis subsumes different
multivariate analyses and the solutions between them can befound by varying a continuous regularization parameter.

Scientific and information visualization methods are also reviewed with emphasis on VRML-based 3D visualization
for functional neuroimaging results.
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Dansk resumé

Denne Ph.D-afhandling foreslår metoder til informationssøgning i forbindelse med funktionel hjernebilleddannelsegen-
nem automatiseret og computerbaseret autoritetsbestemmelse og gennem søgning og rensning i en neurovidenskabelig
database.

Autoriteter bliver fundet gennem kociteringsanalyse af citeringsmønstret blandt videnskabelige artikler. Baseretpå
data fra et enkelt videnskabeligt tidsskrift bliver det vist at flerdimensionelle analysemetoder er i stand til at bestemme
gruppestrukturer der er fortolkelige som visse “kendte” undergrupper i funktionel hjernebilleddannelse. Metoder til tekst-
analyse er foreslået der bruger en kombination af indhold ognetværksled, henholdsvis i form af termer i videnskabe-
lige dokumenter og videnskabelige citeringer. Dette omfatter sammenhængsfølsom forfatterrangordningog automatisk
mærkning af akser og grupper i forbindelse med flerdimensionelle analyser af netværksdata.

Talairach punkter fra BrainMap™ databasen er modelleret med betinget tæthedsfordelingsmodeller anvendelige til
udforskende funktionel volumemodellering. En anden anvendelse er vist med betinget udligger-detektion, hvor unor-
malle registringer i BrainMap™ databasen er opdaget ved hjælp af kernetæthedsmodellering og redundansen mellem
anatomiske betegnelser og rumlige Talairach koordinater.Dette repræsenterer en kombination af simpel term og rumlig
modellering. De specifikke udliggere der blev fundet i BrainMap™ databasen omfattede blandt andre: Registreringsfejl,
fejl i artiklen og usædvanlig terminologi.

Statistisk analyse of visualisering har modtaget meget opmærksomhed indenfor neuroinformatik for funktionel
hjernebilleddannelse og et stort sæt metoder er blevet udviklet. Nogle af de vigtigste analysemetoder er gennemgået
med vægt på klusteranalyse, singulær værdi-dekomposition, Molgedey-Schuster uafhængig komponentanalyse og lineære
modeller med FIR-filtre. Endvidere er kanoniskridge analyse introduceret som et middel til analyse af singulæredata.
Modellen kan betragtes som en regulariseret kanonisk korrelationsanalyse og i grænsen mod uendelig regularisering er
den sammenfaldende med en type afpartial least squares. Modellen er også relateret til redundansanalyse og indbefatter
således forskellige flerdimensionelle analysemetoder, ogløsninger mellem dem kan findes ved at variere en kontinuert
regulariseringsparameter.

Videnskabelig og informations-visualiseringsmetoder erogså gennemgået med vægt på VRML-baseret 3D visuali-
sering af resultater fra funktionel hjernebilleddannelse.
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Chapter 1

Introduction

1.1 What is functional neuroimaging?

Functional neuroimagingaims to understand the link between anatomical brain locations and psychological functions and
especially deals with establishing pictures of the brain. Functional neuroimaging techniques include positron emission
tomography (PET) or functional magnetic resonance imaging(fMRI).

1.2 Why functional neuroimaging?

• Scientific exploration and understanding of the brain. Functional neuroimaging is often regarded as fundamental
science that has no direct goals and concerned with “truth” more than “usefulness”.

• Direct clinical application

– Neurosurgery. One area often mentioned as an application of functional neuroimaging is preoperative and
intraoperative brain mapping for surgery guidance. In preoperative brain mapping important areas of the brain
are identified prior to an neurosurgical operation, e.g., itis important to identify in which hemisphere the
language resides and the usual methods has been the so-called “Wada-test” (Wada and Rasmussen 1960) that
is very invasive for the patient. Functional neuroimaging can be less invasive and more accurate1

– Diagnostic. Functional neuroimaging can provide objective measurements of mental activities that previously
only have been available to the medical doctor/psychologist through the “subjective” account of the patient,
which is useful, e.g., in connection with examination hysterical patients (Davis, Giannoylis, Downar, Kwan,
Mikulis, Crawley, Nicholson, and Mailis 2001). Infants that cannot communicate their perception abilities
can be examined by functional neuroimaging with a possible predictive value for later perception performance
(Born, Miranda, Rostrup, Toft, Peitersen, Larsson, and Lou2000b).

• Artificial intelligence . Understanding how the brain works can help artificial intelligence in developing more ad-
vanced algorithms that have practical importance in many areas of the engineering sciences. Models of biological
neuronal network have inspired the development of artificial neural networks that have been applied in numerous
fields. Deeper understanding of the human visual system might help computer vision, understanding how the brain
handles language might help develop computer programs withbetter natural language capabilities and understand-
ing of the binding problem might help database development.

• Methodology development. If a question is difficult enough the task of answering it could foster development of
new methods, that in turn can be of use in other technical or scientific areas. The questions in functional neuroimag-
ing are often quite difficult and the field has a large methodological subfield. Some of the methods developed can
be of use in other areas: An example is the development of tests in random fields, with application in astrophysics
(Worsley 1995).

1Posner and Raichle (1995) describe that Pardo and Fox (1993)found that the assessment of the dominant hemisphere for language was performed
more accurately with PET than with the Wada test, as there wasdiscrepancy between the PET and Wada test in one of the nine subjects in the study, —
and the PET was correct in that single case. Assessment of language lateralization for preoperative evaluation has alsobeen performed with fMRI, see
e.g, Desmond et al. (1995), Xiong et al. (1998), Lin et al. (1997), Brockway (2000), Hund-Georgiadis et al. (2001), J. E. Adcock and Matthews (2001).
Kennan and Constable (2001) describes the assessment usingNIRS
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• Brain-computer interfaces.

– Brain to computer interface (BCI). This type of interface enables the brain (e.g. in patient with total motor
paralysis) to control computers or machines. A system basedon a neurotrophic electrode implanted “into the
outer layers of the human neocortex” made a patient able to control a cursor on a computer monitor (Kennedy
et al. 2000). fMRI was used to identify a suitable area of placement (motor cortex). Other techniques use
surface electrodes with, e.g., P300-detection or “slow cortical potentials” (SCP) (Kübler et al. 1999). The
output is still limited to very few parameters: x- and y-coordinates, and “enter”, and systems with higher
“bandwidth” has probably a long way to go yet.

– Computer to brain interface. As a brain-computer interface can help patients with motor disabilities, a
computer-to-brain interface can help patients with perception disabilities. An example (for peripheral nerves)
is cochlear implants that stimulate the nerve fibers in the inner hear of people with profound or total hearing
loss (Brown 1999, page 796–797). Commercial systems exist with 22 electrodes that receive their signal from
a small digital signal processing computer with an attachedmicrophone. Dobelle (2000) describes a visual
prosthesis system — the “Dobelle Eye” — which features a sub-miniature television, a processing computer
and an array of 68 electrodes implanted on the surface of the visual cortex.

1.3 Computers, mathematics and statistics in functional neuroimaging

Computers, mathematics and statistics play an important role in functional neuroimaging. At the very basic level tomo-
graphic brain scanners such as PET, CT and MRI rely on mathematical reconstruction for the production of the brain
image, and the data sets are so large that this reconstruction is only feasible with the help of computers. The ways in
which computer engineers can contribute to functional brain mapping can be grouped in:

• Development of new mathematical and statistical methods to process and analyze functional neuroimaging data and
development of useful tools that the neuroscientist can immediately handle.

• Development of computer visualization techniques for visualization of the functional neuroimaging data.

• Development of database tools for searching, comparison and evaluation across experiments.

The termneuroinformaticshas been used to denote the field that are concerned with theseissues.
The body of research in functional neuroimaging and the related fields in cognitive and neuroscience are becoming so

large (e.g., the exponential rise in citations to the Talairach atlas, Fox 1997) that it is difficult for a human to navigate the
data without the support of computers, — in the words of Bush (1945)

The investigator is staggered by the findings and conclusions of thousands of other workers – conclusions
which he cannot find time to grasp, much less to remember, as they appear.

This writing inspired the development of the world wide web of the Internet (Berners-Lee, Cailliau, Groff, and Pollermann
1992; Berners-Lee, Cailliau, Luotonen, Nielsen, and Secret 1994), that in connection with functional neuroimaging is
used for search and retrieval of textural information such as scientific literature, as well as distribution of softwareand
neuroscientific data. Perhaps the most important issue withdatabases and other information interfaces is knowledge
access efficiency (Pitkow 1997, page 7):

One goal of information interfaces is to maximize user interaction by increasing the amount of accessible
knowledge in shorter periods of time.

Databases containing neuroscientific data are still scarceand it is not clear what information is relevant to collect. Indeed
one of the tasks of neuroinformatics is thedefinition of useful information. The utility of the databases is not only
determined by their ability of organizing data, but also in enabling collaborations between researcher of different skills,
i.e., experimental/observational and theoretical/analytical, e.g., Tycho Brahe’s astronomical database (Brahe 1602; Kepler
1627) formed the basis for the development of Johannes Kepler’s model (Kepler 1609; Kepler 1619).

1.4 Contribution

On the descriptive level the main contributions of this thesis are:

• Overview of preprocessing for functional neuroimages.

• Overview of analysis of functional neuroimages. This should be useful as a description of the algorithms in the
Lyngby Matlab toolbox (Hansen et al. 1999b) , (Hansen et al. 2000b), (Hansen et al. 2001b), and can act as a
companion to the manual (Toft, Nielsen, Liptrot, and Hansen2001).
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• Overview of visualization of functional neuroimages.

• Introduction of neuroinformatics.

Apart from the direct application as a reference the two firstoverviews can also form the basis for a discussion on what
information should be collected in neuroinformatics databases for functional neuroimaging.

On the level of analysis the main contributions in this thesis are:

• General canonical analysis model. Identification of a typeof partial least squares as a canonical ridge analysis, with
the possibility of interpolating between a canonical correlation analysis and a partial least squares solution.

• VRML visualization in connection with functional neuroimaging.

• Analysis of functional neuroimaging locations with flexible probability density modeling for outlier detection.
Specifically this means finding outliers in the BrainMap™ database via kernel density estimation.

• Author cocitation and journal cocitation analysis, specifically applied in functional neuroimaging with the analysis
of a single journal “NeuroImage”. In this connection term and link based analysis is combined to what is here
calledcontext sensitive author ranking. Author cocitation analysis was first described by White (1981), but to my
knowledge it has not been based on data directly obtained from the publisher’s website and link and text based
analysis has not been combined in connection with scientificdocuments.

1.5 Outline

Chapter 2 describes the objects under study: The brain and its associated mental processes, how they are related and how
it is possible to measure the functional activity.

Chapter 3 describes the computerized and mathematical analysis of functional neuroimages, beginning with general
principles with no particular reference to analysis of functional brain mapping (models, estimation and testing), then
describingpreprocessingof functional neuroimages and finally describing of some of the individual mathematical models
encountered in functional neuroimaging analysis.

Chapter 4 describes the scientific visualization of 2D and 3Dfunctional neuroimages and information visualization in
connection with functional neuroimaging research.

Chapter 5 introduces neuroinformatics and focus on text analysis and (meta-)analysis of activation foci from functional
neuroimaging experiments.

Abbreviations are expanded in section A.3 page 140, and someof the expanded terms can be looked up in the word
list in section A.2 page 134. The abbreviations and words aredivided between neuroanatomical names and other general
names. A few derivations appear in section B, and acknowledgment is on page 155.

The bibliography starting on page 267 is with URLs, Pubmed identifiers (PMID) and with links to ResearchIndex
(see section 5.2.5). The URLs might be invalid but most of these invalid URLs should be locatable with the suggestion
provided by Lawrence et al. (2001).

Author index and ordinary index begin on pages 319 and 337, respectively.
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Chapter 2

Brain, mind and measurements

The following sections introduce the information structures used in functional neuroimaging for organizing the
mind/behavior and the brain. The coupling between the mind/behavior and brain is further described, and finally tech-
niques for in vivo measurement of the brain are discussed.

2.1 Behavioral and cognitive components

A cognitive componentis a separate entity of the mind. The cognitive component might in the first instance just be a
heuristic classification by the researcher, — in the second instance we might hope that the cognitive component consti-
tutes a “true” class. The cognitive components can be grouped in major cognitive components, e.g., perception, motion,
cognition, and emotion. These may consists of subgroups that in turn consists of “mind atoms” orcore processes. Brain
mapping (and cognitive psychology) aims at identifying what the appropriate cognitive components are, their relations
and how they are related to brain areas.

The termbehavioral componentscan be used to denote a broader class of mental processes, states, stimuli and re-
sponses, e.g., neurological diseases and pharmacologicalstimuli, which would incorporate the variables that are of inter-
est to collect in a neuroscientific database. Some of the early attempts in classification of behavioral components were
made by Galen (129–199 AD) with the four temperaments (sanguine, phlegmatic, melancholic and choleric) and Franz
Joseph Gall (1758–1828) with the 27 “faculties” (Gade 1997). A modern system of cognitive/behavioral components
is the hierarchy in the BrainMap™ database (see section 5.2.1) shown in figure 2.1. The organization of the cognitive

Type Subtype Example
Perception Audition Noise

Gustation Salt
Olfaction
Somethesis Pain
Vision Motion

Motion Execution Hand flexion
Music
Preparation Articulatory coding
Speech Word repetition

Cognition Attention Divided
Language Phonology
Mathematics
Memory Primed words

Emotion Anxiety
Disease Depression
Drug Apomorphine

Table 2.1: BrainMap™ "Behavioral effects" — a hierarchy of behavioral and cognitive components. More detail is available
in table A.2.

components is not necessarily a tree-structure, e.g., “themathematical cognitive component” might consists of a language
circuit associated part (in the left frontal lobe) and a visuo-spatial associated part (Dehaene, Spelke, Pinel, Stanescu, and
Tsivkin 1999; Simon 1999; Spelke and Dehaene 1999). Thus mathematical processing can be see as part of a language
cognitive component and of a visuospatial cognitive component, see figure 2.1.
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Language

�

Visuo-spatial

�
Mathematics

Figure 2.1: Segregation of mathematics cognitive components — “numerical thinking” as suggested by Spelke and De-
haene (1999). The visuo-spatial non-linguistic numerical processing are believed to occur in the inferior parietal cortices
bilaterally.

In BrainMap™ “mathematics” presently has its own group under “cognition”. Furthermore, obsessive-compulsive
disorder (as in e.g. Rauch, Jenike, Alpert, Breiter, Savage, and Fischman 1994) is categorized under “emotion” while it
might also be appropriate to group it under “disease”. Theseexamples suggest that a simple tree structure for organizing
cognitive components is too restrictive. Perhaps a direct acyclic graph is sufficiently general to described the relationship
between the components.

When ataskis performed or astimulusis presented (collectively, any elicitation of mental processes during an exper-
iment whether internal or external generated is often referred to as theparadigm) one or more cognitive components are
involved. These may be engaged in parallel or serial, — as in the word production model of Indefrey and Levelt (2000)
shown in figure 2.2, e.g., the task of silent picture naming may involve all but the last two core processes.

Conceptual
preparation

� Lexical
selection

�Phonological
code retrieval

�
Phonological

encoding
� Phonetic

encoding
�Articulation �

Figure 2.2: Core processes cognitive components involved in word production as proposed by Indefrey and Levelt (2000,
figure 59.2).

Though functional networks can be revealed by measuring a subject inone(resting) state (Lowe et al. 2000), a typical
functional neuroimaging experiment will try to elicit a single cognitive component by exposing subjects to two task: one
where the cognitive component appear (the “activation”) and another where it does not appear (the “baseline” or “control
condition”). The brain activations are measured in both states and the two measurements are (in some way) subtracted
from each other — the so-calledcognitive subtraction paradigm(Friston et al. 1996c; Law 1996, section 1.6.2). It is
often difficult to find two tasks that will mask out the appropriate cognitive component. Often simple so-called “rest”
states are used as the baseline where the subject is supposedto do “nothing”, — usually either with closed eyes of fixation
on a target. However, when the subject is “doing nothing” s/he might be engaged in “semantic knowledge retrieval,
representation in awareness, and directed manipulation ofrepresented knowledge for organization, problem-solving, and
planning” and the performance of the task can be interpretedas a interruption of such “conceptual” processes (Binder
et al. 1999). Along a similar line Gusnard, Akbudak, Shulman, and Raichle (2001) find that medial prefrontal cortex is
engaged in “self-referential mental activity”, see also (McGuire, Paulesu, Frackowiak, and Frith 1996). Thus it can bean
advantage to engage the subject in an extra task that requires “cognitive load”. It is, on the other hand, convenient for
meta-analysis studies that the same baseline is used acrossstudies.

If two (or more) cognitive components are investigated simultaneously one can investigate theinteractioneffect with
a
� � �

factorial design. If it is not possible to factor out both componentscognitive conjunctioncan be used (Price and
Friston 1997).

It is interesting to note that a task can be regarded as a mix ofcore processes. Furthermore, if a cognitive component
should constitute a core process it would be useful to regardit as independent from other core processes. Under these
assumption the identification of core processes can be see asindependent component analysis, see section 3.11.

2.2 Specialization of the Brain

The mental processes engage the neurons of the brain. The neurons are special cells with neurites (dendrites or axons)
which are long projection from the cell body that connect to other neurons through junction points calledsynapses. Areas
with high density of neuron bodies are referred to as gray matter (GM) and areas with high density of connections are
referred to as white matter (WM). These connections are usually aggregated in bundles. Other areas of the brain contain
cerebrospinal fluid (CSF) and vessels.
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There have been established standardized hierarchies for the macroscopic anatomy of the brain: National Library of
Medicine has as a service: The “MeSH Browser” which containssome of the major parts of the brain organized in a
hierarchy (http://www.ncbi.nlm.nih.gov:80/entrez/meshbrowser.cgi). Another effort is NeuroNames (Bowden and Martin
1995) which main components of the hierarchy are displayed in the list in figure 2.3. The hierarchy can further be divided,
e.g., according to the sulci and gyri of the cerebral cortex.The precise appearance and location of these sulci and gyri
varies among individuals (Ono, Kubik, and Abernathey 1990).

Forebrain
Telencephalon

Cerebral cortex
Frontal lobe
Parietal lobe
Insula
Temporal lobe
Occipital lobe
Cingulate gyrus
Parahippocampal gyrus
Archicortex

Supracallosal gyrus
hippocampal formation

Cerebral white matter
Lateral ventricle
Basal ganglia

Striatum
Globus pallidus
Amygdala

Septum
Fornix

Diencephalon
Epithalamus
Thalamus
Hypothalamus

Subthalamus
Third ventricle

Midbrain
Tectum
Cerebral peduncle

Mindbrain tegmentum
Substantia nigra

Hindbrain
Metencephalon

Pons
Cerebellum

Medulla oblongata

Figure 2.3: Main components of NeuroNames brain Hierarchy (Bowden and Martin 1995).
http://rprcsgi.rprc.washington.edu/neuronames/index1.html

Correlation between cognitive variables and the static appearance of brain structure has been found, e.g., Maguire
et al. (2000) showed that the posterior hippocampi were larger (and the anterior hippocampal region smaller) in taxis
drivers compared with a group of controls, suggesting the anterior hippocampus being involved in navigation.

There exists several brain atlases that renders the brain ina coordinate space, so-called stereotactic space. The atlas of
Talairach and Tournoux (1988) has been particular used and many functional neuroimaging studies report results in the
coordinate system set up in this atlas.

2.2.1 Microscopic structure

There is a number of criteria for classifying brain areas on the microscopic level. This can be done from cyto-, myelo-, or
receptor architectonic criteria, see e.g., (Zilles and Palomero-Gallagher 2001).

Cytoarchitectonical maps can be made of the brain by classification of the appearance of neurons, their network and
density. It is usually performed by examining the cells in a microscope after staining of the cellular components, —
e.g., the cell bodies as in theNissl method(Heimer 1994, section 7). The Brodmann classification is a widely used
cytoarchitectonic classification system for the cerebral cortex (Brodmann 1909). It delineates what has now been termed
Brodmann areas(BA) and assignBrodmann numbersfrom 1 to 47 to each region, see table A.1 on page 143. Another
cytoarchitectonic classification less widely used is that of von Economo (1929). Other classifications of the brain on the
anatomical level can be made by receptor-based maps; these are correlating well with the cytoarchitectonics maps (Geyer,
Schleicher, and Zilles 1997). On the other hand will the cytoarchitectonic classification usually not be related to sulci
structure (Roland et al. 1997; Rorden and Brett 2000; Amuntset al. 1999; Amunts et al. 2000; Morosan et al. 2001), and
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large intersubject variability exists, e.g., “the volumesof area 44 differed across subjects by up to a factor of 10” (Amunts
et al. 1999).

The Talairach atlas (Talairach and Tournoux 1988) marks theBrodmann areas, and the Talairach Daemon (Lancaster,
Summerlin, Rainey, Freitas, and Fox 1997c) is able to translate between stereotactic coordinates and Brodmann numbers.
The cytoarchitectonic observations are based on non-living material as no technique has been developed for imaging the
cytoarchitectonic structure in vivo.

2.2.2 Functional specialization

Even though the mental processes can be split into separate cognitive components it does not mean that the cognitive
components are specialized in specific brain regions. The first evidences that the brain is specialized — at least to some
extent — were the studies of patients with aphasia by Pierre Paul Broca and Wernicke (Broca 1960). Later, functional
specialization was also found between the left and right hemisphere with split brain patients, see e.g., Shepherd (1994,
p. 678–679).

Brain mapping rests on the paradigm that the brainis specialized — at least to some degree. How much is still a
controversy: In one end the most radical would argue that thebrain is segregated into discrete regions and each region
performs one unique cognitive task. Any fuzziness that is seen in brain mapping is due to limitations in the measurements,
e.g., low image resolution in brain scanners, the filtering from the neurovascular coupling or subject variations. Thisview
is called “locationistic”. At the other end is the view that all areas of the brain are participating in all cognitive tasks just
with differing degrees. This view is sometimes called “connectionistic” and other phrases used in this domain is “parallel
distributed processing” and “integrated networks”.

The two views differ in what they believe the result of a functional neuroimage analysis should be: The “discrete seg-
regation” view holds that the result should be a labeled volume, with each unique label referring to a cognitive component.
The center of mass of a connected region with the same label can be extracted and put into a table that is publishable.
The “distributed” view holds that the result should be a vector for each cognitive component with values for each voxel
indicating its “degree of involvement” in the cognitive task.

There is not necessarily a one-to-one mapping between a cognitive component and a brain area: One cognitive com-
ponent might be “implemented” in two or more different brainareas (this is referred to as degeneracy, e.g, by Price
and Friston 1999), and one brain area might process two or more cognitive processes. An example of the latter is the
syntax processing in the Broca’s area that both processes linguistic syntax processing as well as musical syntax process-
ing (Maess, Koelsch, Gunter, and Friderici 2001), though linguistic syntax processing is normally confined to the left
hemisphere, while music processing is found in the right hemisphere.

Do all cognitive components have spatial specialization? Probably not, but even (general) intelligence has been
correlated with a specific brain region (the lateral frontalcortex) (Duncan et al. 2000).

2.3 Coupling

Mental activity manifests itself as electrochemical activity in the neurons of the brain: When a neuron “fires” it changes
its electric potential over a period of milliseconds and thespike travels along the axon, — the so-called action potential.
When the signal is transferred from the axon via the synapse apostsynaptic potential is generated on the receiving neuron.
The postsynaptic potentials can be excitatory or inhibitory. If about 100 excitatory synapses, on average, get activated on
a single cell within in a short time interval they trigger a new action potential (Longstaff 2000).

The electrochemical activity in turn requires energy causing a number of physiological changes in the brain. Angelo
Mosso in 1878 and Roy and Sherrington (1890) were the first to discover a relationship between mental activity and a
physiological response. Later Kety and Schmidt (1945) wereable to measure the global cerebral blood flow, and Lassen,
Ingvar, and Skinhøj (1978) created the first 2-dimensional activation images.

Stimulus / Internal event � Mind / brain � Hemodynamics �E.g., CMRglu, CMRO�

Figure 2.4: Coupling

As shown in figure 2.4 the coupling can be thought of as consisting of two stages which will be described below: a
stimulus-neural coupling and a hemodynamic coupling.
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Component Increase Comment
rCMRglu 20-40% Mostly oxydative glucolysis
rCMRO2 5-25%
rCBF 20-70% Increases in velosity rather than capillary recruitment
rCBV 5-30% Mostly in the venous vessels.

Table 2.2: Regional hemodynamic changes with activation. From Jezzard (1999). Hoge et al. (1999) get “CBF and
CMRO2 increases of

�� � ��
and �

� � ��
, respectively”.

2.3.1 Stimulus-neuronal coupling

How does the neuronal activation depend on cognitive processing? If an stimulus is imposed on the brain does it then
respond linearly?

For stimuli that activate primary sensory area there might be a one-to-one mapping in the timing between the stimulus
and the neuronal response. However, for more complicated tasks the neuronal response is not necessarily one-to-one
associated in the timing with external events, e.g., Konishi et al. (2001) finds activation associated with the transitions in
a block design.

Another complexity might appear in connection with learning and memory where the neuronal response are on a
longer time scale than the stimulus, e.g., memory consolidation might happen during sleep (Graves, Pack, and Abel 2001)
many hours after the stimulus occurred.

2.3.2 Hemodynamics: Coupling between neuronal activity, blood flow and metabolism

The electrochemical activity of the neurons requires energy mainly in connection with Na+ and K+-ATPase activity, and
almost all neuronal energy derives from oxydative glucose metabolism (Jezzard 1999). A smaller part derives from non-
oxydative (anaerobic) metabolism (Prichard et al. 1991). The glucose uptake is not completely correlated with the neural
activity since there is a higher uptake than required by metabolism (Fox and Raichle 1986; Fox, Raichle, Mintun, and
Dence 1988). There is evidence that the glucose is stored andused later during non-activation (Madsen et al. 1999;
Madsen 2000), see also (Barinaga 1997) for an introduction to these matters.

Apart from an increased glucose (CMRglu) and oxygen (CMRO2)metabolism neural activation results in increased
blood flow (CBF), blood volume (CBV) and blood oxygenation. The CBF usually increases more than is “needed”, — the
phenomenon termed “uncoupling” or “luxury perfusion” (Foxand Raichle 1986; Buxton and Frank 1997). The amount
of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hbr) is a function of the CBF, CMRO2 and CBV, see Table 2.2. Thus
the BOLD response of fMRI (see section 2.4.5) which is dependent on HbO2 and Hbr is a function of several variables
that each can have different time and spatial behavior. These variables are in turn dependent on other variables of the
brain. Bandettini et al. (1993) list the activity variablesthat are likely to influence the coupling between stimulus and
BOLD response: blood pressure, hematocrit (Hct), blood volume, blood pO� (oxygen partial pressure), perfusion rate,
vascular tone (amount of vasodilatory capacity), neuronalmetabolic rate, vasodilation (enlargement of blood vessel),
blood oxygenation, blood perfusion.

Aguirre, Zarahn, and D’Esposito (1998b) and Glover (1999) find that the fMRI response varies across subjects so that
an individual model should be used for each subject. Intrasubject intersession non-stationarities are seen by McGonigle
et al. (2000) and Miki et al. (2000). This is supported by “voxel counting” across trials and subjects by Cohen and DuBois
(1999). Rostrup et al. (2000) found a “considerably difference” between the response in WM and GM.

The form of the hemodynamic response function

The hemodynamic response is filtered in space and time: An infinitely short and point-like neuronal activation will elicit
hemodynamic response that lasts some seconds and is dispersed some millimeters. A temporally linear and stationary
model for the hemodynamic response is implemented in SPM andthe impulse response to that filter is shown in figure 2.5.
This model was originally found in a study by (Glover 1999). Alinear stationary model cannot implement different shapes
for the onset and the cessation from a block stimulus — they should have the same (mirrored) curve. Bandettini et al.
(1993) mention that the delay in signal change is 5-8 secondsfrom stimulus onset to 90% maximum and 5 to 9 seconds
from stimulus cessation to 10% above baseline. If there is a discrepancy between the onset and cessation then a linear and
stationary model is only an approximation.

The main components in the impulse response function (IRF) of the hemodynamic response (as seen in BOLD fMRI)
are a positive peak around 5 seconds and a post-activation undershot (post peak dip) approximately at 15 seconds, see
figure 2.5. The IRF obtained empirically by Zarahn, Aguirre,and D’Esposito (1997, figure 4) has the maximum at 6
seconds and the post-activation undershot minimum at 13 seconds. These values approximately corresponds to the filter
found by Goutte, Nielsen, and Hansen (2000, figure 6a).
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Figure 2.5: The “Glover” impulse response function for a simple linear and stationary model of the hemodynamic response
function (Glover 1999; Friston 1999a). The minimum is at 15.7 seconds and the maximum at 5 seconds.

More components have been attributed to the hemodynamic response function. One of the most interesting is the
so-called “initial dip” (early dip or fast response) which is a negative response that should occur in the few first seconds
of the response with a peak after approximately 2 seconds (Yacoub and Hu 2001). It is interpreted as a quick local
oxygen metabolism that is not compensated for by an increased rCBF which results in an increase in deoxyhemoglobin,
detected by the fMRI scanner. The initial dip should be more localized than the rest of the hemodynamic response as
the deoxygenation is more local than rCBF. Thus the initial dip promise higher spatial and temporal resolution than the
ordinary response. Unfortunately the effect is not very large, and it is not seen in all experiments. Some of the positive
reports are: imaging spectroscopy (Malonek and Grinvald 1996), fMRI (Ernst and Hennig 1994), fMRI at 4T (Menon,
Ogawa, Hu, Strupp, Anderson, and Ugurbil 1995), fMRI at 1.5T(Yacoub and Hu 1999), dependence on TE (Yacoup, Le,
Ugurbil, and Hu 1999), initial dip in motor and visual areas (Yacoub and Hu 2001), initial dip with oxygen dependent
phosphorescence quenching optical imaging (Vanzetta and Grinvald 1999). For a discussion of the divergent results on
detection of the initial dip see Buxton (2001) and Vanzetta and Grinvald (2001). A physiological model — the so-called
“balloon model” can account both for the postactivation undershot and the initial dip (Buxton, Wong, and Frank 1998)
(see (Glover 1999)).

Apart from the short term response (scale of seconds) there are also long term effects on the scale of minutes. Krüger,
Kleinschmidt, and Frahm (1996) report an initial overshoot, signal decrease extending over 4-5 min, post-activation
undershot (of response) mirroring of initial overshoot. Jones (1999) reports that the post-activation undershot can last up
to 1 minute.

2.3.3 Deactivation

In some functional neuroimaging studiesdeactivationis seen. This is not directly related to increased activity in inhibitory
synapses since they also require energy for their activity.However, inhibition will presumably cause a decrease in the
total number of firings.

A negative BOLD response can be found in sedated (pentobarbital, chlor-hydrate) and anaesthetised (helothane/nitrous
oxide) children (Born et al. 1996; Joeri et al. 1996). Born etal. (2000b) also found a negative BOLD response among
some young sleeping or sedated (chloral hydrate) children (while Hykin et al. (1999) demonstratedpositiveBOLD-signal
in the fetus brain, when applying a auditory stimulus). The negative BOLD response is not restricted to sedated children
but can be found in sleeping adults (Born et al. 2000a). The negative response is also seen in rCBF PET (Born et al.
2001).

Artifactual deactivations can be seen if confounds are modeled incorrectly, see section 3.5.8, and if subjects engage in
paradigm-unrelated mental processes during “rest” scans,see section 2.1.

2.3.4 Coupling nonlinearity

The hemodynamic response on the scale of seconds is found to be approximately linear if the stimuli is sufficiently long
(Boynton, Engel, Glover, and Heeger 1996). However, for shorter stimuli nonlinearities are found: (Vazquez and Noll
1998), auditory stimuli shorter than 6 seconds (Robson, Dorosz, and Gore 1998), speech syllables (Binder, Rao, Ham-
meke, Frost, Bandettini, and Hyde 1994), rapidly presentednouns (Friston, Josephs, Rees, and Turner 1998b), metronome
paced finger tapping (Glover 1999) and visual checkerboard stimuli shorter than 4 seconds and with varying on and off
periods (Birn and Bandettini 2001).
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Abbrv. Exp. Name
CT/CAT 0 Computerized (axial) tomography
MRI/fMRI/pMRI/MRS/MRSI 18 Magnetic resonance imaging
PET 619 Positron emission tomography
SPECT 1 Single photon emission computed tomography
fNIR/fNIRS/NIRS 0 Functional near-infrared spectroscopy
TCD 0 Transcranial Doppler
EEG/ERP 8 Electroencephalography / Event-related potentials
MEG 0 Magnetoencephalography
EIT 0 Electrical Impedance Tomography
ECoG/SEEG 0 Electrocorticography / Stereoelectroencephalography
LFP/FP 0 (Local) field potential
OI 0 Optical imaging with voltage sensitive dyes
OIS 0 Optical intrinsic signal imaging
LD 0 Laser-Doppler

0 Single-cell/Multiple-cell electrophysiology
ESM 0 Electrocortical stimulation mapping / Electrical corticostimulation
TMS 0 Transcranial magnetic stimulation

Table 2.3: Brain mapping techniques (modality). The “Exp.”-column shows the number of experiments in the BrainMap™
database (2000 May) being marked as performed with the modality, — some of these experiments combining two modali-
ties.

Furthermore when several cognitive components are stimulated simultaneously the effect might not be additive.

2.4 Functional neuroimaging and other brain measurement techniques

Almost all experiments recorded in the BrainMap™ database use either PET or fMRI, see second column in table 2.3.
A few use EEG (ERP) in combination with PET and (Allison et al.1994) is the only study where Talairach coordinates
are given based on EEG (ERP) measurements. Walter et al. (1992) uses MEG, PET and MRI (but is presently marked
“PET-MRI”).

Apart from the techniques described below there are among otherstranscranial Doppler (ultrasound sonography)
(TCD) which can measure on the blood flow velocities in the cerebral arteries, andlaser-Doppler (flowmetry/velocimetry)
(LDF/LDV) which measure microcirculatory blood flow. LaserDoppler can also construct images, — so-calledlaser
Doppler perfusion images.

If different modalities are combined it is possible to obtain good time resolution (with the electrical/magnetic methods)
together with good spatial resolution (with, e.g., an fMRI scanner), e.g., structural MRI scans can be used to form more
spatial precise MEG and EEG images (Dale and Sereno 1993) andfor intersubject alignment, see section 3.5.6.

2.4.1 Electrophysiology

Direct measurement of the electric state of the single cell can be made bypatch recordingsor intracellular recordingswith
micropipettes (Shepherd 1994, pages 68–69). Multiple cells can be recorded simultaneously by extracellular recordings
from a crowd of neurons and their relationship can be analyzed (Gerstein and Perkel 1972). The individual neurons can be
distinguished from each other by the form of the action potential (the spike), e.g., through principal component analysis
(Kirkland 2001) or some form of clustering (Rinberg, Davidowitz, and Tishby 1999).

As the measured spikes are point process-like it is not possible to analyze this data with the methods typically used
with functional neuroimaging data. However, the spike train data can be converted to a spike density (in time) and discrete
time samples can be represented in a matrix and analysed in the same way as PET and fMRI are.

Local field potential (LCD) is an intermediate step between electrophysiology and EEG.

2.4.2 EEG, MEG, EIT

Electroencephalography(EEG) andmagnetoencephalography(MEG) measure the electric and magnetic field generated
from a neuron assemble. In the case where the EEG signal is phase-locked to a stimulus and averaged across trials it is
often calledevent-related potentials(ERP) orevoked potentials

Usually EEG is measured noninvasively on the scalp by an array of electrodes with the first measurement done by
Hans Berger in 1924 (Berger 1929). However, there exist invasive intracranial variations of EEG:Electrocorticography
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(ECoG) typically performed preoperative or intraoperative where an electrode grid (e.g., a� � � array) is placed directly
on the cortical surface, and stereoelectroencephalography (SEEG) — also called “depth-EEG” or intra-cerebral recording
— where the electrodes are placed deeper in the brain. These intracranial EEG techniques are usually performed in
connection with neurosurgery on epileptic patients. Examples of this technique are available in (Towle et al. 1998),
(Chkhenkeli et al. 1999), (Widman et al. 1999) and (Allison et al. 1994) — the only one presently recorded in the
BrainMap™ database.

The ERP signal exhibits some characteristic excursions named with a combination of the polarity (negative (N) or
positive (P)) and the approximate time of extremum in milliseconds, e.g., N200. The signals are sometimes denoted by
the applied stimulus: auditory evoked potential (AEP), visual evoked potential (VEP), somatosensory evoked potential
(SEP/SSEP) or proprioceptive evoked potential (PEP) (Arnfred et al. 2000). Rather than a signal of its own the ERP
might (just) be a modulation of the alpha-rhythm of the EEG (Makeig, Jung, Westerfield, and Sejnowski 2001).

If EEG is measured from a set of electrodes it is possible to give an estimate of the 3-dimensional distribution of
the electric activity or give an estimate of the optimal dipole position if a fixed number is assumed, — so-called source
localization. One such approach is LORETA (Low-resolutionelectromagnetic tomography) (Pascual-Marqui et al. 1999).

MEG measures the very small magnetic field that arises from neuronal activity (Cohen 1968). The small signal (hun-
dreds of femtoTesla) is measured with a so-called SQUID (super quantum interference device) and with multiple SQUIDs
(presently up to several hundreds) a surface magnetic field image can the measured. As with EEG the magnetic field in
the brain can be estimated. This is usually referred to as magnetic source imaging (MSI). Models with a few sources ex-
ist together with current density models, — so-called magnetic field tomography, see, e.g., (Ionnides, Bolton, and Clarke
1990). Some of the methods are synthetic aperture magnetometry (SAM), multiple signal classification (MUSIC, Mosher,
Lewis, and Leahy 1992), Bayesian power imaging (BPI, Hassonand Swithenby 2000) and LORETA mentioned above.

There are EEG-related techniques that measure the peripheral rather than the central nervous system, e.g., electromyo-
graphy (EMG). These are sometimes measured in connection with functional neuroimaging studies to monitor behavior,
performance and confounding signals, e.g., control for eyemovements can be monitored with EOG or with a video
camera (as in Law 1996, page 53) and Richter, Andersen, Georgopoulos, and Kim (1997) monitor finger movement by
electromyography.

Electrical impedance tomography (EIT, Holder 1987) applies a tiny current (e.g., at some frequency 200-80kHz) to
a number of electrodes on the scalp and measures the static conductivity or the dynamics of the conductivity. Activation
images can be obtained (Holder, Rao, and Hanquan 1996) and the static images can be used in connection with EEG and
MEG source localization.

2.4.3 Computerized tomography

Computerized tomography (CT) — or more seldom computerizedaxial (or assisted) tomography (CAT) — uses X-rays
together with Radon/Hough transform to obtain 2D or 3D images (Cormack 1963; Hounsfield 1973). It is the most
used tomographic medical imaging technique (Kevles 1998, table 1), though usually used in connection with structural
imaging and not used in any serious degree for functional neuroimaging. It is, however, possible to get functional images
from a CT-scanner, e.g., rCBF can be measured by xenon-enhanced computed tomography (XeCT) (Hagen, Bartylla, and
Piepgras 1999), and commercial systems exist that measure the perfusion and estimate CBF, CBV and MTT (mean transit
time) (Eastwood 2000): so-called “Perfusion CT”. Non of theentries in BrainMap™ are made with CT.

2.4.4 Positron emission tomography and single photon emission computed tomography

Isotope Half-life Tracers Exp. Reference
O-15 122 sec H��� O (Water) 384

C ��O� 193
Butanol 23
��O� 0(?) Jones, Chesler, and Ter-Pogossian (1976)

F-18 109 min Fluoro-deoxyglucose (18-FDG) 11
C-11 20 min Fluoromethane 6

C11-flumazenil 0 E.g., Ashburner et al. (1996)
C-10 19 sec ��CO� 0 Jensen, Nickles, and Holm (1998)
N-13 10 min 0

Table 2.4: Examples of PET beta-sources and tracers. “Exp.” column shows the number of experiments performed with
the tracer as recorded in the BrainMap™ database 2000 May.

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) use radioactive
isotopes (“radioisotopes”) and attach them to a molecule — aso-called tracer. This tracer is injected in or inhaled by
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Figure 2.6: Model of a PET scanner with a subject in VRML.

the subject and distributed in the body. When the PET isotopedecays it emits a positron (� � ) that after a short distance
of travel annihilates with an electron. The annihilation results in a radiation of two gamma photons with an angle of
approximately 180 degrees. The photons can be measured withgamma detectors in a ring around the subjects head, see
figure 2.6, and the line of annihilation can be determined by acollimator or by a coincidence technique where the two
gamma photons are detected with opposite detectors at the same time (Phelps 1975; Ter-Pogossian, Phelps, Hoffman, and
Mullani 1975).

PET isotopes and tracers used in activation studies are shown in table 2.4. In functional neuroimaging research studies
radioactive water is commonly used as it has a convenient short half-life, though a poorer spatial resolution than F-18.
After injection the tracer distributes proportionally to the rCBF. SPECT scanners have a lower resolution than PET scanner
and not used as much in research as PET.

A related technique isautoradiographywhere the functional brain images can be obtained on animalswhere radioac-
tive tracers are injected and distributed in the brain whilea stimulus is being applied. After the experiment the animalis
killed and high resolution histological images can be obtained.

2.4.5 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) uses a property of the atomic nucleus to make either 2D or 3D image of the brain
or other anatomical parts. Atomic nucleus with either an oddnumber of protons or an odd number neurons will have
an observable spin (Rabi and Cohen 1933). By applying an external magnetic field� the spins can be aligned and
occupy two states with different energy levels. The distribution between states can be affected externally by photons
matched in frequency� (the resonance frequencyor Lamor frequency) to the energy difference� � �� , with � being
the Planck constant (Purcell, Torrey, and Pound 1946; Bloch, Hansen, and Packard 1946), — the phenomenon termed
nuclear magnetic resonance. The energy difference is dependent on the external magnetic field� and the relation to the
Larmor frequency is� � � � , where� is thegyromagnetic ratiospecific for every nucleus, e.g.�� 	
�MHz/T for common
hydrogen H�. At equilibrium there are more spins aligned in the same directions as� than in the opposite direction
resulting in a net magnetization from the spins.

In a simplified non-quantum mechanistic model an ensemble ofspins forms a macroscopic magnetization vector.
The application of the external photons (in MRI usually called the RF-pulse — radio frequency pulse) will disturb the
vector and the relaxation back to its equilibrium value is associated with measurable signals, e.g., the free inductiondecay
(FID) which decaying envelope is characterized by the T2* time constant. Other time constants are the T1 (longitudinal
relaxation) and T2 (transversal relaxation) that are revealed by different RF-pulses. Apart from the decays the MR-signal
can also be characterized by the amplitude of the signal which in the MRI is related to theproton density.

As the time constants depend on the surrounding matter (biological tissue) the non-spatial MR-signal can be used
in medical application, e.g., with the potential to detect tumors (Damadian 1971). However, by varying the strength of
the external magnetic field� spatially (apply the so-calledgradient field) the Larmor frequency will vary spatially, and
by controlling of the variation of the field and proper signalanalysis of the relaxation signal an image can be formed
(Lauterbur 1973): magnetic resonance imaging (MRI) previous termed zeugmatography or (spatially localized) nuclear
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magnetic resonance (NMR).
By controlling the gradient field together with the application of the RF-pulses and the readout of the signals a large

number of differentMRI sequencescan be made, c.f., spin echo (SE), gradient echo (GE), inversion recovery (IR), satu-
ration recovery, FAIR, etc. Some of the parameters are: the repetition time (TR) which is the scanning period or interval
between the start of each scanning, echo time (TE) which is associated with MR-sequences that use echos (inverting
RF-pulses), inversion time (TI) and flip angle (FA). Apart from the modification introduced by varying these parame-
ters the image characteristics can also be changed by intravenous contrast agent, such as gadolinium in the form of the
paramagnetic Gd-DTPA, e.g., angiographic images can be constructed from pre- and post Gd-DTPA scans.

A tutorial on MRI is (Hornak 1999) and another introduction is (Leach 1988).

Functional magnetic resonance imaging

With contrast agents in the blood images can be produced thatare sensitive to vascular dynamics (Villringer et al. 1988).
The applied contrast agents are able to generate images of task activation (Belliveau, Kennedy Jr, McKinstry, Buchbinder,
Weisskoff, Cohen, Vevea, Brady, and Rosen 1991). Hemoglobin changes its magnetic properties depending on whether it
is oxygenated or deoxygenated: Deoxyhemoglobin (Hbr) is paramagnetic while oxyhemoglobin (HbO2) is diamagnetic
(Pauling and Coryell 1936). Thus hemoglobin can be used as a contrast agent —blood oxygenation level dependent
contrast (BOLD) — for detection of oxygenation (Ogawa, Lee,Kay, and Tank 1990; Turner, Le Bihan, Moonen, Despres,
and Frank 1991), and subsequently also for detection of brain activation (Ogawa, Tank, Menon, Ellermann, Kim, Merkle,
and Ugurbil 1992; Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy, Hoppel, Cohen, Turner, Cheng,
Brady, and Rosen 1992).

The BOLD response is usually positive: Though oxygen is consumed and the CBV is increased the increase in CBF is
larger (luxury perfusion) and the result is a decrease in Hbrwith lower field inhomogeneity. However sedation/anesthesia,
sleep or age can modulate it, so the response becomes negative, (Born, Rostrup, Leth, Peitersen, and Lou 1996; Born
1998; Martin, Thiel, Girard, and Marcar 2000), see also section 2.3.3.

fMRI is generally regarded as less stable than PET. This is due to instabilities of the MRI scanner, susceptibility
artifacts and the complexity of the BOLD signal. Susceptibility artifacts are a special problem for experiments involving
activations in the temporal region, e.g., Devlin et al. (2000b), Devlin et al. (2000a) and Veltman et al. (2000) found
reduction in signal strength and fewer activations in the temporal region in fMRI compared to PET. Several compensation
methods exist (Deichmann and Turner 2001). Furthermore, the fMRI signal will depend on the details of the MR-
sequence, e.g., the TE (Peltier 2000).

Diffusion and Perfusion and other

Apart from BOLD MR-scanners are able to generate other typesof images that are of interest in functional neuroimaging:
Diffusion weighted image (DWI) are tensor images — diffusion tensor images (DTI) — (6 values for each voxels) that
are able to image the laminar structure of the brain, e.g., white matter tracts can be traced (Tuch, Belliveau, and Wedeen
2000) and the thalamic nuclei can be identified (Wiegell, Tuch, Larsson, and Wedeen 2000; Wiegell 2000).

Perfusion weighted images (PWI or pMRI) are scalar time-series images (as with BOLD fMRI) and from these it
is possible to obtain estimates of parameters such as CBF, CBV, so-called mean transit time (MTT) and time-to-peak.
The mathematical modeling associated with PWI resembles the methods used in modeling the hemodynamic response
in BOLD fMRI, e.g, (Østergaard, Weiskoff, Chesler, Gyldensted, and Rosen 1996) uses principal component regression.
However, as input to the mathematical model it is rather the “input curve” — an estimate of the input of the injected
contrast agent.

Furthermore, MRI can be used to measure brain temperature (Kuroda et al. 2001) and electromagnetic activity of a
comparable magnitude to that of neuronal firing (Bodurka andBandettini 2001).

2.4.6 Optical methods: Optical intrinsic signal, near-infrared spectroscopy and voltage sensi-
tive dyes

Optical intrinsic signal

Optical intrinsic signal (OIS) (Grinvald, Lieke, Frostig,Sperling, and Wiesel 1986) — sometimes called intraoperative
optical intrinsic signal (iOIS) when performed on humans during surgery — measures how white light is reflected at
different wavelengths or how a bandbass filtered light is reflected on an exposed cortex. The reflected light is a function
of among other variables “blood volume, blood flow, cell swelling and the oxidative state of the tissue” and the method
provides one of the best spatial and temporal resolutions for functional neuroimaging: 50�m and 50 ms (Mazziotta and
Frackowiak 2000, page 18), where the oxidative (deoxygenation) signal has the highest resolution (Stetter et al. 2000).
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Voltage sensitive dyes

Certain substances — so calledvoltage sensitive dyes(VSD) — change reflectance or fluorescence depending on an
applied electric field. The changes can be recording by an optical imaging technique (Grinvald, Salzberg, and Cohen
1977; Grinvald, Cohen, Lesher, and Boyle 1981). Another related technique is oxygen-dependent phosphorescence, see,
e.g., (Vanzetta and Grinvald 1999).

NIRS

If the frequency of the light is sufficiently low it is able to penetrate biological tissue: The non-invasize near-infrared
spectroscopy (NIRS or NIROE — near infrared optical encephalography) technique uses a light source (laser diode or
halogen lamp) and a spectrograph with wavelengths around 800nm (e.g., Neufang et al. (1999) analyzed the spectral range
720-940nm.) A functional activation signal can be obtainedas the scatterings from deoxyhemoglobin and oxyhemoglobin
are different: Wavelengths around 760nm is primarily deoxyhemoglobin and 830nm is mainly oxyhemoglobin (Chance,
Chen, and Cowen 1999). The spatial resolution of NIRS is poor, but the sampling time can potentially be high, though it
is usually 0.5-1 seconds (see, e.g. Kato et al. 1998). A newerstudy has used 6.25 Hz (Franceschini et al. 2000). NIRS
in the brain was first developed by Jobsis (1977) and functional neuroimaging NIRS was first described by Kato et al.
(1993)

Multisource and multidetector NIRS has also been developed. This is sometimes referred to asoptical topography
(Maki, Yamashita, Ito, Watanabe, Mayanagi, and Koizumi 2001). A similar technique that is under development is optical
tomography, where “photon density is measured at various points around the medium” (George et al. 2000).

2.5 Stimulation of the brain

Apart from the stimulation through perception the brain canbe stimulated directly by electric, magnetic or pharmacolog-
ical means.

Electrocortical stimulation can either be applied intraoperative or during neurosurgery evaluation of epilepsy patients:
An electrode grid is placed on the surface of the brain and pulses or stimulus trains can be applied with following mea-
surements of the evoked signal (Ray, Meador, Smith, Wheless, Sittenfeld, and Clifton 1999).

Transcranial magnetic stimulation (TMS) applies a short large magnetic field on a region of the brain from a coil
outside the head (Barker, Jalinous, and Freeston 1985). This causes a short virtual lesion effect. The TMS pulses can also
be repeated: so-called repetitive TMS (rTMS).
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Chapter 3

Analysis

3.1 Models

A modelis a representation of a part of a world, e.g., the brain. Amathematical modelis a mathematical representation:
States and variables of the models are represented by mathematical variables or functions and inter-relation between the
model states and variables are described with mathematicalequations. Astatistical modelis a mathematical model where
some of the states or variables are regarded as stochastic. In a statistical model there exist variables that are known (or
directly observed, given or assumed) and variables that arehidden.

In many cases it is convenient to speak of adirection in the model with internal states of the model influenced by
an input (or “independent variables”, predictor, target, regressor, explanatory variable) and responding with anoutput(or
“dependent variables”, response, regressand, explained variables), see figure 3.1. The variables in the model that regulate

Input � Model � Output

Figure 3.1: Model with input and output.

the input-output mapping is calledparameters. Consider, e.g., the mathematical model

� � �� � (3.1)

where a data matrix� can be considered the input which is multiplied by the model parameters� to form the output
�

.
This can be augmented to a statistical model by the inclusionof random disturbances�

� � �� � � 	
(3.2)

Now �� forms hidden variables that are contaminated by the additive noise in� before the model forms the output
�

.
The direction of the model is not always obvious, and in some cases it can be an advantage to do “inverse regres-

sion” where the direction is reversed (Krutchkoff 1967). Some analyses disregard the direction altogether viewing the
modeling as symmetric. This has been calledinterdependence analysis, — as opposed to the symmetricdependence
analysis, corresponding to what in the connectionistic literature has been called unsupervised and supervised modeling,
respectively.

The operations that can be performed on the input-model-output system can be grouped according to what is known
and unknown, see table 3.1. In prediction the input and modelare known and the task is to predict an unknown output,
e.g., inclassificationthe prediction on the output is class labels and inregressionthe prediction is real values. Estimation
concerns the identification of the model parameters either as point estimates or as (in Bayesian statistics) distributions.
In reinforcement learning the output of the individual input samples are not known, but rather the effect of a set of input
samples. Unsupervised learning can by described as a model that generates output. Inversion appears when the model
and output is known. An example is PET reconstruction where the sinogram is the output, the model is obtained by the
geometry of the scanner and the input is the site of positron annihilation (or better the beta decay). When there exists a
linear relationship between the input and output the word “deconvolution” can be used. Actually since the convolution
operator is “symmetric” (commutative) the estimation and inversion has the same mathematical formulation (Proakis and
Manolakis 1996, section 4.6 “Inverse Systems and Deconvolution”), and, e.g., Boulanouar et al. (1996) use it in the sense
of system identification: identify the model (the hemodynamic response function) from the input (the stimulus) and output
(the fMRI signal).
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Name Input Model Output
Prediction + + ?
Estimation, supervised learning, system identification + ? +
Reinforcement learning + ? (+)
Unsupervised learning NA ? +
Inversion / deconvolution / inverse filtering ? + +
Blind deconvolution ? ? +
Testing + + +

Table 3.1: Operation on a model. “+” means that the component is known or measured, “(+)” only partly known, “?” that
the component is unknown and is to be estimated. “NA” means that it does not apply.

Blind deconvolution tries to establish both the input and the model. It is possible to identify both the input and the
model if some assumptions can be made about the data. Testingis were the discrepancy between the input, output and the
model is assessed.

As an example process consider the input and output data to beknown via atraining set. This data are employed in
estimation of the model parameters. Then the estimated model is used together with input and output from atest setto
evaluate how well the model performs. If it performs well it is used to predict output from new inputs.

Below will the issues of estimation and testing be examined more closely.

3.2 Estimation

The wordstraining, learning, optimization, searchand estimationare used in several disciplines to denote the same
operation, but weighing different aspect of it. They all denote the operation of finding a model parameter or a distribution
of it. The wordsearchis also used though mostly in combinatorial problems that donot incorporate any probabilistic
variables in the model.Learningis often used in artificial intelligence (AI) to distinguishit from the classical AI where
the “parameters” of the model are not estimated but set ad hocby a human expect. Using the wordoptimizationone usually
wants to give the impression that the estimation is hard, e.g., nonlinear, requiring a iterative scheme.Training is often
used in the neural network literature as a distinction between the other operations: validation and testing.Optimization
will usually also mean that the estimation goal is apoint estimate, — rather than a distribution of the parameter as in
Bayesian estimation.Estimationis usually used when a probabilistic formulation has been made. In such a case one can
think of estimation in the chain shown in figure 3.2. The first box of the chain contains a process where a statistical model

Probability �
E.g. Max. likelihood

Cost function �
E.g. gradient

Update

Figure 3.2: Chain for estimation of parameters in a model.

is setup. In the next box a cost function is derived by subjecting the statistical model to a estimation technique, and in the
last stage an update rule is found that will optimize the costfunction appropriately. Not all updates require a cost function
and not all cost functions are developed from probabilisticassumptions. But even if the update is not developed from a
cost function it might be associated implicitly with a one.

There are a number of different statistical estimation techniques/principals.

• Themaximum likelihood estimation (MLE) principal maximizes the likelihood function� ��� � � �� �� �, often
implemented indirectly by the minimization of the model parameters� of the negative log-likelihood (Mardia et al.
1979, section 4.2)�

�MLE � arg min� �	
 ���� � arg min� �	 �� � �� �� � arg min� �	 �� � �� �� �� � (3.3)

where� is the random variable of the statistical model. The negative log-likelihood is then regarded as the cost
function.

• Maximum a posteriori (MAP) estimation is sometimes referred to as regularized maximum likelihood. Here the
likelihood function is augmented with a prior on the parameters� �� � (Ripley 1996, appendix A.1)�

�MAP � arg max� �� �� �� � � �� �� 	 (3.4)



3.2 Estimation 35

When the logarithm is applied the prior will just become an additive penalty term to the log-likelihood. MAP
has the advantage over MLE when there are many parameters� compared to the number of objects� in � : By
biasing the estimate through the prior the estimate will be “better”, e.g, as assessed by the generalization error or
the variance on the parameter estimate (Hoerl and Kennard 1970b), (Mardia et al. 1979, exercise 8.8.1).

• Least (mean) squareaims at minimizing a least square error between a target (measured data
�

) and the model
output/estimate (

�
�

). In most cases this can be considered as a variation of maximum likelihood estimation with an
implicit assumption of Gaussian error.

• Minimum variance methods aims at reducing the variance of the parameter estimate given assumption of the
stochastic variables in the model. It often comes in conjunction with an assumption that the estimator should be
unbiased, i.e., given� � � the parameter estimate should convergence to the true value. When the model is
linear the optimal estimate is termed BLUE — best linear unbiased estimator.

• M-estimation is robustestimation suitable for data sets with outliers (Huber 1972). Often the methods can be
reverse-engineered to MLE or MAP estimates with heavy-tailed distributions such as the Laplace distribution or
adding a extra outlier class (Larsen, Andersen, Hintz-Madsen, and Hansen 1998a). The simple framework used
in (Nielsen and Hansen 2001b) and section 5.9 where extreme points are discarded in a two-stage strategy can be
considered as belonging to this domain and corresponds to anextended and multivariate approach in the line of�-trimmed means. See also (Mardia et al. 1979, section 3.2).

• Bayesian inferenceconsiders Bayes formula

� �� �� � � � �� �� � � �� �� �� � � (3.5)

where both� and� are random. An unconditional so-calledprior distribution for the parameters� �� � is assumed
as well as the conditional distribution (the likelihood) ofthe data� �� �� �. Since the denominator can be found as

� �� � � � � �� �� � � �� � �� � (3.6)

theposteriordistribution� �� �� � can be found. In some simple cases a closed form expression can be found for the
posterior. For complex models or distributions the posterior can only be evaluated approximately, e.g., with Markov
chain Monte Carlo techniques (Neal 1996). Sometimes the full distribution is regarded as the result while if point
estimates are desired the maximum or the mean can be used.

Below optimization and regularization are described in more detail.

3.2.1 Optimization

Optimization is not only considered as an estimation step ina statistical modeling process but appears in many other areas
of mathematical modeling, and there are many forms optimization depending on the underlying problem. Some of the
issues that determine what optimization type should be usedare:

• Constrained/unconstrained. Some solutions require that the parameters of the model or elements of the model are
restricted to have certain values. There arehard andsoftconstrains. Examples of soft constraints are that of ridge
regression or weight decay of neural network where the parameters are encouraged to lie close to zero. In canonical
correlation analysis the constraint that some of the latentvariables should have the identity matrix as a covariance
matrix can be considered. Soft constraints are often a result of regularization. Hard constrained optimization can
often be transformed to unconstrained optimization by augmenting the cost function withLagrange multipliers, see
e.g. (Bishop 1995a, appendix C).

• Continuous/discrete. In continuous optimization the cost function is directly differentiable, and as many problems
aresmoothit is an advantage to utilize the derivative information, e.g, searching in the direction of the gradient.

• Local/global. In many optimization problems it is not necessary to find theglobal maximum, e.g., in a standard
feed-forward artificial neural network there will be many “similar” global minima as the parameters can be per-
muted: The order of the hidden units can be change; the sign can be reversed between a layer and its next layer with
affecting the value of the cost function (Bishop 1995a, section 4.4).

• Noisy. In some case the evaluation of the cost function cannot be made exactly. This might be because of numerical
problems or because the cost function is stochastic, e.g., in connection with cross-validation with a limited validation
set.
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1st 2nd Name References	 	 Amoebe / simplex / Nelder-Mead (Nelder and Mead 1965), (Press et al. 1992, sec-
tion 10.4)

+ 	 Gradient descent / steepest decent
+ 	 Gradient descent with momentum (Poljak 1964)
+ 	 Quickprob (Fahlman 1988)
+ 	 Natural gradient (Amari 1998)
+ 	 Conjugate gradient algorithm

— Hestenes-Stiefel (Hestenes and Stiefel 1952)
— Fletcher-Reeves (Fletcher and Reeves 1964)
— Polak-Ribiere (Polak and Ribiere 1969)
— Scaled conjugate gradient (Møller 1993)

+ 	 Quasi-Newton — variable metric
— Powell-Broydon
— Davidson-Fletcher-Powell (DFP) (Davidon 1959; Fletcherand Powell 1963)
— Rank-one-formula / unirank (Broyden 1967; Davidon 1968; Fiacco and Mc-

Cormick 1968; Murtagh and Sargent 1969; Wolfe
1968)

— Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Broyden 1970; Fletcher 1970; Goldfarb 1970;
Shanno 1970)

+ (+) Pseudo(-Gauss)-Newton (Becker and Le Cun 1988; Ricotti, Ragazzani, and
Martinelli 1988)

+ (+) Gauss-Newton
+ + Levenberg-Marquardt (Levenberg 1944; Marquardt 1963)
+ + Newton(-Ralphson)

Table 3.2: Unconstrained continuous variable multivariate local optimization techniques. “1st” and “2nd” column indicates
whether the first and second order derivative is required as input to the algorithm.

• Batch/on-line. If the optimization is iterative the whole data set can used(batch), a part of it (window), or a single
object (stochastic, on-line, sequential, pattern-based).

A list of methods for continuous local optimization appear in table 3.2. Detailed descriptions of these methods are
available in Fletcher (1980), Bishop (1995a, chapter 7), Ripley (1996, Appendix 5) and Hertz, Krogh, and Palmer (1991,
section 6.2), — the last three with particular reference to optimization of neural networks. Some of the methods can be
seen as using an approximation to the local Taylor expansionof the (cost) function� around the present parameter set��

� �� � � � �� � � � �� 	 � � ��
� � �� �� �

����� �� �� �	�
�



� �� 	 � � ��

� �� �� �� �� ��
����� �� �� �� �

�� 	 � � � � 	 	 	
(3.7)

The Amoebe optimization (the top item in table 3.2) uses onlythe first term of the Taylor expansion, while the rest
uses two of three terms — the first derivative (gradient,�) and second derivative (Hessian, ). The conjugate gradient
and quasi-Newton methods construct the curvature information along the iteration steps and for the Gauss-Newton and
Levenberg-Marquardt methods the second order derivative should be derived and feed as input to the algorithm. These
last algorithms involve matrix inversion of the Hessian. The pseudo-Gauss-Newton method circumvents that by only
considering the diagonal of the Hessian.

The iterative update formula for minimizing equation 3.7 with the Newton method is found by setting the gradient for
the new parameter� to zero

���� �� �� �� � � �
� � �� �� � (3.8)

Third and higher order terms are ignored

� � �� �  � �� 	 � � � (3.9)

The guess for the new parameters� is isolated

� � �� 	 ��
� ��

	
(3.10)
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It is difficult to make generalization of the performance of the different algorithms over a general class of problems
The “No free lunch” theorem states that no algorithm is better than others when the performance on all cost functions
is considered (Wolpert and Macready 1997). In practice with“normal” cost functions there are some aspects that can
be generalized, e.g., of the 3 conjugate gradient algorithmit is my experience that the Hestenes-Stiefel does not perform
well in connection with neural networks. It is often slower in convergence (for the cost function) than simple gradient
descent. The Polak-Ribiere seems to be the best. Ripley (1996, page 345) and Bishop (1995a, page 281) also prefer
this algorithm. The Lyngby toolbox implements several optimization methods for the artificial neural network, and the
Levenberg-Marquardt algorithm is one of the fastest when the number of parameters that are optimized is small. Fur-
thermore, it is quiterobust, which is quite important when it has to “run on its own” whereit, e.g., cannot be restarted
if it jumps into a bad region and diverge. My experience is that even changes in seemingly non-important parameters
as the multiplications factor in the Levenberg-Marquardt algorithm (the parameter that interpolate between the Gauss-
Newton direction and the infinitely small gradient direction) can lead to significant different performance results of the
optimization algorithm. This parameter can furthermore bedetermined in a number of different ways (Nielsen 1999).

Line search

Some of the multivariate optimization algorithm requiresline searchin each iteration, where the parameters are optimized
along a given direction in the parameter space. This can either be hard/exact or soft/inexact/partial, with the former finding
the minimum and the latter just a reduction in the cost function. There exist several methods: Bisection, Fibonacci, golden
section, Newton, secant, parabolic and hyperbolic interpolation and “Brent’s algorithm” which is a combination of golden
section and interpolation (Brent 1973). This step forms an extra complexity in the optimization.

3.2.2 Regularization and priors

When there are many parameters compared to the number of objects (examples) or if many of the input variables are
highly statistical dependent it can be difficult to get a goodparameter estimate. Manifestations are: The modeloverfits
which means that the parameters are optimized to explain theparticular data that has been used for the estimation (fitting
both signal and noise) and it will perform poorly on a new set of data; a classical statistical test willloose powerand
typically not be able to reject a null hypothesis; thevariance of the parameter estimate will be large. For some models,
e.g., multilayer artificial neural network the variance of the parameter estimate will always be large since the parameters
can be permuted.

The solution is to restrict the model or use related data. Oneof the classical methods isridge regressionthat penalizes
large parameter values in a linear model (Hoerl and Kennard 1970b) This is known asshrinkageor — in the neural
network literature — asweight decay(Hinton 1986). Many regularization techniques can be developed from probabilistic
assumptions with priors on the parameters, e.g., ridge regression estimate can be derived as a MAP estimate with a
univariate Gaussian prior given for each parameter (Lindley and Smith 1972). Other distributions can be plugged into
the model, e.g., Laplace distributions (Williams 1995; Goutte and Hansen 1997; Tibshirani 1996), generalized Gaussian
(Fu 1998) or a general multivariate Gaussian distribution (Goutte, Nielsen, and Hansen 2000). The ridge regularization
(and generalizations of it) were actually described earlier in connection with integral equations (Philips 1962; Tikhonov
1963; Tikhonov and Arsenin 1977) and a parallel line of literature to the statistical has been developed, see, e.g., (Hansen
1996) with ridge regression calledTikhonov regularization. Different types of regularization should sometimes be applied
to the parameters, e.g., the parameter that models a constant term should not be shrunk (Brown 1977). Bishop (1995b)
has shown that adding noise on the input is (under some assumptions) approximately equivalent to ridge regularization:
One should refrain from adding noise to the data as more data points are generated, thus larger amounts of data has to
be analyzed. Ridge regularization does not generate more data points, and the problem with setting the regularization
parameters is also present in the case when adding noise to the data.

Another kind of regularization ispruning, that completely removes unimportant parameters from the model based on
the effect they have on the cost function.Optimal brain damage(OBD, Le Cun, Denker, and Solla 1990) andoptimal brain
surgeon(OBS, Hassibi, Stock, and Wolff 1992; Hassibi and Stock 1993) are two methods introduced in the artificial neural
network literature. Both algorithms rely on a Taylor expansion of the cost function. When the model is fully optimized
the first order derivative will be zero, and the effect on the cost function when a parameter is deleted is assessed only by
the second order term. OBD uses a diagonal approximation to the Hessian, while OBS will use the full Hessian.

In (Hansen and Rasmussen 1994) it is shown that an infinite weight decay on a parameter corresponds to pruning that
parameter. Another combination of pruning and weight decayis principal component pruning(PCP) where activation of
the units in successive layers is principal component analyzed and the small components are pruned (Levin, Leen, and
Moody 1994). For a linear model this corresponds to principal component regression (Massy 1965), see also (Mardia,
Kent, and Bibby 1979, section 8.8) or (Jackson 1991, section12.3).

The setting of the hyperparameter might be critical in some applications others not. In the non-critical applications
it is enough to set the regularization parameter on a value that is known to do perform reasonable well. In the critical
applications one has to perform a tuning of the hyperparameter, — sometimes called “adaptive regularization”. This can
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be done by cross-validation or algebraic estimates of the generalization error, e.g., adaptive regularization for regression
neural networks (Hansen, Rasmussen, Svarer, and Larsen 1994; Hansen and Rasmussen 1994), and adaptive regularization
for neural classifiers (Andersen, Larsen, Hansen, and Hintz-Madsen 1997), see also (Larsen, Svarer, Andersen, and
Hansen 1998b; Bengio 2000). In many cases it is only feasibleto give heuristic values for the optimization of the
hyperparameter. The spatial normalization in SPM99 (Ashburner and Friston 1999) regularizes the deformation field.
The tuning of the regularization parameter is based not on a quantitative measure but rather on a subjective judgment by
the user (researcher) who should increase the amount of regularization “if [the] normalized images appear distorted”.

In the Lyngby toolbox simple regularization optimization is implemented in connection for the artificial neural network
model for pruning size and ridge parameters using split-setvalidation set. This optimization is very time consuming for
functional neuroimaging data given that each optimizationof the model parameters for a given set of hyperparameters is
non-trivial and already time consuming.

3.2.3 Non-orthogonality of design: Correlation between covariates

Optimally, the functional neuroimaging experiment shouldbe designed so that variables of interest are applied indepen-
dently. Unfortunately it is not always possible to construct such experiments. In certain experiments a subtask by default
follows another task, e.g., a motion execution period is preceded by a motion preparation (Purushotham, Nielsen, Hansen,
and Kim 1999).

One of the methods to circumvent this problem is by varying the period of the task. Purushotham, Nielsen, Hansen,
and Kim (1999) varied the motion preparation. It was not possible to vary the motion execution as it was “controlled” by
the subject. For fMRI it is necessary that the variation is large compare to the hemodynamic response — a few seconds
might be enough.

3.3 Testing

“Testing” is the act of determining how probable a model is. “Validation” is a somewhat similar to testing the customary
distinction between the two being that validation is performed as part of the parameter and hyperparameter estimation
process, while testing is the assessment of the “final” model, see, e.g, (Ripley 1996, page 354).

There are several ways of testing:

• Classical statistical testing. One such approach is likelihood ratio testing (LRT) where two hypotheses are stated,
i.e., the parameters of the model are fixed to some values or maximized within a region, and the resulting likelihoods
are calculated and divided by each other, — the result being thetest statistics. When distributional assumptions are
made about the stochastic variables of the model the distribution of the test statistics can often be found analytically.
The way in which LRT is usually employed is by fixing parameters to zero for one hypothesis and set the parameters
for the other hypothesis so that the likelihood is maximizedin the region different from zero.

• Bayesian tests. These tests resemble LRT when Bayes formula is used and priors are used as they are usually
formulated as a ration between two probabilities with different hypotheses:Posterior oddsandBayes factor. The
Posterior odds consider the ratio between the posterior of two models� � and� � (Ripley 1996, page 62)

� �� � �� �� �� � �� � 	 (3.11)

Considering the Bayes formula for one of the model� �

� �� � �� � � � �� �� � � � �� � �� �� � (3.12)

it is apparent that the term� �� � is similar for both models. Furthermore, as the two models are considered discrete
and in many case we want to assign equal prior on them� �� � � � � �� � � — theprior oddsare one, the posterior
odds becomes equal to the likelihood ratio for the models, the so-calledBayes factoror “evidence ratio”

� �� � �� �� �� � �� � � � �� �� � �� �� �� � � � (3.13)

with the evidence found by integrating the parameters in themodel

� �� �� � � �
� � �� �� � � � � � �� �� � � �� 	 (3.14)
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• Test-set based methods. Here the data is split and a part of the data is used for estimation (thetraining set), another
part might be used to estimate hyperparameters (thevalidation set). The rest (thetest set) is used for testing. When
the objects are divided into� non-overlapping sets and validation is based on� different splits of training and
validation set the method is referred to ascross-validation, — or �-fold cross-validation (Stone 1974). When there
is only one object in the validation set it is termedleave-one-out(LOO) cross-validation. If the test set is picked
at random the cross-validation is referred to asMonte Carlo cross-validationor “repeated learning testing” (Smyth
1996; Smyth 2000). Cross-validation with 50%/50% split arereferred to as half-sampling (Celeux 2001). The
approaches make little assumption of the underlying distributions. There are however several problems with it:

– Some of the data cannot be used for the estimation of the modelparameters, and if there is very little data this
could mean that the parameters are not well determined.

– A limited test set will have a variance compared to an infinitetest set.

– Test set based methods cannot directly deal with models thatrequire fitting of parameters for the test data,
such as in ANCOVA.

It is not clear what the optimal size of the training and validation set should be: Goutte and Larsen (1998) write that
small split ratios (many training examples, few validationexamples) tend to be best, and report accounts that find
opposite results (Shao 1993; Larsen and Hansen 1995). Celeux (2001) finds the LOO outperforms half-sampling
on small data sets while the opposite is the case for moderateto large sample sizes.

The model performance estimated on an (theoretical) infinite test set is calledgeneralization error.

• Algebraic estimates of performance. These estimates works by using the error on the training set and augmenting
it with a term that represents the overfitting. The term is typically a function of the number of parameters and the
number of objects. Some of the many proposals in this domain are listed in table 3.3. With
 � �� � �� �� � as the
log-likelihood (of the total data) and� and� as the number of parameters and objects some of them are:

AIC � 
 	 � (3.15)

BIC � 
 	 � �� �� � (3.16)

These have different characteristics, e.g., according to Hannan and Quinn (1979), Shibata (1976) has investigated
the asymptotic properties of AIC: The estimate is not consistent, i.e., it asymptotically overestimates the number of
parameters for autoregressive models with non-zero probabilities.

The difference in performance of the different methods has been assessed by several, e.g., the over-estimation of AIC
is also found by Hansen, Larsen, and Kolenda (2001a) on simulated data analysed with ICA, Furthermore, it was found
that BIC performed the best in comparison with test set and BIC on a simple simulated data set. On the other hand
Smyth (1996) finds that BIC compared slightly poorer than cross-validation. This is also found by Celeux (2001) for poor
sample sizes: “LOO outperforms BIC and ICL for poor sample sizes”. (Smyth 2000) compared cross-validation and BIC
for clustering model selection on two data-sets (diabetes,atmospheric geopotential height) — the two methods returning
the same result (3 clusters for each data set). Contrary, differences between ICL, BIC and AIC were found by (Goutte,
Hansen, Liptrot, and Rostrup 2001) in assessment of the number of clusters in feature-space clustering of fMRI data.

3.3.1 The number of samples and learning curve

The number of samples (objects/scans/subjects) has an effect on the test. In classical statistical test the critical regions are
often determined so the rate of false positive is controlled. That means that for few samples (e.g., subjects) the test will
have small power not being able to detect a complex hypothesis, — and must choose the simple hypothesis. The issue has
been addressed in functional neuroimaging by Friston, Holmes, and Worsley (1999a), and one of the recommendation in
this connection is, e.g., that fixed effect analysis and conjunction analysis should be chosen for 6–10 subjects and random
effects for above 12 subjects for fMRI studies.

In the artificial neural network literature the issue is often discussed as thebias-variance trade-off(Geman, Bienen-
stock, and Doursat 1992; Bishop 1995a) andlearning curves. A learning curve is a tool to examine the relationship
between the performance of an optimized model and the numberof examples (scans): The generalization error is sim-
ply plotted against the size of the training and validation set. Often simple models, such as heavily regularized models
or models only using a few components from a subset selection, are better than complex models on a small sample set
because the complex models tend to overfit. With larger sample size the complex models usually perform better than
the simple models, as the simple models is not able to model the complexity of the data. Thus it is often seen that the
learning curves crosses (Mørch et al. 1997). The learning curve can also tell if new scans would provide better results: If
the learning curve continues to decrease the model can be fitted yet better with new scans. However, if it has reached a
plateau then it is likely that new scans would not help to get amodel that fits the data better.
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Name Description Reference
AIC Akaike’s Information criteria (Akaike 1973; Akaike 1974)
AICC Modified AIC (Hurvich and Tsai 1989)
BIC “B” information criterion (Akaike 1977; Akaike 1978)
BIC/SBC Bayesian information criterion (Rissanen 1978; Schwarz 1978)
FPE Final prediction error (Akaike 1969; Akaike 1970)
FPE� FPE with an heuristic adjustment (Bhansali and Downham 1977)
FPEC FPE + test (De Luna 1998)
GPE Generalized prediction error, regularization FPE (Moody 1991; Moody 1992)
FPER (Larsen and Hansen 1994)
HQ (Hannan and Quinn 1979)
ICL Integrated completed likelihood (Biernacki, Celeux, and Govaert 2000)
NIC Network information criterion (Murata et al. 1991; Murata et al. 1993; Murata

et al. 1994)
RIC Risk inflation criterion (Foster and George 1994)

Table 3.3: Model order determination and generalization criterias. Akaike’s BIC (information criterion B) is not the same
as Rissanan’s and Schwarz’s BIC criterion, and to distinguish the two the latter has also been termed “Schwarz Bayes
Criterion”: SBC. See also (Ripley 1996, section 2.6). Several other criteria is described and evaluated in (Celeux, Biernacki,
and Govaert 2001).

Kjems et al. (2000) using learning curves over subjects and multivariate discriminant analysis found that the model
performance as a function of the number of subjects was depended upon the task: Simple tasks — such as figure tracing
— were well described by 4 subjects while complex task — such as mirror tracing — require still more than 18 subjects.

The “net utility curve” of Genovese, Noll, and Eddy (1997, figure 4b) is a related technique.

3.3.2 Correlated and heterogeneous residuals

A problem for all kinds of tests appears if the samples (objects) are correlated, i.e., if the residuals are correlated across
samples. If the sample represents a time-series the correlated residuals are often referred to ascolored noise, — as opposed
to white noise for uncorrelated residuals. A related problem appears when the residuals have inhomogeneous variance
across samples. Collectively the two issues are referred toas non-sphericity of the residuals (Glaser et al. 2001).

In the case with test set and validation set based testing it is common to resample across sets of samples that are not
correlated, e.g., in connection with multisubject fMRI andPET resampling should be done so that scans from the same
subjects are not included both in the training and the test set. Such a scheme will only address serial correlation — not
heterogeneous variance.

For classical test serial correlation in the residuals can be handled by correcting for the degrees of freedom resulting
in effective degrees of freedom. Some early references are (Geisser and Greenhouse 1958; Box 1954).

A related correction appears if there are fewereffective parametersthan the total number, e.g., because of regular-
ization. In connection with artificial neural networks Moody (1991, 1992) has presented the “generalized prediction
error” (GPE) as an extension to the “final prediction error” (FPE) (Akaike 1969) when the parameters of the model are
regularized.

Discussions on the correction for the degrees of freedom in connection with functional neuroimaging data appear in
(Ollinger and McAvoy 2000) and (Glaser et al. 2001). Modeling of the serial correlation in fMRI first appeared in (Friston
et al. 1995c) and was later corrected in (Worsley and Friston1995), the latter being identical to the Greenhouse-Geisser
test (Glaser et al. 2001).

3.3.3 Simultaneous inference

When testing many hypotheses a special problem arises, e.g., in connection with mass-univariate testing in functional
neuroimaging: Usually test thresholds are constructed so that in one out of twenty a true hypothesis will be rejected, e.g.,
“activation” will be attributed to a “non-activated” voxel. So if 20000 voxels are tested simultaneously then 1000 voxels
will be categorized as being “activated” even though the arenot activated. Table 3.4 shows some of the approaches to
cope with this problem. Application of random fields in functional neuroimaging regards the residuals of neighboring
voxels of the image volume as correlated as in a smooth Gaussian random field. Approximative distributions of various
test statistics can be derived, such that p-values can be generated on height or extent (Cao and Worsley 2001). When
drawing inference in random fields it is important to estimate the smoothness of the field correctly: The p-value will vary
due to the smoothness estimate (Poline et al. 1997, section 7.4, Poline et al. 1995). The random fields corrections are
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Method Description Reference
Bonferroni Divide by the number of statistical tests e.g. Armitage and Berry (1994, page 331)
FDR False discovery rate Benjamini and Hochberg (1995)
Random field Gaussian Worsley et al. (1992), Friston et al. (1991, 1994b)
Random field Stationary resels;� �, � , � Worsley (1994)
Random field � � Cao and Worsley (1999)
Random field Gaussian scale space Worsley et al. (1999)

Scale space search Poline and Mazoyer (1994)
CS Null hypothesis accessed through simu-

lated images
Ledberg et al. (1998)

MCS Null hypothesis accessed through simu-
lated images

Ledberg (2000)

Monte Carlo Ward (1997)
Gaussian mixture Gaussian mixture model in the summary

image
Hartvig (1999)

Resampling Turkheimer et al. (2000)

Table 3.4: Simultaneous inference: Compensation for multiple statistical comparison. For random fields see also the
overview in (Cao and Worsley 2001).

implemented in the SPM toolbox and widely applied when reporting significant changes in PET and fMRI functional
neuroimaging analyses.

Other descriptions of methods for simultaneous inference are (Forman, Cohen, Fitzgerald, Eddy, Mintun, and Noll
1995), (Xiong, Gao, Lancaster, and Fox 1995) and (Ward 1997).

An entirely different approach to simultaneous inference is by first doing a explorative mass-univariate voxel-based
analysis (or any other type of explorative analysis) and establish one single specific hypothesis, e.g., about the activation
in a region. Then this new hypothesis is tested on a new data set independent of the first data set used for exploration.
(Friston 1997c) proposes a test if the region of the hypothesis is not known exactly.

None of the present techniques are implemented in the Lyngbytoolbox. However, if the two-stage approach is taken
the first stage need not consider a particular precise test, —and would not even need the computation of p-values but can
return a region found to be interesting that is used in the second stage, — the region being based, e.g., on a threshold in a
test statistics of a regressor or a saliency map.

3.4 Functional neuroimaging analysis

Modeling in functional neuroimaging is divided into preprocessing and analysis: The difference between the two is
that preprocessing models the variables of no interests andanalysis models the variables of interests. Sometimes it can,
however, be desirable to model the variables of interest andof no interest simultaneously, thus blurring the border between
preprocessing and analysis.

The goal of functional neuroimaging analysis is often to take a set of images (or image volumes) and process/analyze
them in order to construct an image — often termedsummary image— that as directly as possible relates to the behavioral
component under investigation. In many cases it is appropriate to further characterize the summary image with a set of
points, that describe maxima or center of local regions.

The Matlab program “SPM” (statistical parametric mapping)has been widely used for functional neuroimaging anal-
ysis and a general introduction to the methods and principles that this program rely on is available in (Frackowiak, Friston,
Frith, Dolan, and Mazziotta 1997). The text in this book is more or less the same as in the “SPM course notes” (Institute of
Neurology 1997).

3.5 Preprocessing in functional neuroimaging

Preprocessing in multisubject scientific functional neuroimaging studies is often necessary. A list of the preprocessing
step are shown in table 3.5. The step in preprocessing are usually done one-by-one on a volume-by-volume basis. All
these step should probably be done simultaneously for best results — potential they should be done simultaneously with
the analysis — optimizing for best performance. However, atpresent this is not possible.

A review of preprocessing is available in (Kruggel, Decombes, and von Cramon 1998). Maintz and Viergever (1998)
have classified the different registration algorithms. A review of general medical image registration is available in (Bro-
Nielsen 1996). Apart from validation on each single preprocessing step there are a few studies that try to determine the
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PET fMRI Step Description� �
Stripping Remove the non-brain part of the image�
Slice timing correction Correct for different acquisitiontimes in fMRI.�
Inhomogeneity correction Correct for scanner errors� �
Motion Correction Correct for subjects movement� �
Coregistration Alignment of different modality images.� �
Intersubject or atlas warping Align and warping of subject to common frame�
Removal of physiological noise Removal of cardiac a respiratory effects� �� � Normalization Account for different doses
Smoothing

Table 3.5: Preprocessing steps or issues that has to be considered in functional neuroimaging studies (PET and fMRI).

effect of variation in several preprocessing parameters with Hopfinger, Büchel, Holmes, and Friston (2000) assessing
change in resampling, temporal and spatial smoothing with z-score and p-values, and Kjems et al. (2000) that assess the
preprocessing effect by multivariate analysis.

3.5.1 Reconstruction

The raw data measured by PET and fMRI scanners are not in a volumetric format. The PET raw data is returned as a
sinogramand fMRI is returned in the Fourier domain also called thek-space. The transformation to the volumetric format
is handled internally by the brain scanners, but the raw datais usually also available. There are different methods of
reconstruction (Toft 1996) and they can affect the result ofthe functional neuroimaging analysis, e.g., in PET reconstruc-
tion a filter width needs to be set and, furthermore, the filtering can also be based on Markov random field reconstruction
(Philipsen and Hansen 1999). Analysis directly on the PET sinogram data has been done by (Matthews et al. 1995).

3.5.2 Stripping

It is sometimes necessary to mask out the brain (scalp-edited), i.e., remove all non-brain voxels from the volume. There
can be three reasons for that:

• Some voxels contains no part of the brain but are affected bythe stimulus, e.g., in a saccadic eye movement study
Law et al. (1998) found an artifact arising from increased (eye) muscle blood flow. (However, in this specific study
the removal artifact was not removed, but explained post hoc.)

• For computational reasons it will be faster to exclude somevoxels. Usually one ends with a fourth of the original
voxels when discarding no-brain voxels. This will speed up the analysis by a fourth or more.

• Alignment software sometimes requires or benefits from masked brains (Kiebel, Ashburner, Poline, and Friston
1997).

• Anonymization of subjects if volumes are distributed frompublic databases.

Stripping MRI and fMRI is usually done is by constructing thehistogram of the gray values and then apply a threshold at
an appropriate value to obtain a binary volume. This binary volume is then put through morphological operations. Manual
editing might be needed afterward. Other methods are based on surface description.

There are a few public programs for extraction of the brain: BSE (Sandor and Leahy 1997,
http://biron.usc.edu/˜shattuck/bse/)., “Brain Extraction Tool” (BET) based on a surface model (Smith 2000) and
mri3dX by Krish Singh (http://www.mariarc.liv.ac.uk/mri3dX/).

3.5.3 fMRI: Inhomogeneity correction, antialiasing, magnetization start-up

Inhomogeneity correction is desirable in connection with warping and segmentation, e.g., SPM99 uses intensity correction
in connection with MRI segmentation (Ashburner and Friston1997). An evaluation of the different inhomogeneity tools
is available in (Arnold et al. 2001; Schaper et al. 2001).

For the fMRI scanner there is a transient magnetization start-up artifact causing the fMRI signal to have quite a
different level than in the steady-state. There seems to be no reason to model this start-up effect, instead the scans are
simply discarded.
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3.5.4 Motion correction

Motion correction,realignmentor registrationaim at correcting for the subject head motion. Often the headof the subject
is fixated, but it is not enough to avoid head motion. If there are plenty of scans or new ones can easily be acquired,
then the scans with large motion artifacts can be discarded.Motion correction is usually corrected using a rigid body
transformation. However, in connection with EPI MRI sequences it can be appropriate to do nonlinear transformations
(Andersson 2001a; Andersson 2001b) due to the nonlinear spatial distortion in the MRI images.

Among the tools for motion correction are AIR (Woods et al. 1998a) and the functions in the different versions of
SPM (Friston et al. 1995a; Friston et al. 1996d). “Unwarp” ofAndersson (2001b) includes non-linear motion correction.

Motion correction is a time consuming preprocessing step astransformation parameters has to be estimated for each
individual scan. Munk (1999) uses a neural network to speed up the registration algorithm.

An entirely different method of reducing motion artifact is“prospective acquisition correction” (PACE) where move-
ment parameters are computed real-time during scanning andfeed back to the sequence controller of the MRI scanner.
This method can be combined with the ordinary (“retrospective”) motion correction (Erb, Hülsmann, Klose, Thesen, and
Grodd 2001).

3.5.5 Coregistration — intermodality image registration

Coregistration, intrasubject image registration, intermodality image registrationor cross-modality registrationaim at
aligning images from different modalities, such as PET and MRI, for the same subject, e.g., to map a structural image to a
functional or vice verse. As with motion corrections usually only rigid body transformations are considered. However,EPI
MRI images can require non-rigid body transformation (see section 3.5.4) and post mortem aMRI and stained histological
material will also necessitate warping, being applied in, e.g., (Johnsrude, Cusack, Morosan, Halland, Brett, Zilles,and
Frackowiak 2001). The estimation process is more complicated than the estimation of motion correction as the gray levels
of the images cannot directly be compared. Among the different techniques are: Definitions of landmarks, alignment of
segmented images, and alignment with a “flexible” cost function, such as, mutual information. A special problem is
spectroscopic MRI and PET-ligand images where only signalsfrom parts of the brain are present.

As coregistration is important in general radiology — and not just in functional neuroimaging — there exists a large
number of algorithms, some of them shown in table 3.6. The most used are probably versions of AIR and SPM.

Name Reference
AIR 1.0 (Woods et al. 1993)
FLIRT (Jenkinson and Smith 2001)
SPM95 (Friston et al. 1995a)
SPM99 (Ashburner and Friston 1997), (Ashburner et al. 1997), (Maes et al. 1997)
— (Andersson et al. 1995)
— (Ardekani et al. 1995)
“Head and hat” (Pelizzari et al. 1989)
“Ration image uniformity” (RIU) (Woods et al. 1992)

Table 3.6: Coregistration algorithms.

Comparisons of different coregistration algorithms are available in (Strother et al. 1994; Turkington et al. 1993)
involving a brain phantoms, (Kiebel et al. 1997) involving asimulated PET image. West et al. (1997) compared several
image registration algorithm against a marker-based registration method.

3.5.6 Spatial normalization

Other names for the spatial normalization processing step are: Normalization, spatial deformation, (intersubject image)
registration, intersubject warpingandatlas warping, and it is a spatial transformation that is performed for tworeasons:

• In a multisubject study: Transform volumes acquired from different subjects to the same space. This transformation
accounts for intersubject variability in gyral anatomy.

• Transform volumes to a standardized space so that coordinates can be compared across studies.

The result is affected by the algorithm and by the template chosen. Table 3.7 lists some of the many algorithms in use and
table 3.8 some brain templates. In many cases the template istied to an algorithm. Special templates can be necessary for
children and ligand PET images, and images containing abnormal deformities, and may also require special algorithms,
e.g., large regularization in the warp or small number of parameters (Stamatakis, Wilson, and Wyper 2000).



44 Analysis

Name Description Reference
AIR3 Woods et al. (1998b, Woods et al. (1999)
CHSP San Antonio
MRIWarp Non-linear warp Kjems et al. (1999)
SN 9-parameter affine transformation Lancaster et al. (1995)
SPM95 Friston et al. (1995a)
SPM96 � � 
 � � basis functions Ashburner and Friston (1996)
SPM99 Default is a� � � � � basis function Friston et al. (1995a), Ashburner et al. (1997), Ashburner and Friston (1999)

STAR Elastic warping Davatzikos (1997)
— Stockholm Greitz et al. (1991) Ingvar et al. (1994)

Table 3.7: Spatial normalization algorithms and software.

Name Description Reference
SPM96 MNI single subject (Colin Holmes). Also used in

BrainWeb, in the same space as MNI305
SPM99 spm_templates.man

MNI152 Standard template in SPM99, distributed volume
are smooth with 8mm FWHM

SPM99 spm_templates.man

MNI305 ICBM standard, also distributed in SPM99 SPM99 spm_templates.man
Visible Human Brain from the Visible Human Project http://www.nlm.nih.gov/research/-

visible/visible_human.html
VAPET Used at the VA Medical Center, Minneapolis

CBA “Computerized brain atlas”, Dept. Neuroradiol-
ogy, Karolinska Institute

(Greitz et al. 1991), (Seitz et al.
1990)

HBA “Human Brain Atlas” from Karolinska Institutet (Rolandet al. 1994)
new HBA Re-acquired HBA used in European Comput-

erised Human Brain Database
(Schormann et al. 1999; Roland
et al. 1999)

“BIT” Warped single subject (Lancaster et al. 2001)
EVA833 Template based on 833 elderly subjects (Quinton et al. 1999)

— Ligand templates (Meyer et al. 1999)
Talairach Original Talairach images. No MRI exist and it

has never been used directly as template.
(Talairach and Tournoux 1988)

Table 3.8: Templates: Some of the standard brains used to atlas warping

Test and validation of the spatial normalization is difficult. There are basically two method: One method is to measure
the discrepancy in manual defined landmarks; the other is putthe resulting transformed volumes through the statistical
analysis and compare the significance values. Davatzikos etal. (2001) compared their STAR algorithm against SPM95,
SPM96 and SPM99 and found their method better than SPM, with the following ranking: STAR - SPM99 - SPM96 -
SPM95.

Many functional brain mapping studies are reporting their findings in the “Talairach space”. This space — or atlas
— is defined in a book of Talairach and Tournoux (1988) where a segmented brain is displayed in detailed color plates.
There does not exist an MRI scan of the subject in the Talairach book and as the warping algorithm usually requires these
scans for the registration the Talairach atlas cannot be used directly.

The International Consortium For Brain Mapping (ICBM) has developed a number of brain atlases. Their official
standard is the so-called MNI305 based on the average of 305 stereotactic T1-weighted volumes.1 Averaging over such a
large number of subjects makes the image very blurred and except for the large fissures none of the sulci are distinguish-
able. The MNI305 template is distributed with SPM96 in a

� �� ��
mm format. Apart from being a spatial normalization

template the ICBM atlas is also a probabilistic atlas, defining probability volume for, e.g., the cerebellum (Mazziottaet al.
1995).

In comparison and meta-analysis between studies using different templates it is of course important that the anatomical
locations correspond. One of the few transformations is between the Talairach atlas and the MNI space: Andreas Meyer-

1An web-based interface to the images is presently availableat http://www.bic.mni.mcgill.ca/cgi/icbm_view
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Name Description Reference
ANIMAL “Automatic Non-linear Image Matching and

Anatomical Labeling” Nonlinear warping and la-
beling by a previous labeled volume

(Collins, Holmes, Peters, and Evans 1995)

FAST Segmentation with Markov random field (Zhang et al. 2001)
INSECT GM, WM and CSF segmentation with an artificial

neural network with 9-parameter spatial normal-
ization

(Kollokian 1996; Collins et al. 1994)

SEAL “Sulcal Extraction and Automated Labelling” (Goualher et al. 1999)
SPM99 Segments into GM, WM, CSF and other (Ashburner and Friston 1997)
— Cortex surface extraction (MacDonald et al. 2000)
— Combined manual/automatic (Zavaljevski et al. 2000)

Table 3.9: Some of the segmentation algorithms and tools available.

Lindenberg has suggested an affine transformation (Meyer-Lindenberg 1998; Brett 1999) (the unit is meter):

� � � � 	��� 	 � 	���� (3.17)
� � � � 	��� 	 � 	�����

(3.18)
� � � � 	�
� � � 	��� 	 � 	����� (3.19)

A transformation using a standard voxel-based spatial normalization procedure was used between the MNI and an artificial
constructed Talairach from the Talairach Daemon showed a closer match between the two templates especially in the
inferior temporal lobe (Brett, Christoff, Cusack, and Lancaster 2001).

Apart from being a preprocessing step in activation studies, spatial normalization can also be used in morphometry
where anatomical shape difference among groups are analyzed. An example of this is the deformation-based morphometry
approach of Gaser et al. (2001) using the warp algorithm of Kjems et al. (1999).

The parameters of spatial normalization are an important set of parameters to record in coordinated-based neuroinfor-
matics databases. Discrepancies between the brain templates will make it difficult to do meta-analyses on the coordinates,
e.g., the estimation will be biased for meta-analysis on intersubject variability of activation. It is not always clearfrom
the functional neuroimaging article precisely what template and what method has been used.

3.5.7 Segmentation

Segmentationusually classifies the voxels of the brain into white matter (WM), gray matter (GM) and cerebral spinal
fluid (CSF), but sometimes other classes are used, e.g., white matter lesions as in (Garde, Mortensen, Krabbe, Rostrup,
and Larsson 2000) or “cerebral cortex”. Among the purposes of segmentation are correction for partial volume effects,
extraction of the brain (for visualization purposes or if other components the processing chain require it) and quantitative
analysis of the amount GM or lesions, e.g., Garde, Mortensen, Krabbe, Rostrup, and Larsson (2000) relate white matter
lesions with decay in intelligence, — here the white matter lesion segmentation was done manually by a radiologist.
The segmentation is often performed with Gaussian mixture models on MRIs, — either just a single type or several:
T1/T2/proton density. The segmentation algorithms might incorporate two kinds of priors: a prior based on the classifi-
cation of a neighboring voxel or a prior on the specific stereotactical coordinate of the voxel. Inhomogeneity correction is
often necessary.

Apart from Gaussian mixture models deformable models have also been applied in segmentation. One of the success-
ful has been (MacDonald et al. 2000; Kabani et al. 2001), thatfits the outer and inner surface of cortex simultaneously
with constraints. This approach is also taken in SureFit (Van Essen, Drury, and Anderson 1999; Drury, Van Essen, and
Anderson 2000).

Manual and automated segmentation can be combined by first doing manual segmentation on a small number of
voxels, then do supervised learning with the label as targets and the voxel data as input, and finally predict the classification
for the rest of the voxels with the estimated model (Zavaljevski, Dhawan, Gaskil, Ball, and Johnson 2000).

3.5.8 Confounds and nuisances in PET and fMRI: Removal of physiological noise, . . .

Apart from head motion artifacts there is a large number of other confounds that influence the image data. These confounds
can usually be grouped into eitherphysiologicalor instrumental/experimental, they include among others cardiac and
respiration confounds (Noll et al. 1996), the effect of swallowing, low frequency oscillations (Lowe et al. 2000), “Global
effect” (Aguirre et al. 1998a), bolus size, scanner drift, susceptibility and ghosting.
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Method Reference
Manual selection of artifact voxels (Petersen et al. 1998)
Alignment, variance and ROI-definition (Lund and Hanson 2001)
Clustering, fuzzy (Scarth et al. 1996)
ICA (Beckmann et al. 2000), (Netsiri et al. 2000)

Table 3.10: Identification of artifacts in fMRI.

Method Description Reference
Linear drift Removal of the linear drift (Bandettini et al. 1993)
Linear drift Removal of the linear drift estimated with baseline scans (Goutte et al. 1999a)
Quadratic detrending (Cox 1996)
Discrete cosine set Implemented in SPM99 (Holmes et al. 1997)
Prediction Prediction of fMRI nuisance from physiologicalrecordings (Park et al. 2000)
Running-line smoother (Marchini and Ripley 2000)
PCA PCA on the residuals orthogonal to the design (Ardekani et al. 1999)
“State space” Random walk and sinusoidal with AR frequency (Petersen et al. 1998),

(Hartvig 2000, paper 6)

Table 3.11: Modeling and removal of artifacts

Some of the confounds yield low frequency noise — also called1/f-noise or pink noise — in fMRI: It is usually
attributed to long term physiological drift, head movement(even after realignment) (Zarahn, Aguirre, and D’Esposito
1997) and/or scanner instabilities (Smith, Lewis, Ruttiman, Ye, Sinnweell, Yang, Duyn, and Frank 1999).

Due to the relative large amount of noise in the lower parts ofthe spectrum in fMRI it is an advantage to design
experiments where the paradigm is rapid, e.g., stimulationblocks should not be 1 minute long.

The approaches to model the confounds can be classified according to the data required to model the confounds. When
the confound is identified it can either be used as a covariate(e.g., in a GLM model) or extracted prior to the modeling of
the interesting signal. Required data:

• None. Use “fixed” models to remove the artifact. An example is filtering in fMRI, where a high pass filter removes
the 1/f-noise. Such an approach is, e.g., taken by Holmes, Josephs, Büchel, and Friston (1997) that use a set of
discrete cosine functions.

• Image data. Estimate the confound from the image data. There are several ways to identify the confounds, see
table 3.10. The use of independent component analysis for this has been suggested by several. Lund and Hanson
(2001) suggest a relatively automatic procedure for modeling of physiological noise by identifying vessel voxels by
angiogram and BOLD standard deviation images.

• Additional data . Acquire additional measurements and use that in modeling the confounds. Examples are typically
cardiac and respiratory measurements (Hu, Le, Parrish, andErhard 1995).

Susceptibility artifacts arise especially in the brain-air interface, as is the case for “temporal lobes near the air-filled
sinuses” where the fMRI shows loss of signal (Devlin et al. 2000a), (Devlin et al. 2000b). The effect of this can
be assessed by comparing T2*-weighted images with T2 weighted images or by comparing the differences in signal
intensities across the gray matter Lipschutz et al. (2000) Lipshutz et al. (2001), and different methods to compensate for
this has been suggested applied either during the image acquisition (Cordes, Turski, and Sorensen 2000) or in the analysis
stage (Devlin et al. 2000a), (Devlin et al. 2000b).

Ghosting occurs in the EPI sequences of fMRI: The image is shifted and may be overlayed onto the original. This
is somewhat similar to normal aliasing in signal processing. It can be quite severe, e.g., Andersson (2000) found that a
checkerboard stimulus would generate false positive in thefrontal lobe. Clare (1997, section 4.3.1) describes some of
the method to model the artifact. These methods are not applied in mainstream analysis, e.g., SPM does not model for
ghosting.

Autocorrelation

The fMRI time-series will be autocorrelated either becausethe stimulus itself autocorrelated (e.g., as in block design) or
through the hemodynamic response. But also other sources, such as physiological noise, can generate autocorrelation,
see, e.g., (Purdon and Weisskoff 1998). This is related to the 1/f-noise mentioned in the previous section. Statistical
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inference will be biased if the autocorrelation is not modeled (the DOF is overestimated) and there have been proposed
several approaches for modeling autocorrelation:

• Modeling the noise by whitening (pre-whitening). Purdon and Weisskoff (1998) use an first order autoregressive
(AR) model while Lange and Zeger (1997) employ a spatial smoothed estimate of the noise in intervals in the
frequency domain.

• Smoothing (“precoloring” or swamping), where both the design matrix (the input function) and the fMRI data (the
target) (the fMRI response are “over-smooth” with a specifickernel, (Friston, Holmes, Poline, Grasby, Williams,
Frackowiak, and Turner 1995c; Worsley and Friston 1995). A Gaussian or a fixed hemodynamic response is chosen
to construct the kernel. Purdon and Weisskoff (1998) referred to this as theextended general linear model(E-GLM),
and if only the design matrix is smoothed they referred to it asmodified extended general linear model(ME-GLM).

A discussion of these issues is available in (Purdon and Weisskoff 1998; Friston, Josephs, Zarahn, Holmes, Rouquette,
and Poline 2000a).

It can be noted that Kershaw, Ardekani, and Kanno (1999) argue that there is no temporal correlation if the confounds
are modeled well enough: The reason why temporal correlation is found in several studies is due to a too simple modeling
of the confounding signals, e.g., a model with simple mean and linear drift removal “required” a first-order autoregressive
model to account for the noise, while a more complex confoundmodel (as the one used by Ardekani, Kershaw, Kashikura,
and Kanno 1999) did not.

Modeling of the autocorrelation is not implemented in the Lyngby toolbox. However, the effect of if can be assessed by
studying the (normalized) cumulated periodogram where thenormalized cumulated sum of the magnitude of the Fourier
transformed residuals are plotted against the frequency (Madsen 1989). If the residuals are white then the curve should
follow a straight line. Figure 3.3 shows an example of a highly activated voxel from the data acquired in (Friston, Jezzard,
and Turner 1994a) after a FIR filter modeling with the Lyngby toolbox. For this voxel the low frequencies are dominating
(the curve isoverthe straight line) and this indicates that there is autocorrelation left in the residuals.
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Figure 3.3: Normalized cumulated periodogram for the residuals of a highly activated voxel in the visual cortex with
checkerboard stimulation from the study of Friston, Jezzard, and Turner (1994a) after a FIR filter modeling.

Normalization

In connection with PET studies the amount of tracer in the brain may vary, e.g., because of variation in the bolus size,
and the effect of this has to be considered and possibly modeled, i.e., the effect of the global blood flow (gCBF) on the
regional blood flow (rCBF). In some studies gCBF is measured for each scan by other means than PET (by arterial blood
sampling) and the value so obtained can be used to scale the images. In other studies the normalization parameters are
determined from the images, some of the methods being listedin table 3.12. ANCOVA and proportional scaling are
the most common. ANCOVA normalization regards the effect ofthe gCBF on the individual voxels as additive, while
“proportional” scaling regards it as multiplicative. It isnot clear what is the most appropriate scaling (Andersson 1999b):

[...] if one believes that the dominating source of variancein the globals is ‘apparatus dependent’ (i.e.
differences in injected dose (PET) or drifts in amplifier electronics (fMRI) then proportional scaling is clearly
more correct. If on the other hand one believes that the dominating source is ‘physiological’ then the issue
becomes less clear.
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Name Description Reference
ANCOVA Additive Friston et al. (1990)
Proportional Also called “ratio approach” or “scaling” (Fox and Raichle 1984)
“Andersson” Activated voxels discarded from estimation byiterative F-masking Andersson (1997)
“Andersson2001” Estimation of gCBF through optimization of stochastic sign changes Andersson et al. (2001)
Histogram Histogram equalization Arndt et al. (1996)

Table 3.12: Normalization methods for gCBF in PET.

Another issue is to estimate the gCBF, e.g., it should probably be avoided to use the entire image as some voxels will
not contain the brain and/or cortex. An approach taken by SPMis to find the mean of the voxels that are above an eighth
of the mean of the entire image (Andersson 1999a).

A further complication is if the gCBF is correlated with the task. This seems to depend on the task (Law 1996,
section 1.7.2.5), and can have an undesirable effect on the analysis (Aguirre, Zarahn, and D’Esposito 1998a).

3.5.9 Spatial Filtering

There are several reasons for applying spatial filtering to each of the volumes:

• Increase the signal-to-noise ratio. Due to the matched filter theorem it has often been recommended to use a large
width filter when looking for activation in the cortex and small width filters when looking for activations in the
small basal ganglia.

• Accommodate for the anatomical variation between subjects. For single-subject studies the filtering width can be
smaller (e.g., FWHM� � � � �mm) than for multi-subject studies (e.g.,


� � 
� � 
�
mm or more).

• Make the volume a Gaussian random field.

Spatial filtering is almost always done in multi-subject studies and is a normal procedure in SPM. The filtering method is
usually done with either a boxcar (mean/median) or a Gaussian isotropic filtering. However, other suggestions have been
Markovian spatial filtering (Descombes, Kruggel, and von Cramon 1998), atlas based adaptive filtering (Davatzikos, Li,
Herskovits, and Resnick 2001), and multi-level filtering (Poline and Mazoyer 1994; Worsley, Marrett, Neelin, and Evans
1996). It has also been suggested to smoothafter the analysis (Lowe and Sorensen 1997; Maisog 2000).

3.5.10 Reduction of the number of analyzed voxels

Before the actual analysis the number of voxels can be reduced by applying a simple conservative test. In SPM this
is called “F-statistic threshold filtering” (Holmes and Friston 1997, section 6.4) or “F-masking”. There can be two
reasons for doing this: Reduction the number of voxel will reduce the computational burden and the reduction can been
an advantage in, e.g., cluster analysis where many non-interesting (non-activated) voxels might affect the clustering of
interesting voxels (Goutte, Toft, Rostrup, Nielsen, and Hansen 1999b).

In the usually SPM setting the F-test takes up relatively many degrees of freedom and it is possible that a specific
contrast might be significant while the F-test is not. To be onthe safe side a conservative threshold for the F-test should
be employed.

Another more heuristic approach was taken in, e.g., (Friston et al. 1995b, section ”data processing”) where voxels
below 0.8 of the volume mean were excluded, with the aim of restricting the analysis to the intracranial region. So-
morjai, Jarmasz, Baumgartner, and Richter (1999) reduces the number of voxels by auto-correlation and trend test, and
(Purushotham, Nielsen, Hansen, and Kim 1999) applied K-means clustering to identify interesting voxels for further
analysis.

3.6 Analysis of functional neuroimages

A general overview of the analysis methods for functional neuroimaging is available in (Petersson, Nichols, Poline, and
Holmes 1999a; Petersson, Nichols, Poline, and Holmes 1999b; Horwitz, Friston, and Taylor 2000). Reviews are avail-
able in (McColl, Holmes, and Ford 1994; Lange 1996). Among the first mathematical/statistical analyses of functional
neuroimages were (Moeller, Strother, Sidtis, and Rottenberg 1987; Moeller and Strother 1991), (Fox and Mintun 1989)
and (Friston, Frith, Liddle, and Frackowiak 1991). Below the analysis techniques are grouped intounsupervisedand
supervisedalgorithms.
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Comparisons of the many different analyses are available in(Xiong, Gao, Lancaster, and Fox 1996) and (Lange,
Strother, Anderson, Nielsen, Holmes, Kolenda, Savoy, and Hansen 1999; Lange, Hansen, Pedersen, Savoy, and Strother
1996; Lange, Hansen, Anderson, Nielsen, Savoy, Kim, and Strother 1998).

3.7 Unsupervised methods

Unsupervised modeling is modeling (of a set of observation that can be contain in a matrix� �� � � �) without (using)
any target/design for the optimization of the model parameters. Among the methods that is usually regarded as unsuper-
vised are singular value decomposition (SVD), principal component analysis (PCA), multidimensional scaling (MDS),
self-organizing maps (SOM), non-negative matrix factorization (NMF), independent component analysis (ICA), cluster
analysis (with fuzzy and K-means), kernel density estimation (KDE), and Gaussian mixture models (GMM). Most of
these methods can be used in a probability density estimation. Many of the unsupervised methods reduce the data into
some interpretablecomponents. These components can be characterized in a number of ways:

• “Direction” versus “point” . The components can be associated with a direction in the space spanned by the data
or an absolute point in the space. Cluster analysis would usually be associated with clustering data as points in the
space, whereas PCA would consider the direction. However, cluster analysis can also be performed on the direction
by suitable normalization.

• Sparse versus dense coding. Some of the algorithms produce what is called “sparse coding” or localized coding:
� is factorized and the obtained components contain many elements that are zero or close to zero in the case of
sparse coding, i.e., the component are effected only by a restricted set of the� variables in� . Examples of methods
that can produce sparse coding are ICA and NMF. Lee and Seung (1999) give an example of NMF of a data matrix
with faces. The obtained components (the basis images) contain several version of mouths, noses and other facial
parts, whereas the VQ and PCA components are not restricted to a localized part of the image.

• Orthogonality . In (the draft to) Friston et al. (1996a) write about an MDS analysis of a functional neuroimaging
study with word generation:

[...] each dimension is associated with a particular profile of theexperimental conditions. For example
the first dimension points in the direction of all the intrinsic word generation tasks and away from the
baseline word shadowing tasks. Conversely the second dimension points towards the first scans and
away from the last scans.

It need not necessarily be so. In a multisubject study the first principal component will usually describe variation
among the subjects, and it seems not to be natural to require that the space of the interesting variable should be
orthogonal to the space that models the intersubject variation. Both cluster analysis and ICA do not have that
restriction.

• Interpretability . For reasons of human interpretability one would like to have as few components as possible.
Methods such as kernel density estimators have as many components as objects and the “components” of the result
will not be more interpretable than the original data.

Unsupervised methods in brain mapping have their advantagewhen the input (e.g. the stimulus) is not well defined or
if there are variables that are not controllable by the experiment.

It is not correct to say that the unsupervised methods are not“statistically” methods, e.g. (Friston, Poline, Holmes,
Frith, and Frackowiak 1996b) write about principal component analysis:

Although powerful, in a descriptive sense, eigenimage analysis and related approaches are not “statistical”
methods that can be used to make inferences about the significance of the results; they are mathematical
devices that simply identify important patterns of correlations of functional connectivity.

Theredo existstatistical tests for principal component analysis (eigenimage analysis), e.g., the isotropy test (Mardia, Kent,
and Bibby 1979, section 8.8). What makes multivariate testsless related to the experimental hypothesis is:

• Multivariate analysis tests do not usually localize the test, so the inference is for thewhole imagerather than a voxel
or a local region.

• Functional neuroimages are often dominated by confounds and nuisances, e.g., in a multi-subject study it is often
found that the dominating variance is the between subject variance rather than the variance imposed by the different
experimental conditions (Strother, Kanno, and Rottenberg1995b; Strother, Sidtis, Anderson, Hansen, Schaper, and
Rottenberg 1996b). An isotropy test in this connection would just test if “something happens” – not that this is of
neuroscientific interest.
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3.8 Cluster analysis

Cluster analysis assigns� observations with unknown classification into� groups (“clusters”). This can either be done
so the assignment isexclusivelyto one group (hard threshold, e.g., K-means) orfuzzywhere the observation is assigned to
all groups with different weights, — a weight that can be regarded as a probability for belonging to a group (soft threshold,
e.g., fuzzy clustering, Gaussian mixture). The observations in a group should be “homogeneous” in some measure. Often
the observation within a group is assumed to be generated from the� ’th of � Gaussian distributions

� �� ��� ��� � � � � ����� ����� �	
 �	 

� �� 	 �� �� � ��� �� 	 �� �� 	

(3.20)

If the prior for assignment is equally among the� clusters a hard threshold assignment for an observation� can be
obtained by choosing the� ’th that has the highest probability, — or equivalent: shortest Mahalanobis distance. Some of

Isotropic

Homogeneous

Heterogeneous

AnisotropicAxis−anisotropic

Figure 3.4: Cluster types for a Gaussian clusters (or another elliptic distribution). The ellipses denote isocurves for
a threshold in 2D probability densities: Small ellipses has a “small” covariance. The first row depicts cases where the
distribution is the same for all clusters and the second row where they are different.

the different forms of the covariance matrices��
can be seen in figure 3.4, see also (Fraley and Raftery 1998, table 1)

which list references for the different variation of covariance parametrization. Variation in assignment can also be pro-
duced by weighing the different clusters with different prior probabilities. Based on results from their own simulateddata
set (Celeux and Covaert 1995) advocate different priors (volumes) for each cluster.

The different clustering algorithm can be classified according to how the mean, covariance and assignment are esti-
mated or assumed. If the assignment is assumed in advance then it is usually not called an unsupervised cluster analysis,
but rather a supervised classification.

The K-means clustering algorithm (MacQueen 1967) assumes isotropic homogeneous covariances, and the means
are estimated as the arithmetic means of the presently assigned data points to the cluster. The data points are assigned
with hard threshold to the clusters. As the assignment changes when the means change, and the means change when the
assignment change an iterative scheme is necessary where the mean and assignment are alternately estimated. A variation
of the K-means algorithm is the K-mediod algorithm (Vinod 1969), where the means of the clusters are found as the
median among the assigned data points.

Clustering algorithms with isotropic covariances will only be relevant if the variables are measured in the same unit:
When the variables represent different scales, as e.g., in (Goutte, Nielsen, Svarer, Rostrup, and Hansen 1998) where three
different features were extracted from the result of a cross-correlation analysis, a unique clustering can be obtainedby
scaling the variables with their standard deviations. Another issue with isotropic covariances is that the resulting clusters
can have different magnitudes and not different forms, e.g., if the hemodynamic response function is modeled the different
clusters might represent responses with different amplitudes rather than with different forms, such as delay. This issue
can largely be resolved by scaling. Hartigan (1975, section4.9.1) also makes a heuristic suggestion that after K-means
clustering the intraclass covariance matrix is calculatedand if it differs significantly from a multiple of the unit matrix the
data should be transformed. Furthermore, according to Bottou and Bengio (1995, figure 1) it is preferable to use an online
version of the K-means algorithm rather than a batch, thoughthe online version is faster for the first few epochs.

There exist different clustering algorithm than K-means, e.g., fuzzy clustering (Bezdek 1981) and hierarchical clus-
tering generally either divisive (“successive partitionsof the sets of objects”) or agglomerative (“successive pooling of
subsets of the set of objects”) (Mardia et al. 1979, section 13.3). The fuzzy clustering requires both the number of clusters
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and a fuzziness index specified. If distributional assumption are made then mixture models can be used for clustering.
This has been considered by several authors, e.g., (Banfield1993; Celeux and Covaert 1995).

The means can initialized by selecting random data points asthe mean. This provides a good spread of the cluster
centers in the data space. The Lyngby toolbox provides a few more cluster center initialization methods that is suitable
when the paradigm is known. These are based on computation ofthe cross-correlation and choosing random data points
spread out on the sorted magnitudes of the cross-correlation. (Christiansen 2000, section 5.4.1) discusses a few other
initialization methods.

Clustering does not have to be performed in the original dataspace, but can also be perform in the space obtained from
cross-correlation analysis (Goutte, Toft, Rostrup, Nielsen, and Hansen 1999b) or canonical correlation analysis (Akaho,
Hayamizu, Hasegawa, Yoshimura, and Asoh 1997). K-means clustering on the cross-correlation function is implemented
in the Lyngby toolbox.

3.8.1 Choosing the number of groups

Wiegell, Tuch, Larsson, and Wedeen (2000) clustered voxelsof thalamic nuclei based on diffusion weighted images and
the number of groups in the cluster analysis could be set to the known number of nuclei. However, in many cases where
cluster analysis is applied the number of groups (clusters)is not known a priori. Often the number is set to a number
the researcher finds “suitable”: To a number that produces easy interpretable results. This will often be a subjective
judgment and it is better to use objective methods that only depend on the data: There does not exist a principled method
to determine the number of groups in cluster analysis. Thereare a few heuristics and some developed from a probability
density modeling view of cluster analysis. McLachlan (1982) and Everitt (1979) give reviews of the problem. Palubinskas
et al. (1998) introduce a prior for the number of clusters which moves the problem from determining the number of clusters
to determining the value of a hyperparameter. Some of the suggested methods have been:

• Sudden flattening in within-variance (Thorndike 1953). The first step of the algorithm is the computation of the
within-variance for all clusterings up to a sufficiently large number of groups yielding a monotonically decreasing
function of the within-variance as a function of the number of groups. The second step is to compute the curvature
of the decreasing function and identifying a sudden change.Everitt (1979) describes that Gower (1975) used a
similar method. In cluster analysis for functional neuroimaging the method has been used by Goutte et al. (1999b).

• � � �� � suggested by Marriott (1971), see also (Mardia et al. 1979, page 365). This algorithm simply augments
the within-variance with the squared number of groups and identify the value of the number of groups where the
function as its minimum. It will be a flat curve for a uniform distribution.

• Kurtosis. If the clusters are assumed to be Gaussian a largekurtosis of a cluster indicate that the cluster should
be described by two clusters (two Gaussian distributions).This method was used by Wiegell, Tuch, Larsson, and
Wedeen (2000).

• Mardia, Kent, and Bibby (1979, page 365) reports a rule of thumb: � � �� ��
. This is presumably giving a too

large number of groups when clustering voxels in functionalneuroimaging, — even if the number of resels is used
as� .

• Probabilistic assumptions can be made in cluster analysisand if the clusters can be considered a mixture of Gaus-
sians, then generalization estimates can be constructed, either algebraic or test/validation set based:

– Goutte, Hansen, Liptrot, and Rostrup (2001, Appendix) suggest some algebraic generalization estimates: AIC,
BIC, and ICL. Fraley and Raftery (1998) use BIC.

– Validation set based generalization assessment is performed in (Balslev et al. 2000).

Christiansen (2000) examined both AIC, BIC and cross-validation. Smyth (1996) compared Monte Carlo cross-
validation,�-fold cross-validation and BIC with the result generated bythe AutoClass program on both simulated
as well as non-simulated data. On simulated data�-fold cross validation performed poorly compared to the other
methods for identification of the true number of clusters (Smyth 1996, table 1). However, on the non-simulated data
which included benchmark data set (iris, diabetes, vowel) it was the best (Smyth 1996, table 2).

Fadili, Ruan, Bloyet, and Mazoyer (2000) describe a method for determining the number of clusters and the fuzziness in
fuzzy clustering.

The model selection problem (in cluster analysis the numberof clusters) is a never ending issue in statistical modeling.
Not too much trust should be put on a single value returned as the “true” number of clusters: The result depends on the
metric, e.g., the parametrization of the covariance matrixfor Gaussian clusters, see figure 3.4. In the Lyngby toolbox is
presently implemented the simple technique of (Thorndike 1953). It should be noted that Biernacki, Celeux, and Govaert
(2000) have argued that model selection for density estimation with mixture models and the assessment of the number of
clusters are separate issues. Based on their own simulated data set they found that optimal numbers for density estimates
are higher than the optimal number of clusters.
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Method Variable Reference
Dynamic fMRI time-series Baune et al. (1999)
Fuzzy Normalized fMRI data Scarth et al., (1995, 2000).
K-means (Short) fMRI time-series Ding et al. (1994)
K-means with t-test fMRI time-series Ding et al. (1996)
K-means/hierarchical Cross-correlation with paradigm Toft et al. (1997), Goutte et al. (1999b)
Divisive hierarchical with K-means (Short) fMRI time-series Filzmoser et al. (1999)
K-means Features of the fMRI time-series Goutte et al., (1998, 2001)
K-means with spatial regularization MR diffusion images. Wiegell et al. (2000)
K-means 11 PET images from learning study Balslev et al. (2000)
K-means/Hierarchical 4 PET images: CBF, CMRO� Toyama et al. (1999, 2001)

Table 3.13: Clustering in functional neuroimaging. See also the “Clustering fMRI time-series” bibliography by Cyril Goutte,
http://eivind.imm.dtu.dk/staff/goutte/fmriclusterefs.html.

3.8.2 Spatial prior in clustering

It is possible to include position weights so that voxel close to each other would have a tendency to get in the same
cluster (Almeida and Ledberg 2001). The resulting cluster volumes will be more spatially homogeneous. This can be
implemented by simply adding three extra rows where the location is specified, e.g., the Talairach coordinates in some
unit. The scaling between the position information and the other values are important, — in the Lyngby toolbox (Hansen
et al. 1999b) the position weight unfortunately have to be sat a prior. Another method for obtaining spatial homogeneous
clusters is by including the neighboring voxels as featuresin the vector to be used for clustering (Somorjai, Vivanco, Pizzi,
and Jarmasz 2001), — a method that has also been used for canonical correlation analysis (Friman, Cedefamn, Lundberg,
Borga, and Knutsson 2001b). The clustering is performed in alarger space with an unfortunate increase in computational
demand.

Spatial smoothing of the volumes will produce a similar effect as using spatial priors on the level of clustering, e.g.,
Balslev et al. (2000) uses spatial smoothing with no spatialpriors in the clustering and the resulting clusters are spatially
very homogeneous.

The approach of using spatial priors with the K-means algorithm has been used connection with automatic identifica-
tions of thalamic nuclei from diffusion tensor images (Wiegell et al. 2000).

3.8.3 Cluster analysis in functional neuroimaging

An early application of cluster analysis for dynamical PET is Ashburner et al. (1996). Others are (Myers et al. 1999;
Ho et al. 1997; Feng et al. 1999) for dynamic PET and the two-stage study of Gunn et al. (1999) with fMRI, PET
and simulated dynamic PET that first uses cluster analysis tosegment the images and after that used�-statistics for the
segmented regions. Balslev et al. (2000) also use a two-stage analysis with K-means clustering where the cluster centers
were found first and then this cluster center were used as a covariate in an�-test. Baumgartner et al. (1999) did a similar
study using fuzzy clustering analysis. It is important thatthe explorative and the confirmative step are separated and
independent, as the�-test will not be valid when fitting has occurred on the same data set. In (Balslev et al. 2000) the data
were split across 18 subjects with 9 subjects in the explorative clustering K-means stage, and the rest in the confirmatory
�-test stage.

Toyama et al. (1999, Toyama et al. (2001) used cluster analysis on four sets of PET images: resting CBF images,
hyperventilatory response, acetazolamide response (all with a H��� O tracer) and CMRO� (with a ��O gas tracer).

Cluster analysis for fMRI has been applied much more than forPET, — with most of the articles describing the
methodology rather then new neuroscientific findings. An overview of the references is available in table 3.13.

Rather than cluster voxels Longstreth Jr et al. (2001) clustered features from structural MRI scans. These were
obtained from a population of 5888 elderly and 5 clusters separated the participants in a normal group and in four other
groups based on clinical manifestations (e.g., complexityof infarct).

3.9 Principal component analysis and singular value decomposition

Principal component analysis (PCA) (Pearson 1901) is one ofthe most used unsupervised multivariate analysis methods.
It is also called Hotelling transform after Hotelling (1933), Karhunen-Loewe transformation (Karhunen 1947; Loéve
1963) and (if the data is frequency data) correspondence analysis. It can be used to summarize the data (by reducing its
dimensionality), as a preprocessing step for regression orclassification, or for probability density modeling. Thorough
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description of PCA are available in Mardia et al. (1979, chapter 8) and Jackson (1991). It can be approached by several
definitions (Tipping and Bishop 1997):

• PCA is an orthogonal linear projection that minimizes the squared reconstruction error. According to Tipping and
Bishop (1997) this is the property that Pearson (1901) focuses on.

• PCA is a standardized linear projection that maximizes thevariance in the projected space (Hotelling 1933), see
also Mardia et al. (1979, theorems 8.2.2 and 8.2.3) and theorem B.1.1 on page 145.

• PCA can be obtained from the connectionistic Oja-Sanger rule (Hertz et al. 1991, section 8.3).

• PCA is the maximum likelihood estimator of a (certain) factor analysis model with adjoining probability density
(Tipping and Bishop 1997).

The most straight forward method to obtain the principal component of a data matrix is by singular value decomposi-
tion (SVD) (Beltrami 1873), also called Eckart-Young-decompositions (Eckardt and Young 1939):

��
� � � svd �� � 	 (3.21)

� �� � � � and
� �� � � � are column orthonormal vectors and called the left and rightsingular vectors, respectively.

� �� �� � is a diagonal matrix with the sorted singular values. These vectors correspond to the vectors from the symmetric
eigenvalue decomposition or spectral (Jordan) decompositions of the inner and outer product matrix (Mardia et al. 1979,
theorem A.6.5)

�� �
� � � � �� � (3.22)

�� �� � � �� � 	 (3.23)

If the data matrix is an indicator matrix then according to Jackson (1991, page 225) the matrix� �� is called aBurt
matrixafter Burt (1950). The transformation from an observation (row) in the data matrix� to another space (� � �) is
called theprincipal component transformation � � �� � (3.24)

the column vectors in
� �� � � � being called theprincipal componentsand the columns of

�
called the vectors of

principal component loadings.
There are several ways to “preprocess” (affine transform) the data matrix before performing the SVD. Usually the

variable (column) means of the data matrix are extracted

��� � � svd �� � � (3.25)

 �� �� � being a centering matrix. The data matrix can also be double-centered by both extracting the row and column
means

��� � � svd �� � � � � (3.26)

which is called M-analysis (Gollob 1968).
If the variables in the data matrix� have different units they should be scaled, e.g., by their standard deviation

��� � � svd ��� �� � � (3.27)

where� �� �� � is a diagonal matrix containing the standard deviations of each variable. Within correspondence analysis,
which usually deals with principal component analysis of indicator matrices, there is a special kind of scaling (Mardia
et al. 1979, section 8.5) and (Jackson 1991, section 10.8). Diagonal matrices with the row and column sums of the data
matrix are constructed

�� � diag ���� � (3.28)

�� � diag �� �� � (3.29)

which is the applied for the scaling

��� � � svd �� ����� �� ����� � � (3.30)

obtaining what is referred to aschi-square metric(Jackson 1991, page 216). In this case the first vector will beproportional
to � and is called the “trivial vector”.

If the data matrix is large the SVD may be too slow or require too much memory. In such a case one can use an
iterative version of SVD/PCA, e.g. the Oja-Sanger rule (Hertz et al. 1991, section 8.3). If one of the dimensions� or �
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is small symmetric eigenvalue composition on either the inner or outer product covariance (equations 3.22 and 3.23) can
be used to obtain the principal components. It is then possible to convert from either� to

�
or the other way

� � ��� �� (3.31)
� � � ����� 	 (3.32)

It is possible to test some hypotheses about the principal components (Mardia, Kent, and Bibby 1979, section 8.4).
One such test is the isotropy test where it is tested whether the last� eigenvalues are equal. The so-called “Bartlett’s
approximation” is an asymptotic� � approximation to the test statistics. This test does not work for singular data. The test
is usually said to determine the size of a proper signal subspace for the data: The last equal eigenvalues are assumed to
represent noise.

Another method to determine the subspace dimension for singular data was used in (Friston, Frith, Frackowiak, and
Turner 1995b) in connection with canonical variate analysis. Here the eigenvectors associated with eigenvalues larger
than unity were used after the eigenvalues have been scaled (Friston 2001; Friston, Poline, Holmes, Frith, and Frackowiak
1996b) �� � � � ��� ��� (3.33)

with
�

as the squared singular values�� . This selects the eigenvectors associated with eigenvalues larger than the mean.

3.9.1 Probabilistic PCA

The decomposition of equation 3.25 is natural if the data is Gaussian distributed� � � �� �� �: The mean is estimated as�� � �� and the covariance as
�� � � � � ��

�� �� , where
�

is computed from equation 3.25.
The model can be augment by adding a term representing noise to the diagonal of the covariance matrix (Hansen et al.

1997; Hansen et al. 1999a) � � � �� �� � 	 � 
� (3.34)

This has been called “sensible principal component analysis (SPCA)” (Roweis 1998) and “probabilistic principal compo-
nent analysis” (Tipping and Bishop 1997; Bishop 1999). By this addition tests can be made on singular data.

3.9.2 Factor analysis

Factor analysis (Mardia, Kent, and Bibby 1979, section 9), (Anderson 1984, chapter 14) or (Conradsen 1984a, section 8.3)
is associated with principal component analysis. The “factor model” can be written as2:

� � �� � � � ��� (3.35)

� is an observed data matrix.� is a hidden state matrix called thecommon factorsor factor scores. � is a matrix offactor
loadings. � are thespecificor uniquefactors. An assumption about uncorrelated common factors��� is made and the
covariance matrix of the unique factors (which in some casescan be considered noise) are diagonal �� � � � . If this
covariance moreover is proportional to the identity matrix �� � � 	� 
 then factor analysis corresponds to probabilistic
principal component analysis.

The classical MLE for factor analysis is by Jöreskog (1967),see (Mardia, Kent, and Bibby 1979, section 9.4). EM
MLE for factor have also been developed (Rubin and Thayer 1982).

3.9.3 Multidimensional scaling

The typical goal of multidimensional scaling (MDS) (as wellas self-organizing maps (SOM) Kohonen 1995) is to con-
struct a 2D or 3D space that as good as possible summarize the similarity between a set of data points. The result is often
plotted.

MDS will often start from a distance or similarity matrix. Inthe case where the distance matrix is Euclidean or a
distance matrix is constructed from a data matrix by using the square distance the “classical”, “metric” or “principal
coordinate analysis (PCoA)” (Gower 1966) MDS solution willbe similar to principal components analysis with a row
centered data matrix (Mardia, Kent, and Bibby 1979, section14.3):

��� � � svd �� � (3.36)

In MDS the vectors in� is called the principal coordinates.
Similar plots a the MDS plots can be obtained with canonical analysis, see e.g., (Strother et al. 1996a).

2Usually the factor model is written as� � �� � � � �, see e.g. (Mardia, Kent, and Bibby 1979; Anderson 1984), butto make the matrices� and�
of size observation times variables the notation is changed.
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3.9.4 SVD/PCA in functional neuroimaging

Application of SVD/PCA in functional brain mapping on voxel-based data are (Friston et al. 1993; Strother et al. 1995a;
Strother et al. 1995b; Lautrup et al. 1995; Andersen et al. 1999). The columns vectors of

�
are often calledeigenimages.

The scans are often chronologically ordered, and it is then suggested to call the column vectors of� for eigensequences,
— this is the term used in the Lyngby toolbox. The “scaled subprofile analysis” (SSM) resembles PCA analysis (Moeller,
Strother, Sidtis, and Rottenberg 1987; Moeller and Strother 1991).

SVD has also been applied with EEG (Friedrich, Fuchs, and Haken 1991), MEG (Fuchs, Kelso, and Haken 1992),
Multi-electrode recordings (MayerKress, Barcys, and Freeman 1991) and Stetter et al. (2000) describe principal compo-
nent analysis of OIS images.

Singular value decomposition can be used to obtain the principal components, but as the number of scans� are
relatively small the solution can be faster computed with symmetric eigenvalue decomposition of the outer product matrix
(R-analysis), see, e.g., (Friston, Frith, Frackowiak, andTurner 1995b; Weaver 1995; Nielsen 1996a) and equation 3.23.

Metric MDS has been used in functional neuroimaging (Friston, Frith, Fletcher, Liddle, and Frackowiak 1996a),
(Friston 1997b, section III.D), though this just correspond to singular value decomposition.

3.10 Non-negative matrix factorization

Non-negative matrix factorization (NMF) (Lee and Seung 1999; Lee and Seung 2001) considers the factorization of a
positive data matrix� �� � � � into two matrices

� � �� � �� � � (3.37)

where
� �� � � � and �� � � � are also positive matrices and� is the size of the hidden space. The cost function is

symmetric in� and� , thus if the data matrix� is transposed the estimated matrices
�

and will just be interchanged,
— the same property SVD has. Lee and Seung (2001) suggest two cost functions — an “Euclidean” (squared Frobenius
norm) and a divergence-type3

�“eucl” � ��� 	 � ���� � trace
��� 	 � �� �� 	 � �� � �� ��� 	 �� �� (3.38)

�div � � �� ��� � � �� ��� �� ��
�� 	 �� � �� � � (3.39)

where the matrix
� � � . Lee and Seung (2001) also describes an update used for an iterative estimation of the

parameters in
�

and . For the Euclidean cost function this is

 �� �  �� �� �� 	���� �� ��� (3.40)

� � � � � ��� 	���� �� 	 (3.41)

All the matrix multiplications generate small-sized matrices with one or both dimensions being� , thus the algorithm can
work directly on a large data matrix. For the divergence costfunction the update is

 �� �  �� 
 � �� � � �� ��
�� � ��� �� 	�� (3.42)

� � � � � 
�  ��� � � �� ��
��� ��� � 	� 	

(3.43)

The update is a gradient type with each parameter scaled individually as in the pseudo-Gauss-Newton. The matrices
�

and can be initialized as random positive matrices, and both matrices end up being sparse by this algorithm.
Both PET and fMRI raw data are only positive and a non-negative prior for would therefore be appropriate. This new

algorithm has not been applied in functional neuroimaging analysis. Hard threshold clusters are obtained by subjecting
the matrices to a winner-take-all over the� dimensions:wta � wta� � �, and section 5.8.1 presents an application
for clustering in author cocitation.

3An other appear in (Lee and Seung 1999) which is just the negative of the divergence apart from a constant:� ��� �� �� ��� ������ � ��� ��� �
.
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3.11 Independent Component Analysis

Independent component analysis (ICA) seeks to recover independent hidden source signals from observed multivariate
signals that contain the hidden signals mixed linearly (though sometimes nonlinear mixing is considered). With� �� �� �
as the observed data matrix,� �� �� � as the unobserved source matrix and� �� � � � as the unobserved mixing matrix
the classic equation is4

�� � ��� �� � � (3.44)

with the fundamental assumption that the� variables in� are independent. If the parameters in� and� should be
estimable it is necessary to make the extra assumption that the sources� should be non-Gaussian or that they have
different auto-correlation functions. In singular value decomposition the transposition of the data matrix does not matter
for the result, — other than the left and right singular vectors are interchanged. However, for ICA it does matter. There
are several extension to the “classical ICA” algorithm, as it makes several assumptions:

• There are no autocorrelation in each source signal, i.e., the source signals are white, and the observations are without
time-delay or filtering. Other ICA algorithm exists that take advantage of the auto-correlation functions, namely the
“Molgedey-Schuster” ICA (Molgedey and Schuster 1994) thatdoes not require that the sources are non-Gaussian.
Other algorithm to handle colored sources are dynamic component analysis (DCA) (Attias and Schreiner 1998) and
(Amari 2000).

• The dimension of the observation space� is the same as the dimension of the hidden source space, i.e.,the number
of columns in� and� are equal:� � � . The cases where they are not equal has been called over- and under-
complete ICA. There exist several methods to deal with thesesituations, e.g., (Hansen and Larsen 1998; Amari
1999).

• The sources are heavy-tailed (super-Gaussian, fat-tailed, lepto-kurtic) distributed, e.g., Laplace distributed,as op-
posed to sub-Gaussian, e.g., uniform distributed. Most signal seems to exhibit heavy-tailed behavior, however there
are signals that are sub-Gaussian, e.g. Lee (1998, section 7.3.1) notes that line noise from an EEG measurement
has a sub-Gaussian distribution and “could not be clearly isolated by the original infomax algorithm.”

• The observations� are without noise.

Other complications are nonlinear mixing and non-stationary sources and mixing matrices, furthermore, some algorithms
require that the data is preprocess before the actual ICA, e.g., the data is centered and prewhitened.

3.11.1 Molgedey-Schuster ICA

“Molgedey-Schuster” ICA (Molgedey and Schuster 1994) (MS-ICA) finds the independent components when a shifted
version of the data exists and there is autocorrelation in the data. It is related to the max/min autocorrelation factor
transformation (MAF) (Switzer and Green 1984). The shift isusually either in time or space. This MS-ICA algorithm is
very convenient since the mixing matrix� can be identified directly with a (generalized) eigenvalue decomposition. With
the� time/pixel/voxel step shifted data matrix termed� � the mixing matrix� is identified as:

� � �� �� ���� �� � � (3.45)

� ���� � leig �� � � (3.46)

with theleig as the left eigenvalue decomposition of
�

. Section B.5 shows a derivation of this. As the result can become
complex it has been suggested (Stetter et al. 2000; Hansen etal. 2000a) to use a symmetric covariance estimate of the last
term � � 
�� �� �� ��� �� �� � � � �� � � (3.47)

The shift parameter� represents a parameter that should be set appropriately. A method sets� to the shift corresponding to
the measure of the largest difference in source� autocorrelation coefficient (Thomas Kolenda, personal communication).
SVD and MS-ICA can be combined (Hansen and Larsen 1998; Stetter et al. 2000; Petersen 2000; Hansen et al. 2001a).

When Molgedey-Schuster ICA is performed with a preliminarySVD the source

�
� and mixing

�
� matrices can be

identified with the following operations

��� � � svd� �� � (3.48)�
� ��

�
�
�
� � 	
 �� �� �� � � � �� � � (3.49)�
� �

�
��� � (3.50)�

� � �

�
� �� � (3.51)

4The notation here is a transposed version of the usual:� ��  � � � � ��  � �� ��  � �
.
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where� � is the matrix containing� -shift eigensequences (if the shift is perform in the time domain), see appendix B.5
and (Hansen and Larsen 1998).

MS-ICA seems to be relatively robust, e.g., Fabricius, Kidmose, and Hansen (2001) found it robust in connection with
probability distributions with diverging second moment.

3.11.2 ICA in functional neuroimaging

ICA has been applied both to find the relevant (paradigm) signal as well as confounding signals. The two different version
of ICA that depend on how the data matrix is transposed has been called spatial and temporal ICA:

• For “spatial ICA” (sICA) the images are (assumed to be) independent and there is no constraint on the temporal
patterns. This was first applied on fMRI by (McKeown et al. 1998a; McKeown et al. 1998b)

• For “temporal ICA” (tICA) the temporal sequences are (assumed to be) independent and there is no constraint on
the images.

Stone, Porrill, Büchel, and Friston (1999a) find that of PCA,sICA and tICA only tICA was able to separate the relevant
(they call it “consistent task-related”) temporal activity (i.e. the paradigm) in a single component. For PCA and sICA the
relevant signal was mixed up in several components. However, McKeown, Jung, Makeig, Brown, Kindermann, Lee, and
Sejnowski (1998a) find that sICA does indeed also separate the relevant component in a single independent component,
and they also find the relevant signal is distributed in several components when using PCA.

Petersen (2000) investigates three algorithms Bell-Sejnowski, Molgedey-Schuster and DCA and find that the
Molgedey-Schuster algorithm strongly separates the paradigm signal from the other signals and is orders of magnitude
faster than Bell-Sejnowski and DCA. Other applications of ICA in functional neuroimaging are (Kolenda 1998) which
uses the ICA algorithm of (Bell and Sejnowski 1995) on both PET and fMRI. (Stone, Porrill, Porter, and Hunkin 2000;
Stone, Porrill, Büchel, and Friston 1999b) describe a combination of sICA and tICA called spatiotemporal ICA (stICA).

Schiessl et al. (1999), Schiessl et al. (2000) and Stetter etal. (2000) use ICA with preliminary PCA on optical imaging
data.

A short review of independent component analysis in functional neuroimaging is available in (Petersson, Nichols,
Poline, and Holmes 1999a).

3.11.3 Examples on Molgedey-Schuster ICA

Figure 3.5 shows a Molgedey-Schuster ICA performed on a simple event-related fMRI toy problem: With a “scanning”
frequency of TR� 


s 50 events are distributed randomly in a period of 1000s, i.e., the events can be regarded as
generated from a Poisson process with Laplacian distributed interstimulus intervals (ISI). The first 9 events are visible
as stems in the upper left plot of figure 3.5 which displays thefirst 150s of the period. Each event is convolved with
the Glover/SPM99 hemodynamic response function (see figure2.5) generating the curve in the upper left plot. Two
other signals are present: A sinusoid with approximately 0.9Hz (pseudo-cardiac and heavily aliased) and another with
approximately 0.2Hz (pseudo-respiratory), both with a stochastic low-frequency drift in the fundamental frequency.These
are the second and third row plots in the left column. From these sources� �� � � � � � �
��� � � � a small brain
scanning data set� �� � � � � � �
��� � �� � is constructed� � �� � � by a random mixing matrix� �� � � �
and the disturbance term� containing Gaussian noise. Molgedey-Schuster ICA is performed

�
�

�
� � �� ���� �� � with a

shift of � � �
and the recovered sources

�
� shown in the right column of figure 3.5: Apart from permutation, sign changes

and magnitude the sources are well recovered. Indeed in thissimple example the sources is also separable with ordinary
singular value decomposition.

When the stimuli are generated from a Poisson process its auto-correlation function will be a Dirac delta function
in zero. The separation of the stimulus-related component in the example rely on the autocorrelation of hemodynamic
response and if confounds in the scans are convolved with thehemodynamic response function the separation of the
sources will immediately deteriorate.

Figure 3.6 displays the result of a Molgedey-Schuster ICA ona real fMRI data acquired by Egill Rostrup, Hvidovre
Hospital with a 1.5 Tesla scanner: A single subject block fMRI study with an inverting full-field 8 Hz-checkerboard
stimuli that was also used in (Goutte, Toft, Rostrup, Nielsen, and Hansen 1999b; Goutte, Hansen, Liptrot, and Rostrup
2001). TR� �

Hz and 10 runs of 150 scans were obtained with a paradigm of rest (20 sec, 60 scans) — activation (10 sec,
30 scans) — rest (20 sec, 60 scans). The data covers a single slice from two different session with the same subject. Cyril
Goutte performed linear trends removal from each voxel in each individual run and F-masking was applied to discard
voxels that only contained noise, resulting in 3891 and 4372voxels for each session. 5 of the 10 runs where used for ICA
and the first and last 25 from each run were left out leaving 605scans in each session. The corresponding images from
each session was concatenated into one long vector:� ���
 � ����� � �� � ���
 � ��� 
� � � � ���
 � ������. The number
of components were chosen to� � � while the time shift was set to� � 


.
The paradigm is clearly separated in one component (the lower row): From the time domain plot of the source the

periodic paradigm is easily seen. The mixing matrix for thiscomponent displays a signal in the visual cortex (the bottom
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Figure 3.5: Demonstration of Molgedey-Schuster ICA on a toy problem. Subplots of the left column correspond to original
source signals and right columns to recovered sources. Note that the ordering between the original and the recovered
sources are permuted, since the ICA algorithm is not aware of the original ordering: The “paradigm” signal source appears
in the first row while it is recovered in the third (with inverted sign). The “cardiac” original signal source is shown in the
second row and covered as the first row, while the “respiratory” original signal appears as the third row and recovered in
the second row.
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Figure 3.6: Demonstration of Molgedey-Schuster ICA on real fMRI data. Each row corresponds to a single independent
component. The first and second column display the sources in the time domain and in the frequency domain, respectively.
The third and fourth column display the mixing matrix split on the two sessions. Note that the aspect ratios are not natural.
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of the image) that are uneven distributed between the first and second session — the first session showing a larger signal
both in the sense of magnitude and spatial extent. This mightvery well constitute a difference in the fMRI signal, as also
reported by McGonigle, Howseman, Athwal, Friston, Frackowiak, and Holmes (2000).

The components corresponding to the first, second and third row have a strong periodic signal around 0.76 Hz. This
correspond to a slow cardiac frequency of approximately 46 beats per minute. The signal is spatial localized in the top of
the image — the anterior part of the superior sagittal sinus.This shows that the Molgedey-Schuster ICA is able to identify
a confound in line with what others have reported for other types of ICA algorithms, see table 3.10. It should be noted
that the K-means cluster analysis performed on the cross-correlation function with the same data (Goutte, Toft, Rostrup,
Nielsen, and Hansen 1999b) did not find such a clearly separated component. It should also be noted that Biswal and
Ulmer (1999) detected no cardiac-related with their ICA based on 3 T fMRI. They attributed this to a long TR of 600 ms.

The first row component contains a second frequency around 1.08 Hz. It is not know what this constitutes, e.g., it does
not fit with a direct harmonic or an aliased harmonic. The components for the fifth and sixth row contain an approximated
0.4 Hz signal and its first harmonic, that could be a signal associated with respiration.

3.12 Probability density estimation

Probability density estimation (PDE) considers the problem of estimating a probability density function (PDF)� �� � from
a finite number of samples with some form of model� �� �� � � � �� �. PDE can be used for outlier detection and in
prediction, e.g., classification where class-conditionaldensities are needed. Some of the many variation of PDE can be
grouped in the following way:

• Parametric methodswhere the form of the PDF is restricted to a simple often well-known PDF, e.g., the Gaussian
distribution. The advantages with these models are that they (usually) consist of few parameters making it unlikely
to overfit, and one is often able to derive hypothesis tests toan analytical form. The disadvantage is that it is not
very flexible, e.g., not able to model bimodal PDFs.

• Finite mixture models are models that use several simple PDFs (kernels) to model the target PDF. A common
choice is a weighted additive mixture of a finite number of Gaussian distributions. The advantages with these
models are that they are relatively flexible and that the individual mixture components might lend themselves to
interpretation, i.e., one is able to identify clusters in the target PDF. The disadvantages are that it is not possible
(or difficult) to derive analytical expression for hypothesis testing, the estimation of the parameters is difficult (the
estimation requires iterative updates), and for some cases, e.g, the Gaussian mixture model with no assumption
about the covariance, the likelihood can become infinite if asingle object absorbs a mixture component exclusively.

• Kernel methods. Also calledprobabilistic neural networks(Specht 1990),Parzen windows(Parzen 1962) or non-
parametric methods (even though they usually consists of very many parameters). In kernel methods each object
is convolved with a simple PDF, e.g., a uniform distribution(Rosenblatt 1956) or a Gaussian distribution (Parzen
1962). It can be regarded as a mixture model where the number of mixture components are equal to the number of
objects. Unlike the mixture model each “mixture” in a kernelmethod is not interpretable.

• Infinite mixture models. Rasmussen (2000) has developed an PDE model that in principal can have infinite number
of mixture components each weighted within a Bayesian scheme. The model is very flexible but the components
are not interpretable. Related are the finite mixture model of Richardson and Green (1997) that does not have a
fixed number of components.

Apart from the above mentioned there areorthogonal expansion estimationwhich uses basis function such as Fourier
series andprojection pursuit density estimation, which are based on the projection pursuit (Ripley 1996, pages185-188).
Mixture models and kernel density estimation is described in more detail in the following sections.

3.12.1 Mixture models

Finite mixture models estimate a probability density� �� � by several (� ) other simpler component densities� �� �� �
� �� � � ��� � �� �� �� �� � (3.52)

where� �� � is a prior for the� ’th component. The component densities are often parametrized as multivariate Gaussian
distributions � �� �� � � ����� ����� �	
 �	 


� �� 	 �� �� ��� �� 	 �� ��� 	
(3.53)

The means�� are usually not restricted, but the covariance matrices��
can be parametrized in various ways, see fig-

ure 3.4, and they can be assumed to be common� � � 	 	 	 � �� (Hastie and Tibshirani 1996), which avoids the problem
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in maximum likelihood estimation where the likelihood goesto infinity if a mixture component collapses to a single data
point and overfit dramatically (Day 1969; Bishop 1995a, page63). The result probability are parametrized as

� �� �� � �
	 	 	 ��� �� � �

	 	 	 ��� �� � � �� � �� �� � �
	 	 	 ��� �� � �

	 	 	 ��� �� � (3.54)

�
�� � ��� � �� ��� ��� �� �� �� (3.55)

where the vector
� � �� �� � 
� � 	 	 	 � � �� � � ��� contains the component priors. Differentiating the log-likelihood

of this does unfortunately not yield a simple expression that directly can be optimized with one of the methods listed in
section 3.2.1, instead the so-called EM-algorithm are often applied (Bishop 1995a, section 2.6.2).

Hansen, Sigurðsson, Kolenda, Nielsen, Kjems, and Larsen (2000d), Nielsen and Hansen (1999) and Christiansen
(2000) describe a special EM scheme, where the data is split into two disjoint sets and one set estimates the means��
while the other the covariances�� . The entire data is used for estimation of the component priors � �� �. Each objects� is hard clustered to its assigned component and if there is not enough objects� � for the estimation of the covariance
of the � ’th component this covariance is then estimated as a scaled version of the covariance on the entire data set� � .
The algorithm is as described in (Hansen et al. 2000d) with initialization of the overall parameters� � and� � and the
individual component parameters�� , �� and� �� ��

�
� � ��� � �� (3.56)� �
� � �� �� 	 �� �� �� �� 	 �� �� � (3.57)�� � � �� � �� � � 	 (3.58)�� � � � (3.59)

� �� � � 
�� 	
(3.60)

The following steps are repeated until convergence��
�
�� � Split � � 
 		� randomly into two sets (3.61)� � � 	� � max� � �� �� �
 (3.62)�� � � ��� �� ������� � (3.63)

�� � �� ��� �� 
 ������ �� 	 �� � �� 	 �� �� if � � � � � 

� � if � � � � � 
 (3.64)

� �� � � � � �� (3.65)

where
� �

is the� �
sized set of assigned objects to the� ’th component. The algorithm is iterated over a number of

different� s, e.g.,� � 
 		� ��
and the best model is selected via the AIC criteria. Unless two object are the same the

algorithm will avoid the infinite likelihood problem and hastherefore been termed thegeneralizable Gaussian mixture
(GGM) model. Classification can be made with this model if it is applied separately on each class, see section 5.9.2 with
figure 5.17(a) and 5.18 for an application.

3.12.2 Kernel methods

Kernel methods for density estimation place a kernel aroundeach of� � -dimensional data points� in the� -sized
training set, i.e., convolve each point with a kernel (Ripley 1993, section 6.1), (Bishop 1995a, section 2.5.3), (Duda,Hart,
and Stork 2000, section 4.3). The kernel often has the form ofa simple parametric probability density function� �� �� �:

� �� � � �� � �� �� �� �� � 	 (3.66)

Often each of the� components are given equal weight� �� � � 
�� , and frequently the kernel is a Gaussian probability
density function with a homogeneous isotropic covariance� � 	 � 


� �� �� � � � �� �� � 	 � � � ���	 � 	�� �� �	
 �	


�	 � �� 	 � �� �� 	 � �� (3.67)
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where	 � can be referred to as the kernel width. If the kernel width is not set from a priori knowledge it might be
estimated from the data with the methods mentioned in section 3.3, e.g., via cross-validation (Silverman 1986). The
negative log-probability leave-one-out (LOO) cross-validation cost function is

� �� � 	 � � � 	
�� �� � � �� �� �

 � 	 � 	 (3.68)

� 	
�� �� �� 


� 	 

�� � �� ���	 � ��� �� �	
 �	 


�	 � �� 	 � � �� �� 	 � � ���� 	
(3.69)

The LOO cross-validation function can be differentiated with respect to	 � and optimized with the second order Newton
method (Nielsen, Hansen, and Kjems 2001b), see figure 3.7 fora simple example.

Figure 3.7: Kernel density estimation. Estimation from � � �
data points in 	 � � dimensional space with varying kernel

width 
 �. The middle panel is with a LOO cross-validation optimal 
 � . Compared with this the 
 � is too small in the left
panel and too large in the right panel.

3.12.3 Probability density estimation in functional neuroimaging

Probability density modeling has be used to model the hot spot location from functional neuroimaging result: Fox et al.
(1997a), Fox et al. (1997b), Fox et al. (1999) and Fox et al. (2001) used simple parametric models, while Nielsen and
Hansen (1999) worked with finite mixture models. Kernel methods has been applied in (Nielsen, Hansen, and Kjems
2000; Nielsen and Hansen 2000b; Nielsen and Hansen 2001b; Nielsen, Hansen, and Kjems 2001b; Turkeltaub, Eden,
Jones, and Zeffiro 2001). Hartvig and Jensen (2000) used mixture models in the spatial domain and Everitt and Bullmore
(1999) performed mixtures for activated and non-activatedcomponents.

3.13 Novelty and outlier detection

Novelty and outlier detection are concerned with abnormal samples. Beckman and Cook (1983) define outliers as either
discordant (“any observation that appears surprising or discrepant to the investigator”) or contaminant (“any observation
that is not a realization from the target distribution”). “Outlier detection” is often used in the statistical literature while
“novelty detection” are mostly used in the connectionisticliterature.

Novelty detection can be categorized in two classes:

• Monitoring of data. Novel data might be interesting (discordant) or faulty (contaminant) and we would like to
detect any of these, e.g., “early detection of faults in rotating mechanical machinery” (Ypma and Duin 1998),
epileptic and non-epileptic EEG signals (Roberts and Tarassenko 1994; Roberts 1999), tumors in mammograms
(Tarassenko, Hayton, Cerneaz, and Brady 1995), or detection of neuroscientific database errors and other novelties
(Nielsen, Hansen, and Kjems 2001b; Nielsen and Hansen 2001b).

• Monitoring of model performance. Operating the model in a part of the input space where it has never been trained
will usually mean that the prediction will be unreliable (have a high variance) (Bishop 1994). A non-stationary
input distribution or a limited number of data samples mightbe the reason why the model is in a novel part of the
input space. Bayesian modeling where the whole predictive distributed is modeled will usually give an indication
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of the prediction uncertainty: Here no extra modeling is necessary only an extraction of a value (e.g., the variance)
from a distribution. Once novel data has been detected the model might be retrained.

For Gaussian multivariate data there are several techniques to detect outliers (Beckman and Cook 1983), e.g., a Ma-
halanobis distance. For non-Gaussian multivariate distributions more flexible probability density modeling can be used,
e.g., Roberts and Tarassenko (1994) and Roberts (1999) use aGaussian mixture model. Bishop (1994) uses also a kernel
density estimator (Parzen window) with a Gaussian kernel and Martinez (1998) uses a “neural tree”. Other unsupervised
methods are self-organizing maps with a goodness of map value (Ypma and Duin 1998) and autoencoder/associative net-
work combined with the correlation coefficient or the Euclidean distance between the input and the output (reconstructed)
data (Pomerleau 1993; Worden 1997). Instead of the unsupervised technique it is also possible to use supervised, building
a model that classifies normal and abnormal samples. However, it is usually not a good idea: The abnormal samples are
expensive to collect and the abnormal distribution might benon-stationary.

Building the model for novelty detection is dependent on whether the data set contains only “normal” samples or
both normal and the abnormal samples. In the first case the PDFmodeling can be modeled from all data samples. In
the second case the abnormal cases should not affect the PDF estimate of the normal class. Roberts (1999) suggests
that the PDF model-complexity should be penalized (by MDL).For simple parametric models it should be possible to
use robust estimation that is less influenced by outliers. In(Nielsen, Hansen, and Kjems 2001b; Nielsen and Hansen
2001b) a heuristic two-stage strategy was used where a probability density first was established and then the 5% of the
most extreme data points were discarded and a new probability density was estimated from the remaining data points.
This forms an implicit assumption of 5% outliers in the data set. (Larsen, Andersen, Hintz-Madsen, and Hansen 1998a)
describes a method where the outlier probability is estimated based on a validation set.

A problem is to get from the probability density associated with an outlier to the probability. In connection with the
simple parametric model one is usually able to derive a p-value. For the novelty detection for kernel methods and mixture
models this is not straight forward. Hansen, Sigurðsson, Kolenda, Nielsen, Kjems, and Larsen (2000d) describe a method
with sorting of the density values and establishing a p-value from the (countable) fraction of data points below the density
value. This p-value can be estimated on the training, validation and test set.

Bishop (1994) used posterior odds as a measure for the novelty so that a data point� is assign to the novelty class if

� �� � �� � � � �� � �� � � (3.70)

where
�
� denotes the non-contaminated training set and

�
� denotes the novelty class. These posteriors are found through

Bayes formula

� ��� �� � � � �� �� � � � �� � �� �� � 	
(3.71)

Since� �� � is the same for both
�
� and

�
� the denominator of equation 3.71 will be eliminated when it is plugged into

equation 3.70 and it reduces to

� �� �� � � � � �� �� � � � �� � �� �� � � 	
(3.72)

In (Bishop 1994) the novelty density� �� �� � � “is taken to be constant over some large region of input space” while
we in (Nielsen and Hansen 2001b; Nielsen, Hansen, and Kjems 2001b) implicitly used a uniform “improper” distribu-
tion � �� �� � � �



, and the novelty becomes inverse proportionally related tothe posterior of the non-contaminated data� �� �� � �. This allowed us to compare novelty indices across the different data sets.

3.14 General model for unsupervised methods

Some of the unsupervised methods can be seen as a specialization of a general model “analysis of covariance structures”
proposed by Jöreskog (1970), see also (Mardia et al. 1979, section 9.9). With a data matrix� �� � � � each row being
Gaussian distributed the mean and covariance are

� �� � � ��� (3.73)

 �� � � � � � ���� � � � �� � � � 	
(3.74)

This general model says that the mean and the covariance are structured in some way.� �	 �
 � is a matrix of parameters.
The semi-positive definite diagonal matrices� �� � � � and� �� � � � will often represent noise of some sort. The
symmetric� �� � � � on the other hand often describes the interesting signal and� �� � � � and� �� � � � are the
matrices that rotate the�-space to the space ofX.

In the original work of Jöreskog the matrices� �� � 	 � and� �
 � � � were regarded as known. However, if
A consists of parameters then mixture models with common covariance among the mixture components can also be
incorporated in the general model, e.g., in the K-means algorithm the parameters ofA will be identifiers for assignment,



64 Analysis

Model � � � � �
PCA


 � 
 � 0
Probabilistic/Sensible PCA


 � 
 	 
 �
Factor model I � 
 � �
“Probabilistic K-means” � � � � 	 

Bilinear model


 �� � � � 
 � �

Table 3.14: Specialization of Jöreskog’s model “analysis of covariance structures”. For the bilinear model see sec-
tion 3.18.6.

— an assignment matrix. The number of columns inA (	 ) will be equal to the number of clusters (� ) and� will contain
coordinates for the cluster centers.

Another effort to unify several of the unsupervised models is Roweis and Ghahramani (1999). The basic model is in
a notation known from discrete time linear dynamical systems:

� �� � � � �� � �� (3.75)� � � �� � � �� 	 (3.76)

This is directly related to Jöreskog’s model, if the discrete time representation is replaced by the introduction of a inter-
mediate space denoted with�

� � � � � � (3.77)� � �� � � 	 (3.78)

Ignoring any mean of the variables, provided that there is nodependence between noise and data (e.g.,� ��� � � � � �),
and applying ordinary covariance matrix manipulation, seee.g., (Mardia et al. 1979, equations 2.2.11 and 2.2.14), the
covariance of� can be identified as

 �� � �  ��� � � � (3.79)

�  ��� � �  �� � � � ��� � � � � � �� ��� � (3.80)

� � �� ��� �  �� � 	 (3.81)

Further applying the same transformation between� and� the result is

 �� � � � �� �� �� � �  �� �� �� �  �� � 	 (3.82)

By comparing equation 3.74 and 3.82 the following can be written

 �� � � � (3.83)

 �� � � � (3.84)

 ��� � � (3.85)

� � � (3.86)

� � � (3.87)

(3.88)

3.15 Supervised modeling

Supervised models consider two sets of data. One set of data is considered the independent data and is regressed on the
dependent data set — the target.

Attributed as supervised modeling are classification and linear as well as nonlinear regression, such as (linear) multi-
variate regression analysis and multilayer artificial neural networks.

3.16 Linear modeling

3.16.1 Regression

One of the most used linear models is themultivariate regression model(Mardia, Kent, and Bibby 1979, chapter 6)
� � �� � � (3.89)
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Name Form Primary references
Poisson Friston et al. 1994a
Gaussian � � ��

� � � � ��
� Rajapakse, Kruggel, Maisog,

and von Cramon 1998, Hartvig
1999, equation 6

Gamma density �� ��� Lange and Zeger 1997
Delayed gamma �� �� 	 � � Boynton et al. 1996, Dale and

Buckner 1997, Ollinger et al.
2001a

Gamma mixture (+derivatives) � �� � �� ��� � 
��� �� �� ���� Glover 1999, Friston et al.
1998a

Gamma mixture � �� ��� � � �� �� 	 
� � 	 	 	 � � �� �� 	 
�� Konishi et al. 2001
Fourier series Friston et al. 1995b, Bullmore

et al. 1996a Josephs et al. 1997
FIR � �� �� � � � � � �� 	 
� � �� � �� 	 � � Nielsen et al. 1997, Goutte et al.

2000, equation 1, Ollinger et al.
2001a, Ollinger et al. 2001b

Volterra series (Gamma mixture) Friston et al. 2000b
Artificial neural network tanh ���� �� Nielsen et al. 1999

Table 3.15: Hemodynamic response models: linear and nonlinear. � is the gamma density function.

� �� � � � is an observed data matrix with� variables and� objects and� �� � � � is a known matrix.� �� � � �
is a parameter matrix and� �� � � � is a matrix of random disturbances ornoise. If � is a design matrix then the
model is called thegeneral linear model(GLM). In functional neuroimaging

�
is often the brain scanning data in a voxel

representation. If there is only one variable� � 

then the model is themultiple regression model:

� � �� � � 	 (3.90)

When� � 

it corresponds to modeling each voxel separately. When all voxels are iteratively modeled this way it is

often referred to amass-univariatemodeling.
The parameters in multiple regression model can be estimated as the maximum likelihood (ML) — with an assumption

of independently Gaussian distributed noise — or ordinary least square (OLS)�
�OLS � �� �� 	�� � �� 	 (3.91)

The multiple regression model incorporates numerous subsumed models, e.g., ordinary regression, ANOVA (analysis of
variance), ANCOVA (analysis of covariance) and some cases of “ �-tests” and “� -tests”. Also the finite impulse response
(FIR) filter — known from digital signal processing, see, e.g., (Mitra 2001, section 6.3) — is a variation. The type of
multiple regression model depends on how the (design) matrix � is constructed: When group structures are investigated
the design matrix� contains indicators (ones and zeros). In analysis of fMRI basis functions for the hemodynamic
response function are often represented in the columns of the design matrix, table 3.15 shows some of the basis functions
that have been used.

If there are parameters in the basis functions that need to befitted then it is not possible to estimate nonlinear param-
eters with equation 3.91. An example is the gamma density models: while the amplitude parameter in this model can
be estimated directly, the nonlinear form and shape parameters cannot be identified direct and should undergo nonlinear
optimization. The infinite impulse response (IIR) filter — another model associated with digital signal processing — can
neither be incorporated in the multiple regression model.

In the presence of noise, if there are many parameters� compared to the number of objects� , and/or some of
the variables in� are highly correlated the estimation in the multiple regression model (as in any other model) will be
unstable. This is, e.g., the case in connection with FIR filters applied on fast sampled fMRI data. With a TR� ���

ms
and a filter length corresponding to 30 seconds 100 filter coefficients are required, and with the usual size of the data set
the variance of the parameter estimate is high. In this connection regularization can help, e.g., ridge regression where the
parameters are identified as (Hoerl and Kennard 1970b; Hoerland Kennard 1970a)�

� �� � �� �� � �
��� � �� 	 (3.92)

This can be regarded as a MAP estimate of� where the prior distribution of� is a an isotropic and homogeneous Gaussian.
The estimate will beshrunktoward zero.
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Another common regularization method is principal component regression (PCR) (Massy 1965), for a neuroimaging
application see, e.g., (Østergaard, Weiskoff, Chesler, Gyldensted, and Rosen 1996). Here the estimation is restricted to
a linear subspace obtained by a singular value decomposition of the design matrix (Burnham, Viveros, and MacGregor
1996, equation 6) �

� ��� � �
���� �� �� (3.93)

��
� � � svd� �� � � (3.94)

wheresvd� is a� -truncated singular value decomposition.
A special regularization is proposed in (Goutte, Nielsen, and Hansen 2000; Nielsen, Goutte, and Hansen 2001a) in

connection with the so-called “smooth FIR” model. Here smooth kernels (i.e., hemodynamic response function models)
are produced by having a Gaussian prior distribution for theparameters

� �� � � �	
 �	������� ��� � (3.95)

where the individual parameters
��

in � next to each other is more correlated, the�� � � �-element set as

��� �� �	 � � �	
 �	 

� 
 �� 	 � ��� (3.96)

where� controls the amount of regularization while



is a characteristic length of the smoothness. The MAP estimate of
the parameters are then found to be

�
� ��� � �� �� � 	 ������ ��� � �� (3.97)

where	 � are the noise variance of�: � � � �� � 	 � 
�. With

 � �

the ridge regression solution will be approached.
A similar method is described by Marrelec and Benali (2001) though here the regularization matrix� seems to be

“truncated” to a band-diagonal matrix. The confounds are modeled simultaneously by a polynomial. The Gaussian prior
regularization has previously been suggest by Bretthorst (1992).

If the smooth FIR regularization is used as part of an ANCOVA modeling where covariates with no connection to the
fMRI response are present, then the regularization term should not be included for those variables

� � � � �� �
� � � (3.98)

Furthermore, if there are several independent inputs (different paradigms) they should be regularized independently, i.e.,
the regularization matrix� should be block-diagonal rather than full.

� � � � �� �
� � �� � (3.99)

The regularization matrices might be the same� �� � � �� .
The posterior density of the parameters� �� �� � � � will have a multivariate Gaussian distribution if the noise	 �� is

known (the posterior is conditioned on	 �� ) and there is a uniform prior on the parameters:� �� � �



(Box and Tiao
1992, section 2.7.1). It will still have a Gaussian distribution if a Gaussian prior for� �� � is used (Goutte, Nielsen,
and Hansen 2000, equation 6) — the Gaussian prior is a conjugate prior in this connection. However, when	 �� is not
known the distribution of the parameters� is more complicated: With a uniform prior on� and�� 	� — � �� � �



and� �	 �� � � 	 ��� , respectively — the posterior distribution of� will follow the multivariate �-distribution (Box and Tiao

1992, section 2.7.2, equation 8.3.13) (Mardia et al. 1979, exercise 2.6.5).

3.16.2 Time-series modeling of fMRI signals

Time-series modeling of the fMRI signal is concerned with the modeling of the interesting signal modulated (filtered) by
the hemodynamic response function (HRF), and with modelingof confounding signals. There are several reasons why
modeling of the HRF is interesting:

• Understand the underlaying physiological models. One of the few models that has been proposed is the balloon
(Buxton, Wong, and Frank 1998).

• Obtain a model that can predict the fMRI for new scanning andpsychological parameters (so we can optimize them
for best detection), e.g., Josephs and Henson (1999) use a HRF to acquire theestimated measurable power(EMP)
as a function of the stimulus onset asynchrony (SOA) and experiment type by simulation. If the simulation should
be valid it is important that the HRF model are correct.

• Obtain a value for the importance of a region in a mental process.
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• Extract some features of the response, e.g., the delay. Forthis the hemodynamic response model should be
parametrized not only by its amplitude, but also by, e.g., its delay.

• Identify a hemodynamic response model so the fMRI signal can be deconvolved and the (possibly unknown) neu-
ronal response can be found. This is difficult since the hemodynamic response is not known well enough. In (Højen-
Sørensen, Hansen, and Rostrup 1999; Højen-Sørensen, Hansen, and Rasmussen 2000) a Bayesian estimated FIR
model for the hemodynamic response was used together with a Markov model for the stimulus.

There has been a few comparison of the different hemodynamicresponse models: Ollinger, Shulman, and Corbetta
(2001a, e.g., figure 4) compared the delayed gamma and the gamma mixture from SPM99 together with the FIR filter
(“the � statistic approach”) and find that the gamma provide higher�-values compare to the FIR filter, provided that the
paradigm is not shifted. If the paradigm was shifted 1 secondthen the�-gamma dropped below the FIR filter.

Jittering

In functional neuroimaging experiments — especially event-related fMRI — the timing of the behavioral data (the input)
is often different than the brain imaging data, e.g., the sampling rate might be different with the behavioral data being
sampled faster and/or the cognitive events might not fall inthe same phase as the brain imaging data. It might occur
because of variation in reaction time of the subject or because ajittered stimulus is used. When jitter is used it becomes
possible to interrogate the hemodynamic response at different phases with a higher frequency than the imaging sampling
frequency (TR). This is especially useful when the TR are in the order of the characteristic time length of the hemodynamic
response.

A way of handling the sample problem would be to upsample the imaging data to the frequency of the behavioral data.
This would unfortunately require large amount of storage capacity and it would gain nothing in terms of statistical power.
The opposite would be to downsample the behavioral data to TR.

Resampling is a standard exercise in digital signal processing (Mitra 2001, chapter 10), and a few variations are
depicted in figure 3.8. The dots denote what would be entered in the design matrix� if the general linear model was
used. The lines shows the model output

�
� if the model was estimated as the linear “Glover” model implemented in SPM

(Friston 1999a; Glover 1999). In the lower left corner of thefigure is shown a decimation without any filtering at a TR
comparable to the event block length. In this case the eventsfall so no distinction is seen between the varying event block
lengths. This simplified downsampling could give rise to false conclusions about the nonlinearity of the response. The
right side depicts some more appropriate downsample methods.

A somewhat different approach is possible if the hemodynamic response model is continuous: The SPM toolbox
downsamples the behavioral data to a sixteenth of TR and convolves it with the continuous hemodynamic response
function with this sample frequency before downsampling fully to TR.

3.16.3 Cross-correlation

Cross-correlation was one of the first methods to be used to analyse fMRI (Bandettini, Jesmanowicz, Wong, and Hyde
1993). In its simplest form the fMRI signal in a pixel is correlated with the paradigm function — usually a boxcar function
or a sinusoid. In such a case the cross-correlation can be formulated within the framework of the multiple regression model
of equation 3.90 resulting in a�-statistics. A more elaborate cross-correlation will slide the paradigm function across the
fMRI signal yielding across-correlation sequence, see, e.g., (Mitra 2001, section 2.7). The maximum of this function
can be reported together with a delay parameter computed as the distance between zero lag and the lag at maximum. A
statistics for this situation is difficult to develop analytically, but it has been assessed by Monte Carlo (Goutte and Rostrup
1999).

There are two issues in the computation of the cross-correlation that needs to be considered: When the paradigm is
slided across the fMRI signal, the fMRI signal needs to be extended. The usual solution is simple zero-padding. The
other issue is how the cross-correlation should be normalized: If the paradigm is in� and the fMRI signal of a particular
voxel is in� then a “unnormalized cross-correlation” would just be the inner product of the two vectors� � ��� while a
“normalized cross-correlation” would standardized the variance in both variables:

� �
����������� 	

(3.100)

In the former case� will be proportional to a
�

in the multiple regression model and� will correspond to a�-statistics.

3.16.4 Delay

When the data represents a time-series and a model is fitted itis sometimes of interest to determine a delay or latency of
the response, e.g., the delay of the hemodynamic response infMRI modeling. There exists different definitions of this
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Figure 3.8: Resampling jittered events. Artificial data set with event blocks at 15.2–18.1, 44.3–51.7 and 71.7–77.6
seconds, downsampled to different TRs and convolved with the a gamma density mixture (Friston 1999a). The upper left
plot can be considered the truth. The middle right plot is obtained via the standard decimate.m function from the Matlab
signal processing toolbox, see also (Mitra 2001, section 10.2.4).

• Phase delay is defined as the lag of a sinusoidal signal between the input and output. Thierry, Boulanouar, Kherif,
Ranjeva, and Demonet (1999) used this approach according toLiao et al. (2001b)

• The delay can be computed as thegroup delayat zero frequency which corresponds to thecenter of massof the
filter. If

��
represents the FIR filter coefficients the group delay is computed as:

� � 
 � �� � �

 � �� (3.101)

This delay measure is used in (Goutte et al. 2000; Nielsen et al. 1997).

• For the cross-correlation the delay can be determined as the lag where the cross-correlation function has its maxi-
mum. A related delay measure was used in (Bellgowan, Saad, and Bandettini 2001) where the time of maximum
of the cross-correlation function between the fitted impulse response function and a gamma density function was
used as the delay value. A similar method was used in (Saad, Ropella, Carman, and DeYoe 1996; Saad, Deyoe, and
Ropella 1999).

• The peak of the impulse response function can be used as the delay value.

• If the impulse response function is modeled with a parametric model, such as the gamma mixture model then a
model parameter might represent a parameter that is appropriate to regard as a delay parameter. This approach
was take by Henson and Rugg (2001) where a gamma density mixture is fitted to an fMRI time-series. It is also
implemented in SPM where the first order derivative of the gamma density mixture model (Friston 1999a) can be
regarded as a delay parameter.

• The raise time, e.g., the time from 10% to 90% response with astep function as input. Bandettini et al. (1993) used
a delay that resembled this measure.
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Parameters / Input Linear Nonlinear
Linear GLM with only linear terms GLM with nonlinear terms

Nonlinear Gamma convolution model Neural network

Table 3.16: Examples of nonlinear models: Nonlinearity in parameter-output and in input-output mapping. Inspired by
Larsen (1996, table 1.1)

• Menon, Luknowsky, and Gati (1998) regarded an onset time estimate of the delay, where a straight line was fitted
to the region between 20 to 70% of peak response and the intercept with zero was taken as the value of the delay.

The two first in the list are often used in the context of digital signal processing, see, e.g., (Mitra 2001, section 4.2.6).
A more elaborate delay estimate is presented by Liao, Worsley, Poline, Duncan, and Evans (2001a, 2001b). This

description incorporates inference about the delay parameter.

3.16.5 Random effects

Usually the parameters of the model are regarded as fixed (butunknown). If one of the parameters vary in some systematic
way this should be modeled. The former model is known as afixed effects modelwhile the latter is commonly called
random effects model. If the model consists of both fixed and varying parameter themodel is called amixed effects model
(Box and Tiao 1992, section 5.1), (Armitage and Berry 1994, section 7.3), (Conradsen 1984a, chapter 5).

The fMRI BOLD response magnitude varies across subjects, see, e.g., (Holmes and Friston 1998). Furthermore, also
the intrasubject intersession variation has been observed(McGonigle et al. 2000). With a general linear model (GLM)
this can be described with a parameter matrix� where some of the parameters are stochastic, — vary across subjects and
sessions. If the design isbalanced(e.g., the is a equal amount of scans for each subjects) and parameters areseparable
across the varying component, e.g., separable across subjects, then a two-stage random effects modeling can be employed
to estimate the distribution of the stochastic parameter (Holmes and Friston 1998). In this procedure parameter estimates
for each subject (or each session) is first identified (in afirst level analysis), then these are used in a second level analysis
in a test, most often a simple�-test. Specifically in fMRI analysis a strength parameter can be calculated from, e.g., a
gamma density model for each subject and for each voxel. A newdata matrix (subject

�
voxels) is constructed from the

estimated strengths, and this matrix is then analysed with the GLM.
The random effect model is not directly implemented in the Lyngby toolbox, but the two-stage procedure can be

applied by making the first stage with a hemodynamic responsemodel, e.g., the FIR model or the “Lange-Zeger”, and the
second stage may be run with the ordinary�-test. It is not necessary to account for a temporal correlation in the fMRI
time-series, but the spatial correlation should still be accounted for if a significance value is required.

3.17 Nonlinear modeling

There are two aspects of nonlinearity in modeling, depending on what effect there is on the output of the model (see also
table 3.16):

• Parameter nonlinearity, e.g.,
� � � � �� �. When the nonlinearity is in theparametersthen a linear change in a

parameter of the model will result in a nonlinear change in the output with the same input signal. When the input
signal is linear changed the output is not necessary nonlinear. Nonlinear models such as these can appear if the
input-output relationship is expressed with an ordinary differential equation, where the parameter can be related to
the output through an exponential function, while the output is still linear with respect to the input. An example
appears in modeling of the fMRI signal where the BOLD response can be modeled with a gamma density function
as, e.g, in Lange and Zeger (1997): The parameters that control the shape of the function are nonlinear related with
the output and the parameters has to be identified with an iterative scheme; the BOLD response is still modeled as
being linear. Another example is the convolution model of (Kruggel and von Cramon 1999; Kruggel, Zysset, and
von Cramon 2000) where the hemodynamic response function ismodeled as a Gaussian and the mean and variance
parameters (termed lag and dispersion) are nonlinear.

• Model nonlinearity ,
� � � �� � � �. On the other hand when the nonlinearity is in theinput-outputmapping, then a

linear change in the input will likely result in a nonlinear change in the output. It is still possible that the parameters
is linear with respect to the output:

� � � �� � � , — and it is an advantage since it makes the estimation of the
parameters easier.

There are many nonlinear models, e.g., Gaussian processes (GP) (Williams and Rasmussen 1996; MacKay 1997), gener-
alized additive models (GAM) (Hastie and Tibshirani 1990) and artificial neural networks (ANN), that will be described
below.
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3.17.1 Artificial neural networks

The term “artificial neural network” — or just “neural network” — has been used to denote a group of models that are
more or less inspired by biological neuronal networks, e.g., linear regression models (such as GLM), self-organizing maps
or mixture models. Here the term will solely be used to represent feed-forward neural networks (also called perceptrons)
with sigmoidal nonlinearities (activation functions). With a two-layer neural network a model with� regressed on

�
and

with a hyperbolic tangent as the activation function a neural network model can be written as
� � tanh ��� �� � � � (3.102)

where
� �� �� � are observed data and� �� �� � is a matrix with either “independent” observed data or design variables.

Matrices
� �� � � � and

� �� � � � are model parameters.� �� � � � is a matrix with noise — unobserved random
disturbances. In the neural network community� is called theinput, � � tanh��� �� is theoutput,

�
thetargetand

�

is the number ofhidden units. More heterogeneous structures exist where the input is directly connected with the output
� � �� � tanh��� �� � � � (3.103)

As with the general linear model the random disturbances areoften assumed to be independently Gaussian distributed.
The likelihood function for the parameters

�
and
�

can then be established and the parameters can be optimized for
maximum likelihood with any of the methods mentioned in section 3.2.1. For example, with a single output variable
� � 


with Gaussian noise the maximum likelihood estimate for equation 3.102 will be a least squares cost function

� ��� � �� 	
�
� �� �� 	

�
� � 	 (3.104)

where

�
� � tanh��� �� is the output of the neural network.

It is often found that the number of parameters in the ANN model is large compared to the objects and therefore
regularization comes to play an important role in ANN modeling. The setting of the regularization parameter and the
determination of the number of hidden units

�
can be critical and model selection is therefore also important. Ridge-like

regularization termedweight decayhas been suggested (Hinton 1986) as well parameter elimination by methods termed
optimal brain damage(Le Cun, Denker, and Solla 1990) andoptimal brain surgeon(Hassibi, Stock, and Wolff 1992). For
the weight decay method the cost function of equation 3.104 is simply augmented by the square size of the parameters

���� � �� 	
�
� �� �� 	

�
� � � �� �� � 	� � � � ��� �� � (3.105)

where�� and�� are the regularization parameters and “ ” is a vectorizing operator. Since the augmenting terms can
be derived from Gaussian priors on the parameters the cost function of equation 3.105 can be considered a maximum a
posteriori cost function.

Optimal brain damage and regularization can be combined (Svarer, Hansen, and Larsen 1993) and this is also imple-
mented in the Lyngby toolbox. If the input dimension� is very large then it can be an advantage to project the data matrix
� to a suitable subspace, e.g., by singular value decomposition or principal component analysis (Lautrup, Hansen, Law,
Mørch, Svarer, and Strother 1995), ICA (Mørch 1998) or a canonical analysis (see section 3.18).

Analyzing a neural network — the saliency map

Artificial neural networks are often operated asblack boxeswhere no interpretation and no assessment of importance
in the predication is given for the individual parameters and the individual inputs (variables). However, pruning and
adaptive weight decay implicitly establish the importanceof a parameter, and a similar method exists for the input vari-
ables with what has been termed a “saliency map” (Baluja and Pomerleau 1995; Mørch, Kjems, Hansen, Svarer, Law,
Lautrup, Strother, and Rehm 1995): The map for the importance (for predicting the output) of each single variable in the
multivariate input of a model (the neural network).

Subset selection in ordinary linear regression (Mardia et al. 1979, section 6.7) aims at finding a subset of independent
variables that will explain most of the variation in the dependent variables. Some of the measures in this connection
could potential produce a saliency map, though the multiplecorrelation coefficient suggest by (Mardia et al. 1979,
equation 6.7.1) does not directly generate one single valuefor each individual input. Another scheme is the so-called
delta test (Pi and Peterson 1994; Ohlsson, Peterson, Pi, Rögnvaldsson, and Söderberg 1994).

When the parameters of the model (the neural network) have associated individual regularization parameters the
adapted parameters might be taken as the saliency map: Inputs associated with parameters with large regularization are
given a small saliency. In Bayesian settings this has been called automatic relevance determination(MacKay 1994;
MacKay 1995a; Neal 1996, sections 1.2.3 and 4.3)

The saliency scheme taken in (Mørch, Kjems, Hansen, Svarer,Law, Lautrup, Strother, and Rehm 1995; Mørch 1998;
Mørch, Hansen, Law, Strother, Svarer, Lautrup, Kjems, Lange, and Paulson 1996a) is related to the optimal brain damage
technique. The basic idea is to evaluate the increase in the generalization error when a input variable is deleted. As it is
infeasible to re-estimate the parameters of the model for each individual input variable when the number of input variables
is large, a loss in generalization error is assessed by usinga Taylor expansion of the generalization error.
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3.17.2 Nonlinear modeling in functional neuroimaging

There are a number of ways in which nonlinear models can be applied in functional neuroimaging:

• Nonlinear regression for parametric activation designs.Consider a saccadic eye movement study, where subjects are
moving their eyes toward an external visual stimuli at varying frequency. There might exist a nonlinear relationship
between the frequency of the eye movement and the measured brain signal, e.g., the rCBF. The task of the nonlinear
regression is to model this relationship.

This kind of modeling can be made within the general linear model be augmenting the design matrix with nonlinear
terms, e.g., in connection with a saccadic eye movement the frequency would be in one column of the design matrix
and in another column the squared frequency which should model the nonlinear effect. Such an approach is taken
in Büchel et al. (1996) and nonlinear effects are demonstrated on PET data sets with second order polynomial
expansion and cosine basis functions. Büchel et al. (1998) describes the similar method on an fMRI study with a
block design (34 seconds activations — 34 seconds baseline): The design matrix has three columns with the zeroth,
first and second order polynomial expansion, and the values in the design matrix corresponding to the baseline are
zero, while the values corresponding to activation scans are non-zero.

This kind of nonlinear modeling can also be perform with linear models if “agnostic labeling” is used for each
different parameter value. Then there has to be one column inthe design matrix for each parameter value, which
gives a large DOF with less power in a statistical test, but ismore flexible.

• Nonlinear time effects for efMRI. In event-related fMRI (efMRI) it has been shown that rapidly presented events
produce a nonlinear BOLD response, see section 2.3.4.

Friston, Josephs, Rees, and Turner (1998b) and Friston, Mechelli, Turner, and Price (2000b) applied Volterra-series
expansion based on the Gamma mixture density hemodynamic response function. ANN model as represented in
equation 3.102 was described shortly by (Nielsen, Goutte, and Hansen 1999). ANN models were also used by
(Pedersen 1997; Lange, Hansen, Pedersen, Savoy, and Strother 1996; Knowles, Manton, Issa, and Turnbull 1998a;
Knowles, Manton, and Turnbull 1998b). TheBalloon model(Buxton, Wong, and Frank 1998) represents a plausible
physiological model and the parameters in this model are non-linear.

• Design variables can couple nonlinearly to individual voxel activations. This is interesting when the cognitive
components are not additive and can be modeled within the GLMby including an interaction term (Friston, Holmes,
Worsley, Poline, Frith, and Frackowiak 1995d), e.g., by multiplying two design variables to form a third variable.

• Voxels activations couple nonlinearly to a design variable. This cannot be handle with the ordinary GLM. The
unsupervised nonlinear PCA method (Friston, Philips, Chawla, and Büchel 1999b; Friston, Philips, Chawla, and
Büchel 2000c) is able to model nonlinearities with second order interactions. An advantage of this model is that
linear and nonlinear effects is modeled in different parameters, enabling an identification of interaction effects.
Another method of dealing with this kind of nonlinearity is by using nonlinear regression from the brain scans data
to the design variables. Using neural network this has been developed by the group of Lars Kai Hansen, see, e.g.,
(Mørch et al. 1997; Lundsager and Kristensen 1996; Mørch et al. 1996b). Contrary to the nonlinear PCA method
it does not separate linear and interaction effects.

3.18 Canonical analyses

“Canonical analyses” (as it will be termed here) concern thedescription of the relationship between (a set of) two multi-
variate variables� and

�
, e.g., tosummarize their relationship in a subspaceor topredict one from the other. Thelinear

analysesof this type can be said to includecanonical correlation analysis, partial least squares, canonical ridge analysis
andprincipal component regressionamong others. Some of these can be regarded as “bottleneck models” where the
relation between the two sets of variables is through a low dimensional subspace, hence the name “low-dimensional linear
models” (Borga 1998). In other case the� and

�
are regarded as being related to (generated from) a hidden subspace or

latent variables, hence “latent variable models”, see, e.g., (Burnham, MacGregor, and Viveros 1999). The type of models
can also be considered as “heteroassociative models” (Diamantaras and Kung 1996, section 6). Other names are bilinear
models (BLM, Martens and Næs 1989) and reduced rank models.

Usually the variables are considered Gaussian distributed, but models for multinomial data via a softmax layer have
also been described (Yee and Hastie 2000).

3.18.1 Canonical correlation analysis

Canonical correlation analysis (CCA) was developed in (Hotelling 1935; Hotelling 1936). Introductions to CCA are
available in Mardia et al. (1979, chapter 10) and (Anderson 1984, chapter 12). The estimation problem in CCA is to find
two matrices� �� �� � and� �� �� � so that the correlations between to linear projects� � �� and� � �� is the
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largest. To identify this uniquely the solution should be constrained, and the typical constraints are that the projections
� �� � � � and� �� � � � should be orthogonal��� � ��� � 
� and the elements in� and� are to be arranged
so that the first column pair� � and� � has the highest correlation, the second column pair the second highest correlation,
and so forth.

There are different ways of estimating the parameters� and� with Mardia et al. (1979) relying on SVD:

� � ������� ��� ������� � (3.106)

where covariances are set as��� � � ��� �� , ��� � � ��
� ��

and ��� � � ��� ��
with  being the

centering matrix.

��� � � svd �� � (3.107)

� � ������� � (3.108)

� � ������� � � (3.109)

and with a perhaps abusive notation:

���� � ������� svd
�
������� ��� ������� � ������� (3.110)

The diagonal elements of� are called thecanonical correlation coefficients, and Mardia et al. (1979) call the columns of
� and� thecanonical correlation vectors. Furthermore,� and� are called thecanonical correlation variables. If one
of the matrices, e.g.,

� �� � � � � � �� � �� 	 
�� is an indicator matrix indicating group membership in� groups
for the� objects in�

�� � �

if � in the� ’th group,

�
otherwise,

(3.111)

then (the first column of) are also calledFisher’s linear discriminant function(Fisher 1936) or thefirst canonical
variate(Mardia et al. 1979, exercise 11.5.4), — with the terminology from discriminant analysis. The first column of�
(� �) is often derived as the maximum eigenvector from a (generalized) eigenvalue decomposition:

� � � max eig
�� �� �� � � (3.112)

where
�

and
�
� are sum of squares and product (SSP) matrices:

	 � � �
�
� Total SSP matrix, (3.113)

� � � �� ���� ��� � �
	 	 	 � � ��� ��� ���� Within group SSP matrix, (3.114)�

� � 	 	� Between group SSP matrix
	

(3.115)

Such an analysis are often referred to as Fisher’s linear discriminant analysis (FLD/LDA), canonical variate analysis
(CVA) or canonical discriminant analysis (CDA).

This ordinary canonical correlation analysis will not workif any of the two matrices� and
�

are singular, since the
covariance matrices��� and��� will not be invertable. The canonical correlation coefficients are not affected by non-
singular affine transformations and the canonical correlation vectors are related through a linear transformation (Mardia
et al. 1979, theorem 10.2.4). Furthermore the canonical correlation vectors are not (necessarily) orthogonal.

3.18.2 Partial least squares

“Partial least squares” (PLS) constitutes a group of algorithms and model, see table 3.17 for some of them. Canonical
correlation analysis can be regarded as amode B PLSalgorithm (Martens and Næs 1989, page 165). The one considered
here is where the parameters of the model are determined through singular value decomposition of the covariance matrix
between� and

�
(McIntosh et al. 1996; Worsley et al. 1997) — a decompositionassociated with the SIMPLS algorithm

(de Jong 1993)
��� � � svd �� �� 	 (3.116)

The “canonical vectors”� and
�

can of course also be found through eigenvalue decomposition of the inner and outer
product matrix (equations 3.22 and 3.23). It should be immediately apparent that if one of the matrices is the identity
matrix then PLS will correspond to ordinary SVD on the other matrix. Unlike canonical correlation analysis the PLS
estimate depends on the centering and scaling of the data in� and

�
matrices and if no prior knowledge is available

about the data it is recommend to scale and center the variables before the singular value decomposition (Wold, Ruhe,
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Abbr. Description Reference
NIPALS “Nonlinear iterative PLS” Wold (1966)
N-PLS “N-Way PLS”,� is of size� � � � � � 	 	 	
PLS1 One-dimensional “response” matrix:

� �� � 
� � �
PLS2 Multidimensional “response” matrix:

� �� � � � � � � 

e.g., Martens and Næs (1989, page 146+)

PLS A mode Regression from latent variables to measured e.g., Martens and Næs (1989, page 188)
PLS B mode Regression from measured variables to latent e.g., Martens and Næs (1989, page 188)
PLS C mode Combination of A and B mode e.g., Martens and Næs (1989, page 188)
SIMPLS Eigendecomposition of covariance matrix de Jong (1993)

Table 3.17: Some PLS algorithms and models. See also (de Jong and Phatak 1997) for a description of some of the PLS
types.
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Figure 3.9: Cross-correlation APCA network between � �� 	 � and � �� �� with 	 � �
and � � � with lateral orthog-

onalization between the � � � hidden units. Black circles denote directly observed data. Comparable to (Diamantaras
and Kung 1996, figure 6.5(a))

Wold, and Dunn III 1984, section 5), e.g., here with a� � � centering matrix and diagonal matrices� � and� �
containing the square root of the diagonal elements in the covariance matrices of� and

�

��� � � svd �� ��� � ��
�
� ��� 	 	 (3.117)

The PLS method is somewhat similar to thecross-correlation asymmetric principal component analysis (cross-
correlation APCA) (Diamantaras and Kung 1994a) and (Diamantaras and Kung 1996, section 6.5)5. Diamantaras and
Kung (1996, section 6.5) developed the estimation in the model shown by the connectionistic network in figure 3.9 and
the maximization of the following cost function

�APCA � trace
�� ���� �� � (3.118)

with the orthogonality constraint on the parameter matrices� �� � � � and� �� � � �
� �� � � �� � 
 	

(3.119)

As cross-correlation APCA does not put constraints on the “ordering” of the vectors in� and� any solution can be
rotated with an orthogonal matrix.

The parameters in the cross-correlation APCA model can be found through an iterative scheme called “cross-coupled
Hebbian rule”.

5Diamantaras and Kung (1996, equation 6.27) approximately defines “Cross-correlation” as the inner product of the two matrices:
� ��� �� (not

considering centering of the matrices). “Correlation” is often used differently in statistics, digital signal processing and the neural network literature
depending on whether it is normalized with the standard deviation of the individual variables or not and whether it is centered.

� ��� ��� ������
is denoted the (sample) “correlation matrix” by Mardia, Kent, and Bibby (1979, equation 1.4.13) and Conradsen (1984b, page 2.6) while

� ��� ��
is denoted the “correlation matrix” by (Hertz, Krogh, and Palmer 1991, equation 8.4) and Diamantaras and Kung (1996, equation 6.27). In digital
signal processing cross-correlation is often regarded as between two signal in time where the cross-correlation in lagzero would be defined as�� � or� ���� � depending on the signal, see, e.g., (Mitra 2001, equations 2.103 and 2.144). See also note by Borga (1998, page 25).
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Figure 3.10: Linear approximation APCA network between input � ��  	 � and target � ��  �� with 	 � �
and � � �

lateral orthogonalization between the � � � hidden units. The black circles are variables directly observed while the white
circles are hidden variables. � from equation 3.121 is � � �� . The network structure is different from (Diamantaras and
Kung 1996, figure 6.1): An extra layer has been added to incorporate the “noise” between �� and � .

3.18.3 Orthonormalized PLS, redundancy analysis, etc.

“Orthonormalized partial least squares” (OPLS) is proposed by Worsley et al. (1997) where one of the matrices is
normalized by the square root of the full covariance matrix.�

��� � � svd
�
������� � �� � 	

(3.120)

In (Worsley 1997; Worsley et al. 1997) CCA, PLS and OPLS are called canonical variables analyses. The linear
heteroencoder with bottleneck(LHB) as described by Roweis and Brody (1999, section 3) usesthe same subspace as
OPLS for its singular value decomposition. The bottleneck is shown to be optimal with the following cost function — the
reconstruction error

�LHB � ��� 	 � ��� � trace
���� 	 � �� ��� 	 � �� � (3.121)

and restricting the rank of the parameters� � ���� �� � to a number less than��� ����� �� � � ���� �� ���
�LHB

�� � �� �� 	���� svd� ��� �� 	���� � �� � (3.122)

wheresvd� is the truncated singular value decomposition to rank� .
Similar models have been studied by several authors: According to Jackson (1991, section 12.6.4) Rao (1964) pro-

posed it asprincipal components of instrumental variablesand Fortier (1966) introduced the same model. Van den
Wollenberg (1977) called it redundancy analysis (RDA). Diamantaras and Kung (1996, chapter 6) account that Scharf
(1991) introduced it asreduced-rank Wiener filteringand that Baldi and Hornik (1989) also studied it. Diamantaras and
Kung (1996) and Diamantaras and Kung (1994b) themselves called it linear approximation asymmetric principal compo-
nent analysis, the network structure is depicted in figure 3.10. Burnham, MacGregor, and Viveros (1999) referred to it as
reduced-rank regression(RRR). Furthermore, Borga (1998) has denoted itmultivariate linear regression(MLR).

Diamantaras and Kung (1996) show that parameter estimationcan also be obtained by generalized singular value
decomposition (GSVD) of a matrix pair� �� and� , and (Borga 1998, section 4.5) describes a solution based on
generalized eigenvalue decomposition.

RRR is one of the end points — with PCR on the other end — in the so-calledjoint continuum regressionthat is able
to interpolate between the two methods on a continuous scaleby adjusting a single parameter (Brooks and Stone 1994).

As a regression model RRR is optimal and can perform better than PCR, PLS and CCA (Jackson 1991, table 12.8,
Linnerud data) if the performance is measured as the trace ofthe covariance to the residuals. If the performance is
measured by the determinant of the residual covariance the CCA is the best.

3.18.4 Canonical ridge analysis

Canonical ridge analysis (CRA) (Vinod 1976) can be viewed ascanonical correlation analysis with regularization, and
as with ordinary ridge regression small non-zero regularization parameters helps to stabilize the solution (Mardia etal.
1979, exercise 10.2.14). Canonical ridge analysis adds a diagonal term to the��� and��� covariance matrices

�
��� � ��� � �� 


(3.123)�
��� � ��� � �	 
 � (3.124)
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and then CRA proceeds as ordinary CCA with these regularizedcovariance matrices. The regularization parameters��
and�	 should be non-negative, and if they are positive�� � �	 � �

then the regularized covariance
�
� will be invertable

even if� are singular.
With a slightly different application of the regularization parameters the regularized covariance can be written as�

��� � �
 	 �� ���� � �� 

(3.125)�

��� � �
 	 �	 ���� � �	 
 � (3.126)

with
� � �� � �	 � 


. Ordinary CCA are obtained with�� � �	 � �
and the PLS of the previous section can be

obtained with�� � �	 � 

. Thus CRA forms a continuum between PLS and CCA as extremes (Nielsen, Hansen, and

Strother 1998). It can be noted that if a matrix is orthonormal implying � � 

then the regularization for that matrix has

no effect. This could be the case in connection with a design matrix.
This type of regularization has also been used in discriminant analysis and termed penalized discriminant analysis

(PDA), where it is usually formulated as a regularization onthe within-group SSP matrix (Ripley 1996, equation 3.8)�� � � � �� 

(3.127)

or the total SSP matrix (Kustra and Strother 2000). Krzanowski, Jonathan, McCarthy, and Thomas (1995, section 3.1)
referred to this asgeneralized ridge discrimination(GRD).

3.18.5 Canonical correlation analysis with singular matrices

Ordinary canonical correlation analysis is not possible ifany of the two matrices� and
�

are singular because it will
not be possible to invert the covariances��� and��� . It has been suggested to use generalized inverses (Mardia,Kent,
and Bibby 1979, page 287), e.g., the Moore-Penrose inverse.Krzanowski, Jonathan, McCarthy, and Thomas (1995)
term a related method in discriminant analysis based on the generalized inverse formodified canonical analysis(MCA).
However, this will not identify the canonical vectors uniquely for canonical correlation analysis with� � 


as all structure
is taken out of the matrices so that

� � ������� ��� ������� will be spheric (all non-zero singular values are unity), and it
will not be possible to identify a “first” canonical component due to the rotational ambiguity. A subspace can be identified
however.

The use of SVD or PCA (so-called preliminary principal component analysis) will correspond to using the Moore-
Penrose inverse if all components are used, but if only some of them are used it will be possible to identify the singular
vectors uniquely. First the� and

�
matrix are decomposed via SVD

��� � � svd �� � (3.128)

���� � svd �� � 	 (3.129)

Then the principal components
�
� and

��
are obtained with� and� as the number of components maintained in the

analysis �
� � � � ��� (3.130)��� � �� �� 	

(3.131)

The principal component are used as “input” to CCA and intermediate vectors are obtained

���� � svd
���� � svd

�
������� �� � �� �� ������� �� � (3.132)

� svd �� ���� � 	 (3.133)

Finally the canonical correlation vectors� �� � � � and� �� � � � in the space of� and
�

is found

� � � ����� � (3.134)

� � �� � ��� � (3.135)

Another possibility is to use CRA to make the covariance matrices��� and��� positive definite. The ridge regu-
larization can be applied in the in the full space or in the space spanned by the principal components from a preliminary
principal component analysis (PPCA), — the result does not differ, provided that all PPCA components are maintained
and that the principal component maintain the variance, i.e., not sphered The canonical correlation vectors can then be
found through a low-dimensional eigenvalue decomposition, see theorem B.2.1 on page 146

� � � �� �� � �� (3.136)

� � � �� ��� �� (3.137)

� � � ��� � � ��� � (3.138)
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where
�� �� � � � and

�� �� � � � are scaled right eigenvectors and the diagonal matrices� �� � � � and
� �� � � �

contain� eigenvalues each from a symmetric� � � eigenvalue decomposition

��� � � reig ��� ������ ��� � 	 (3.139)

��� � � reig ��� ��� ��� ���� 	 (3.140)
�� � � �diag �diag ����� ��� �� 	� ����� (3.141)
�� � � �diag �diag ����� ����� 	� ����� (3.142)
�� � � �� � � �� 
� 	�� � (3.143)
�� � � �� � � �� 
� 	�� � (3.144)

� � � �� � � �� 
� 	���� � (3.145)

� � � �� � � �� 
� 	���� � � (3.146)

where� may also be computed as

� � � �� ����� ��� � �� (3.147)

3.18.6 Bilinear modeling

Martens and Næs (1989, section 3.3.3) and Burnham, MacGregor, and Viveros (1999) regard the so-called bilinear model
(BLM) particularly used in chemometrics

� � 	� � �
(3.148)

� � 	� � � � (3.149)

where� �� �� � and
� �� �� � are measured variables,

	 �� �� � contains latent variables,� �� �� � and� �� �� �
are parameter matrices (“regression coefficients”) and

� �� � � � and� �� � � � are residuals (random errors, noise,
. . . ). This model can be regarded as a PLS A mode model (see table 3.17) with the observed variables as a function of the
latent variables. It is often presented in a regression framework where the task is to predict

�
from � where it aims to

substitute the multivariate regression model
� � �� � � and its maximum likelihood (ordinary least squares) estimate

�
� � �� �� 	�� � �� with an estimate that is better for rank-deficient and ill-posed problems. This is done by making� smaller than the rank of� �� .

One way to estimate the parameters in this model is to estimate the latent variables
	

from the observed variables� ,
(Martens and Næs 1989, equation 3.34), (Burnham, MacGregor, and Viveros 1999, equation 3)�	 � �� 	

(3.150)

This model is not uniquely determined, and a common constraint for the latent variables is an orthonormality constraint�	�
�	 � 
� 	

(3.151)

If the noise matrices are independent Gaussian distributed� � � � �� ���� � and � � � � �� ��� � then the joint log-
likelihood can be written as (Burnham, MacGregor, and Viveros 1999, equation 6)


 � 	


� trace

��� 	 ��� � � ���� �� 	 ��� �� � 	


� trace

��� 	 ��� � ���� �� 	 ��� �� � (3.152)

The profile log-likelihood for� can be found when maximum likelihood estimates for� and� with fixed� are plugged
into equation 3.152 (Burnham, MacGregor, and Viveros 1999,equation 9)


 �� � � 

� trace ��� �� ������� � �� � � ��� ��� � �� 	 �� (3.153)

The maximum likelihood estimate of the parameter� is found as the eigenvectors to a generalized eigenvalue problem

�� ������� � �� � � ��� ��� � �� 	 � � � ���� (3.154)

Burnham, MacGregor, and Viveros (1999) show that by varyingthe covariance of the residuals the estimate of� would
vary between an estimate associated with principal component regression (PCR) and another associated with redundancy
analysis (RDA). This is done by assuming uncorrelated noise� �� � 	 �� 
 and�� � 	 �� 


�	 ��� ��� �� � 	 �� � ��� �� 	 � � � ���� (3.155)
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By multiplication with	� 	 � , setting� � 	� �	 � and �� � 	�	 ��� 

� � ��� �� � �� ��� ��� � � � ��� �� 	

(3.156)

With � � � corresponding to the errors in� being much larger than those of
�

the estimate associated with redundancy
analysis (RDA, section 3.18.3) is obtained

�� ��� ��� �� 	 � � �� 	
(3.157)

����� ��� ���� � �� � (3.158)

Here the mean is disregarded in the calculation of the covariances. With� � �
corresponding to errors in

�
being much

larger than those of� the estimate is associated with principal component regression (PCR)

�� �� 	 � � �� 	
(3.159)

���� � �� 	
(3.160)

Similarly, the left canonical correlation vector can be obtained by setting the covariances to� �� � � �� and�� �� �� , ignoring the normalization term� ��

��������� ��� � ��� ����� ��� 	 � � ����� (3.161)

With an invertable��� and with
�
� � � 	 


, cf. derivations in theorem B.4.1 on page 149

����� ��� ����� ���� � �
�
� (3.162)

The square root of the eigenvalue
�
� are the canonical correlation coefficients.

Once the latent variables are determined the� matrix can be estimated. This can be done by a least square estimate:�
�OLS � �	�	 	�� 	�� 	

(3.163)

If the latent variables are orthonormal the expression can be simplified�
�OLS � 	�� 	

(3.164)

The estimate is complicated by that there still might be noise in the latent variables, — especially for large� . This has
led Høy, Westad, and Martens (2001) to introduce (generalized) ridge regression in the estimation of��

�GRR � �	�	 � � 	�� 	�� � (3.165)

where� is a diagonal matrix with ridge regularization hyperparameters.

Bilinear model as factor analysis

The bilinear model can be expressed as a factor analysis model (section 3.9.2), if the variances of the noise representedin
the matrices

�
and� are uncorrelated. First is a matrix� constructed from� with

�
appended

� � �� �� � (3.166)

Disregarding any mean for clarity, and applying equations 3.148 and 3.149, under the assumption of orthonormal latent
variables� ��	 �	 � 


and that there is no correlation between the latent variables and the noise the covariance of� is

 �� � � � ���� � � � �� � ��� � ��� ���
��� ��� � ��� � (3.167)

Now the matrix of factor loading can be constructed as

� � �� �� � (3.168)
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and the covariance of thespecific factorsis

� � � � � �
� � � � � (3.169)

where the covariance of the noise are diagonal matrices

 �� � � � � � diag ��� ��� � 	 	 	 � �� �� � � (3.170)

 �� � � � � � diag �� � ��� � 	 	 	 � � � ��� � (3.171)

� �� � � � � � 	 (3.172)

Thus the condition on the covariance of� is, cf. (Mardia et al. 1979, equation 9.2.5)

� �� � ��� � � 	
(3.173)

3.18.7 Optimization of the ridge parameter and subspace dimension

A test for the subspace dimension in ordinary canonical correlation analysis can be developed (Mardia et al. 1979,
section 10.2.3). For the test of no subspace��� � � the likelihood ratio statistics has a Wilk’s lambda (Andersen’s U)
distribution when� and� is Gaussian distributed

� �� �� 	 
 	 � � � � � ��
 	 ����� �������� ��� �� �
���� �

�
 	 �
�� � � (3.174)

where�
�� is the square canonical correlation coefficients. Wilk’s lambda is related to the mutual information between�

andy, see derivation on page 148:
� �� � � � � 	



� �� � 	

(3.175)

As Wilk’s lambda is not tabulated this is often replaced by� � �� � � �-asymptotic approximation.
The asymptotic approximation for the test of only� of the canonical correlations coefficients are non-zero is (Mardia,

Kent, and Bibby 1979, equation 10.2.14)

� ��� �� � �� �� � � 	 �� 	


� �� � � � � �� ��

� ������ �
�
 	 �

�� �� 	
(3.176)

This approximation might not be precise when� is close to� or� which is sometimes the case in functional neuroimag-
ing. Other tests are proposed by (Marriott 1952) and (Gunderson and Muirhead 1997).

These tests do not directly work in conjunction with ridge regularization and singular data. Loh (1995) develops a
formula for penalized discriminant analysis for the determination of what corresponds to our�� ridge parameter. In PLS
a common procedure is to estimate the dimension of the subspace with cross-validation (Wold 1978).

Bullmore et al. (1996b) and Mencl et al. (2000) used permutation test in connection with PLS to determine the
significant components (subspace dimensions): The columnsof the

�
matrix containing design variables are randomly

shuffled and corresponding to a null-hypothesis and the PLS analysis is repeated, e.g., 1000 times.
Frutiger et al. (2000) used the resampling technique of (Strother et al. 1997a; Strother et al. 1997b), where the data

is split and two sets of canonical correlation vectors are computed. The correlation between corresponding canonical
correlations vectors are reported as a reproducibility index.

3.18.8 Generalization of canonical analysis

There exist three types of extensions to canonical analysis:

• Multiway analyses on matrices with more that two dimensions, e.g,� �� �� �� � 	 	 	�. Development has occurred
both for unsupervised algorithms and for canonical analysis with two data sets (Bro 1998). This is of interest in
connection with functional neuroimaging since data set areoften from balanced experiments, e.g.,� �subjects

�

sessions
�

runs
�

conditions�. Unsupervised analysis with a “SVD-�modes” has been applied to brain data, see,
e.g., (Leibovici 2000).

• Multiset canonical analysis with more that two matrices, e.g., � �� � � �, � �� � � �, � �� � � �. Kettenring
(1971) and Sen Gupta (1982) describe multiset canonical correlation analysis.
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• Nonlinear canonical analysis or “canonical manifold analysis” where the data is regarded as related through or
generated from a low-dimension non-linear sub-manifold. Tibshirani (1992) describes “principal curves” which is
one-dimensional sub-manifold estimated from a single set of data. A nonlinear sub-manifold of two sets of data (two
matrices) can be identified with two artificial neural networks with the output in a latent space. Auto-associative
models appear in (Diamantaras and Kung 1996, section 6.6). Other references are (Becker 1992; Becker and Hinton
1992; Asoh and Takechi 1994; DeMers and Cottrell 1993; Lai and Fyfe 1999).

3.18.9 Canonical analyses in functional neuroimaging

Friston, Frith, Frackowiak, and Turner (1995b) used canonical correlation analysis with� �� � � � containing� � 
��
scans represented as� � �


eigensequences (from a preliminary principal component analysis of a preprocessed data
matrix, � being determined as the number of eigenvalues above the meanof the non-zero eigenvalues) and

� �� � � �
being a design matrix containing four sinusoid basis function (as a hemodynamic response function model) for each of
three conditions:� � � � � � 
�

design variables. As there are more scans than principal components and design
variables the covariance matrices can be inverted. A type of� �-test with correction for correlation among the scans was
used to determine a significant subspace.

In the case that the task is repeatedagnostic labelingcan be used which was done by Strother, Lange, Savoy, Anderson,
Sidtis, Hansen, Bandettini, O’Craven, Rezza, Rosen, and Rottenberg (1996a): The fMRI data set consisted of 8 runs each
with 72 scans (24 baseline + 24 activation + 24 baseline scans). The agnostic labeling groups the first scan of the first run
in the same group as first scans of the 7 other runs. Likewise with the second and following scans, so the design matrix is
be
� �� �� � � � ��� � ��� � ��� 	 
��. Strother et al. (1996a) also depicted the canonical variate trajectory in the first

few canonical subspaces termedstate-space. Friston, Poline, Holmes, Frith, and Frackowiak (1996b) and (Fletcher et al.
1996) also used agnostic labeling on a PET data set for canonical variate analysis with preliminary principal component
analysis.

Friman, Cedefamn, Lundberg, Borga, and Knutsson (2001b), Friman, Borga, Lundberg, and Knutsson (2001a),
Friman, Lundberg, Cedefamn, Borga, and Knutsson (2001c) used canonical correlation on alocal area of the volume from
fMRI: A

� ��
voxel size intraslice region is taken around each voxel. This 9 dimensional vector is then reduced by spatially

symmetric filters to 5 dimensions, thus for the
�
’th voxel and with 180 scans the data matrix is� � �� �� � � � � �
�� �
�.

The other matrix is constructed with 6 sinusoid basis function
� �� � � � � � �
�� � ��, — this matrix is common for

all voxels. As the summary image is reported the canonical correlation coefficient for each voxel and in (Friman et al.
2001a) they suggest using a test to determine a threshold.

Ledberg (1998) related two sets of volume data with a kind of canonical analysis: Splitting the data from a PET study
across subjects into two new data matrices these underwent their own individual preliminary principal component analysis
maintaining a number of the largest PCs. Once these are foundthe “closet subspace” are determined by minimizing a
distance measure between the subspaces from different groups, — a method based on (Krzanowski 1979).

Bullmore, Rabe-Hesketh, Morris, Williams, Gregory, Gray,and Brammer (1996b) extracted 170 voxels from a mass-
univariate analysis of 100 fMRI scans and performed singular value decomposition both directly on the� � �� � � � �
� � �
�� � 
��� matrix as well as on another matrix� � �� � � � � � � �� � 
��� constructed from the regression coef-
ficients associated with 6 sinusoidal design variables fromthe mass-univariate analysis. A further independent canonical
variate analysis was performed on 101 voxels that where grouped according to the anatomical region they occupied, i.e.,
the canonical variate analysis was performed on the transposed data matrix. These voxels were represented with the 6
regression coefficients:� �� � � � � � �
� 
 � ��. The other matrix contains group indication for one of the six regions
of interest (ROI)

� �� � � � � � �
� 
 � 
�.
Frutiger, Strother, Anderson, Sidtis, Arnold, and Rottenberg (2000) used preliminary principal component analysis on

26130 voxel PET data set with 140 scans choosing heuristically the first 20 principal component for a further 10-group
CVA corresponding to 10 conditions:� �
�� � �� � and

� �
�� � ��. In this study CVA was also used on behavioral data
collected during the scanning.

McIntosh, Bookstein, Haxby, and Grady (1996) used partial least squares (PLS) on face processing PET data rep-
resented in the� matrix and with two different design matrices as

�
: one with condition, the other with reaction time

behavioral score. A permutation test was used to access the significance. Partial least square was also used by (Mencl et al.
2000) on fMRI scans. PLS with PET data was also investigated by McIntosh, Nyberg, Bookstein, and Tulving (1997)
in a type of analysis inspired by the “seed voxel” correlation analysis of (Horwitz, Grady, Haxby, Schapiro, Rapoport,
Ungerleider, and Mishkin 1992): The design matrix

�
is constructed from 3 representative voxels selected from 3ac-

tivated regions involved in episodic memory retrieval. Since the design consists of 4 conditions the design matrix is
12-dimensional (3 voxels

�
4 conditions). The data matrix� contains the full voxel data.

Other uses of canonical analysis appear in (Busatto, Howard, Ha., Brammer, Wright, Woodruff, Simmons, Williams,
David, and Bullmore 1997) (CVA on fMRI), (McCrory and Ford 1991) (CCA on SPECT), (Lobaugh, West, and McIntosh
2001) (PLS on ERP).

Friston et al. (1996b) called the� canonical correlation vectors� �� �� � canonical imagesas they where associated
with � voxels. In (Frutiger et al. 2000) they are calledcanonical eigenimages. Similarly, if the� canonical correlation
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� � � Type Reference
120 scans 35 PCs 3 conditions and 6 sinusoid SVD/CCA, fMRI Friston et al. (1995b)
60 scans 14 PCs 12 conditions SVD/CVA, PET Friston et al. (1996b)
Scans Voxels Conditions PLS, PET McIntosh et al. (1996)
Scans Voxels Reaction time PLS, PET McIntosh et al. (1996)
Scans � 60000 voxels 4 conditions

�
3 voxels PLS, PET McIntosh et al. (1997)

101 voxels 6 regression coefficients 5 ROI indicators CCA, fMRI Bullmore et al. (1996b)
140 scans 20 PCs 10 conditions SVD/CVA Frutiger et al. (2000)
180 scans 5 filter outputs 6 Sinusoid CCA, fMRI Friman et al. (2001b)

Table 3.18: Canonical analyses in functional neuroimaging. � , 	 and � refer to the dimensions of the matrices � �� 	 �
and � ��  ��. “PCs” is principal components. “SVD” denotes preliminary principal component analysis.

vectors� �� � � � are associated with� time samples (e.g., fMRI) they can be calledcanonical sequences
Canonical analysis has not been used as much a univariate analysis in functional neuroimaging.

3.18.10 Example on canonical analysis

Canonical image − CCA Canonical image − CRA Canonical image − CRA Canonical image − PLS

20 40 60
−0.2

−0.1

0

0.1

0.2
Canonical sequence − CCA

20 40 60

Canonical sequence − CRA

20 40 60

Canonical sequence − CRA

20 40 60

Canonical sequence − PLS

Figure 3.11: Canonical ridge analysis of an fMRI data set. The top row are the canonical images while the bottom row is
the eigensequences.

Figure 3.11 shows an example of canonical ridge analysis as the ridge parameter is varied. The data is a single subject
multiple runs fMRI block design where each run contains 72 scans: 24 baseline, 24 activation, 24 baseline with the
activation consisting of left-handed finger-to-thumb opposition, TR � � 	


s and voxel size
� 	
 � � 	
 � �mm. The data

was acquired on the Massachusett General Hospital by RobertSavoy, masked and motion realigned before analysis. A� �� � � � matrix is constructed as an indicator with data matrix with� � �� as agnostic labeling of each of the scan
within the run, i.e., first scan of the first run is in the same group as the first scan of the second run. The� matrix contains
the fMRI image data. The top row of figure 3.11 displays the canonical images in a transversal slice through the primary
motor cortex and the supplementary motor area (SMA), and thelower run the canonical sequences. The different columns
represent different settings of the ridge parameter�� for the data matrix� . The left plot has�� � �

corresponding to
canonical correlation analysis with preliminary SVD, and the right plot has�� � 


(c.f. equation 3.125) corresponding
to the “PLS”. To two middle plot are for

� � �� � 

with the third from left being the optimal.

3.19 From image to points

When the summary image has been formed from the statistical analysis it is often summarized with a set of points orfoci.
A “foci”, “hot spot” or “location” can be defined and found in number of different ways:

• Manually, where the researcher look at the summary images and selects an appropriate voxel, e.g, the center of an
activated region.
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• Center of gravity (COG) of “center-of-mass”, the volume issubjected to region identification (see below) and the
center of gravity (or “mass”) is found for each region. According to Posner and Raichle (1995) the COG was used
by (Fox, Miezin, Allman, Van Essen, and Raichle 1987) for retinotopic mapping in a PET study.

• Local maxima, where all the voxels which immediate neighbors have a lower value are identified. This is, e.g.,
implemented in SPM99 (Poline 1999b): A maximum in SPM99 sense is a voxel which value is larger than any
of its 18 neighbors. Only the maxima above a user specified threshold are reported and only if the maxima is far
enough a part (the default is 8mm).

The center of gravity will be affected by the setting of the threshold and the type of region identification, — the maxima
will not. Maxima identification can thus be made independently of the region identification, furthermore the location of
the maxima is also independent of any monotonic transformation of the statistic map.

The method for separation of regions is termedregion identification, “coloring”, “labeling” (Sonka, Hlavac, and
Boyle 1993, section 6.1) or “connected component analysis”(Kirt A. Schaper). The algorithm binarizes the image from
a user specified threshold and put above-threshold voxels that share the same face, edge or vertex in the same set. The
different sets (regions) in the volume are labeled, e.g., with a unique integer. In 2D there are two variations of region
identification: It can either be 4- or 8-neighborhood regionidentification, depending on whether the two voxels share the
same edge (4) or the same edge or vertex (8). In 3D the variation are 6-, 18- or 26-neighborhood region identification:
6 for only face connections, 18 for both face and edge connection and 26 for face, edge and vertex connection, e.g.,
SPM99 implements an 18-connectivity scheme (Poline 1999b,maximum and region identification) and (Poline 1999a,
only region identification). Once a region has been identified the size of it can be calculated and regions that contains a
small number of voxels is sometimes discarded.

Region identification are often handled by scanning one lineat a time and label regions in a first pass. While the
algorithm labels the data it constructs lists of which regions are connectedbetweenthe lines. The second pass should then
merged regions across lines. Below is shown the first pass where two rows are labeled:

� 
 � 


 
 
 
 	� (first pass) 	�

� 
 � �

� � � � (3.177)

Since the regions have several different label collisions (Region 3 collide with both 1 and 2) it is not enough to keep one
collision value for a region. Instead the label collisions should be kept in a list of sets. When a new label collision pair
is detected either (1) a new set is constructed with the pair,(2) the pair is added to the existing set which already contain
one or both of the pairs, or (3) the pairs are contained in two different sets and the two set should be merged.

A different approach to model activation foci is by modelingthe statistical map, e.g., with a finite Gaussian mixture
model as in (Hartvig 1999). The foci can then identified as themeans of the Gaussians. It is, though, a question whether
a Gaussian PDF is the right form for an activation.

A foci can be described by more than the spatial coordinate, e.g, the magnitude, the spatial extent and label. The
magnitude of foci might be the regression coefficients, the test statistics, the p-value of the voxel or of the associated
connected region and reported in, e.g, “ml/100g/min (absolute change rCBF)” as in BrainMap™. The extent of the
activation can be described by the number of voxels above threshold in that cluster or the volume in an appropriate
unit.

The foci can be labeled by the Brodmann number, the anatomical or functional area. The Talairach Atlas (Talairach
and Tournoux 1988) and the Talairach Daemon (Lancaster et al. 1997c) make it possible to label the foci from Talairach
coordinates, though there has been objection to this because the spatial normalization to the Talairach space is not accurate
enough, see e.g., (Poldrack 2001).
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Chapter 4

Visualization

Visualizationis defined by Card, Mackinlay, and Shneiderman (1999, page 6)as “The use of computer-supported, inter-
active, visual representations of data to amplify cognition”. Branched under visualization arescientific visualizationand
information visualization, which are defined as:

• Scientific visualization: Use of interactive visual representations ofscientific data, typically physically based, to
amplify cognition.

• Information visualization : Use of interactive representations ofabstract, nonphysically based datato amplify
cognition. Among the main types of information visualization arenetwork visualization, document visualization,
process visualizationandinformation workspaces.

Scientific visualization is used very often as a mean of reporting the result of the analysis of functional neuroimaging
data. A short description of the different types are available in section 4.3. Furthermore, Robb (1999) reviews 3D
biomedical visualization.

Information visualization is not used in larger extent in neuroinformatics. Young (1996) reviews 3D information visu-
alization and Chittaro (2001) reviews information visualization in medicine. Many of the important papers in information
visualization are reprinted in (Card, Mackinlay, and Shneiderman 1999).

Visualizations can be characterized bypersistence, distributability, cooperativityandinteractivity. If the visualization
is 2D then it can be printed and “stored” on paper, thereby adding persistence to the visualization, while any interaction is
lost. Persistent 3D visualization is more difficult to obtain. Usually 3D visualization is based on user interactive programs
as interactive viewpoint manipulation can provide important depth information. If the visualization can be stored in afile
(as the case is with VRML, see section 4.1.1) then the visualization will persistent across viewing sessions, provided that
the rendering programs still can interpret the visualization format. Distributability is closely linked to persistency: If the
visualization can be stored in a file it can also be distributed, e.g., via the Internet. If the visualization is cooperative then
several operators are able to interact and view the visualization.

4.1 Rendering techniques

Four main types of rendering techniques exist: 2D bitmap-based, 2D vector-based, 3D polygon based and 3D volume
rendering, where the latter two will be described below.

4.1.1 3D polygon based visualization

There exists are number of programming libraries for polygon graphics, e.g., OpenGL and Direct3D. Their basic geomet-
ric element is the polygon and additionally lines and pointsare also supported. Further objects can be defined based on
these, e.g., a mesh consisting of several polygons. The appearance of the geometry can be changed by applying texture to
the surface or defining its color and transparency. Lightning can be defined with either local or global light sources, and
their effect on the polygons is controlled by defining ambient, diffuse and emissive colors: For ambient color the angle
between the light source and the surface normal of the polygon has no effect on the rendering, for diffuse color it has,
and for emissive color the rendering depend on the angle between the viewpoint, the polygon and the light source. The
shading of the polygon can be refined by Gouraud (Gouraud 1971) and Phong (Phong 1975) shading, so different areas of
the polygon have different color, depended upon vertex normals, that are either defined or interpolated between connected
polygons.

Realtime polygon-based graphics libraries do usually not support cast shadows, but cast shadows can be obtained by
copy, scaling and translation of the geometry and provide cues for disambiguation of shapes and locations of 3D objects
(Najork and Brown 1995).
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Virtual Reality Modeling Language

Virtual Reality Modeling Language (VRML) is a standard for afile format that describes hyperlinked interactive 3D
polygon based visualizations meant for display inVRML-browsers. There are actually two different standards: “VRML
1.0” (Bell, Parisi, and Pesce 1995) and “VRML97” (also called “VRML 2.0” Carey, Bell, and Marrin 1997) — the last
one being an ISO-standard (ISO/IEC 14772-1:1997). The VRMLfile is a text file and it can contain data for description
of the visible objects (geometry, its appearance, lightening, background, . . . ) as well as description of interaction among
the objects and small programs, — with the description organized innodes, — each type with its own set of properties.
Apart from what is found in other standards (e.g., the Inventor format originally defined by Silicon Graphics) VRML
defines hyperlinks.

VRML is persistent(the file is persistent but is dependent on a suitable programfor visualization). VRML visualiza-
tions are also easy todistribute. However, if the VRML visualization contains texture, images or movie clips it is usually
distributed over several files making the distribution not as convenient as PostScript and PDF files. It is not directly
cooperativebut extensions with Java can compensate for that although the persistence and distributability will decrease.
VRML is partly interactive: The typical browser allows rotation of the world (the model) and change of viewpoint. More
interaction can be obtained by usingsensors— either interactive, e.g., plan sensors, or autonomic, e.g., the “TimeSensor”
— which events can be routed to change the objects and appearance dynamically.

Figure 4.1: Example on a VRML visualization where different result volumes are displayed together with a digitized
rendering of a page from the Talairach atlas (Talairach and Tournoux 1988) and a cortex surface constructed by Heather
A. Drury, see (Drury and Van Essen 1997). The numbers on the slice from the atlas is the Brodmann numbers. This
is a screenshot from the CosmoPlayer VRML-browser running on an Silicon Graphics (SGI) Onyx computer. The spatial
locations of the components become obvious when the model is rotated in real-time in the VRML-browser. The result
volumes are from saccadic eye movement studies (Law 1996; Law, Svarer, Rostrup, and Paulson 1998), passive word
processing (Petersen, Fox, Posner, Mintun, and Raichle 1988) and olfaction (Zatorre, Jones-Gotman, Evans, and Meyer
1992, not visible) and a mouth activation study (Ian Law, personal communication).

VRML has not been used in mainstream brain mapping visualizations, but a few tools have been de-
veloped (Drury, West, and Van Essen 1997; Nielsen and Hansen1997; Nielsen and Hansen 1998; Nielsen
and Hansen 2000a), see also WebCortex (http://zakros.ucsd.edu) and the “NPAC 3D Visible Human Viewer”
(http://www.npac.syr.edu/projects/3Dvisiblehuman/VRML/VRML2.0/MEDVIS/), and “3D Brain” (Kling-Petersen,
Pascher, and Rydmark 1998, http://www.mice.gu.se/MICE/education/3DB.html). VRML has also been used as an out-
put for an Internet-based remote Markov random field segmentation program (Kelle 1999), and for remote visualization
of EEG data (Martínez, Hassainia, Mata, Medina, Leehan, andBañuelos 2000). Figure 4.1 is an example of a VRML
visualization. Others are displayed in figures 2.6, 4.3, 5.17(a), 5.17(b) and 5.18.

Text labels in the visualization are constructed using a single transparent textured polygon for a whole line of text
rather than rendering each individual character as a polygon. The latter is the default most browsers use for rendering the
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(a) (b) (c)

Figure 4.2: Sequence of volume renderings using the volren program with a MRI template from SPM96 and visual
activation from a study of Ian Law (personal communication). The two round objects are polygon representation of the
eyes.

“Text” VRML node. By the latter technique the number of rendered polygons used in the visualization is reduced and the
rendering speed should increase in most browers. The texture on the polygon are constructed from concatenated binary
images of each letter. These images were constructed manually. To avoid aliasing and filter effects in the texture the size
of the texture should be a power of two. In the examples the height of the letters is 8 pixels and transparent pixel columns
are added to the left and right end of the constructed image soits length matches a power of two.

To orient the text in the direction of the viewer the “Billboard” VRML node is used. This node — which often is used
in connection with rendering of trees in virtual reality visualization — automatically rotates its attached geometry (in this
case the polygon with the text image) toward the viewer.

4.1.2 Volume rendering

Volume rendering works directly on the 3D structure. “Traditional volume rendering” is based on ray casting and is
typically slow, but interactive speeds can be obtained by using hardware volume rendering. Kulick (1996) developed an
interactive program (volren) where OpenGL hardware acceleration was utilized through transparent textured polygons,
see figure 4.2 for an example. The technique was originally suggested by Akeley (1993) and has also been implemented
by, e.g., Wilson et al. (1994) with the Voltx program. The technique produces low quality renderings as the objects are
not shaded. However, new techniques have been developed which include shading, see, e.g., Van Gelder and Kim (1996),
Dachille et al. (1998). Another mean for achieving interactive speeds is by dedicated volume rendering hardware (such
as VolumePro™ by TeraRecon Inc., http://www.rtviz.com, which is supported by the Visualization Toolkit; Scroeder,
Martin, and Lorensen 1997).

Tomographic reconstruction in CT and PET can be seen as the inverse operation of volume rendering and reconstruc-
tion can be based on volume rendering hardware (Cabral and Foran 1999).

Volume rendering is implemented in the AFNI program (http://afni.nimh.nih.gov/afni/plug_render.html), see also sec-
tion 4.3. Other applications of volume rendering in neuroscience appear in (Sommer, Dietz, Westermann, and Ertl 1998)
that describe a system for combined texture mapping volume and polygon-based rendering suitable for medical volume
visualization.

4.2 Visualization techniques

4.2.1 Polygon generation

The classical algorithm to construct a surface representation from volumetric data is the so-called Marching Cube algo-
rithm (Lorensen and Cline 1987; Cline, Ludke, and Lorensen 1988) implemented in, e.g., polyr (Jensen 1995; Nielsen
1998). It is based on construction of “subvoxel-sized” polygons for an isosurface and produces a large number of poly-
gons even if the complexity of the surface is low, e.g., the object contains linear planes that are larger than the individual
voxels. There has been developed a number of approaches to reduce the number of polygons, see, e.g., (Jensen 1995;
Shekhar, Fayyad, Yagel, and Cornhill 1996).
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4.2.2 Surface generation from contours

Reconstruction of the 3D surface from 2D contours is a general problem in neuroimaging, e.g., when the contour of a
brain structure has been traced in each slices. The traced contours from adjacent layers should be connected to form a
3D surface (Fuchs, Kedem, and Uselton 1977). The primary computer program for this has been Nuages (Geiger 1993;
Boissonnat and Geiger 1993), see figure 5.16(a) for an example of a polygonization of the cerebellum from the Talairach
atlas. Multiple contours in one slice that combine to one contour in another slice is a problem. This is, e.g., the case in
connection with the temporal lobe in the Talairach atlas that branch of from the “main” cortex. Fujimura and Kuo (1999)
discuss a method to handle branching.

Another approach is to convert the contours to an image by surface filling, stack the images and then do ordinary
surface generation (Zeleznik 1997). The 3D generalizationof this operation is referred to as “voxelization” and may
be regarded as the inverse of isosurface generation: Obtaining the voxel-based volume from polyhedrons (the bounded
intersections of the half-space, i.e. polygons). Nooruddin and Turk (1999, section III.B) review shortly the methods in
this connection.

4.2.3 Glyphs

In ordinary 2D plots different colors, point styles, line styles and sizes are often used to convey different aspects of the data
(third and higher dimensions). Refinements of this scheme applied to points are often referred to asglyphs, e.g., each point
can be represented by two right angled lines where the lengthof the “legs” are varied according to the third and fourth
dimension (Mardia et al. 1979, section 1.7.2). “Star plots”and “radar plots” are generalizations when several lines are
used and distributed at equidistant angles around the point. The points do not have to be abstract geometric representations
but can be iconic, — an example being the Chernoff face where each dimension is represented by a component of the
human face (Chernoff 1973).

Glyphs displayed in 3D require different appearance than 2Dglyphs: Point objects are usually not directly supported
in 3D rendering libraries — other than simple pixel points — so the visualization system has to construct point objects
from scratch. Some examples are shown in figure 4.3. Varying the size of the glyphs will obscure the depth cue.

Figure 4.3: Examples of four different 3D glyphs in Talairach space constructed in connection with a meta-analysis by
Chen, Nielsen, and Hansen (1999). Color denotes increase/decreased activation and shape varies across the two paper
that the Talairach foci are taken from: (Hsieh et al. 1996, spheres and squares) and (Rosen et al. 1994, diamonds and
crosses). Author names and anatomical labels are written above the point objects implemented as one textured “billboard”
polygon for each label. The large letters A–H is the grid labels from the Talairach atlas.
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4.2.4 Network visualization

A simple network visualization is obtained by plotting the link matrix as an image where the color or the gray-scale of the
image elements depend on the link strength. TheHinton diagramis a variation where the link is still arranged in a matrix
but each element is rendered as a small box or circle with the size depending to the link strength.

There exists a number of ways of drawing networks when the node are represented as points and the links are rep-
resented as lines between the points, see, e.g., (Feng 1997)and figure 3.9.Graphvizis a useful set of programs that
implement automatic 2D graph drawing (Gansner and North 2000). dot for directed graphs (Koutsofios and North 1996)
andneatofor undirected graphs (North 1992). See examples in figures 5.3, 5.4(a), 5.4(b) — and an application in bioin-
formatics: (Jenssen, Læreid, Komorowski, and Hovig 2001).Another graph drawing program is DAG (Gansner, North,
and Vo 1988).

Network visualizations in connection with bibliometrics/scientometrics are available in the BIBEXCEL toolbox (Pers-
son 2001), for examples see the author cocitation in (Persson 2000, figure 1) and the organization network in (Persson,
Luukkonen, and Hälikkä 2000, figures 11 and 12). A predecessor was the BIBMAP toolbox (Persson, Stern, and Holm-
berg 1992). Chen (1999) describes a system for 3D VRML visualization in connection with author cocitation analysis.
Both in (Chen 1999) and in (Chen 1997: 2D network visualizations of scientific documents) thePathfindernetwork scal-
ing method (Schvaneveldt, Durso, and Dearholt 1989) are used to reduce the network complexity, while Chen and Carr
(1999) applied multidimensional scaling for author cocitation analysis. Early examples of scientometric visualizations
(“SCI-map”) are available in (Small and Garfield 1985) and creating maps in connection with scientific bibliographic
materials has been termed scientography (Garfield 1986).

Tree visualization

Treesrepresent special kind of networks. They can represent hierarchical information with no cross-links, — an example
in neuroinformatics being the NeuroNames brain hierarchy (Bowden and Martin 1995).

Apart from classical visualization techniques, such as implemented in file browsers, there are a number of different
visualization approaches to large scale trees, see e.g., (Card, Mackinlay, and Shneiderman 1999). Thecone tree(Robert-
son, Mackinlay, and Card 1991; Robertson, Mackinlay, and Card 1994)) is a 3D visualization technique that renders the
children of a parent node in a circle so that the parent becomes the top of a cone and the children the base. Each level of
the tree is rendered at the same�-coordinate.Treemapsis space filling maps where nodes are alternating between vertical
and horizontal rows of rectangles in a 2D rendering (Shneiderman 1991; Johnson and Shneiderman 1991; Shneiderman
1992). Hyperbolic displaysrender the tree in a circle with the root node at the center andthe nodes with the largest
distance to the root at the periphery (Lamping and Rao 1994; Lamping, Rao, and Pirolli 1995; Lamping and Rao 1996;
Lamping and Rao 1997). Inxight (http://www.inxight.com) terms this aStar Tree. Groupings can be emphasized with
node or link color. The approach was also described by Munzner and Burchard (1995) who extended it to 3D rendering.
Cityscapeis a 3D visualization technique where all nodes are renderedas boxes standing on a plane and with child nodes
in a circle around the parent node (Keskin and Vogelmann 1997). SimVis (Falkman 2001) incorporates several types of
both 2D and 3D tree layouts used in connection with clinical data.

Sociogram — bullseye visualization

The field sociometry (Moreno 1934) within sociology and group-psychology has developed a special kind of network
visualization: the so-calledtarget sociogram(Northway 1940), see also (Freeman 2000) and (Sjølund 1965,section 4).
The visualization has primarily been used in mapping of the social structure of a school-class. Here each pupil is requested
to list whom s/he would like to work with and whom s/he would like to sit with, — and sometimes enhanced with questions
like: who would younot like to play with. The social network from a class is then visualized in a circular diagram with a
few concentric circles at different radii and with the most popular pupils positioned in the middle and the less popular in
the periphery. Different symbols are usually used for boys and girls and the symbols are connected with arrows or lines
depending on the pupils selections.

Wexelblat (1998) and Kato, Nakayama, and Yamane (2000) describe similar polar visualization — both in connection
with Internet user path data. Thebullseyevisualization in connection with Internet search results is another similar visu-
alization (Carrière and Kazman 1997, figure 3), see figures 5.8 and 5.9 for examples in connection with coauthor analysis.
The visualization resembles the hyperbolic display thoughthe network need not be a strict hierarchy. Related are also the
TheBrain visualization technique used in WebBrain (http://www.thebrain.com, http://www.webbrain.com, Hugh 2001),
Thinkmap (http://www.thinkmap.com, Thinkmap 2001) and VisiMap (http://www.visimap.com), — all which render a
node at the center (first-level) child nodes in the periphery, see (Larsson and Hansson 2000) for a further description.

Node placement in node-link diagrams

The placements of the nodes form a special problem: The nodescan be placed by algorithms like multidimensional scaling
operating on the link matrix, but this does not take into account that the links should also be rendered, — adding extra
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terms to the optimization of the node placement:

• Avoid collinear nodes that are connected, because for someconfiguration it will be impossible to distinguish which
points are connected. This can be resolved by using curves instead of straight lines.

• Minimize the number of crossing lines that make the visualization unnecessary complex.

• Nodes should not be place too close together as it will be difficult to distinguish between them.

4.2.5 Stereovision

Stereovision takes advantage of the ability of the brain to reconstruct 3D information from 2D images when they are
presented to and perceived differently by the left and righteyes. There exists a variety of different display systems to
enable stereovision which will be described below. All of them make compromises in respect to spatial and temporal
resolution, brightness, color, complexity and can be uncomfortable or inconvenient (Dumbreck and Smith 1992).

• Split-screen systems render left and right eye images nextto each other either on one screen (monitor) or two,
inspired by Charles Wheatstone’s invention of the stereoscope in 1838. If no optics are used and the eyes are not
crossed the images can only be translated a few centimeters from each other since the eyes have limited divergence
ability, and this puts a restriction on the size of the image.Headsets (or head-mounted displays or helmet-mounted
display, HMD) are special displays that are worn by the observer and where two small screens display images for
each individual eye. A variation of this is the BOOM display (McDowall, Bolas, Pieper, Fisher, and Humphries
1990). The position of the head can be tracked, e.g., by magnetic means, and the viewpoint can be updated from
this information. If the eyes are allowed to cross (so the right eye sees an image displayed on the left) then larger
images can be displayed, and this has been used with 2D X-ray images (Olaf B. Paulson, personal communication).

• Anaglyph stereo uses different color filters for each eye and presents two images with different viewpoints on
one screen color coded in accordance with the color filter. Usually the filters are red/cyan (red/green), and it
gives a distorted color perception. Amber/blue anaglyph provides a better color perception and lower cross-talk
between the stereo pairs, — especially when the color mixingis optimized (Hansen, Sørensen, and Sørensen 2000e,
http://www.colorcode3d.com). The advantage with anaglyph stereo is that the display system requires no extra
hardware, other than inexpensive glasses. An implementation issue with anaglyph stereovision systems appears as
normal polygon rendering systems are not able to blend oblique polygons directly. A two-stage process is required
where two images representing left and right eye viewpointsare generated in the first stage and in the second stage
the color channels are merged to a single image.

• Chromo-stereography (Einthoven 1885) codes depth with the color spectrum, e.g., blue in the background, then
green and finally red in the foreground. These can be viewed with special prism glasses (Steenblik 1986,
http://www.chromatek.com). For a scientific application see (Verwichte and Galsgaard 1998).

• Polarized light display works together with polarized glasses. The filter in these glasses can either be linear or
circular, with the linear filters usually arranged with the “penthouse polarization” where the left eye filters are
aligned 45 degrees counterclockwise from horizontal and right eye filters 45 degrees clockwise. (Dumbreck and
Smith 1992). The display system should either have two projectors or the polarization should be done by temporal
switching in a filter. Full color rendition is obtained, but aconsiderable amount of brightness is lost (Pastoor and
Wöpking 1997).

• In shutterglass stereo or “eclipse method” the display system switches between left and right eye image. This
requires special hardware that synchronizes the display system with the glasses worn by the human observer. Early
systems were based on mechanical switching, while now it is done by liquid crystals (Dumbreck and Smith 1992),

• Auto-stereoscopic display are spectacles-free display systems that directly produce an images that is perceived as
3-dimensional (Pastoor and Wöpking 1997; Dumbreck and Smith 1992). This can be constructed, e.g., by using
lenticular screens (Skerjanc and Pastoor 1997)

Volbracht, Domik, Shahrbabaki, and Fels (1997) compare anaglyph stereo, shutter glass stereo and simple non-
stereoscopic perspective viewing in organic molecule viewing tasks (e.g., count the rings in the molecule), and found
a significant difference both for the viewing modality and the experience level of the viewer:

[. . . ] viewing in the anaglyph mode shows a strong resemblance to the quality of shutter mode. A comparison
of cost vs. performance of the three here discussed 3D display modes would therefore favor anaglyph stereo.
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Figure 4.4: Amber/blue anaglyph stereogram showing the cortex from the segmentation in connection with the Caret
program (Van Essen and Drury 1997). This will typically not reproduce well on paper. An computer-based image is
presently available from http://hendrix.imm.dtu.dk/image/.

Headset systems in their present form are more complex to setup than simple anaglyph stereo displays. In (Nielsen and
Hansen 1997) we briefly described a 3D non-stereoscopic head-track display based on modified software (CosmoPlayer,
Netscape plug-in library, hardware drivers from WorldToolKit) and specialized hardware (SGI Onyx, Fastrak motion
tracking, headset). Compared to ordinary 3D table top screen rendering on a fast hardware accelerated system, the HMD
system had limited field of view and less quality color reproduction. Furthermore the headset was inconvenient to wear if
the user should interact with other components than the visualization, e.g., another program or a piece of paper.

Figure 4.4 shows an amber/blue anaglyph stereogram constructed from Matlab. Apart from inexpensive amber/blue
spectacles nothing is required to view such an image when it is presented on the computer screen. As Matlab does not
directly support anaglyph images, these have to be constructed by first rendering two images corresponding to left and
right eye with two different viewpoints with the built-in rendering library of Matlab. Then the two images are mixed by
masking the red, green and blue components. This cannot be done real-time, but take around 20 seconds on a 700MHz
Pentium computer. Multiple turnable views can be constructed in advance so that the user can get a minimum amount of
interaction. Rao and Jaimes (1999) suggest a setup in connection digital photography of museum objects.

Since the cortex itself gives a good guide for the spatial location the benefit of using stereoscopy is limited if the
cortex can be used as a reference. It is more appropriate whenno landmarks exist, e.g., for functional activations without
the support of anatomical images. MRI angiograms represents another example (Wentz, Mattle, Edelman, Kleefield,
O’Reilly, Liu, and Zhao 1991).

4.3 Scientific visualization in functional brain mapping

Below is a list of the common visualization types employed infunctional neuroimaging, and table 4.1 lists some of the
programs for visualization.

• 2D plots. The 2D plots are usually presented in the 3 orthogonal view or as a gallery of slices (usually transversal
slices).

– Result volume alone. As the functional activation is often localized the functional volume alone present little
indication of the location in the brain.
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Name Description Reference
3D Slicer Polygon-based visualization with alignment and

segmentation
(Gering et al. 1999; Gering 1999),
http://www.slicer.org

3D VIEWER Atlas based slice viewing. (Berks et al. 2001)
BrainMiner 3D Surface rendering and slice rendering for func-

tional connectivity
(Mueller et al. 2000), (Zhu et al. 2001)

BrainVoyager 2D slices, 3D Polygon-based and flatmap based http://www.BrainVoyager.de/
Caret Flatmap (Van Essen and Drury 1997)
Corner Cube Surface-based rendering (Rehm et al. 1998)

Electronic Clinical
Brain Atlas

3D surface rendering and 2D slice with digitiza-
tion of Talairach and Schaltenbrand atlases

(Nowinski, Bryan, and Raghavan 1997;
Talairach and Tournoux 1988; Schal-
tenbrand and Wahren 1977)

GpetView 2D slice viewer (Watabe 2001)
etdips Volume and surface rendering http://www.cc.nih.gov/cip/software/etdips/
JIV Java-based remote 3D visualization (Cocosco and Evans 2001)
mri3dX (BrainTools) Slice display, flatmaps, volume rendering http://www.mariarc.liv.ac.uk/mri3dX/
MRIcro 2D Slice viewing (Rorden and Brett 2001)
“Slice overlay” 2D slice gallery with transparency (Brett 2000)
Spamalize Corner Cube-like Surface rendering http://psyphz.psych.wisc.edu/˜oakes/

Table 4.1: Visualization tools in brain mapping

– 2D Functional volume together with structural. This is probably the most common. The structural image
is usually a MRI T1 image in gray scale while the functional volume is in color scale (often “hot”). There
are different methods to merge the functional and structurevolume. One way is to select a threshold for the
functional volume (usually based on a p-value) and pixels from the functional volume are shown if they are
above the threshold while the structural volume is shown forvoxels below the threshold. Rehm, Strother,
Anderson, Schaper, and Rottenberg (1994) proposed anotherway by using pixel interleaving where every
second pixel displays the functional volume while the second half show the structural. This technique was
also used as the low quality (fast) transparency technique in the VRML-browser for the SGI platform. Instead
of the pixel interleaving true transparency can be used (Brett 2000). Then the transparency is not limited to
50% but can be any value between 0% and 100%. If 3D polygon graphics libraries with transparency and
textures are used it is not necessary to compute the blending— this is done automatically by the library.

– 2D with structural contour. The advantage with this is that the structural image can be rendered on top of the
functional image. Often used in connection with visualization of multiple activation foci from meta-analyses,
e.g., (Decety and Grèzes 1999, figure 3) and (Farah and Aguirre 1999, figures 1–4).

– 2D with functional contour, e.g. (Haxby, Petit, Ungerleider, and Courtney 2000, figure 3).

– Maximum intensity projection with contour and grid. The volume is projected onto a plane with the value of
the pixels on the plane determined as the maximal voxel valuealong the projection line. Often a threshold is
applied. A black and white version with three orthogonal slices is used as the default visualization in the SPM
program (Friston 1999b) and sometimes referred to as the “glass brain” visualization.

For transversal images there are two different ways to render the image (anterior part is always up): Theradiological
conventionwhere the left brain is shown as the right side of the image, and theneurological conventionwhere the
right brain is shown at the right side of the image.

• Flatmap is visualization where the surface of the cortex orother brain structure is flatten to a 2D representation (Van
Essen and Drury 1997). Conformal mapping can make the construction of the flatmap unique (Hurdal, Bowers,
Stephenson, Sumners, Rehm, Schaper, and Rottenberg 1999).

• 3D Visualization

– Static cortex projection is implemented in SPM99 where 3D visualization with fixed viewpoints of structural
MRI are precomputed. Result volumes are thresholded and overlaid on the structural image using the same
projection matrix.

– Dynamic cortex projection can be made by projecting the result volume on a polygon model of the cortex
(Herholz, Thiel, Wienhard, Pietrzyk, von Stockhausen, Karbe, Kessler, Bruckbauer, Halber, and Weiss 1996,
figures 1-4) (Peter Willendrup, personal communication).
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– Corner Cube environment is a polygon based visualization where the activated regions can be shown as iso-
surfaces, spheres or ellipses supported by cast shadows on three orthogonal walls together with stalks rising
from the “ground” transversal slice (Rehm, Lakshminarayan, Frutiger, Schaper, Sumners, Strother, Anderson,
and Rottenberg 1998; Rehm, Schaper, Lakshminarayan, and Rottenberg 2000).

– Volume visualization. König, Doleisch, and Gröller (1999)describe an extension of the “Corner Cube” tech-
nique with volume rendering termed “Magic Mirrors”.

Rehm, Lakshminarayan, Frutiger, Schaper, Sumners, Strother, Anderson, and Rottenberg (1998) compared some of the
visualization types in a usability study and found the Corner Cube environment to perform favorably against the gallery
of slices, the maximum intensity visualization and the interleaving method (Rehm, Strother, Anderson, Schaper, and
Rottenberg 1994).

The Corner Cube environment is used in several visualization, see figures 5.13, 5.15, 5.16(a), 5.16(b) and 5.20(a).
These plots are constructed with Matlab where the viewpointcan be changed interactively and further interaction is added
by attaching a popup menu to the geometric elements. Each component can be added or delete from the visualization
either from the Matlab prompt or by clicking on the geometry.As Matlab supports downloading of Internet web-pages
hyperlinking can also by made within this environment — as inVRML.

4.4 Information visualization for functional brain mappin g

In many cases the information can just as well be representedas textural information rather than as an information
visualization1, and it is often easier to handle, e.g., text information is easier handled by search engines and it is easier
for a user to cut and paste. However, an appropriate visual representation can enhance the “data-user” interaction, e.g.,
Gade (1997, pages 235–243) accounts that experiments show that it is easier to remember words that are concrete rather
abstract words, presumably because these words are stored both as words and images (“double-coded”).

In (Nielsen and Hansen 1997) we described an environment termed “hyperbrain” where a functional brain mapping
study is visualized, see figure 4.5 for a VRML screenshot. Thevisualization is based on a torus topology where stages of
the study are arranged: Initial hypothesis, design of experiment, acquisition with a brain scanner, preprocessing, analysis,
interpretation and thus comparison with the initial hypothesis. Among the components of the visualization are small
icons representing the researchers involved in the study and with hyperlinks to their homepages. This particular modelis
“hand-built”, but similar models can potentially be built from information in, e.g., the BrainMap™ database.

1Nielsen (1996b) puts the use of VRML as number 2 in his list of top ten mistakes of web design if the information does not map naturally on 3
dimensions. This might be due to users not having stable browsers or Later studies (Nielsen 1997) show that “paradigm shift” in user behavior can
happen, e.g., users on the web learn scroll web-pages: Learnthat web-pages can be larger than the screen
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Figure 4.5: Information visualization of a functional neuroimaging experiment with linking to the homepages of the involved
researchers, the used analysis packages and institution homepages.



Chapter 5

Neuroinformatics

5.1 Neuroinformatics

The term “neuroinformatics” has been used in two senses: In one sense it means the use of mathematical models inspired
by neurobiology, such as artificial neural networks, in the other sense it refers to the merging of informatics and brain
science with the development and utilization of computerized techniques to deal with the complex information in brain-
related sciences, and it is in this second sense that I use theterm neuroinformatics.

Hirsch and Koslow (1999) have defined goals for neuroinformatics:

1. Creation of new databases and query methods.

2. Development of new visualization and manipulation technologies.

3. Development of data integration and synthesis, modelingand simulation environments.

4. Development of tools for “electronic” collaboration.

Neuroinformatics can be classified as part ofbioinformatics. This field has mainly advanced in genomics and proteomics,
where DNA and protein sequences (the basic element being thefour bases) are stored and analyzed (Chicurel 2000). The
linear sequences data are trivial to store (e.g., in a text file) and the data are directly related to the scientific object under
study. There exist several Internet-based analysis and search services in bioinformatics.

In neuroinformatics the data is much more heterogeneous, and the object under study is not directly representable
(e.g., the brain area referred to as “Broca’s area” does not have a direct representation), and neuroscience produces a lot
of information (e.g., fMRI and EEG measurement might only belimited by storage capacity).

Further information about the issues in neuroinformatics is available in (Chicurel 2000), (Koslow and Huerta 1997),
(Shepherd et al. 1998) and a supplement edition of NeuroImage volume 4 number 3 December 1996.

5.2 Neuroinformatics tools for functional neuroimaging

There exists a variety of tools for functional neuroimagingtools. Perhaps the most important are the mathemati-
cal/statistical tools that are used for analysis and preprocessing of the functional neuroimages. There seems to be none of
these that are web-based, but many are distributed on the Internet: These include among others SPM, AFNI (Cox 1996),
AIR (Woods et al. 1998a), FSL (Smith et al. 2001), BICstat/fmristat/multistat (Worsley, Liao, Grabove, Petre, Ha, and
Evans 2000), Stimulate (Strupp 1996), VoxBo (http://www.voxbo.org/), BrainVISA (Cointepas, Mangin, Garnero, Poline,
and Benali 2001), FIASCO (Eddy, Fitzgerald, Genovese, Mockus, and Noll 1996), Lipsia (Lohmann et al. 2001), EvIdent
(Pizzi et al. 2001), RPM (Aston, Worsley, and Gunn 2001), LOFA (Gokcay, Mohr, Crosson, Leonard, and Bobholz 1999),
iBrain (Abbott and Jackson 2001), and Lyngby (Hansen et al. 1999b; Hansen et al. 2000b; Hansen et al. 2001b), see Gold
et al. (1998) for a review.

Apart from these tools are the programs and services that deal with other stages of the study of functional neuroimages.
Some of these are listed in table 5.1. Below will some of the most important be described in more detail. Apart from those
listed in the table Kelle (1999) shortly reports an Internet-based Markov random field segmentation program with outputto
VRML, and Martínez, Hassainia, Mata, Medina, Leehan, and Bañuelos (2000) describe an Internet-based remote VRML
visualization system for EEG. In appendix C on page 153 a web-service for clustering and visualization is described in
more detail.
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Name Description Reference
Brain Explorer “Brain Atlas Database of Japanese Mon-

key for WWW”. Web-based browsing of
MRI

http://www.aist.go.jp/RIODB/brain/

BRAID Image database with web-interface espe-
cially for lesions

(Bryan et al. 1995; Letovsky et al.
1998; Herskovits 2000a)

BrainMap™� Web-enabled database with functional neu-
roimaging experiment data, e.g., Talairach
coordinate

(Fox and Lancaster 1994), (Fox
et al. 1995)

BrainWeb Web-services for simulation and down-
loading of T1/T2/PD standard images

(Cocosco et al. 1997), (Kwan et al.
1996), (Kwan et al. 1999), (Collins
et al. 1998)

CoCoMac� Connectivity database (for the macaque) (Stephan et al. 2001)
Corner Cube on the Web Visualization of Talairach locations (Rehm et al. 2000)
Cortical neuron net database Electrophysiology and neurondatabase e.g., (Gardner et al. 2001)
ECHBD European Computerised Human Brain

Database
(Roland et al. 1999), (Fredriksson
et al. 2000)

fMRIDC � Database with functional neuroimaging
data sets and results

(Grethe et al. 2001),
http://www.fmridc.org/

NeuroGenerator Announced image database for PET and
fMRI

http://www.neurogenerator.org/

NeuroInformatics Workbench A set of neuroinformatics tools http://www-
hbp.usc.edu/workbench.html

NeuroNames Database with structured hierarchy for
neuroanatomical names

(Bowden and Martin 1995)

NeuroScholar� Connectivity database (for the rat brain) (Burns 1998)
SenseLab Web-enabled database with neuronal prop-

erties, neuronal models and olfactory re-
ceptors

http://senselab.med.yale.edu/senselab/

Talairach Daemon� Web-based service to map Talairach coor-
dinates to anatomical structure and Brod-
mann numbers

(Lancaster et al. 2000c)

WebCortex Interactive visualization of cortex surface http://zakros.ucsd.edu/
The Whole Brain Atlas CD-ROM and web-based interactive view-

ing of brain images
(Johnson and Becker 1997)

Table 5.1: Web-based neuroinformatics tools. The � indicates the tools described in detail in the text. Some of the tools
are not accessible yet.

5.2.1 BrainMap™

BrainMap™ is a database with data from functional neuroimaging studies, — primarily peer-reviewed journal articles
(Fox and Lancaster 1994; Lancaster, Fox, Davis, and Mikiten1994; Fox, Lancaster, Davis, and Mikiten 1995). The
database is located at the Research Imaging Center, San Antonio, Texas, http://ric.uthscsa.edu. Apart from the actual
database there are an entry program and query services (Lancaster, Chan, Mikiten, Nguyen, and Fox 1997a). The three
querying services are Internet-based with two of them implemented as ordinary programs with graphic display (Kochunov,
Lancaster, and Fox 2000), and the third based on web-browsing with non-graphic CGI-queries.

Presently, the data is organized in three structures: “paper”, “experiment” and “location”, see figure 5.1. A “paper”
structure encapsulates a “study” which is most often a journal article, but can also refer to an unpublished study. The
structure contains bibliographic information as well as one or more “experiments”. Each “experiment” contains infor-
mation about a single experiment, which in this connection is a contrast/subtraction. One of the information types is the
“behavioral domain” that lists the cognitive/behavioral components believed to be involved in the experiment. The cog-
nitive/behavioral components are ordered in a hierarchy, see table 2.1. Each “experiment” has zero or more “location”s.
Each “location” is a reported hot spot representing either an activation or a deactivation.

The location web-pages each contain a single Talairach point described most importantly by the 3D coordinate (“Co-
ordinates in Talairach, 1988 space”) that should correspond to the Talairach space (Talairach and Tournoux 1988) as
much as possible, cf., the remarks in section 3.5.6. This field has been transformed from another field “Coordinates as
reported in experiment”. These two field are sometimes not identical due to differences in templates. Other fields include
magnitude (“Magnitude”, given in, e.g., ml/100g/min rCBF)and a p-value (“p-Value”), which in many cases appear as a
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Paper �
One or more

Experiment �
Zero or more

Location

Figure 5.1: Organization of data in BrainMap™. The behavioral description is also organized as zero or more structure
below each experiment, see precise description on http://ric.uthscsa.edu/projects/brainmap.html.

threshold value rather than the individual p-value of the location. The field “Lobar anatomy” records an anatomical label
for the location as a short string, e.g., “frontal eye fields”or “frontal cortex”. Other annotation fields are “Corresponding
Brodman’s area” (never set), “Functional area” (set for less than 2% of the locations, examples include “S1”, “V1”),
“Lobar outline” (set for around 5% of the locations, an example is “Parietal,Lateral,AP Axis,Anterior,SI Axis,Middle”).

The “Point-Type” field “[i]ndicates whether the reported activation was determined from an individual subject’s image
or from an averaged image : 1 = individual, null = mean”, the “Report/estimate” field “[i]ndicates whether a location was
entered as reported or was estimated: 1 = estimate, null = reported” and the “Left/right-type” field is “[a] flag to indicate
whether the reported activation falls in the left or right hemisphere of the brain: 1 = right, null = left” (Angela Uecker,
personal communication, 2001-July-20).

BrainMap™ has a field in the “paper” structure to denote which“publication type” it is, e.g., “Peer Reviewed” or
“Unpublished”. Some components of the “paper” in BrainMap™is not in the original article, e.g., (Fox et al. 1996)
contains no coordinates only Brodmann numbers and anatomical names, and (Petersen et al. 1988; Petersen et al. 1990)
contains not all the coordinates listed in the BrainMap™ database. That is, not all data associated with a paper is directly
“peer reviewed” when the “publication type” is “peer reviewed”.

A few of the papers in BrainMap™ are meta-analyses, thus it ispossible that experiments in the meta-analysis papers
are already recorded elsewhere in the database.

5.2.2 Talairach Daemon

The Talairach Daemon is a stand-alone program and a web-based service that resolve Talairach coordinates to anatomical
names and Brodmann numbers (Lancaster et al. 1997b; Lancaster et al. 1997c; Lancaster et al. 2000b; Lancaster et al.
2000c; Lancaster et al. 2000a, http://ric.uthscsa.edu/projects/talairachdaemon.html). The program and service return two
types of labeling: Talairach labels derived from a digitization of the Talairach atlas (Talairach and Tournoux 1988) and
structure probability maps derived from a segmented brain (Collins, Holmes, Peters, and Evans 1995, ANIMAL).

The Talairach Daemon can be used to automatically label locations from functional neuroimaging statistical parametric
maps. There are several problems with labeling to Talairach: 1) An exact spatial template lacks for the Talairach atlas,
see section 3.5.6; 2) The individual variability in brain anatomy might not make it appropriate to base labeling on the
non-probabilistic system used in the Talairach atlas beingbased on only a single brain.

5.2.3 Connectivity database and analysis

Connectivity databases provide information about anatomical relationships in the brain.NeuroScholarrecords connectiv-
ity in the rat brain (Burns 1998, http://neuroscholar.usc.edu/). Another connectivity database isCoCoMac (“Collation of
Connectivity data on the Macaque brain”, http://www.cocomac.org) which records connectivity in the macaque monkey
(Stephan, Kamper, Bozkurt, Burns, Young, and Kötter 2001).Such data can be “applied to interpret results from func-
tional imaging studies” (Northoff, Richter, Gessner, Sclagenhauf, Fell, Baumgart, Kaulisch, Kotter, Stephan, Leschinger,
Hagner, Bargel, Witzel, Hinrichs, Bogerts, Scheich, and Heinze 2000). None of the two database has web-interface yet.

Basically such databases consist of a� � � matrix where the elements describe the functional or anatomical con-
nectivity (the strength or the lack of connection) between� brain regions. Further information can be incorporated in
the database: The� brain regions can be organized in a hierarchy, each element in the matrix can be described by how
it was obtained (bibliographic information, method, e.g.,Nissl staining) and the� regions can be linked to the physical
sites (brain regions), — possibly with variation information (Computational Systems Neuroscience Group (CSN), C. &
O. Vogt Brain Research Institute 2001).

The data from such collections of connectivity has been usedin analyses, e.g., with non-metric multidimensional
scaling. For a review of this kind of analysis see (Goodhill,Simmen, and Willshaw 1995). The method allowed, e.g.,
Young (1992) “to comment on the segregation of dorsal and ventral processing streams and reconvergence in the DLPFC
and the superior temporal area” (Friston et al. 1996a), — a hypothesis put forward by Mishkin, Ungerleider, and Macko
(1983).
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5.2.4 Data centers

“National fMRI data center” (fMRIDC) is a database with volumetric functional neuroimaging data (Grethe et al. 2001).
The database is located at Dartmouth College, Hanover, New Hampshire and web-based with URL http://www.fmridc.org.
The database will enable other researchers to compare results directly on the image level rather than the summary locations
listed in BrainMap™. The first submission was in November 2000 by Ishai et al. (2000) and by April 12th 2001 there
were 50 data sets.

fMRIDC requires authors to submit raw data (“reconstructedimages from the scanner”), preprocessed data (with-
out spatial smoothing), result images, anatomical images,and physiological/behavioral data. Furthermore, authorsare
encouraged to submit K-space data and raw statistical results.

Presently the small database can be searched with string queries to the bibliographic information. Presumably the
search capabilities will be extended to include image retrieval techniques. Presently, some of the 50 data sets are available
— not directly through download but rather by ordering and delivery with ordinary mail.

Other announced databases and data centers are the EuropeanComputerised Human Brain Database (ECHBD)
(Roland et al. 1999), (Fredriksson et al. 2000) and a data center which only maintains pointers (Bly, Rebbechi, Grasso,
and Hanson 2001).

5.2.5 Library-like services

There exist several services for retrieval of general textural information and bibliographical data, e.g., web-search engines
such as Goggle™ enable full text search across text files on the web (HTML, PDF, ...) with ranking determined by link
analysis. For a review and analysis of web search engines, see, e.g., (Lawrence and Giles 1998b) (coverage of web search
engines), (Chakrabarti, Dom, Kumar, Raghavan, Rajagopalan, Tomkins, Kleinberg, and Gibson 1999) (link analysis in
search engines) and (Schwartz 1998). Other types of services include directories such as the Open Directory Project
(dmoz.org).

National Center for Biotechnology Information (NCBI) at the National Library of Medicine (NLM), Nation Institute
of Health (NIH) provides theEntrezsearch facility (http://www.ncbi.nlm.nih.gov/entrez/), which incorporates a number of
different bioinformatics search tools including thePubmedservice which interfaces to MEDLINE, — an NLM database
containing bibliographic information from the biomedicalliterature. It is possible to construct typed queries, e.g., specif-
ically on author names. Title, author names, citation, keywords (MeSH terms) and possibly abstract and link to the full
text provided from the publisher homepage are returned together with a unique identifier (PMID).

ISI ® Web of Science® (http://wos.isiglobalnet.com/) is a commercial Internetservice that provides search in scientific
references based on data from a large set of journals. The data is organized in 3 different collectionsScience Citation
Index Expanded™ (SCI),Social Sciences Citation Index® (SSCI),Arts & Humanities Citation Index®. Citation studies
are often based on these databases.

Apart from Pubmed and ISI® Web of Science® the larger publishers often have their own search facility among their
own articles together with “related document” services andunique identification through, e.g., DOI (http://www.doi.org).

Another effort isResearchIndex— previously called CiteSeer — (Lawrence, Giles, and Bollacker 1999; Bollacker,
Lawrence, and Giles 1998; Giles, Bollacker, and Lawrence 1998, http://www.researchindex.com), that indexes most of
scientific PostScript and PDF files on the Internet within thecomputer science field. It is possible to do full text search
within the indexed documents and “related documents” are found from link analysis, ranked by citations. Sentences are
also cataloged so that documents with sentence overlap can be identified. All this is done automatically and the parsing
of the PostScript/PDF files sometimes result in errors. Someof these errors can be corrected by the user through a web-
interface. Other interactive components are comments and (subjective) document ranking services. ResearchIndex has
little overlap in the field of functional neuroimaging, since it is not customary in the neuroscience field to publish fulltext
articles on the Internet on public sites. Mostly methodological papers are recorded. Although PostScript is describedwith
ASCII characters it is not directly readable, but converters exist: For a list see (Nevill-Manning, Reed, and Witten 1998).
“Prescript” (Miller 1998) is fast and used in ResearchIndexbut is not capable of converting certain PDF files, e.g., from
Academic Press. The slower “pstotext” is able to do this (Birrell and MacJones 2000).

Citations appearing in scientific articles play a importantrole in assessing national research, research institution,
research fields and individual researchers. Although Internet search engine results have been shown to vary (Lawrence
and Giles 1998b; Snyder and Rosenbaum 1999) they have been applied in ranking of nations and organizations (Almind
and Ingwersen 1997; Ingwersen 1998).

Image retrieval

Retrieval systems for other digital objects than text have also been constructed, e.g, on images. Some image retrieval sys-
tems are based on text description of images, but other have combined it with automated or semi-automated extracted fea-
tures, e.g., (Djeraba and Bouet 1997) is based on color, texture, shape, spatial constraint and keywords. Web-based image
retrieval systems are incorporated in, e.g., WebSEEk (Smith and Chang 1996) and AltaVista (http://www.altavista.com).
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Liu and Dellaert (1998a, 1998b) describe image retrieval for 3D medical images specifically CT brain scans containing
normal, stroke and “blood cases”. The basic “object” is a half 2D slice where features are extracted from, such as mean,
standard deviation and asymmetry measures. Another medical image retrieval system is (Comaniciu, Meer, Foran, and
Medl 1998). Ford, Makedon, Megalooikonomou, Shen, Steinberg, and Saykin (2001) describe briefly an “inter- and intra-
study data mining” tool for fMRI activation maps. This is based on “activation signatures” to represent brain activations
by size, shape, number of foci, location, orientation, and other parameters.”

Returning pages

Upon a request the usual web-services will return a web-pageinstantaneously. However, if the web-service takes long
time to finish it is usually not appropriate to let the user wait for the web-page to be constructed. The problem with the
latency can be handled in several ways:

• The result is a list and the ranking takes long time: Returnfirst unsortedthen sorted. This is an approach taken
by the meta-search engine “Inquirus”: It first flushes the links to documents received first from the inquired search
engines. When a suitable amount has been received they are ranked and flushed at the bottom of the web-page

• Java script. A client-side Java program communicates with the web-server program and continuously updates its
content. An example of this approach is implemented in the metasearch engine “Inquirus2” (Glover et al. 1999),
where links are returned continuously to a client-side Javaprogram that show them as they arrive. As more links
are received and the server has downloaded the documents andranked the links the list of links is reordered on the
client-side. A problem with this approach has been that the Java implementation in the web-browsers has not been
stable.

• Set ameta fieldin the returned web-page (meta http-equiv="Refresh" ) that requests the web-browser to
update the page. The approach was taken in (Diligenti, Coetzee, Lawrence, Giles, and Gori 2000).

• Email when the result is finished, either the result can be returnedor a link to static web-page can be returned.
BrainWeb with custom MRI simulations requests use this approach.

• Return a web-page immediately withlinks to other web-pages containing the information that is delayed. This
approach is taken in the simple web-service described on page 153.

If the web-service takes very long time to finish (e.g. hours or days) it is not likely that the user will continue to have the
webbrowser opened on the web-page. It should be possible forthe user to return to the result.

5.3 Meta-analysis

Meta-analysis is a research method were several different research studies are compared in a structured manner. U.S.
National Library of Medicine defines it as “a quantitative method of combining the results of independent studies (usu-
ally drawn from the published literature) and synthesizingsummaries and conclusions which may be used to evaluate
therapeutic effectiveness, plan new studies, etc. It is often an overview of clinical trials.”, see, e.g., Selden (1992).

A problem with meta-analysis is publication biases, e.g., the so-calledfile drawerproblem (Rosenthal 1979). Re-
searchers (is said to) tend to only reportpositivefindings, i.e., studies where the hypothesis has been confirmed. Negative
findings are left in the file drawer. This effect will cause theresult of the meta-analysis to be biased.

“Classic” meta-analysis is usually concerned with a one-to-one or many-to-one relation between the cause and the ef-
fect. An example of a many-to-one meta analysis is Liao (1998) where the effect on student’s achievements is investigated
as an effect of using hypermedia or traditional instructions.

5.3.1 Meta-analysis in functional neuroimaging

In functional neuroimaging there is usually a many-to-manyrelationship to be investigated by the meta-analysis (Fox
et al. 1998): E.g., the word production study of Indefrey andLevelt (1999, 2000) relates 6 “core” cognitive processes
to 104 region of interests based on 58 papers, see also figure 2.2. Furthermore, the results may vary depending on the
parameter choices made during the preprocessing and the analysis, thus the meta-analysis needs to be conditioned on the
preprocessing and analysis methods. These issues make meta-analysis in functional neuroimaging more complex, and no
principal method has been established, although some recommendations have been made by Fox et al. (1998):

• “Meta-analysis1 should address a specific question, not troll through the data”. This is in contrast to data mining
where the goal is to discover new hypotheses.

1Fox et al. (1998) use the word metanalysis.
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Domain Papers Exp. Loc. Reference
Social perception 18 (Allison et al. 2000)
Memory 10/8 (Buckner and Petersen 1996)
Cognition 275 (Cabeza and Nyberg 2000)
Visual perception of human action 6 (Decety and Grèzes 1999)
Visual recognition 19 20 84 (Farah and Aguirre 1999)
M1-area 6 6(?) 6(?) (Fox et al. 1997b)
Episodic memory in hippocampus 52 (Lepage, Habib, and Tulving 1998)
Retrieval mode 4 5 images (Lepage et al. 2000)
Frontal eye field 8 15 22 (Paus 1996)
Encoding and retrieval 14 (Tulving et al. 1994a)
Single word reading 11(?) 11(?) 172 (Turkeltaub et al. 2001)
Anterior cingulate cortex (cognition and emotion) 64(?) 64(?) 132 (Bush, Luu, and Posner 2000)
Middle temporal 6 (de Jong et al. 1994)
Frontal operculum (Broca’s area) 9 (Fox 1995)
Anterior cingulate cortex (Koski and Paus 2000)
Medial wall of frontal areas (Picard and Strick 1996)

Table 5.2: Meta-analyses and reviews. Those above the horizontal line address a (set of) specific cognitive component(s)
or task. Those below the line a specific brain region. The list is far from exhaustive. “Papers”, “Exp” and “Loc” refer to how
many papers, experiments and location was involvement in the review/meta-analysis.

• “All pertinent data should be identified”.

• “Quality control should be applied judiciously”.

• “Analysis methods must be established before starting thestudy”.

• “Meta-analysis should be performed by experts in the subject matter rather than by statisticians”.

• “The [included] studies should be of uniformly high quality and apply comparable methodologies”. At a first level
the included studies in the meta-analysis should only be from peer-reviewed journals.

Usually comparisons of results across studies in functional neuroimaging reviews/meta-analyses are done informally
with tabulation and direct visualization of hot spot locations, see table 5.2 for a list of some of them and (Fox et al. 1998)
for a review of reviews/meta-analyses. Apart from pure review articles ordinary scientific articles often feature informal
comparison, see, e.g., (Law 1996, table 6). However, there are others that make more elaborate mathematical/statistical
meta-analysis:

(Fox et al. 1997a), (Fox et al. 1997b) and (Fox et al. 1999) call their meta-analysisfunctional volumes modeling
(FVM). Within this framework the location variability is modeled with a 3D Gaussian distribution on a simple activation
in the primary mouth region. The size of the study (number of subject) is modeled.

Indefrey and Levelt (2000, 1999) analysed the data from 50 experiments of word production obtained with a number
of different modalities: PET, fMRI, MEG cortical stimulation and subdural grid. The 50 experiments were categorized
in 9 tasks (e.g., “word repetition”, “word reading”), each task being decomposed into its believe set of core cognitive
components, see figure 2.2. Activations were described in 28regions at a gross level and 108 regions at a finer level. The
significance of the combined activation in each region was described with a threshold on a p-value obtained through an
assumption about binomial errors in each region. One of the findings were: “There also was a tendency toward fewer
activations in older studies, where the technology could not reliably detect as many activations” (Indefrey and Levelt
2000, page 860). Indefrey (2001) used the same methodology on a meta-analysis of syntactic processing.

Lloyd (2000, 1999) use MDS, hierarchical cluster analysis and PCA on two data matrix containing data from the
BrainMap™: One matrix� � �� �

� � � � � � ���� � ���� and another� � �� �
� � � � � � �
�� � ���� containing data

from 36 and 50 experiments where the baseline states were “eyes closed” and “looking at a fixation point”, respectively.
Each experiment was described by a vector with the element�� indicating whether the experiment had activation in the� ’th anatomical structure among approximately 200 defined. The sensory modality showed up as the primary distinction
and stimulus types and response contingencies as secondary.

Turkeltaub, Eden, Jones, and Zeffiro (2001) used kernel density modeling to model 172 locations from 11 PET studies
with aloud single word reading. The mathematical model is essential the same as the model used in section 5.9.1. A
p-value is found by computing the “volume” of the brain used as the null hypothesis. Rather than estimating this directly
on the volume it is formed by a Monte Carlo technique placing random foci within the brain and estimating the probability
density.
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Technique Description References
Bibliographic coupling Similarity between two documents as mea-

sured by the amount of citation they share
(Kessler 1963)

Cocitation analysis Analysis of a corpus by the citation pattern. (Small 1973)
Journal Clustering Clustering journals, e.g., based on their ci-

tation
(Carpenter and Narin 1973;
Small and Koenig 1977;
Morris and McCain 1998)

Author cocitation analysis (ACA) Analysis of citation pattern (White 1981)
Coauthor analysis Analysis of the coauthorship pattern (French and Villes 1996)

(Garfield 1972)
Automatic indexing Automatic construction of index (Salton 1989; Cohen 1995)

Automatic hyperlinking Automatic construction of hyperlinks (Salton and Buckley 1989)
Automatic categorization Clustering of documents (Cutting et al. 1992)

Stop word elimination Ignoring frequent “non-semantic” words
Word stemming Removal of non-important pre- and post-

fixes
(Porter 1980)

Approximate string matching Matching of string that differa little (Hall and Dowling 1980)
Edit distance analysis Measurement on how similar to strings are. (Wagner and Fischer 1974)

Term weighting Weighting of terms dependent on, e.g.,
length of document or frequency in corpus

(Salton and Buckley 1988)

Latent semantic Analysis (LSA) PCA on bag-of-words (Deerwester et al. 1990)
N-gram (Characters) Analysis of fixed character sequences (Kjell and Frieder 1992)

Table 5.3: Techniques for machine text analysis.

Herskovits et al. (1999), Vasileios Megalooikonomouand Herskovits (1999) and Herskovits (2000b) used� � statistics,
Fisher’s exact and Bayesian analysis of discrete variables(Buntine 1996) for data mining association between lesionsand
deficits in a brain-image database (BRAID), see table 5.1.

A somewhat special meta-analytic study investigated the differences in the data set between 12 different PET centers
across Europe running an SPM analysis on the individual setsof data as well as pooled analysis and comparing results
by z-score, graphically, with SVD and with MANOVA (Poline, Vandenberghe, Holmes, Friston, and Frackowiak 1996).
Scanner sensitivity and number of subjects were found to be the most important factors of variability in the summary
images.

5.4 Text analysis

There are three principal methods for machine analysis of a document (e.g., a scientific article or a web-page):

• Content analysiswhich primarily includesterm analysisfocuses on items such as the characters, words and phrases
of the document.

• Link analysis which relates the document to other documents, e.g., through citation and hyperlinking.

• User behavior analysiswhere user patterns are analyzed. The patterns might be buying behavior or web-site
navigation path which are dynamically collected, generally referred to as “navigation analysis”, see, e.g., (Kato,
Nakayama, and Yamane 2000). The technique can be used to suggest related documents or tour generation
(Sarukkai 2000). ResearchIndex has implemented this with the list with the heading “Users who viewed this
document also viewed”.

Terms have been said to represent a endogenous and links a exogenous measure of a document and analysis of the terms
alone is usually not able to assess the quality (in the sense of popularity) of a document (Kleinberg 1997). By counting
the number of links to a document (e.g. scientific citations or Internet in-links) the popularity can be established. On the
other hand will the number of links not be able to establish the relevance of a document.

Term and link analysis have been established in the “librarian” fields of bibliometrics, scientometrics and information
retrieval mostly in connection with handling and description of scientific articles. With the advent of the Internet most
of these techniques have been transferred to deal with web-pages. A number of techniques in term and link analysis are
listed in table 5.3 and these will be described in more detailin the sections below.

The main application of text analysis is what is usually referred to asinformation retrieval(IR) or information access
(IA) with Sahami (1999, section 1.1) defining three sub-applications:
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• Ad hoc retrieval where information (documents) is returned in response to a user query. Examples of this are the
Internet search engines.

• Routing/filtering where incoming information (documents, emails, ...) is distributed according to a users need.

• Browsing where the task is to order information in groups.

Other application areas are concerning the more global properties of a collection of information (which is related to
browsing), e.g., ranking of authors in scientometrics.

5.5 Term analysis

There are mainly two representations in relation to computerized endogenous analysis of texts:

• Natural language representation (Charniak 1993; Charniak 1997). Representation is usually a parse tree. This
representation will not be considered in the following.

• Vector spacerepresentation (Salton, Wong, and Yang 1975; Salton 1989; Sahami 1999). Representation is a vector.

In the vector space representation the information (document, or part of a document) is split up in elements calledterms,
and each term correspond to an element in a vector. The usual term element is aword, but alsocharacters(Kjell and
Frieder 1992) andword phrasescan be terms. Word phrases and “character-phrases” (Kjell and Frieder 1992; Soboroff,
Nicholas, and Kukla 1997) are often calledN-grams, where� denotes the number of sub-elements (unigram, bigram,
trigram, . . . ). If the terms are words alone the ordering of the words will not affect the vector, and the representation
has been calledbag-of-words(Mitchell 1997). The vectors of the information entities (e.g., documents) can be collected
in a matrix and subjected to analysis. However, before the analysis the matrix are often preprocessed. A typical line of
preprocessing from the initial textual information to the matrix to be analyzed is depicted in figure 5.2.

� Term
identification

� Eliminate
stop words

� Word stemming � Eliminate single
instance words

� Term weighting �

Figure 5.2: A processing scheme for the vector space representation.

5.5.1 Term identification — tokenization

Usually (defined) computer language can maintain a strict boundary between the lexical analysis and the syntactic anal-
ysis (Aho, Sethi, and Ullman 1986), and the token/term can relatively easily be found with a regular expression (While
the syntactic analysis is handled by context-free parsing.More general languages in Chomsky’s grammar hierarchy —
context sensitive and free — are rarely seen as computer languages). It is harder to tokenize general text such as gen-
eral web-documents. The Internet search engines will usually recognize a term as a string of consecutive letters and
digits. Other characters such as white-spaces and punctuations are often ignored, in the sense that consecutive white-
spaces/punctuations will be regarded as a single space, e.g., searching Goggle™ with

"magnetic/resonance .. imaging"

will return web-pages containing “Magnetic Resonance Imaging”. Furthermore, in Internet search-engines there are
typically only one type of tokens, while, e.g., Pubmed can distinguish between terms in author lists, terms in abstracts,
keywords, . . .

The problem of tokenization with characters other than letters and digits is complex. In cases where a certain editorial
style is enforced the tokenization is relatively easy. Names (lists) and numbers are special problems. Super-pattern
matching, where there is a hierarchical pattern matching (Knight 1995), will in some cases help to structure and increase
the readability of the pattern matching expression. This was applied in connection with names and dates for DEADLINER
with added help of dictionary look up (Kruger, Giles, Coetzee, Glover, Flake, Lawrence, and Omlin 2000, section 3.2).
Very few have tried to deal with general tokenization. One ofthe few are (Grefenstette and Tapanainen 1994).

It is possible that machine learning techniques can be employed in learning tokens, but most systems seem to be based
on hard-coded (extended) regular expressions.
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5.5.2 Word stemming

Word stemmingremoves non-important (pre- and) suffixes from words so grammatical form has no influence, e.g., re-
moves the ’s’ from verbs in English. Porter (1980) describeda commonly used algorithm. However, according to Sahami
(1999) Frakes (1992) found that word stemming algorithms compared to unstemmed representations in many cases per-
form roughly equally for retrieval tasks. A radical word stemming can be used for journal titles where each word is cut
down to 3 letters, see section 5.8.3. For personal names the first and middle names can be stemmed to initials. Pubmed
and ISI® Web of Science® stem to surname and two initials and non-English charactersconverted to English characters,
e.g., “Å” to “A”. ResearchIndex does not stem and recommendssearching on all variants of a name, e.g., “michael jordan
or m jordan or m i jordan or michael i jordan”. For a restrictedfield such as functional neuroimaging the names can be
abbreviated to surname and first names initial, which alleviates the problem with varying representations of authors —
with and without middle name initials.

5.5.3 Stop word and single instance words elimination

Very frequent and very infrequent occurring words/terms are often discarded from the analysis, this is either for compu-
tational reasons (memory and computation time) or “statistical” reasons as they will add unnecessary complexity for the
analysis, while not carrying much contextual information in the bag-of-words representation.

The very frequent occurring words are often calledstop wordsand is found to be “and”, “the”, “a” etc. for the English
language. A list of approximately 570 words for general texts is usually used (Sahami 1999, section 2.2.1). For specific
fields the stop word list can differ, e.g., the word “significantly” appears in the stop word list of Pubmed2. This word is
not found in general text stop word lists.

Search engines, such as Goggle™, often features limited stop word elimination, and search queries like “to be or not
to be” will not return anything relevant to the query.

Often infrequent words/term are also discarded from an analysis. Using Zipf’s law (Zipf 1949) it can be shown
that terms that appear only once in the corpus can account forapproximately half of the unique terms (Sahami 1999,
section 2.2.2). Zipf’s law states that the product of the relative frequency�� of a term� and its rank�� is approximately a
constant�

� � �� �� � (5.1)

The constant� has been found to be around 0.1 for different corpus, see, e.g., (Croft 2001).

5.5.4 Term weighting

When a bag-of-words (or bag-of-terms) vector is built from the text each element usually contains either the binary
identifier indicating if the term appear in the text or the frequency by which it appears. The frequency-based vectors can
be weighted by various functions: Table 5.4 shows some weighting functions described by Sahami (1999, section 2.1.2)
and (Salton and Buckley 1988, table 1).

Perhaps the most well-known istfidf wheretf andidf are combined (Salton and Yang 1973).

� � � �� � �� �� �� � � 	 (5.2)

In (Salton and Buckley 1988) this is shown to perform well when combined with cosine the normalization.

� � � ���� � 	 (5.3)

5.5.5 Other document elements

Apart from using the terms in the document theformatting can also be used. Some web search engines give more weight
to terms if they appear in the<title> or large<font> field in the HTML document. This is prone to spamming, as
sites that wants to get high rating can edit local documents to conform the web-search engine ranking method, e.g., by
using invisible text (Chakrabarti et al. 1999).

Lix is a simple heuristic number for the readability of a text devised by Björnsson (1971). It is defined as the sum
of the percentage of words longer than seven letters and the mean number of words in each sentence. A closely related
number (termed “gunning fog index”) is devised by Armstrong(1982):

� � � 	� � �� � � � � (5.4)

where
�

is the average sentence length and� is the percentage of words with three or more syllables (not including
prefixes or suffixes).

2The PubMed stop word list is available at http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhep.html#Stopwords.
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Functions Description Reference

Term frequency
� � � 


Binary, indicating if the term is present
� � � �� Raw frequency — term frequency (tf) Luhn (1957)
� � � � 	
 � � 	
�� �max� ��� �
� � � �� ��� � 
� Robertson and Sparck Jones (1976)
� � � ��� Cutting et al. (1992)
� � � �� � ��� � constant� Robertson and Walker (1994)

Collection frequency component�� � 

�� � �� �� �� � � Inverse document frequency (idf) Sparck Jones (1972)�� � �� ��� 	 � � ��� � � “Probabilistic inverse collection fre-

quency”

Normalization

� � 

No normalization

� � 
���� � Cosine normalization

Table 5.4: Weighting functions for frequency-based vectors.
���

is the (absolute) frequency of � ’th term in the � ’th
document, � is the total number of documents and � �

is the number of document where the � ’th term appear. Entries
taken from (Sahami 1999, section 2.1.2) and (Salton and Buckley 1988, table 1).

5.5.6 Analysis techniques for term matrices

Normal information retrieval with vectorized representations of documents will compute the inner product between
vectors weighted by some of the functions listed in table 5.4: One vector represents a query term and the other is
taken from a matrix in the corpus to be searched. This is, e.g., implemented in Pubmed (Wilbur and Yang 1996,
http://www.ncbi.nlm.nih.gov:80/entrez/query/static/computation.html).

“Latent semantic-analysis” (LSA) or “latent semantic indexing” (LSI) perform singular value decomposition on the
documents-by-term matrix consisting of vectorized representation of documents (Deerwester, Dumais, Furnas, Landauer,
and Harshman 1990; Deerwester, Dumais, Furnas, Harshman, Landauer, Lochbaum, and Streeter 1989). When a subspace
is used it is possible to partially reduce the problem with synonyms, e.g., queries on “fMRI” will find documents which
mentions “functional magnetic resonance imaging” and not necessarily “fMRI”. LSA can also be used to visualize the
structure of the corpus. Furthermore, some of the principalcomponents might correspond to subgroups of documents,
i.e., documents with a similar content. However, the orthogonality constraint of SVD might not make it optimal for this.
Application of independent component analysis (ICA) on thedocument-by-term matrix has also been described (Isbell Jr.
and Viola 1999; Kolenda and Hansen 1999).

Apart from these techniques many other multivariate techniques can be applied: Cluster analysis or non-negative
matrix factorization and — if document classes is known for atraining set — linear and non-linear regression and classi-
fication methods

5.6 Link analysis

Link analysis (or link-structure analysis) is analysis of “connection” between “objects”. Here the connection will becalled
links and the objects fornodes. In graph theory they are usually calledverticesandedges(or arcs), respectively, and in
percolation theory links are called bonds. Whereas Bayesian belief networks or so-called graphical models are concerned
with establishing a hidden and unobserved network structure from a set of data, link analysis starts from the network data
and the goal is to infer some characteristics of its structure.

The links can either be directed or undirected. In the first case the network represents a directed graph ordigraph,
and one can distinguish between in-links (sink) and out-links (source). Bibliometrics/scientometrics distinguish between
analysis on the in-links (cited documents) calledcocitation analysis(Small 1973) and analysis of out-links (citing docu-
ments) calledbibliographic coupling(Kessler 1963). However, in many cases this distinction is not necessary as the same
mathematical devices are used in the analysis.

The network can be represented as either an adjacency matrix(sometimes called a “topology matrix”), a data matrix, a
distance or similarity matrix. If the network is represented in a quadratic adjacency matrix� �� �� �, then the rows and
columns refer to� nodes. In the case with a directed graph the rows will represent out-links and the columns in-links.
If the nodes consist of two groups — one set of nodes only have out-links and no in-links, the other only in-links and no
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Aguirre et al. (1998)

Aguirre G

ref 1 ref 2ref 3

Bandettini P

ref 4

Boynton G

ref 5

Goutte et al. (1999)

ref 2

Baker J

ref 1

Figure 5.3: Graph in connection with author cocitation analysis, see section 5.6.3 and figure 5.5. A few of the first out link
(citations) from (Aguirre et al. 1998b) and (Goutte et al. 1999b) to four first authors, with both citing documents and cited
authors as nodes and the references as the links. Constructed with the dot program, see section 4.2.4.

Bandettini P

Aguirre G

Aguirre et al. (1998)

Boynton G

Aguirre et al. (1998)

Baker J

Goutte et al. (1999)

Aguirre et al. (1998)

(a) Cited authors as nodes

Aguirre et al. (1998)

Goutte et al. (1999)

Bandettini P

(b) Citing documents as nodes

Figure 5.4: Cited authors and cited documents as nodes: see section 5.6.3 and figure 5.5. A few of the first out-links
(citations) from (Aguirre et al. 1998b) and (Goutte et al. 1999b) to four first authors, with both citing documents and cited
authors as nodes and the references as the links. Constructed with the neato program, see section 4.2.4.

out-links — the adjacency matrix is a block matrix, that can be collapsed into a data matrix: Consider author cocitation
analysis (see below) where a set of� documents (scientific articles) cites� authors. If the data is represented in an
adjacency matrix� �� � � � the size is� � �� , see figure 5.3 for a graph equivalent to this representation. But as the
documents cites authors and not the other way round the� matrix will only have values different from zero in one of the
four quadrants and this submatrix can be extracted to an (in most cases) non-quadratic data matrix� �� � � �. The data
matrix and adjacency matrix can either be anindicator matrixwith ones in the element�

�	 when the� ’th author being
cited by the

�
’th document, or it can be anabundance matrix(Mardia et al. 1979, exercise 13.4.5) with the counts of the

citations the� ’th author gets from the
�
’th document.

In connection with a similarity matrix� �� � � � the element� �	 can be set to the number of documents that cites
the

�
’th and� ’th author. It is always possible to construct a distance matrix from a data matrix, e.g., by a simple matrix

product� � �� � .
It is not always obvious how the data should be oriented in thedata matrix: In the above example with author cocitation

the authors can be considered the� objects while citing documents are the� dimensions, but it might as well have been
the other way around if the relationship between the documents was of interest, see figures 5.4(a) and 5.4(b).

There are several different analyses methods in link analysis. As the link data can be represented as an ordinary data
matrix many of the statistical methods described in chapter3 can be used, e.g., singular value decomposition. Other
methods that are specifically designed for link analysis originates in stochastic processes with Markov chains (Cox and
Miller 1965), network theory, graph theory, “graph algorithms” (Kingston 1990, chapter 10) and percolation theory, see,
e.g., (Snyder and Steele 1995). Of interesting methods hereare the following:

• Ranking aims at describing important nodes in a network. Present techniques involve simple counting and eigen-
value decompositions, e.g., in connection with thehubsandauthoritiesmethod (see below). This is related to
seriationfor “ordinary” data (Mardia et al. 1979).
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• Categorization/clusteringaims to find subgraphs, connected components or communities, e.g., Gibson, Kleinberg,
and Raghavan (1998): “web-communities”.

• It is often interesting to start the analysisfrom a specific node, e.g., “related documents” as implemented in Re-
searchIndex is based on link analysis starting from the individual node (document). Within mathematical folklore
the “Erdös number” considers the co-authoring graph spanned from the famous mathematician Paul Erdös: With
authors as vertices and documents as edges the Erdös number is the number of coauthored documents between an
author and Erdös.

• Global aspectsof the graph can also be considered, e.g., the connectedness, percolation anddiameter. The diameter
is defined as the longest simple path in the graph. If the wholegraph is not one connected component then the
diameter is infinite. Alternatively, each of the connected components can be characterized with a diameter. An
example: With data from a crawl in 1999 Broder, Kumar, Maghoul, Raghavan, Rajagopalan, Stata, Tomkins, and
Wiener (2000) found that a path between two web-pages existed for only 24% of them.

If the network isdynamicalthis can also be characterized, e.g., in scientometrics “immediacy” is a measure for how
quickly the average article gets cited.

Categorization/clustering can be combined with ranking, e.g., by first identifying the nodes in a subgroup and after
that ranking the nodes within the group. These two methods will be described in more detail in subsections below.

The links in the graph can betyped, e.g., scientific citations can have reasons for citation: “giving credited for related
work”, “identifying methodology, equipment, and so on”, “criticizing previous work”, “disclaiming work or ideas of
others” (Nanba, Kando, and Okumura 2000). Internet web-page may furthermore have navigational hyperlinks. If the
type of the link can be found, e.g., by analyzing terms aroundthe hyperlink as in (Nanba, Kando, and Okumura 2000),
the analysis of the link structure can be further enhanced.

Link analysis can, e.g., be used to analyse telephone calls,social networks or computer networks. Among the appli-
cations that are of interest in connection with neuroinformatics are:

• Cocitation analysiscan find related documents by cocitation analysis. Both the in- and out-links can be used
(Pitkow and Pirolli 2001), and they can, furthermore, be combined (Bichteler and Eaton III 1980). Cocitation
analysis is, e.g., implemented in the ResearchIndex database.

• Author cocitation analysis can be used to identify communities in a scientific field (White 1981), and in sciento-
metrics to evaluate authors. This will be described in more detail in section 5.6.3.

• Coauthor analysis, see e.g. (French and Villes 1996), can give an overview of the collaboration between a set of
authors.

• Journal cocitation analysis(Morris and McCain 1998) can rank and cluster journals.

• Internet hyperlink analysis can rank pages for search engines.

• Analysis of neural pathwaysfrom connectivity databases as those listed in section 5.2.3.

Analysis of metabolic networks where substrates are nodes and chemical reactions are links (Bilke and Peterson 2001,
http://wit.mcs.anl.gov/WIT2/) could also be of interest for neuroscience. Another interesting application is cocitation
analysis of genes (Jenssen, Læreid, Komorowski, and Hovig 2001; Pearson 2001) to resolve nomenclature differences
among gene names. In this particular study 13,712 human genes and 10,125,978 MEDLINE records founded the basis
for the analysis with a web-service available at http://www.pubgene.org/.

5.6.1 Ranking

Authoritiesandhubsare “key” nodes in the network, the terms being introduced byKleinberg (1997, 1998, 1999). Au-
thorities are nodes that receive many in-links and hubs are nodes that have many out-links. A simple definition might just
count the number of in- and out-links. A refinement normalizes by the number of citable items, see, e.g., (Ingwersen 1998)
for calculation of web impact factors. However, in the algorithm devised by Kleinberg (1997) the hubs and authorities are
mutually reinforcing, so that links received from (strong)hubs and out-links from (strong) authorities weigh more. The
result is the principal components of a singular value decomposition of the adjacency matrix�

��� � � svd �� � (5.5)

If the out-links are in the� rows and the in-links are in the� columns of a matrix� then the authorities will be the
elements with the highest score in the first right principal component� � and the hubs are the elements with the highest
score in the left principal component� � (Kleinberg 1997, theorems 3.1 and 3.2), (Mardia et al. 1979,theorems A.6.2 and
A.6.5). Authorities and hubs are returned separately from the Inquirus meta-search engine (Lawrence and Giles 1998a).
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Another decomposition technique is used in the Goggle™ Internet search engine (http://www.google.com) with an
algorithm termed PageRank™ (Page 1997; Brin and Page 1998).The graph is considered a Markov chain (Cox and
Miller 1965, chapter 3) by transforming the adjacency matrix to astochastic matrixby making the row sums to unity:

� � � � �� ��� 	 � (5.6)

where� denotes element-wise division. The Markov chain corresponding to this stochastic matrix� will typically have
absorbing states (corresponding to web-pages with no out-links). These states will dominate the solution, even though
they have few in-links. To cope with this the actual PageRank™ algorithm is augmented corresponding to that all web-
pages have a small out-link to all other web-pages. This willproduce the desired result that the web-pages with many
authoritative in-links dominate the solution.

After Kleinberg’s and Goggle™’s suggestions other rankingschemes were developed, see, e.g., (Henzinger 2000;
Borodin, Roberts, Rosenthal, and Tsaparas 2001).

5.6.2 Categorization and clustering

It is of interest to find subgroups of nodes. This can be done either supervised (as categorization) or unsupervised (as
clustering). The decomposition, factorization and cluster analysis algorithms from chapter 3 can be used for clustering,
and, e.g., neural networks can provide methods for supervised analysis. In extension to these, algorithms that are focused
on the data as a graph have been suggested:

• Botafogo and Scheiderman (1991) consider identification of the so-calledarticulation pointsin a graph. These are
special key node that form a bottleneck between two clusters, see also (Pitkow 1997).

• Theminimum cutalgorithm (Flake, Lawrence, and Giles 2000).

• Clustering can be performed by minimizing the graph diameter of the subgroups, see (Doddi, Marathe, Ravi, Taylor,
and Widmayer 2000).

• If the subgroups are complete separated algorithm like that of region identification(connected components) can
be used, see section 3.19. Usually graphs such as spanned by Internet hyperlinking, scientific citations and
coauthoring patterns show a high degree of connectedness, dominated by one single component. However, for a
limited subset there might be suitable separated components, see, e.g., section 5.8.2.

5.6.3 Author cocitation analysis

Author cocitation analysis(ACA) is the analysis of how two different authors are cited together. It is useful for getting an
overview of a (scientific) field, and for identifying key authors (e.g., for reviewing) and “to give meaning to such abstract
words as ‘influence’, ‘impact’, ‘centrality’, ‘marginality’, ‘speciality’, ‘interdisciplinarity’, paradigm’, ‘shift’ ” (Lunin
and White 1990). ACA was introduced by Howard D. White (White1981; White and Griffith 1981), — for a short history
see (Lunin and White 1990). TheJournal of American Society for Information Sciencedevoted a part of volume 41 issue
6 in 1990 to author cocitation analysis with an introductorypaper by McCain (1990).

ACA is essential link analysis and common tools have been non-metric multidimensional scaling, hierarchical cluster-
ing and factor analysis. It has been applied to fields such as macro-economics (McCain 1990), information science (White
and McCain 1998), neural network research (McCain 1998), family and marriage sociology (Bayer, Smart, and McLaugh-
lin 1990) and decision support systems (Eom and Farris 1996). Apart from the static structure of the field ACA can also
characterize dynamical aspects, e.g., McCain (1998) foundan increasing separation between natural sciences/psychology
and engineering/neural networks research in the neural network research field under study. A related field isjournal coci-
tation analysis(JCA) where the focus is on cited journals rather than cited authors (Carpenter and Narin 1973; Small and
Koenig 1977; Morris and McCain 1998). Cocitation analysis has also been applied to web-pages (Larson 1996).

McCain (1990) accounts the different stages in author cocitation analysis that may well apply to other types of coci-
tation analysis. Here will be regarded the following steps:

• Selectionof documents, authors, website. Usually the number of itemsselected is restricted, e.g., McCain (1990)
restricts her analysis of authors within macro-economics to 41 leader researchers, Bayer, Smart, and McLaughlin
(1990) considered 36 authors in the area of marriage and family sociology. In connection web-page cocitation
analysis did Larson (1996) examine 34 web-pages in the area of earth science, remote sensing and geographic
information systems. For journal cocitation analysis Morris and McCain (1998) examined 29 journals in the field
of medical informatics. Table 5.5 lists some of the key authors in functional neuroimaging. The figures are the
values obtained from ISI® Web of Science®. The authors were selected manually by choosing the authorswith a
large number of abstracts in the proceedings from the International conference of Human Brain Mapping (Belliveau,
Fox, Kennedy, Rosen, and Ungeleider 1996; Friberg, Gjedde,Holm, Lassen, and Nowak 1997; Paus, Gjedde, and
Evans 1998).
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Author Citations
Alpert NM 928
Anderson JR ?
Andreasen NC 3293
Andermann F 1912
Ashburner J 132
Bandettini PA 866
Beaudoin G (1177)
Belliveau JW 1485
Bookheimer SY 244
Bosch J 2334
Brammer MJ 285
Buchel C 122
Buckner RL 317
Bullmore ET 61
Caviness VS 1360
Chugani HT 880
Cohen MS (3005)
Cox RW 172
Crawley AP 209
Dale AM 290
Dolan RJ 1625
Drury HA 44
Duyn JH 314
Evans AC 2347
Fischer H 1114
Fox PT 2000
Frackowiak RSJ 5318
Frank JA 1539
Freund HJ (2154)
Friston KJ 2977
Frith CD 3266
Fukuda H 1824

Author Citations
Fukuyama H (2884)
Gjedde A 1615
Gore JC 1159
Grood W 307
Hammeke TA 484
Hennig J (1252)
Herzog H (1242)
Hillyard SA 980
Holmes AP 124
Kawashima R 304
Kennedy DN 1298
Lancaster JL 318
Lange N 293
LeBihan D 1284
Mangun GR 356
McIntosh AR 580
Mazoyer BM 371
Mazziotta JC 2799
Miller MI 434
Muellergaertner HW 68
Neville HJ 387
Noll DC 336
Paulson OB 1202
Paus T 261
Petersen SE 2373
Petrides M 1065
Pike GB 233
Poline JB 272
Posse S 257
Price CJ 454
Pugh KR 157
Raichle ME 2647

Author Citations
Rao SM 1442
Reutens DC 214
Renshaw PF 337
Roland PE 1511
Rosen BR 2944
Rottenberg DA 535
Sadikot AF 253
Seitz RJ 696
Sereno MI 379
Sharma T (370)
Simmons A (1334)
Strother SC 329
Taylor JG 385
Thompson PM 423
Toga AW 396
Turner R 3471
Tzourio N 343
Ugurbil 1720
Ungerleider LG 1830
VanEssen DC 1507
Vanhorn JD 87
vonCramon DY 186
Weiller C 854
Weinberger DR 3423
Weisskoff RM 1611
Williams SCR 308
Woldorff MG 163
Woods RP 878
Worsley KJ 483
Zilles K 1684

Table 5.5: Author citations in ISI® Web of Science®. Collected 1998-Oct-30 and 1998-Nov-2. Numbers in parenthesis
probably contain citation numbers for more than one author. This is due to several author sharing the same ISI abbreviated
name. There seems to be name conflict at least in the cases for AC Evans, BR Rosen, JG Taylor. For JR Anderson, G
Beaudoin and perhaps MS Cohen, e.g., there are severe name conflicts, i.e. where most of the articles (probably) refer to
another author. It is time consuming to resolve these conflicts. Manual or automatic procedures would examine he title and
the name of the journal (and the perhaps the terms in the abstract) and cluster the documents. In some case writing to the
author might be the only way to resolve the conflict.

• Retrieval. The construction of the cocitation data for authors and journal article can be costly. The classical ACA
— as described by McCain (1990) — relies on data from the Institute for Scientific Information (ISI) with the
Science Citation Index(which include the web-service ISI® Web of Science®). The queries have to be performed
with specialized costly services, thus restricting the number of authors that can be obtained and the number of
analyses that is possible to do. The data will usually be a similarity matrix with the number of times two authors
are cited in the same article.

Now other means are available to obtain cocitation data, e.g., from the ResearchIndex database (Lawrence et al.
1999). With this data it is possible to get the author

�
document data matrix. Many journals are now available from

the publishers homepage. Unfortunately, it is usually prohibited to systematically download the full text. Some
publishers, e.g. Academic Press in Idealibrary (http://www.idealibrary.com), separate the references from the full
text and are probably less restrictive about downloads of these pages, see section 5.8. Journals where the author
pays the publishing cost — such as Proceedings of the National Academy of Sciences (http://www.pnas.org) — are
less restrictive.

• Metric . Before the analysis of the cocitation data the data can be scaled. (McCain 1990) mentions that the diagonal
element of the cocitation matrix (the similarity matrix) might be orders of magnitude larger than off-diagonal
elements, and a method “adjusted diagonal values downward by substituting a value based on the highest off-
diagonal cocitation counts for each author”. When the original data with citing documents exists other means of
scaling the data can be done, e.g., down-weighting documents that contain many citations.
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• Analysisby principal component analysis, factor analysis, clusteranalysis and/or multidimensional scaling. These
methods are the same as described in sections 3.8 and 3.9.

5.7 Combining link and term analysis

Link and term analysis can be combined: “HyPursuit” uses both content and link information for clustering hypertext
(Weiss, Velez, Sheldon, Nemprempre, Szilagyi, Duda, and Gifford 1996), and WebQuery also uses terms and links for
visualization (Carrière and Kazman 1997). Kleinberg (1998) started with simple term analysis provided by the result from
a query to a web search engine. The set of the highest ranked web-pages returned (typically 200) termed theroot setwas
augmented by the web-pages with out- and in-links to the web-pages in the root set; the augmented set termed thebase
set. In the Goggle™ search engine queries can be made with terms and the documents are ranked according to a link
analysis. Rafiei and Mendelzon (2000) and Mendelzon and Rafiei (2000) used a random walk on web-pages similar to the
one in Kleinberg’s algorithm but conditioned the jump between nodes of the graph on whether the web-page contained a
specific term. By this method it is possible to determine whattopic a web-page is known for.

Cohn and Hofman (2001) performed term-based “probabilistic latent semantic analysis” (PLSA, Hofmann 1999)
which is closely related to NMF (section 3.10) on the document-term matrix together with link analysis based on PHITS
(Cohn and Chang 2000). A parameter in this model controls on acontinuum how much a factorization depends on the
terms versus the links.

Thegeneralised similarity analysis(GSA) of Chen (1997) uses both terms (content), linkage and usage information
in structuring and visualizing HTML documents.

5.7.1 Context sensitive author ranking

Authors can be ranked conditioned on one or several terms, here termedcontext sensitive author ranking. The method
combines variation on latent semantic analysis and cocitation analysis: A document

�
author matrix� �� � � � and a

document
�

term matrix
� �� � � � are considered

��� � � svd�� � 	 (5.7)

A vector� �� � 
� is found whose rows correspond to documents that are weighted according to one or more terms. The
terms are represented in a query vector� �� � 
� with � � � 


for the
�
’th query terms, zero otherwise.

� � � � �� �� � � 	 (5.8)

If every principal component is maintained� �� � � � then� will just indicate the documents that contain the term. More
emphasis can be added to the first principal components, e.g., with � �� � � �


with � � 


or by setting the small singular
values to zero. A principal method within a probabilistic framework would be to determine the subspace via probabilistic
PCA, see section 3.9.1. After the projection further heuristic transformation can be performed on� , e.g.

� � � (5.9)

� � � � � �
� 
 � � � �

� � � � � (5.10)

� � �	
 ��� � 	 (5.11)

The weights in� can now be applied on each document (rows) in the document
�

term matrix� :
�
� � � �� � � � (5.12)

where� denotes the element-wise product. Finally the hub-documents and authoritative authors are found by SVD of the
weighted document

�
author matrix

��� � � svd� �� � � (5.13)

where the most authoritative authors conditioned on the query terms are those that correspond to the highest score in� �.
A simpler and faster approach which avoids the second singular value decomposition just weight the documents with�

� � � �� 	
(5.14)

5.8 Example of analysis with “NeuroImage”

“NeuroImage” is a scientific journal within the functional neuroimaging field published by Academic Press
(http://www.academicpress.com/). Electronic editions of the articles of the journal are available via the Internet
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(http://www.idealibrary.com/cgi-bin/links/toc/ni/),where PDF files are provided starting with number 2 in volume 1from
September 1993. Potential all these files could be downloaded and analyzed in the same manner as ResearchIndex. How-
ever, even if one has subscription to the journal downloading of the entire set of all NeuroImage is not allowed3. From
number 2 in volume 5, February 1997 and onwards there exist HTML web-pages where the citations (“references”) made
in each article are listed. As this bibliographic information is partly shared with ISI® Web of Science® and Pubmed it is
probably within the terms of use to download these web-pages.

Below will be described a few different analyses performed on the bibliographic data (including the citation data)
on this single journal with the data downloaded from HTML web-pages. Some of the results are also present in a short
abstract (Nielsen and Hansen 2001a). The data is from the period 1997 February - 2000 June which includes 325 articles
some of which do not include citations.

5.8.1 Author cocitation analysis

For author cocitation analysis (ACA) the technique described in section 5.6.3 is used, though there are some differences
compared to the common procedure: Here the analysis concerns only citations from asingle journal in contrast to the
entire indexed literature in usual ACA. The ACA is based on all cited authors rather than a selected subset of key authors
and furthermore, the analysis is performed on a data matrix rather than a similar matrix.

Figure 5.5: Extraction of authors for author cocitation analysis. Here the authors “Bandettini P. A.”, “A. Jesmanowitz”,
“E. C. Wong” and “J. S. Hyde” cited by Aguirre, Zarahn, and D’Esposito (1998b). The title of the citing document is also
extracted.

An example of the specific information that is extracted is shown in figure 5.5: Aguirre, Zarahn, and D’Esposito
(1998b) make 22 citations to other works, where 20 are references to scientific articles. Among them are a reference to
(Bandettini, Jesmanowicz, Wong, and Hyde 1993). The four authors in this reference are extracted and stemmed to lower
case surname plus first initial without any punctuation. Thus “Bandettini P. A.” is stemmed to “Bandettini P” (see also
section 5.5.2).

There are a number of problems associated with extracting the author names (tokenization). The extraction of the
author names was tailored specifically for the web-pages. Inthis case the publisher had a limited formatting variation
and the tokenization was performed in the HTML formatted document rather than a translated version, since there were
no punctuation between the components in the references — the formatting was alone based on<b> and<i> HTML
markup. Both a Perl and a pure Matlab implementation was made. The Perl implementation was much faster than
the Matlab implementation, but the latter implementation was more convenient as a structure containing the different

3The specific term of use are described on http://www.idealibrary.com/help/terms.jsp with the most relevant conditions being: “Copying or down-
loading of an entire issue of a Licensed Publication is not permitted” and “systematic supply or distribution of portions of or Items from the Licensed
Publications in any form to anyone other than an Authorized User”. It is possible that special agreements can be made.
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bibliographic fields could be constructed and passed between computational and visualization functions without too much
bookkeeping. Not all components on the web-pages could be parsed correctly, these few examples should not affect the
overall analysis.

The use of author names are not consistent: Misspellings often occur and names are represented differently, e.g, with
or without middle initials. The most extreme example is to one of the most cited authorsRichard S. J. Frackowiakwhose
name appears in at least 11 misspelled versions in the non-parsed corpus and 9 versions that were parsed. Examples
include “Fackowiak R”, Fracknowiak R”, “Frackoviak R”, “Frackowiack R”, “Frackowiak J”, ... For this name there were
27 errors and 702 correct.

While the authors are extracted they are added to an indicator data matrix� �� � � � representing� documents and
� cited authors, where�� � 


if the � ’th document cites the� ’th author, zero otherwise. As the “cited author” the first
author can be considered (� first) or all of the cited authors (�all). SVD can be perform on the constructed matrices

��� � � svd� �� � (5.15)

where the� column vectors of� �� � � � and
� �� � � � contain weighting over� documents and� cited authors,

respectively. They are here termedeigenanthologiesandeigencommunities4. The authors in
�

can be displayed in a plot.
If the first and second principal component are used the coordinates for the� ’th author will be��� �� � �� �� �. The axes in the
projection are here termedeigenauthors, corresponding to ideal authors that are cited in such a way the s/he only scores
in one single eigencommunity, e.g., the first eigenauthor represented as a row vector

�� �
�
� � �
 � � � � � 	 	 	 � ��. Similarly, if

the documents are projected the axes are termedeigendocuments. The Kleinberg terminology (see section 5.6.1) can be
applied in connection with the first eigenauthor and first eigendocument:

• Authorities(authoritative sources) are the authors that score high when project onto the first eigenauthor.

• Hubs(hub documents) are documents that score high when projected onto the first eigendocument.

Authorities are authors that are cited by manyhubdocuments and hub documents are documents that cite many authori-
tative authors.

For the labeling of the eigenauthor axes the titles of the citing documents are extracted, see figure 5.5. The words are
split and converted to lower case with elimination of stop words. A matrix

� �� � � � is formed from the bag-of-words
representation of the� documents and the� different title words, where�� � 


if the � ’th word appears in the title of
the� ’th documents, zero otherwise. These words are projected onto the eigenauthor space:

� � � �� 	
(5.16)

For the labeling of the� ’th eigenauthor axis the highest scoring words are selectedfrom the� ’th column vector�� of the
matrix� �� � � �.
Result and discussion

Of the 325 documents in the investigated period 306 contained one or more of the 12499 references that were extracted.
With the applied word stemming on the authors 4040 terms represented cited first authors and 11184 terms represented all
cited authors generating (document

�
cited authors) matrices� first ���
 � ���� � and�all ���
 � 


�� �. The (document

�
term) matrix contained 1013 terms generated the matrix

� ���
 � 
� 
��.
A plot of the most cited authors projected onto the two first eigenauthors with the cited first author data� first are

displayed in figure 5.6(a) with axis labeling selected as the5 highest scoring words, — the leftmost as the highest scoring.
Karl J. FristonandJean Talairachshow up as the by far most authoritative authors in the first eigenauthor. The labeling
of this axis just shows the most used words in the title of the citing documents. The citation to J. Talairach is almost
exclusively to the atlas books (Talairach and Szikla 1967; Talairach and Tournoux 1988). (An exception being the citation
from Perani et al. 1997 to Laplane, Talairach, Meininger, Bancaud, and Bouchareine 1977). Karl J. Friston on the
other hand receives citations across a broad range of his papers, though many are methodological articles associated
with the SPM toolbox. The large number of citations to methodological works is also present in other fields, e.g., the
paper associated with the BLAST web-service in the bioinformatics field (Altschul, Gish, Myers, and Lipman 1990)
had received 12348 citations in 2001 July according to ISI® Web of Science®, and Garfield (1990) reported the article
associated with the “Lowry method” (Lowry, Rosebrough, Farr, and Randall 1951) was cited the most in the period 1945–
1988 with 187652 citations as recorded in the Science Citation Index. However, other methodological works become
implied, and instead of receiving large number of citation they get very little cited. As an example consider spin echoes
(Torben Lund, personal communication): This phenomenon was first described by Hahn (1950) and many MRI sequences
rely on spin echoes. Nevertheless are there no citations to the original work in any of the NeuroImage articles.

The corresponding plot for the data with all authors are displayed in figure 5.6(b). This shows a somewhat different
ordering on the authority axis. In functional neuroimagingarticles often incorporate many authors. This is due to the

4In (Nielsen and Hansen 2001a) we used the non-intuitive terms eigendocumentsandeigenauthorsfor the� and� , respectively.
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Figure 5.6: Author cocitation analyses on cited author with citation from NeuroImage. The 35 most cited authors are
shown in the space of the first (horizontal) and second (vertical) eigenauthor. The axes are label by the 5 words from the
title of the citing documents.
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Figure 5.7: Second and third eigenauthor with idf-scaled first author matrix.

complexity and cost of a functional neuroimaging study. Thelast author is often a principal researcher in a grant or a
head of department that authorizes the expensive scans. Richard S. J. Frackowiak is principal investigator at the Wellcome
Department of Cognitive Neurological as well as previous head of MRC Cyclotron Unit at Hammersmith Hospital and
has been coauthor on numerous articles from these institutions. His and Chris Frith authorities are to a large extent
conditioned on the articles that Karl J. Friston has writtenas first author. The same applies for John C. Mazziotta and the
first author Roger P. Woods. The authority for the all-authordata is more related to the count from ISI® Web of Science®

presented in table 5.5, e.g., Richard S. J. Frackowiak appears as the most cited author.
The second eigenauthor in both figure 5.6(a) and 5.6(b) show asegregation between fMRI and PET, and furthermore

that fMRI is more associated with methodology while PET is associated with investigation of cognition — especially
high-level cognitive components, e.g., memory and attention.

Other topics appear if the matrices are scaled differently and/or if higher eigenauthors are displayed. Figure 5.7 shows
the second and third eigenauthor with an idf-scaled first author matrix: The third axis segregates between authors primarily
associated with high and low-level cognition. A “data analysis” direction in the eigenauthor space appears as the fourth
eigenauthor if the all authors are used with Poline and Worsley scoring highest.

Clustering of authors

Clustering can be performed on the cocitation data. Here non-negative matrix factorization (NMF, section 3.10) is con-
sidered: The following table appears after NMF of the document

�
cited author matrix� all �� � � �

� � nmf �� � (5.17)

followed by a winner-take-all on what corresponds to the eigencommunity matrix �� � � �, i.e., each author is exclu-
sively allocated to one single component.

1 2 3 4 5 6
Raichle M Rosen B Friston K Haxby J Woods R Roland P

Petersen S Turner R Frackowiak R Ungerleider L Passingham R C herry S
Buckner R Bandettini P Frith C Mintun M Rao S Mesulam M

Grasby P Kwong K Evans A Petrides M Brooks D Toga A
Grady C Glover G Talairach J D’Esposito M Mazoyer B Zatorre R

Miezin F Jezzard P Worsley K Gore J Binder J Zilles K
Fletcher P Belliveau J Tournoux P Noll D Fink G Van Essen D

Horwitz B Kim S Mazziotta J Cohen J Grafton S Weinberger D
Posner M Hyde J Poline J Goldman-Rakic P Deiber M Arndt S
Maisog J Ugurbil K Holmes A Meyer E Hammeke T Gazzaniga M

The author are sorted within each of the� � �
eigencommunities according to citation count and only the highest

ranking are shown. As all cited authors are included the group structure will be weighted on the affiliation (through
coauthorship). Some of the groups are relatively easy to interpret, e.g., the second group (the second column) contains
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primarily fMRI methodology researchers and the third groupcomprises primarily of general methodology researchers
especially researchers in connection with SPM andWellcome Department of Cognitive Neurology. The other groups are
harder to interpret, but the first three researchers in the first group are from St. Louis (Raichle, Petersen, Buckner), and
the two first in the fourth group are affiliated withNational Institute of Mental Healthand all are known for researchers in
high-level cognitive function compared to the sixth group which are more known for low-level cognitive function as well
as anatomical analysis.

The interpretation of the group structure is easier when title words are projected into the groups as shown below. Here
the NMF is performed on the idf-scaled first cited author matrix.

study fmri cortex areas human fmri
pet analysis human human mri cortex

functional data somatosensory space based brain
fmri plurality receptor stereotaxic parcellation functio nal

memory resemblance sites brodmann matter activity
cortex functional regional brought white analysis

activation bold binding variable cerebral human
human related cytoarchitecture brain topographic respons e

1 2 3 4 5 6
Talairach J Worsley K Picard N Watson J Pandya D Fox P

Friston K Zarahn E Tanji J Zeki S Felleman D Ogawa S
Woods R Holmes A Stephan K Clark V Geschwind N Bandettini P

Roland P Aguirre G Penfield W Tootell R Van E Kwong K
Buckner R Boynton G Ikeda A Collins D Greitz T Kim S

Haxby J Poline J Deecke L Mazziotta J Mountcastle V Menon R
Price C Dale A Bötzel K Zilles K Breiter H Jezzard P

Petersen S Cohen M Kristeva R Rademacher J Kennedy D Kleinsch midt A
Posner M Press W Kornhuber H Thompson P Alexander G Turner R

Corbetta M Ashburner J Tyszka J Duvernoy H Caplan D Belliveau J

The first group are primarily highly cited authors, see the authors along the first axis in figure 5.6(a). The second
and the fifth group segregate fMRI, with the second group associated with analysis and the sixth group associated with
acquisition, and in this group is Peter T. Fox the most cited:While he is primarily concerned with PET imaging and
meta-analysis he is mostly cited for the work concerning luxury perfusion which is relevant for the understanding of the
BOLD response. The third group comprises of primarily motorarea researchers. The first in the list cited mostly via a
review (Picard and Strick 1996). The fourth group is concerned with vision — although this is not reflected in the title
words for that group. Watson, Zeki, Clark and Tootell are allcited for work within vision. Among the researchers in the
fifth group are primate researchers such as Pandya, Fellemanand Van Essen.

As the� columns in the eigenanthology matrix
� �� � � � is not necessarily orthogonal the terms can be projected

with
� � � �� �� 	��� �� (5.18)

instead of
� � � � �� 	

(5.19)

In practice with the present data set equations 5.18 and 5.19showed little difference: the columns of
�

are near-
orthogonal.

5.8.2 Coauthor analysis

In coauthor analysis the focus is on the authors of the documents rather than the cited authors. The 325 documents have
1528 authors, and of these are 995 unique authors names with the personal name stemming used in the previous sections.
There are relatively few variations in author names, — one ofthem being “Buechel C” and “Büchel C”, see both variations
east north east in figure 5.9.

As for the author cocitation data a matrix� �� � � � is constructed with�� � 

if the � ’th document has the� ’th

author as first author or coauthor, — zero otherwise. Grouping structure in this data is much more apparent than in author
cocitation data: Authors tend to write with the same group ofpeople.

Figures 5.8 and 5.9 present bullseye visualizations of the coauthor data. Authors are connected if they share coauthor-
ship, i.e., a line is rendered if the� � �� element in� � � �� is non-zero,� � representing one author and� � representing
an other. The radial position is determined either by the number of coauthorships (figure 5.8)

�
� � � �� � � (5.20)

or number of documents written (figure 5.9):

�� � � � � �

monotone
diag �� �� 	 	 (5.21)
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Figure 5.8: Coauthor bullseye plot displaying the 65 authors with most coauthors in NeuroImage in the period under study.
Radial placement determined from equation 5.20. The angular placement is not optimal, e.g., Anders Dale (south east)

has connection to the opposite side.

Authors with the highest rank� are near the middle and the radial metric is order rather thanEuclidean. The angular
placement is determined by a heuristic iterative algorithmwith attraction (if connected) and repulsion. This does not
optimize for the smallest number of crossing lines, but rather place nodes where there is free spaces. The visualization
shows a clear group structure with the dominating group consisting of Wellcome Department of Cognitive Neurologyled
by Karl J. Friston. This group is connected to an Italian group and a group (our group) of primarily Danes. Separated
from that is a German and Japanese group headed byKarl Zilles andRyuta Kawashima. Other separated groups are a
group from National Institutes of Health, USA, with V. S. Mattay and J. A. Frank.

A connected component analysis reveals 81 separated groupsthe largest groups comprising 278, 133 and 51 authors.
The 10 most publishing author in the six first largest components are:

Friston K Zilles K Mazoyer B Franck G Fabiani M Frank J
Dolan R Kawashima R McIntosh A Michel C Gratton G Mattay V

Zarahn E Fukuda H Haxby J Orban G Alho K Duyn J
Aguirre G Alpert N Mellet E Aerts J Corballis P Ruttimann U

Ashburner J Geyer S Horwitz B Bodart J Kim K Smith A
Esposito M Sadato N Kapur S Bogaert P Maclin E Weinberger D

Holmes A Schleicher A Petit L Crommelinck M Näätänen R Yang Y
Evans A Schormann T Tzourio N Dubois S Benveniste H Ye F

Noll D Sugiura M Courtney S Goldman S Cowan N Berman K
Price C Apkarian A Crivello F Hecke P Friedman D Esposito G

When the grouping structure is so evident as the figures 5.8 and 5.9 show it is usually not a problem for unsupervised
algorithm to find suitable structure in the data.
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Figure 5.9: Coauthor bullseye plot with 109 of the most publishing authors in NeuroImage in the period under study
corresponding to authors with 3 documents or more. Radial placement determined from equation 5.21.

5.8.3 Analysis of journals

As the references in NeuroImage also contain the title of thejournal where the cited article appears the set of cited journals
can be subjected to analysis. Here willjournal cocitation analysisbe considered. The analysis can help the novice in
getting an overview of the field and identify key journals as well as related journals.

While the variation in author names are often little the variation in journal titles can be large. This is due to that
journal titles are often abbreviated and standards (e.g., the MEDLINE abbreviation used in Pubmed) is not adhered to.
As an example consider the count of references to the different variations of the “Human Brain Mapping” journal cited
from NeuroImagelisted in table 5.6(a). The most common variation has fewer counts (204) than the total of all other
variations (337). Furthermore, the MEDLINE abbreviation is “Hum Brain Mapp” (without punctuation), i.e., no of the
above. If the variation in journal titles are not handled both ranking and cocitation will be affected: Journals that have
short non-abbreviated titles, such as “Science” or “Nature” will dominate over journals with long complex titles. Errors in
journal titles are rare. The few errors are often found to be acomplete word wrong, e.g., the reference to “J. Hum. Brain
Map.” above and the reference to “IEEE Trans. Med. Image Anal.” — a journal that does not exist — in Royackkers
et al. (1999) citation of (Vérard et al. 1997).

Based on the variations in journal naming a quick and simple word stemming method for journal titles is proposed:

1. Convert to common case (lower case). This will catch variations as “NeuroImage” and “Neuroimage”.

2. Strip punctuation “.”.
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204 Hum. Brain Mapp.
164 Hum. Brain Map.
101 Hum. Brain Mapping
33 Human Brain Mapping
19 Human Brain Map.
7 Human Brain Mapp.
3 Hum Brain Map.
2 J. Hum. Brain Map.
2 Hum. Brain. Mapp.
2 Hum. Brain. Map.
1 Hum. Brain. Mapping
1 Hum. Brain Mapping (Suppl.)
1 Hum. Brain Mapp
1 Hum. Brain Map

(a) Variations of “Human Brain Mapping”

1 phi tra r soc b
5 phi tra r soc lon

17 phi tra r soc lon b
3 phi tra r soc lon b bio sci
2 phi tra r soc lon bio
1 phi tra r soc lon ser b
3 phi tra r soc lon ser b bio sci
2 phi tra roy soc lon ser b bio sci

(b) Example of variation after “3-
stemming”.

17 Cognit. Brain Res.
9 Cogn. Brain Res.
4 Cog. Brain Res.
2 Brain Res. Cognit. Brain Res.
1 Cognitive Brain Res.
1 Cognit. Brain. Res.
1 Cognit. Brain Res.,
1 Brain Res. Cogn. Brain Res.

(c) Variation in “The Brain research.
Cognitive brain research”

Table 5.6: Variation in journal naming in citations to three different journals. The journal names in the middle column have
be processed with “3-stemming” described in the text.

3. Strip stop words: “on”, “the”, “of”, “and”, and sometimes: “Ser”, “Series”.

4. Word Stemming: Identify the non-abbreviated version andcut from the end of the each word. Alternatively, if the
title consists of more than two words cut all words down to 3 characters, although problems arise in connection with,
e.g., “phy’siology”, “phy’chiatry”, “phy’chology” and “neuro’logy” and “neuro’science”. A simple workaround is
to exclude prefixes “phy” and “neuro” from the count of the word length.

Other methods would be to inquire Pubmed with the other bibliographic information (author, title, . . . ) and obtain the
unique MEDLINE journal title string, or to enter the variation into a database.

After the 3-character stemming there can still be a large number of variations for some journals, see, e.g., Philosophical
Transactions of the Royal Society, Ser B, Biological Sciences, see table 5.6(b). Another example where the presence
of words in the title vary is “The Brain research. Cognitive brain research” (ISSN 0926-6410) with the MEDLINE
abbreviation “Brain Res Cogn Brain Res”, see table 5.6(c). With the present word stemming the versions displayed in
the table will collapse into 2 classes. If the journal impactfactor is to be computed precisely then it is necessary to make
more elaborate matching of journal names. Data received viaISI SCI and SSCI can also have ambiguous names (Wormell
1998, appendix).

From the 325 documents in NeuroImage 12499 references were extracted with 10795 that could be parsed as refer-
ences to a journal article. There were 1209 different journal titles before and 840 after “3stemming” processing described
above. These data were used to construct an indicator data matrix � �� � � � � � ���
 � ��� � where�� � 


if the � ’th
document cited the� ’th journal, zero otherwise. The data matrix was subjected to singular value decomposition

��� � � svd �� � (5.22)

As for author cocitation analysis column vectors of theU matrix still represents a weighting over documents, so theyare
here termedeigenanthologies. The

�
represents weighting over journals. The axes are termedeigenjournalswhen the

individual journals are projected onto the principal component subspace.

Results and discussion

Simple count show that the most cited journal fromNeuroImageis itself with over 4% of the journal citations. Further-
more, its competing functional neuroimaging sister journal Human Brain Mappingis the second most cited. Next in rank
— as 3, 5 and 6 — are three multi-disciplinary journals withProceedings of the National Academy of Sciences, USA
(PNAS) cited more thanNatureandScience. This is presumably due to that PNAS publishes more articlesthan the two
others, — the simple count is not a measure of theimpactsince the number is not divided by the number of articles
published in the journal (this is done in ordinary journal impact factor calculation), see table 5.7. The rest of the top are
mostly subject-specific neuroscientific journals withJournal of Neurosciencethe first most, and there are few review jour-
nals exceptions beingCurrent Opinion in NeurobiologyandTrends in Neuroscience. The 25 most cited journals account
for almost 50% of the journal citations. Among the 25 first arenone of the non-neuroscience specific biomedical journals
that typically have high impact, such asCell, New England Journal of Medicine(NEJM) andJournal of Experimental
Medicine(Garfield 1996, figure 10), — NEJM is ranked 256 while the two others are not cited at all.
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ISSN MEDLINE abbreviation No
1065-9471 Hum Brain Mapp 50
1053-8119 NeuroImage 124
0740-3194 Magn Res Med 326
0730-725X Magn Reson Imaging 180
0027-8424 Proc Natl Acad Sci U S A 2765
0363-8715 J Comput Assist Tomogr 214
0271-678X J Cereb Blood Flow Metab 148
0161-5505 J Nucl Med 351
0364-5134 Ann Neurol 283
0003-9942 Arch Neurol 218
0028-3878 Neurology 1054
0033-8419 Radiology 568
0278-0062 IEEE Trans Med Imaging 112
0003-990X Arch Gen Psychiatry 152
0006-8950 Brain 353
0006-8993 Brain Res 1370
0304-3940 Neurosci Lett 976
0021-9967 J Comp Neurol 524

ISSN MEDLINE abbreviation No
0014-4819 Exp Brain Res 353
0013-4694 Electroencephalogr Clin Neurophysiola 261
0028-3932 Neuropsychologia 138
0147-006X Annu Rev Neurosci 21
0166-2236 Trends Neurosci 125
0036-8075 Science 1652
0953-816X Eur J Neurosci 468
0959-4965 Neuroreport 712
0959-4288 Curr Opin Neurobiol 103
0190-5295 Abstr Soc Neurosci —b

0926-6410 Brain Res Cogn Brain Res 61
0028-0836 Nature 1315
1047-3211 Cereb Cortex 88
0898-929X J Cogn Neurosci 51
0022-3077 J Neurophysiol 635
0896-6273 Neuron 295
0270-6474 J Neurosci 1089

aNumber from year 1998. With the present word stemming it is not distinguishable fromElectromyography and clinical neurophysiology(ISSN
0301-150X).

bNote indexed in Pubmed

Table 5.7: Number of articles published in neuroscience journals in year 1999 obtained through queries to Pubmed with
queries like “"0926-6410"[Jour] AND 1999[dp] ”.

The second and third principal component from an SVD with no normalization of the link matrix is shown in fig-
ure 5.10. As for author cocitation analysis of NeuroImage journal cocitation analysis shows a large variation can be
attributed to a PET/fMRI dimension, — approximately the third principal component. The second principal axis seems
to convey a microscopic/macroscopic neuroscience dimension with (macroscopic) neuroimaging in one end (Magnetic
Resonance in Medicine, Journal of Cerebral Blood Flow and Metabolism, ...) and (microscopic) neurophysiology in the
other (Experimental Brain Research, Journal of Neurophysiology). This is, however, not reflected in the axis labeling.
Parent disciplines are partially visible in with a “medicalcluster” consisting of neurology, radiology, and nuclear medicine
in the fourth quadrant.

When the row sum is extracted from the link matrix a directionin the second eigenjournal appears as a statistical data
analysis dimension withNeuroImageandHuman Brain Mappingscoring highest in this dimension, whileScienceand
Nature in the opposite end, see figure 5.11. This interpretation is reflected in the axis labeling with the words “data”,
“statistical” and “parametric”. It reflects the low priority that Scienceand Nature have on methods, often confining
description of methodologies to figure texts and footnotes,while NeuroImageandHuman Brain Mappingoften have
articles that mainly focus on methodologies. A direction infifth components has “image” and “registration” as the first
two labels andJournal of Computer Assisted Tomographyscores the highest. This is most likely driven entirely by Roger
P. Woods image registration work around the popular AIR library (see sections 3.5.4-3.5.6), as the four primary references
to this work is published in the journal (Woods et al. 1992; Woods et al. 1993; Woods et al. 1998a; Woods et al. 1998b).

The high loading of methodology on the second and fifth components with the row sum extracted link matrix show that
the methodological articles reference fewer than neuroscientific, since the extraction of the row sum will weigh articles
with few references more.

5.8.4 Finding related authors

The different cocitation matrices can be utilized in methods for determining “related articles”, “related authors” and
“related journals”. Here a method for finding “related authors” is shortly described: Matrices from both first author
cocitation� first �� � � � and all author cocitation� all �� � � � are combined in a weighted addition

� � �� first � ��all
	

(5.23)

This should be a special addition (with column permutation and zero-padding) since the� and� columns are likely to
be different. Using�all ensue that related authors can be found for a large number of authors and using� first weigh the
first author as most important in the citation, i.e.,� � �

. Rather than using the raw weighted sum from� it is weighted
by one of the forms in table 5.4: the inverse document frequency (idf), where seldom cited authors are given more weight�� , determined as �� � �� �� �� � � � (5.24)



5.8 Example of analysis with “NeuroImage” 117

neuroimage

hum bra map

pro nat aca sci usa

j neurosci

nature

science
brain

cer cor

j cer blo flo met

j neurophy
neuroreport

j com ass tom

j cog neurosci

mag res med

neuropsychologia

neurology

exp bra res

ann neurol

bra resj com neurol
ele cli neurophyeur j neurosci

tre neurosci

arc neurol

neurosci let
ann rev neurosci

j nuc med

soc neurosci absneuron

iee tra med ima

mag res ima

cog bra res

arc gen psy

cur opi neurobio

radiology

cerebral, pet, m
apping, hum

an, regional
fm

ri,
 fu

nc
tio

na
l, 

m
em

or
y,

 e
ve

nt
−

re
la

te
d,

 w
or

ki
ng

human, cortex, areas, somatosensory, role

fmri, pet, bold, analysis, parametric

Figure 5.10: Journal cocitation analysis on data from NeuroImage. The 35 most cited journals projected on the second
and third eigenjournal.

where� � ��

corresponding to the total number of documents and� � vary between 1 and� “Friston K” � �



for Karl
J. Friston in the present data set. For the identification of “related authors” a query is formed as a vector� � picked from
the� ’th column of� corresponding to that� ’th author, and

� � � � �� � � (5.25)

the ranking of related authors based on the� ’th author� � found as the inner product between the query vector and the
weighted cocitation matrix.

Result and discussion

Results for a short list of authors are displayed in table 5.8performed on a matrix� �� �� � � � ���
 � 


��� computed
from equation 5.23 with� � �

and� � 

. For authors with very low citation counts the list is very varying depending on

the precise citations in the included documents.
The result shows that with the present method the most related author is not necessarily the author himself. This would

presumably change if� was an abundance matrix rather than an indicator matrix. Furthermore, coauthors are not always
high on the list, e.g., related authors for Karl J. Friston does not display Richard S. J. Frackowiak, which has been the last
author on several of Friston’s papers.

The ranking of related authors to Ian Law is primarily determined by the citation to one of his early works (Law,
Kanno, Fuhita, Miura, Lassen, and Uemura 1991) concerning reading of Japanese syllabograms: Y. Sakurai is cited by
two documents as first author on documents concerning kana and kanji reading, and J. M. Rumsey has published work
describing phonological and orthographic component in word reading. The others are cited only once in the corpus and are
primarily researcher in neurolinguistics. Later Ian Law has published (as first author) work primarily with eye-movement
activation (Law, Svarer, and Paulson 1996; Law, Svarer, Holm, and Paulson 1997a; Law, Svarer, and Paulson 1997b; Law
1996; Law, Svarer, Rostrup, and Paulson 1998) but these documents are not cited in the present corpus, and the present
method fails to identify related authors in that context.

For “Nielsen F” the result shows a list of authors referencedas first authors from (Lange et al. 1999) and only from
this paper (the authors have the same score and are alphabetically ordered, thus the ordering in the list is not important).
Although they in this case yield somewhat interesting authors who have written documents like “Improving the precision
of estimation by fitting a model”, “Publication bias: A problem in interpreting medical data”, “Independent component
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Figure 5.11: Journal cocitation analysis on data from NeuroImage with an the row sum.

analysis: A new concept?” which is relevant to me it might be more appropriate to disregard these single instance authors.
This is done in the second column of “Nielsen F” which features results from less surprising authors mostly within pattern
recognition. D. A. Leopold was not known to me and neither wasHabib Benali until recently. Leopold seems to be rather
unrelated while Benali has recently done work in an area related to the smooth FIR filter described in section 3.16, see
(Marrelec and Benali 2001).

If the idf weighting is not applied often cited authors will move to the top of the list. For Cyril Goutte often cited
researcher typically associated with fMRI acquisition move to the first and third place: Peter A. Bandettini and K. Kwong.

Extension to the scheme can include SVD on the� matrix in a manner similar to latent semantic indexing, and sieving
of coauthors will in most instances be preferable: An authorknows his coauthors well and if he queries who is related
to him he will not obtain much further information if coauthors are listed high. Also elimination of the authors own
documents could be favorable or elimination of cited authors that the citing (first) author has cited.

Whether the approach described here is successful or not depend upon the goal: Should the list contain “trivial” related
authors or surprising related authors. An outsider which isnot familiar with an author would benefit from a list of trivial
related authors, while the author himself would perhaps be more interested in viewing “novel” authors, e.g., Karl J. Friston
and Lars Kai Hansen would presumably not find any novelty in their listings, — as they would know the listed authors.

Other applications apart from simple listing in connectionwith the authors would be email alert and conference
priorities suggestion, and in this case the ranking as display in table 5.8 is interesting. E.g., I should receive an email
alert when Richard Baumgartner publish a document and I should priorities his work when attending a conference (if he
is attending).

5.8.5 Context sensitive author ranking

With the (document
�

term)
� �� � � � and the (document

�
cited author)� �� � � � matrices context sensitive author

ranking as described in section 5.7.1 can be performed. In the results presented below terms were projected through a
30-dimensional subspace obtained with SVD (equation 5.7).

Table 5.9 displays the ranked authors conditioned on the word “fmri”. For this term, which is well-represented in
the corpus, the results are as expected: Bandettini, Ogawa,Kwong, Kim, Zarahn are all known for fMRI methodology
(acquisition/analysis) most exclusively and Friston, Worsley, Buckner are known in a variety of fields and has produced
key works in fMRI methodology, e.g., (Worsley and Friston 1995) and (Buckner 1998). Neither Frackowiak, Raichle
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Friston K (211)
Talairach J
Friston K
Price C
Corbetta M
Worsley K
Woods R
Paus T
Martin A
Ogawa S
Zarahn E

Law I (15)
Sakurai Y
Rumsey J
Law I
Coltheart V
Foundas A
Glaser W
Indefrey P
Lupker S
Macleod C
Makabe T

Hansen L (8)
Hansen L
Akaike H
Hastie T
Baumgartner R
Goutte C
Ripley B
Mørch N
Moser E
Moeller J
Lange N

Nielsen F (4)
Altham P
Begg C
Cochrane D
Comon P
Cressie N
Diggle P
Duhem P
Friedman J
Geary R
Gnanadesikan R

Nielsen Fa (4)
Baumgartner R
Akaike H
Duda R
Hastie T
Goutte C
Ripley B
Benali H
Box G
Cox D
Leopold D

Goutte C (3)
Goutte C
Baumgartner R
Ripley B
Moser E
Hansen L
Lange N
Altham P
Begg C
Bottou L
Buckheit J

Goutte Cb (3)
Bandettini P
Goutte C
Kwong K
Baumgartner R
Buckner R
Hansen L
Lange N
Moser E
Ripley B
Worsley K

aWithout authors only cited once.
bWithout idf weighting.

Table 5.8: Finding related authors. The top row is the query author and the numbers in parentheses is the number of
citations to that author. Below is 10 “related authors” listed with the most related on the top of the list. Parameters from
equation 5.23 are set to � � �

and � � �.

All authors First authors
No context equation 5.13 equation 5.14

Frackowiak R Friston K Friston K
Friston K Frackowiak R Frackowiak R

Frith C Turner R Turner R
Raichle M Rosen B Rosen B

Evans A Raichle M Frith C
Talairach J Frith C Holmes A
Worsley K Holmes A Raichle M

Tournoux P Bandettini P Bandettini P
Petersen S Kwong K Worsley K
Holmes A Worsley K Poline J

No context equation 5.13 equation 5.14
Friston K Friston K Friston K

Talairach J Bandettini P Talairach J
Woods R Ogawa S Bandettini P

Buckner R Kwong K Worsley K
Worsley K Worsley K Ogawa S

Haxby J Talairach J Kwong K
Roland P Woods R Buckner R

Petrides M Kim S Zarahn E
Price C Buckner R Woods R

Petersen S Zarahn E Boynton G

Table 5.9: Authoritative author on the term “fmri”. The second and the fifth column are constructed from equation 5.13
and the third and sixth column are constructed via equation 5.14. For comparison the first and fourth column display the
ranking without weighing with terms.

nor Frith are known for work in fMRI and their appearance on the list that include all cited authors must be attributed to
coauthorship.

5.8.6 Further discussion

The algorithms described in this section has been used on only a single journal, but there is little hindering that it can be
used on the entire journal portfolio of a publisher — or several publishers as most of the processing is automated. Plots
like the metric multidimensional plots and the bullseye visualizations can be generated once a year for each journal and
display on the static HTML journal homepage along with the table of content. The enhancement needed for the processing
scheme is:

• A parser that extracts the bibliographic information as well as table of content information needs to be written for
each journal. In most cases a publisher would adhere to a single style so that the parser would be publisher specific.
Alternatively, it should be possible to construct a generalparser that can handle all common case, cf. ResearchIndex.

• The label placement is a problem with the current algorithmimplemented. In the visualizations some of the point
labels were moved if they were overlapping with others. An algorithm needs to be constructed that not only consider
the label placement in connection with the point but also considers the placement of other points.

• The angular placement of the bullseye visualization should also be optimized.

It should be noted that documents (scientific articles) in functional neuroimaging typically have a large author list and that
might be why the coauthor data shows clear group structure.

An interesting application of author cocitation analysis is ranking of emails. Emails are usually very little hyperlinked
and ranking cannot be based on citation counting or the more advanced methods such as Kleinberg authorities. However,
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if hyperdocuments exist that have the same authors as the emails, then the ranking from author cocitation of the hyper-
documents can be carried over to the emails. An example of this is ranking emails from the SPM-mailing list (A list
associated with the SPM Matlab functional neuroimaging analysis toolbox, http://www.jiscmail.ac.uk/lists/SPM.html).
This list contains high-quality emails from authors, whichin most cases have written scientific articles that are cited. The
ranking from cocitation pattern of the scientific articles can then be carried over to the SPM emails.

A note on automatic reviewer identification

Peer reviewing is an important method for distribution of grants/fellowships and for determining whether a scientific
article is appropriate for publication in a journal, and inappropriate selection of reviewers can bias the result (Glantz and
Bero 1994). In peer reviewing a small set of experts is selected that are to evaluate the work/application, e.g., with respect
to “scientific competence”, “quality of proposed methodology” and “relevance of research project” as in (Wennerås and
Wold 1997). The individual evaluations are collected and a decision is made. The grades of the reviewer are usually
the only element in the review process that is quantified. An automated and quantified reviewer selection and evaluation
weighting system should address the following issues:

• The reviewers should be experts in the fields.

• The reviewers should be diverse. If a work/application addresses a diverse set of fields it is not likely that reviewers
can be found that each is competent in all of the fields and it would be preferable to select a set of reviewers that
collectively is competent in the fields.

• The reviewers should not be affiliated with the authors/grant applicants. Wennerås and Wold (1997) were able
to find correlation between affiliation and “scientific competence” as graded by the reviewers reviewing Swedish
Medical Research Council postdoctoral fellowships.

• The reviewers should not be competitors of the author/applicants.

• Bias in favor of non-controversialunimportant research against innovative and controversial research, e.g., examples
include the scanning tunnel microscope (Armstrong and Hubbard 1991) and MRI scanner (Kevles 1998, page 181).

• Gender bias (Wennerås and Wold 1997; Grant, Burden, and Breen 1997).

• Bias against confirmatory against negative findings.

Consider “ideal” cocitation analysis: Ranking with conditioning would be able to determine which authors are authori-
tative within a field, where the field is identified by its terminology. Diversity among the reviewers can be obtained by
sampling among the authors so they cover a large part of the conditioned author space. Non-affiliation can be determined
from the coauthor graph, while competitors would be much harder to determine. The novelty of the work/application
can be assessed from the terms in the documents, though it will not be easy to determine if it describe good innovative
research or just used new terms.

5.9 Example of analyses with BrainMap™

In this section analyses of the data in the BrainMap™ database (section 5.2.1) will be considered.

5.9.1 Finding outliers from the coordinates and “lobar anatomy” fields

Here probability density estimation using kernel methods (section 3.12.2) and simple term analysis (section 5.5) on Brain-
Map™ locations will be combined in conditional outlier/novelty detection (section 3.13). The method identifies errorsin
the database along with unusual terminology. The outlier detection is based on theredundancyin the database between
anatomical labeling and the Talairach coordinates, and forthis task the redundancy is crucial: “redundancy provides
knowledge” (Barlow 1989) and (Hertz, Krogh, and Palmer 1991, page 197). This example is also described in (Nielsen,
Hansen, and Kjems 2000; Nielsen and Hansen 2001b; Nielsen, Hansen, and Kjems 2001b).

The processing scheme is shown in figure 5.12: The “paper”, “experiment” and “locations” web-pages from the
BrainMap™ Internet site are downloaded. Once the web-pagesare obtained a matrix� �� � �� � � �� is constructed from
� BrainMap™ locations

� � �� �� � � (5.26)

the matrix� �� � �� containing� Talairach coordinates from the “Coordinates in Talairach,1988 space” BrainMap™
field and the matrix

� �� � � � containing identifiers for terms in the “Lobar anatomy” BrainMap™ text field. The�
terms are determined as the combination of all phrases (all N-grams) of the short text field with a “word” determined as a
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Figure 5.12: Processing scheme for finding outliers in the BrainMap™ database with downloading of web-pages, con-
struction of matrix, extraction of submatrices, conditional probability density modeling and novelty ranking.

sequence of letters and transforming all other forms of characters to a single space (it could have been any other non-letter
character):

[^a-zA-Z]+ 	� “ ” (5.27)

Letters are converted to lower case. The element� � is set to 1 if the� ’th location contains the� ’th term, zero otherwise.
The next step in the process is to construct� � � matrices, where� � � , e.g., if the phrase is used twice or

less it is not possible to do the modeling in the proceeding steps. A novelty index is computed for each object in all
the� � �� � � �� matrices, where� � � 
� �� is the number of locations containing the term�. The novelty index
is determined as the probability density value of the object� � with respect to a probability density estimated for� �
based on a kernel method with a homogeneous isotropic Gaussian kernel where the kernel width	 �� is optimized via LOO
cross-validation, equations 3.67 and 3.68. Thus the probability density estimate is conditioned on the term�

� �� � 	 �� � � � � 	 ��� �� � � �� �� �� � 	 �� � � 	 (5.28)

� 	 ��� �� �� 

� � 	 
 � ���� � �� ���	 � ����� �	
 �	 


�	 � �� 	 � � �� �� 	 � � ���� (5.29)

where the set� � 	� � �� � 

 is the� � location indices containing the� ’th term and� �� is a matrix of location
coordinates corresponding to locations containing the� ’th term except for the� ’th location.

A two-stage strategy is used where the first step consists of modeling with all� � objects in� � . In the second stage the
5% most extreme objects (the objects with the lowest probability density value) are discarded, and a probability density
estimation is repeated with the remaining 95% objects. Thiscorresponds to an implicit prior of 5% outliers in the sample.
If there are not 5% outliers the probability density estimate will be biased. Most likely there are fewer than 5%, so the
width of the probability density estimate will be smaller than the “true” width.

The process is iterated with� sets of locations each set� containing� � locations. The entire set of location novelty
(� � � � � � 	 	 	 � �� ) is lastly sorted and displayed in a combined table for all� sets.

Result and discussion

The present analysis is performed on a matrix� �� � � � � � �
��� � 
�� 
�, i.e., 5322 Talairach coordinates with 1231
terms (words and phrases). The terms from the anatomic labels represent a special set, that is not well associated with the
normal distribution of terms in texts: The most frequent words are not the usual common words such as “the” and “of”,
but “gyrus” (1st), “cortex” (2nd), “frontal” (3rd), “parietal” (4th) and “temporal” (5th). The most occurring phrasesare
“frontal gyrus” (12th) and “temporal gyrus” (15th) with “superior temporal gyrus” (32nd) as the most frequent 3-word
phrase.

An example of a probability density volume for the “cerebellum” class is displayed in figure 5.13 in a Corner Cube
environment where both the original BrainMap™ locations are displayed together with the first and second stage prob-
ability density estimate at a� � � 	�


threshold (0.95 of the probability mass is inside the isosurface). As expected the
second-stage probability density spatially shrinks compared to the first-stage probability density. Furthermore, probability
mass around outlying locations (outliers) is entirely lostin the second-stage modeling.

It is clear from the visualization that the location in the frontal cortex is a “true” outlier, and presumably also the
location to the extreme right. Potentially, one could visualize all probability volumes with the associated locationsand
visually assess/detect the novelty of each single location. However, this would be cumbersome as there are several
hundred probability volumes. The result of mathematical modeling of the locations are displayed in figure 5.14. The table
displays the novelty index (log-likelihood), the BrainMap™ identifiers for paper, experiment and location (hyperlinkto the
BrainMap™ database) together with the Talairach coordinate and the term that the novelty is conditioned on. Also shown
are the Pubmed identifiers as well as links to the full text whenever possible convenient for tracking down the cause of the
novelty: The bibliographic information (authors, volume,title, journal title) on the “paper” pages can be checked against
MEDLINE information via the Pubmed service on the Internet,— provided that the entry refers to a study that has been
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Figure 5.13: Probability density estimation of the “cerebellum” class in a Corner Cube environment. The wire-frame
model is the first stage probability density estimation where all the locations are included and the polygon model is the
second stage probability density estimation where the 5% most extreme are excluded. The yellow glyphs are the original
BrainMap™ locations containing the term “cerebellum”. The blue curves correspond to the sagittal, coronal and transversal
outline of the cortex in the Talairach atlas, and the red elongated red boxes (almost lines) are the axes in the Talairach
atlas, the junctions defined at the anterior and posterior commissure. The threshold of the probability density estimate
and the original BrainMap™ locations are projected orthographical onto the sagittal, coronal, and transversal walls at
�� � � � � � � ��� � �� � � ��� cm. With the displayed orientation anterior/frontal in the brain is to the far left, right in brain is to
the far right and the posterior left is closest in the display.

published. A query to Pubmed that seemed to identify entriesuniquely (resulted in just a single returned article) consisted
of all surnames of authors, the volume of the journal, the first page and the year, — all and’ed together and marked with
their type. If the query does not return a result it is either because the paper is not in the database (e.g., early papers from
the journal “Human Brain Mapping” are not listed) or there isa discrepancy between the information in the BrainMap™
database and the Pubmed database. The kind of errors are, e.g., author being misspelled: “Deiner”/”Diener” (Jueptner
et al. 1995), completely different: “Zeki S”/“Zatorre RJ” (Leblanc et al. 1992) or volume and number are confused.
These were resolved with “manual data mining” with redundancy between databases (BrainMap™ and Pubmed) being
necessary for detection.

Figure 5.14 shows the most extreme outlier as a location termed “SMA” and it clearly has a z-coordinate that is wrong:
� � 
� cm, — half a meter outside the brain. Such an outlier would notneed to by conditioned on a term to be detected
as an outlier. However, an outlier that needs to be conditioned on a term in order to be detected is the seventh entry of
figure 5.14. This location is inside the brain (see also figure5.13) and is not an outlier with respect to the complete set
of locations. However, when conditioning on the given label“cerebellum” it has high novelty. An example where a term
provides more information than a single word are given by thesecond and third entries in figure 5.14 — both referring to
the same BrainMap location: Adding “superior” in front of “parietal” makes the location yet more unlikely.

It can be noted that so far the analysis requires no human intervention, e.g., manual selection of the set of analyzed
locations as in most current meta-analysis. To investigatethe cause of the novelty it is now necessary to manually acquire,
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No. BrainMap x y z BrainMap label Comment Reference
1 267, 2, 1 ��

7 540 SMA Millimeter and centimeter for
z-coordinate confused during
BrainMap entry

(Buckner et al. 1996, ta-
ble 4, entry 1)

2 29, 10, 8
�� ��� ��� Lateral superior

parietal
Resolved: Transcription mis-
take.

(Corbetta et al. 1993, ta-
ble 5)

3 141, 1, 10 35 150 28 Dorsolateral
prefrontal

Millimeter and centimeter for
y-coordinate confused during
BrainMap entry

(Kosslyn et al. 1994, ta-
ble 2, entry 10)

4 249, 1, 59 �� � �� 48.1 2.2 Subgyral frontal
lobe

Correct S. K. Brannan, 1997, Un-
published

5 280, 1, 9 24 ��� ��
�

Dorsal parietal
cortex

Is labeled “Right cerebellum”
in the article

(Schlösser et al. 1998, ta-
ble 1, entry 9)

6 4, 2, 7 �� 42 ��
Cerebellum — su-
perior anterior

Not possible to find the foci in
the article.

(Petersen et al. 1988)

7 280, 1, 7 38 24 ��
Dorsolateral pari-
etal

Is labeled “Right orbitofrontal
cortex” in the article

(Schlösser et al. 1998, ta-
ble 1, entry 7)

8 249,1,29 �� 26 16 Limbic Lobe Correct S. K. Brannan, 1997, Un-
published

9 277, 3, 3 ��� ��
� � �� Inferior frontal

gyrus, posterior
Is labeled “inferior temporal
gyrus posterior (area 37)” in the
article

(Owen et al. 1996, ta-
ble 2, entry 3)

10 115, 2, 5 ��� 54 0 Middle temporal
gyrus

Not resolved. (Shaywitz et al. 1995,
page 155)

11 19,2,17 �
� ���

38 Frontal Not resolved (Pardo et al. 1991, Ta-
ble 1a, entry 17)

12 47,4,1 ��� 32 28 Medial frontal
lobe

Correct (George et al. 1994)

13 65, 2, 23 57 26 45 Anterior cingulate Millimeter and centimeter for
x-coordinate confused during
BrainMap entry.

(O’Sullivan et al. 1994,
table 4, entry 10)

14 52, 1, 2 36 ��� 36 Inferior frontal
gyrus

Probably misunderstanding of
the text during entry. The foci
is around supramarginal gyrus
and the denoted “BA40”.

(Becker et al. 1994, page
287)

15 61, 1, 12 ��
�

42 4 Temporal/insular Resolved: Transcription mis-
take.

(Tulving et al. 1994b, ta-
ble 1)

16 130,5,8 ��� ��
4 cingulate Perhaps a transcription error

with the x- and y-coordinate be-
ing permuted

(Wills et al. 1994, ta-
ble 5, entry 14)

17 48,2,3 80 ��� � �� anterior cerebel-
lum

Millimeter and centimeter for
x-coordinate confused during
BrainMap entry

(Grafton et al. 1993, ta-
ble 1, entry 18)

18 273,1,6 43 � �� 15 parietal-occipital
junction

Not resolved (Imaizumi et al. 1997, ta-
ble 1, entry 6)

19 89,1,8 ��� ��� � �� Wernicke’s area Correct, though labeled “Lt in-
ferior temporal gyrus; Lt mid-
dle temporal gyrus (Wernicke’s
area)” in the article

(Leblanc et al. 1992, ta-
ble 1, entry 8)

20 29,8,5 ��� ��� ��
Lingual/fusiform Perhaps correct (Corbetta et al. 1993, ta-

ble 6)
21 26,3,4 40 ���

4 medial occipital
gyrus/temporal
lobe

Correct. Labeled “middle oc-
cipital gyrus...” in the article

(Howard et al. 1992,
page 1776)

Table 5.10: BrainMap™ outliers. The entries are ordered according to novelty. The second column indicates the paper,
experiment and location identifier of the BrainMap™ database. The third to fifth column are x, y and z with the “reported”
coordinates from BrainMap™ (not the corrected “Talairach 1988” coordinates).
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Figure 5.14: Screenshot of HTML page with the table of highest ranking novelties.

read and interpret the articles with the associated outlierlocations. The result of such an analysis is shown in table 5.10
with the most novel locations from the BrainMap™ database.

Some of the novelty originate from errors and most of the errors are entry errors: Most often authors report the
coordinates in millimeter, while the BrainMap™ database manipulates with the coordinates in centimeter. This difference
causes a few errors during the entry into the database. In table 5.10 entries 1, 3 and 11 are examples of this. Other errors
appear in the original paper: The large novelty of the secondentry was due to the error in the sign of the z-coordinate:
� � 	
 


should have been� � 


(Personal email from Maurizio Corbetta, 2000-7-28). The 13th outlier was due to

a location being mixed up with an other location. The reported coordinate	�� � �� � � should be either	�� � 	 
� � � or	�� � 	 
� � � (Personal email from Endel Tulving, 2000-6-16).
The two different Talairach atlas editions (Talairach and Szikla 1967 and Talairach and Tournoux 1988) have two

different orientations of the x-coordinate: Coordinates reported in the 1967 atlas system should have the sign inverted.
Often authors write “left” or “right” in connection with thereported location, however, the BrainMap™ database does not
maintain the words. Presumably the transformation is done automatically within the BrainMap™ entry program, leaving
little risk of it being mis-entered. However, the redundancy of maintaining the label is a prerequisite for spotting left/right
outliers.

Count Lobar Anatomy
60 inferior parietal lobe
10 superior parietal lobe
6 midline occipital lobe
2 limbic lobe
1 subgyral frontal lobe
1 paracentral parietal lobe
1 medial occipital gyrus/temporal lobe
1 medial frontal lobe

Table 5.11: Count of the different number of phrases the word "lobe" appear in.

Other novelty comes from differences in terminology. E.g.,the word “lobe” could denote any site in the cortex
(frontal lobe, parietal lobe, ...). However, “lobe” is mostoften used together with “parietal”, as the counts in table 5.11
show. A probability density of such data would be focused in the parietal lobe, see figure 5.15: At the selected threshold
two pronounced “blobs” appear bilaterally in the parietal lobe. A smaller blob appears in the occipital lobe — at the
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midline. Several outliers are generated in connection withthis term: 4th (“subgyral frontal lobe”), 8th (“limbic lobe”),
12th (“medial frontal lobe”) and 21st (“temporal lobe”).

An example on the fuzziness of labeling is the region denoted“Wernicke’s area”: It is often described as the posterior
part of the left superior temporal gyrus, see, e.g., (Wise, Chollet, Hadar, Friston, Hoffner, and Frackowiak 1991). Others
describe it as “left posterior superior and middle temporalgyri” (Indefrey and Levelt 2000, page 859) and (Weiller,
Isensee, Rijntjes, Huber, Muller, Bier, Dutschka, Woods, Noth, and Diener 1995), “left posterior temporoparietal cortex”
(Price, Veltman, Ashburner, Josephs, and Friston 1999) “temporal-occipital region” (Atkinson, Atkinson, Smith, Bem,
and Hilgard 1990, page 344). Reber (1995) defines Wernicke’sareas as “a loosely circumscribed cortical area in the
temporal region of the dominant hemisphere of the brain”. Inthe downloaded BrainMap™ database the term “Wernicke’s
area” appears 5 times in the “Lobar anatomy” field, — 4 times inconnection with (Kosslyn, Thompson, and Albert 1995)
where the z-coordinate is either� 
�

mm or ��mm all of the locations being labeled “superior temporal gyrus” by the
Talairach Daemon, and with two locations in each hemisphere. The 19th entry table 5.10 is an outlier with respect to the
term “Wernicke” and has a z-coordinate of	 
�mm and is labeled “inferior temporal gyrus” by the TalairachDaemon.
This shows the variations in terminology on a “classic” brain area that has been known for over one hundred years.

A possible alternative scheme for detecting novelty in the BrainMap™ database would be to use anatomical atlases:
Figure 5.16(a) shows the Talairach cerebellum from a triangulation of manually digitized points on the surface using
the Nuages program (Geiger 1993). Many of the locations lie outside the Talairach cerebellum. Some of these should
presumably not be called outliers. Other anatomical atlases are labeled probability volumes: The ICBM atlas (Evans,
Collins, and Holmes 1996) being an example. In this atlas thecerebellum has been identified and each voxel is given a
probability for being “cerebellum”, see figure 5.16(b). It should be noted that the volume is aprobabilityvolume� �� �� �,
rather than adensityvolume� �� �� �, and thus cannot be directly compared with the activation location densities. When
the BrainMap™ locations are compared with respect to the probability volume it is found that some of the locations have
zero probability of being “cerebellum”:� �� � �cerebellum� �� � � �

. These are presumably not outliers. The locations in

Figure 5.15: Probability density estimation of the “lobe” class shown in a Corner Cube. The blue/magenta wire-frame
model is the second stage probability density estimate at a 	HPD � � �� threshold (highest probability density), and the
orange glyphs are the “lobe” BrainMap™ locations.
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(a) Talairach cerebellum (b) ICBM cerebellum

Figure 5.16: Corner Cube of “cerebellum” locations together with a digitized version of the cerebellum from the Talairach
atlas and the isosurface at zero for the ICBM cerebellum probability volume. The Talairach cerebellum was digitized from
the transversal slices in the atlas and polygonized by the Nuages program, see section 4.2.2. The lowest part of the
cerebellum are not display in the atlas

figure 5.16(b) have been transformed by the inverse operation of Matthew Brett’s nonlinear transformation (Brett 1999). It
is possible that more complex spatial transformation such as a three-dimensional warps produce slightly better fit between
the location and the probability volume, but probably not enough to encapsulate all of the variation in the coordinate
labeling. Some variation might be attributable to the anatomical reference volume and the software used in the spatial
normalization. The BrainMap™ database does not fully record this information.

5.9.2 Modeling of the functional relationship — functionalvolumes modeling

Cleaning of neuroscientific databases, e.g., by finding outliers in the BrainMap™ database, is important but has no direct
neuroscientific value. More interesting it is to model the spatial (as e.g., represented by Talairach coordinates) and behav-
ioral correlate, i.e., instead of conditioning on neuroanatomic labels as in section 5.9.1 the probability density estimation
is conditioned on behavioral components. As already described in section 5.3.1 the method has been used by Fox et al.
(1997b) with a simple parametric density estimation conditioned on mouth M1-area, and Turkeltaub, Eden, Jones, and
Zeffiro (2001) that used a kernel method for modeling conditioned on a “language” behavioral component. Both these
studies hand-picked the locations that were included in thestudy.

Figures 5.17(a) and 5.17(a) show two types of modeling with abroader set of BrainMap™ locations: Figure 5.17(a)
displays 3 isosurfaces in the probability densities generated from approximately 3800 BrainMap™ locations conditioned
on 3 of the 6 main behavioral domains in BrainMap™: perception, motion and cognition, cf. tables 2.1 and A.2. These
densities are the posterior densities from a generalizableGaussian mixture modeling, see section 3.12.1. Probability mass
is low in the posterior part of the frontal cortex and in the lower part of the brain, e.g., inferior cerebellum. This may
reflect limited field of view of the brain scanners and preference for experiments involving low-level rather than high-
level cognitive components that would tend to activate the frontal cortex more. Probability is concentrated in the occipital
lobe (corresponding to low-level visual activation paradigms), and in the left hemisphere — corresponding to right hand
activation in primary sensorimotor areas. The components of the Gaussian mixture in this area show very little, if any,
difference in the y-coordinate between motion and perception. It could have been expected that motion probability would
concentrate more posterior than the perception probability, — the motor cortex being posterior to the central sulcus.

In figure 5.17(b) BrainMap™ locations are modeled with the kernel method from section 3.12.2 on locations from
two categories in the second level of the behavioral domain of BrainMap™: “Vision” and “audition”, cf. tables 2.1
and A.2. Here only locations from experiments where the “Behavioral Domain” field has only one value are included
and this leaves 60 audition and 366 vision locations. The isosurfaces are at�audition � � 	
� and�vision � � 	��

. The
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(a) Mixture modeling of “perception”, “cognition” and “motion”. (b) Kernel density estimate of “Audition” and “Vision”.

Figure 5.17: Functional volumes modeling VRML screenshot. The left panel displays three of the six main categories
in BrainMap™ “Behavioral Domain”: perception (red wire-frame), cognition (green polygons) and motion (blue with “M”-
texture). The right panel shows a kernel density modeling of “vision” (green polygons) and “audition” (red wire-frame).

audition volume are concentrated bilaterally around the temporal lobe. The point with the highest density has Talairach
coordinates�� � � � � � � �	
� � 	 
� � � � and the Talairach Daemon labels it as “Temporal Lobe” with 86.67% probability,
“Left Cerebrum, Temporal Lobe, Superior Temporal Gyrus, White Matter”. A tentative hypothesis from figure 5.17(b)
is that the visual activation tends to be symmetric for the ventral stream (“where” stream, location, motion action) and
asymmetric left-dominated for the dorsal stream (“what” stream, form, color). Such hypotheses should be supported by
a thorough literature study — and if the hypotheses are stillevident experiments can be formed to test the hypotheses
explicitly.

Figure 5.18 shows locations listed by Law, Svarer, Rostrup,and Paulson (1998) — a saccadic eye-movement study —
colored by the probability densities displayed in figure 5.17(a), so that the red component is governed by the probability of
perception, the green by cognition and blue by motion. Brightness will then be inverse proportional to an overall novelty
index. The highest posterior probability for a single “behavioral domain” is the third location with the most probable label
being “motion”. In the paper the location has been denoted the supplementary eye field, — an area associated with the
control of eye movement. It is doubtful whether the coarse annotation (in the 3 main behavioral domain categories) helps
the researcher in understanding his results. More fine grainannotation with more behavioral classes would be needed.

From figure 5.17(b) it is clear that the functional activations conditioned on such broad terms as audition and vision
display a marked non-Gaussianity that can not be captured bysimple standard parametric probability density models: The
main characteristics of the audition volume might be captured by a relatively simple bimodal Gaussian mixture model —
or a simple Gaussian model if the data is split between right and left locations, but the vision probability represents a more
complex, that if modeled with a too simple model would not reveal its characteristics.

The variables that is used as conditions for the probabilitydensity volumes do not have to be in the behavioral domain,
but could also be other design variables, such as modality and number of subjects.

5.9.3 Finding related experiments

How would a researcher find related functional neuroimagingexperiments? The references from a “seed” article can
be browsed together with its citations obtained, e.g., fromISI® Web of Science®. Another way would be to search with
Pubmed using keywords and a third way would be to use BrainMap™ and search with, e.g., behavioral or location criteria.
A search method that will be considered here is on the locations on the experiment level, i.e., finding related experiments
determined by how similar the set of locations are.

Figure 5.19 displays a processing scheme for a simple methodof finding related experiments within BrainMap™



128 Neuroinformatics

Figure 5.18: VRML screenshot of locations listed in (Law, Svarer, Rostrup, and Paulson 1998). The numbers refer to the
entries in the table. The glyphs have been colored according to the posterior probability: The red component denote high
probability for “perception”, the green component for “cognition” and the blue component for “motion”. Thus dark glyphs
will correspond to a location with high novelty.

� Download � Extract � Voxelize � Compute
Distance

� Report �

Figure 5.19: A processing scheme for finding related BrainMap™ experiments based on volume comparisons.

using volume comparison: First all BrainMap™ web-pages aredownloaded and the relevant fields are extracted, i.e., most
importantly the Talairach coordinates, but also other information such as bibliographic information. The sets of locations
are voxelized. In the results shown below each point was convolved with an isotropic Gaussian kernel with	 � � �� 	� 
m��
and normalized with the number of location each experiment consisted of, i.e., the volume would approximately sum
to one and correspond to a probability volume (since all voxels is non-negative). The volume was determined as a 8
millimeter downsampled version of the SPM99 template, see table 3.8. If the “Magnitude” BrainMap™ field of the
locations is included in the voxelization negative voxels could also appear — depending on the sign of the “Magnitude”.
Furthermore, the magnitudes could be used to weight the individual locations during the voxelization. When the data has
been voxelized it can be represented as a matrix� �� � � � with � experiments and� voxels. The distance measure is
here computed as a simple inner product between a query volume�� and the volumes in the matrix� .

� � ��� 	 (5.30)

This distance measure coupled with the Gaussian kernel is relatively sensitive to the spatial distance between locations.
If two locations are considered and the distance between them

�� is varied then the rank/score function� will be propor-
tional to the exponential negative squared distance� �

�	
 �	 ��� �� �, see section B.6.1, – the value related to a cross-
correlation between two signals. If instead the ranking is made inverse proportional to the squared distance� � ��� ��
then the distance is related to the differential entropy between the two voxelized volumes, see section B.6.2. In this case
voxelization can be avoided and the distance measure computed as the Euclidean distance between locations.

Result and discussion

775 experiments from BrainMap™ were downloaded and 726 extracted for voxelization. With the present field of view
and resolution the size of the volume was 13225 voxels, thus the resulting matrix from voxelization was� �� � � � �
� ���� � 
���
�.
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(a) Query volume (b) Result list

Figure 5.20: Query volume and screenshot from HTML-page with the list of results from a “find related experiments”
search using BrainMap™ data.

A “query volume” is shown in figure 5.20(a) that is formed fromlocations from an experiment reported in (Sergent,
Zuck, Levesque, and MacDonald 1992), — a letter and object (visual) processing paper. The original 5 locations are dis-
played as 5 glyphs and the isosurface in the volume from the voxelization is shown on the level of� � � 	


. Figure 5.20(b)
lists the most related experiments in descending order, — most related being the eighth experiment in the paper by Martin,
Wiggs, Ungerleider, and Haxby (1996) which also describes visual object processing (“naming pictures of animals and
tools”). All other experiments in the displayed list are vision experiments. Another experiment from the same paper as
the query experiment is ranked sixth.

There are several directions in which the approach can be extended. It would be relatively straightforward to include
terms from the abstract of the BrainMap™ paper. Then a parameter determining the weight given to term versus volume
should be set — either by the user or optimized in respect to some appropriate measure. Heavy weight on the terms would
constitute a Pubmed-like search.

If the comparison is performed in the voxelized space not only BrainMap™ experiments can be compared but also
experiments (result images) from, e.g., fMRIDC. Presently, few authors have submitted result images to fMRIDC (fM-
RIDC, personal communication). (Wessinger, VanMeter, Tian, Van Lare, Pekar, and Rauschecker 2001) is one of the few
and this contains only single slices from individual subjects without spatial normalization, thus it is presently not possible
to perform a search across databases. But as result volumes are entered in the fMRIDC database nothing should hinder
the inclusion of these data. With the present size of the datastatic web-pages can be generated off-line and made public on
a web-server. With the present resolution of the volume (13225 voxels) several thousand volumes can be searched in less
than a second, thus it would be possible to make ad hoc information retrieval web-services where researchers can submit
their own experiments as result volumes or location lists and get a list returned with related experiments. In this case the
experiment of the researchers should be in Talairach space or a space that could be transformed to Talairach space.

If labeled data existed, e.g., from a manual scoring of related experiments, then the parameters of the search method
could be optimized: kernel type, kernel width and distance measure. Other parameters that need to be set — either by
optimization or user entry — are the handling of location values (the “Magnitude” of BrainMap™): Should it be ignored?
Should the sign be ignored? Ordinary�-contrasts from SPM analyses yield volumes where there could both be negative
and positive voxels value, — ordinary� -contrasts do only return non-negative voxels. Another option is to ignore the
difference between the right and left hemisphere, i.e., ignore the sign on the� Talairach coordinate.
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Chapter 6

Conclusion and discussion

This thesis has investigated some of the issues in neuroinformatics for functional neuroimaging. Much prior research in
this field has focused on statistical modeling and preprocessing, and a large number of tools have been developed and still
new analysis and preprocessing methods are being devised. This thesis has given an overview of some of the methods
available and described a few of them in more detail — especially the unsupervised and explorative analysis methods.
Furthermore, some of the multivariate analyses have been subsumed under the framework ofcanonical ridge analysis:
It was shown that a type of partial least squares and orthonormal partial least squares could be regarded as regularized
versions of canonical correlation analysis.

Visualization techniques suitable for multiple functional neuroimaging results in the form of both locations and vol-
umes were proposed. A Matlab toolbox has been developed thatis able to handle polygon-based graphics and output to
VRML.

An overview of other areas of neuroinformatics for functional neuroimaging was presented, and since a large part
of neuroscience is recorded as textural information in scientific articles an important aspect of neuroinformatics is text
analysis, and this was described in detail.

Author cocitation analysis and journal cocitation analysis were shown to yield interpretable results even though the
data was only obtained from a single journal and with articles from only a relatively short period. A few different
visualization techniques for the bibliographic data have been suggested.

To my knowledge the analyses of NeuroImage presented in section 5.8 constitute the first citation analyses of articles
from scientific journals done independently of the ISI citation indices. Obtaining citation data is in most cases restricted
by the publisher. However, if publishers accept downloading of their full text items then citation analyses and visualiza-
tion should be possible on a larger scale. A Matlab toolbox suitable to handle small amounts of citation data has been
constructed. As most electronic versions of journals yet only cover a small number of years, this toolbox will be able to
handle the bibliographic information contained in the entire corpus of a single journal in its electronic form.

Automated methods for meta-analysis of labeled locations in Talairach space were presented. The mathematical
models applied were conditional probability density estimators in the form of Gaussian mixture models and kernel density
estimators. Both these methods had automatic control of thegeneralization ability. For the kernel density estimator the
kernel width was set through optimization of the cross-validation cost function and the size of the mixture model was
selected by AIC while its covariance was robustly estimatedby a split data set scheme.

The kernel density model was shown to be successful in connection with novelty/outlier detection in the BrainMap™
database. Probability densities in the 3-dimensional Talairach space were estimated conditioned on anatomical labels:
This constitutesconditional outlier detection. Several outliers were found and among the top 21 the outliers constituted
errors during database entry, typographical errors on the level of articles and unusual use of terminology, e.g., the term
“lobe” was found to be seldomly used in connection with the “frontal lobe”, and locations labeled so would be identified
as outliers.

Redundancyis a key aspect in discovering outliers. Without the redundancy between the anatomical labels and the
spatial Talairach coordinate it would not have been possible to identify outliers. Ordinary database design often strives
to eliminate redundancy, but here it is found that this should not be the case, e.g., if the words “left” and “right” are
maintained in connection with the anatomical labeling of the locations, the extra redundancy provides a mean for spotting
entry errors on the� Talairach coordinate. Thus a suggestion to neuroscientificdatabase designers is not to eliminate
redundancy in the entries of the database, but rather aim at describing information from a variety of perspectives and let
automatic computerized mathematical models handle the relation between the information.

A method for searching in location-oriented data in Talairach space was suggested. This was based on voxelization
of locations from the BrainMap™ database. It should be easy to extent to the fMRIDC database if/once this database
distributes summary images in Talairach space, thus cross-database searches can be performed. Static web-pages can
be constructed with “related volumes” and since it is also possible to submit entire volumes to a web-server and start a
Matlab script on-line interactive search where the researcher submits s/he own volume will also be possible.
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No quantitative evaluation was done in connection with the neuroinformatics methods. This was due to the high
cost of generating labeled data, e.g., establishing which researchers have high authorities in, say, motor learning requires
expert knowledge in that domain. The same issue arises in assessment of related volumes and the determination of
the significance of the probability density volumes that aregenerated from functional volumes modeling. However, in
connection with outlier detection in the BrainMap™ database it was possible to evaluate the performance of the method
as the outliers could be checked against the information in the original article and authors could be emailed.

Several new aspects of neuroinformatics are beginning to emerge. As image databases, such as fMRIDC, make data
accessible new meta-analysis and information retrieval techniques can be developed, e.g.

• In many case the data are singular, e.g., the matrix of the voxelized locations from BrainMap™ is singular as well
as the matrix associated with the terms in the papers contained in BrainMap™.Canonical ridge analysis, that are
able to handle singular data, would be an interesting tool for characterization of the correlation between terms and
anatomical location.

• In the BrainMap™ database authority is presently based on the distinction between “peer reviewed” and “unpub-
lished”. Another type of authority is possible by using the results from cocitation with the possibility of graded
authority ranked modeling and information retrieval.
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Notation and terminology

A.1 Symbol list with main notations

Capital boldface letters are used for matrices, non-capital boldface letters for vectors, and non-boldface for scalars, e.g.,
matrix elements and indices.

� � �� Frobenius norm

� Element-wise product matrix multiplication, i.e., Hadamard product, c.f. (Kiers 2000).

�
Kronecker product

� Column vector consisting of ones.� (Population) mean vector� (Population) covariance matrix.

� Between groups sum of squares and products matrix

� � 	 	� �
��� � � ���� 	 �� � ���� 	 �� �� (A.1)

� �� �� � The covariance matrix between� and� .

� A Similarity matrix� �� � � �.
� 1) A distance matrix� �� � � �. 2)� �� � � � often denoting a diagonal matrix with standard deviations:

� �
�
���

�
�

� 	 	 	 �

� �
�

	 	 	 �

� � ��
�
���
	

(A.2)

� Cost function
� �� � Expectation of a random variable�
 Hessian matrix�� � � � or centering matrix — usually�� � � �,  � 
 	 � �� ��� , see (Mardia et al. 1979,

pages 10–11)



Identity matrix, i.e., matrix with ones in the diagonal and zeros elsewhere.� Dimension of subspace, hidden space or number of mixture components.

� Likelihood


 Log-likelihood

� Number of objects/examples/patterns.

� Number of variables, i.e., dimension of vector.
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� Number of variables, i.e., dimension of vector.

� Sample correlation matrix� � � .

� Sample covariance matrix,� � � ��� �� .

� Matrix transpose.	
Total groups sum of squares and products (SSP) matrix

	 � � � � �
��� � ��� ���� 	 �� � ���� 	 �� �� �

�� �� 	 �� � �� 	 �� �� (A.3)

� Left singular vectors (often eigensequences).
�

Matrix vectorization, i.e., stacking of the columns of a matrix into one long vector.
�

Right singular vectors (often eigenimages).

 �� � Variance-covariance matrix�� � � � of �.
�

Within groups sum of squares and products (SSP) matrix

� � 	 	 � �
��� � ��� ���� 	 ��� � ���� 	 ��� �� (A.4)

� Data Matrix �� � � �.
A.1.1 Data Matrix

Thedata matrixis convenient to represent a set of multivariate measurements. The notation from (Mardia et al. 1979,
section 1.3) is used where the data matrix� �� �� � is constructed by stacking� number of� -dimensional observations.
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� objects
(A.5)

As most multivariate analysis can be formulated with the data matrix it can be an advantage to convert a set of data into
a data matrix representation: In functional neuroimaging with data from PET or fMRI scanners the data matrix can be of
dimension (scans

�
voxels), where the rows represent multiple measurements (scans) and the columns are voxels, which

originally would have a 3-dimensional structure; in text analysis of a set of documents where a document can be converted
to abag-of-wordsthat forms a vector, — with the dimension of the resulting data matrix being (documents

�
words). It

is not always obvious what should be the rows and columns. In functional neuroimaging a scan are usually regarded as
an “observation”. However, in cluster analysis of functional neuroimaging scans it is usually the voxels that are clustered,
and then it is most useful to regard a single voxel as an observation.

A.2 Word list

The word list below explain words from the areas of statistics, neural network, neuroimaging, ...
For statistics the company StatSoft maintains a dictionarythat is available from their homepage
(http://www.statsoft.com ). Explanation on basic statistics terms is also available from The animated
software company (http://www.animatedsoftware.com )

For neural networks Ripley (1996) has a short glossary.
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abundance matrix: A data matrix� �� � � � that con-
tains actual numbers of occurrences or propor-
tions (Kendall 1971) according to Mardia et al.
(1979, exercise 13.4.5).

activation function: The nonlinear function in the output
of the unit in a neural network. Can be a thresh-
old function, a piece-wise linear function or a sig-
moidal function, e.g., hyperbolic tangent or logis-
tic sigmoid. If the activation function is on the
output of the neural network it can be regarded as
a link function.

active learning: 1: The same as focusing (MacKay
1992b). 2: supervised learning Haykin (1994))

adaptive principal components extraction: APEX. Ar-
tificial neural network structure with feed-
forward and lateral connections to compute prin-
cipal components (Kung and Diamantaras 1990).

analysis of covariance: A type of (univariate) analysis of
variance where some of the independent vari-
ables are supplementary/non-interesting — usu-
ally confounds/nuisance variable — and used to
explain variation in the depended variable (Pearce
1982).

anti-Hebbian learning: Modeling by employing a con-
straint.

asymmetric divergence: Equivalent to the relative en-
tropy.

author cocitation analysis: Analysis of the data formed
when a (scientific) paper cites two different au-
thors. The performed with, e.g., clustering tech-
nique (McCain 1990). An overview of author
cocitation analysis is available in (Lunin and
White 1990).

auto-association: Modeling with the input the same as the
output.

backpropagation: (polysemy) The method to find the
(first-order) derivative of a multilayer neural net-
work. The method of adjusting (optimizing) the
parameters in a multilayer neural network.

bias: (polysemy) A threshold unit in a neural network.
A models inability to model the true system. The
difference between the mean estimated model and
the true model. The difference between the mean
of an estimator and the true value.

bias-variance trade-off: The compromise between the
simplicity of the model (which causes bias) and
complexity (which causes problems for estima-
tion and result in variance) (Geman, Bienenstock,
and Doursat 1992).

Burt matrix: A covariance matrix of an indicator matrix
(Burt 1950):� ��

canonical correlation analysis: A type of multivariate
analysis.

canonical variable analysis: A set of different multivari-
ate analyses.

canonical variate analysis: Canonical correlation analy-
sis for discrimination, i.e., with categorical vari-
ables.

cluster: 1: In SPM99 a region in a thresholded SPM
which voxels are connected. 2: In cluster analysis
a set of voxels (or other objects) characterized by
a center.

cognition: 1: Any mental process. 2: A mental process
that is not sensor-motoric or emotional. 3: The
process involved in knowing, or the act of know-
ing (Encyclopaedia Britannica Online)

conditional (differential) entropy:

� �� �� � � 	
� � �� �� � �� � �� �� � �� �� (A.6)

confound: (usual meaning) A nuisance variable that is cor-
related with the variable of interest.

conjugate prior: A prior “which have a functional form
which integrates naturally with data measure-
ments, making the inferences have an analytically
convenient form” (MacKay 1995b). Used for reg-
ularization.

consistent: An estimator is consistent if the variance of
the estimate goes to zero as more data (objects)
are gathered.

cost function: The function that is optimized. Can be de-
veloped via maximum likelihood from a distribu-
tion assumption between the target and the model
output. Other names are Lyapunov function
(dynamical systems), energy function (physics),
Hamiltonian (statistical mechanics), objective
function (optimization theory), fitness function
(evolutionary biology). (Hertz et al. 1991,
page 21–22).

cross-entropy:

	
� � �� � �� � �� ��� (A.7)

Equivalent to the sum of the relative entropy and
the entropy (of the distribution the relative en-
tropy is measured with respect to). Can also be
regarded as the average negative log-likelihood,
e.g., with� �� � as a modeled density and� �� � as
the true unknown density (Bishop 1995a, pages
58–59).

cross-validation: Empirical method to assess model per-
formance.
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dependence: In the statistical sense: If two random vari-
ables are dependent then one of the random vari-
ables convey information about the value of the
other. While correlation is only related to the
probability density function with the two first mo-
ments, dependency is related to all the moments.

dependent variable: The variable to be ex-
plained/predicted from the independent variable.
The output of the model. Often denoted� .

design matrix: A matrix containing the “independent”
variables in a multivariate regression analysis.

differential entropy: Entropy for continuous distributions

� �� � � 	
� � �� � �� � �� ��� (A.8)

Often just called “entropy”.

directed divergence: Equivalent to relative entropy ac-
cording to (Haykin 1994).

empirical Bayes: Bayesian technique where the prior is
specified from the sample information

entropy: A measure for the information content or degree
of disorder.

elliptic distribution / elliptically contour distribution: A
family of distribution with elliptical contours.

� �� � � �� ������ ��� 	 � ��� �� �� 	 � ��
(A.9)

The distribution contains the Gaussian distribu-
tion, the multivariate� distribution, the contami-
nated normal, multivariate Cauchy and multivari-
ate logistic distribution

estimation: The procedure to find the model or the param-
eters of the model. In the case or parameters: a
single value for each parameter in, e.g., maximum
likelihood estimation, or a distribution of the pa-
rameters in Bayesian technique.

evidence: The probability of the data given the model or
hyperparameters (MacKay 1992a). “Likelihood
for hyperparameters” of “likelihood for models”,
e.g.,� �� �� �.

expectation maximization: A special group of optimiza-
tion methods for models with unobserved data
(Dempster, Laird, and Rubin 1977).

explorative statistics: Statistics with the aim of generat-
ing hypotheses rather than testing hypothesis.

feed-forward neural network: A nonlinear model.

finite impulse response (model): A linear model with a
finite number of input lags and a single output.

F-masking: Reduction of the number of voxels analyzed
using a F-test.

Frobenius norm: Scalar descriptor of a matrix (Golub and
Van Loan 1996, equation 2.3.1). The same as
the square root of the sum of the singular values
(Golub and Van Loan 1996, equation 2.5.7).

�� �� �
���� �� ��� ��� �� 	 (A.10)

full width half maximum: Used in specification of filter
width, related to the standard deviation by

FWHM � �
� �� � 	 � � 	�
	 	 (A.11)

functional integration: Term used by Friston (1997a) to
denote analyses of brain data with multivariate
statistical methods.

functional segregation: Term used by Friston (1997a) to
denote analyses of brain data with univariate sta-
tistical methods.

functional volumes modeling: A term coined by Fox
et al. (1997b) to denote meta-analysis in Ta-
lairach space.

Gauss-Newton (method): Newton-like optimization
method that uses the “inner product” Hessian.

general linear model: A type of multivariate regression
analysis, usually where the independent variables
are a design matrix.

generalized additive models: A group of nonlinear mod-
els proposed by (Hastie and Tibshirani 1990):
Each input variable is put through a non-linear
function. All transformed input variable is then
used in a multivariate linear regression, and usu-
ally with a logistic sigmoid function on the out-
put. In the notation of (Bishop 1995a):

� � � ��� � � �� � � � � �� (A.12)

generalized inverse: An “inverse” of a square or rectan-
gular matrix. If� � denotes the generalized in-
verse of� then it will satisfy some of the fol-
lowing Penrose equations(Moore-Penrose condi-
tions) (Golub and Van Loan 1996, section 5.5.4)
and (Ben-Israel and Greville 1980):

�� �� � � �� � (A.13)

� ��� � � � � �� � � (A.14)��� � �� � �� � �� � � � (A.15)�� �� �� � � �� �� � � � (A.16)

where � denotes the conjugate, i.e., transposed
matrix if � is real. A matrix that satisfy all
equations is uniquely determined and called the
Moore-Penrose inverse and (often) denoted as
� � .
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generalized least squares: 1: Regression with corre-
lated (non-white) noise, thus were the noise co-
variance matrix is not diagonal, see, e.g., (Mardia
et al. 1979, section 6.6.2). 2: The Gauss-Newton
optimization method.

Good-Turing frequency estimation: A type of regular-
ized frequency estimation (Good 1953). Often
used in word frequency analysis (Gale and Samp-
son 1995).

Hebbian learning: Estimation in a model where the mag-
nitude of a parameter is determined on how much
it is “used”.

hemodynamic response function: The coupling be-
tween neural and vascular activity.

heteroassociation: Modeling where the input and output
are different, e.g., ordinary regression analysis.

hyperparameter: A parameter in a model that is used
in the estimation of the model but has no influ-
ence on the response of the estimated model if
changed. An example of a hyperparameter is
weight decay

identification: Estimation

ill-posed: According to Hansen (1996) a problem is ill-
posed if the singular values of the associated ma-
trix gradually decay to zero, cf.rank deficient.

Imax: Algorithms maximizing the mutual information
(between outputs). Term used in Becker and Hin-
ton (1992).

inion: The external occipital protuberance of the skull
(Webster). Used as marker in EEG. Opposite the
nasion. See also: nasion, peri-auri

International Consortium for Brain Mapping: (Abbre-
viation: ICBM) Group of research institutes.
They have developed a widely used brain tem-
plate know as the ICBM or MNI template.

inversion: In the framework of input-system-output: To
find the input from the system and the output.

Karhunen-Lóeve transformation: The same as principal
component analysis. The word is usually used in
communication theory.

kernel density estimation: Also known as Parzen win-
dows and probabilistic neural network.

K-means: Clustering technique.

k-nearest neighbor: A classification technique

Kullback-Leibler distance: Equivalent to relative entropy.

lateral orthogonalization: Update method (“anti-
Hebbian learning”) or connections between the
units in the same layer in a neural network which
impose orthogonality between the different units,

i.e., a kind of deflation technique. Used for con-
nectionistic variations of singular value decom-
position, principal component analysis and par-
tial least squares among others, see, e.g., (Hertz,
Krogh, and Palmer 1991, pages 209–210) and
(Diamantaras and Kung 1996, section 6.4).

learning: In the framework of input-system-output: To
find the system from (a set of) inputs and outputs.
In some uses the same as estimation and training.

leave-one-out: A cross-validation scheme where each
data point in turn is kept in the test set while the
rest is used for training the model parameters.

likelihood: A function where the data is fixed and the pa-
rameters are allowed to vary

� �� �� � 	 (A.17)

link function: A (usually monotonic) function on the out-
put of a linear model that is used in general-
ized least squares to model non-Gaussian distri-
butions.

lix: Number for the readability of a text. Devised by
Björnsson (1971).

manifold: A non-linear subspace in a high dimensional
space. A hyperplane is an example on a linear
manifold.

mass-univariate statistics: Univariate statistics when ap-
plied to several variables.

Markov chain Monte Carlo: Sampling technique in sim-
ulation and Bayesian statistics.

maximal eigenvector: The eigenvector associated with
the largest eigenvector.

maximum a posteriori: Maximum likelihood estimation
“with prior”.

maximum likelihood: A statistical estimation principal
with optimization of the likelihood function

m-estimation: Robust statistics.

Metropolis-Hasting algorithm: Sampling technique for
Markov chain Monte Carlo. (Metropolis, Rosen-
bluth, Rosenbluth, Teller, and Teller 1953)

Moore-Penrose inverse: A generalized inverse that sat-
isfy all of the “Penrose equations” and is uniquely
defined (Penrose 1955).

multiple regression analysis: A type of multivariate re-
gression analysis where there is only one re-
sponse variable (

� � � �.
multivariate analysis: Statistics with more than one vari-

able is each data set, as opposed to univariate
statistics.
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multivariate regression analysis: A type of linear multi-
variate analysis using the following model

� � �� � � (A.18)

�
is an observed matrix and� is a known matrix.

� is the parameters and� is the noise matrix.
The model is either called multivariate regression
model (if� is observed) or general linear model
(if � is “designed”). (Mardia, Kent, and Bibby
1979, chapter 6)

multivariate regression model: The type of multivariate
regression analysis where the known matrix (� )
is observed.

mutual information: Originally called “information rate”
(Shannon 1948).

� �� �� � �
� � �� � � � �� � �� �� �� �� � �� �� (A.19)

�
� � �� � � � �� � �� �� �� �� � �� �� (A.20)

�
� � �� �� � �� � �� �� �� �� �� �� � �� �� (A.21)

nasion: The bridge of the nose. Opposite the inion. See
also: inion, and periauricular points. Used as ref-
erence point in EEG.

neural network: A model inspired by biological neural
networks.

neurological convention: Used in connection with
transversal or axial images of the brain to de-
note the left side of the image is to the left side
of the brain, - as opposed to the “radiological
convention”.

non-informative prior: A prior with little effect on the
posterior, e.g., an uniform prior or Jeffreys’ prior.
Often improper, i.e., not normalizable.

non-parametric (model/modeling): 1: A non-parametric
model is a model where the parameters do not
have a direct physical meaning. 2: A model with
no direct parameters. (Rasmussen and Ghahra-
mani 2001):

[...] models which we do not nec-
essarily know the roles played by in-
dividual parameters, and inference is
not primarily targeted at the parame-
ters themselves, but rather at the pre-
dictions made by the models

novelty: “Outlierness”. How “surprising” an object is.

nuisance: a variable of no interest in the modeling that
makes the estimation of the variable of interest
more difficult. See also confound.

object: A single “data point” or “example”. A single in-
stance of an observation of one or more variables.

optimization: Used to find the point estimate of a parame-
ter. “Optimization” is usually used when the es-
timation requires iterative parameter estimation,
e.g., in connection with nonlinear models.

ordination: The same as multidimensional scaling.

orthogonal: For matrices: Unitary matrix with no correla-
tion among the (either column or row) vectors.

orthonormal: For matrices: Unitary matrix with no corre-
lation among the (either column or row) vectors.

partial least squares (regression): Multivariate analysis
technique usually with multiple response vari-
ables (Wold 1975). Much used in chemometrics.

Parzen window: A type of probability density function
model (Parzen 1962) where a window (a kernel)
is placed at every object. The name is used in the
pattern recognition literature and more commonly
known as kernel density estimation.

penalized discriminant analysis: (Linear) discriminant
analysis with regularization.

perceptron: A (multilayer) feed-forward neural network
(Rosenblatt 1962).

periauricular: See also: nasion, inion

polysemy: The notion of a single word having several
meanings. The opposite of synonymy.

preliminary principal component analysis: Principal
component analysis made prior to a supervised
modeling, e.g., an artificial neural network analy-
sis or canonical variate analysis.

prediction: In the framework input-system-output: To find
the output from the input and system.

principal component analysis: An unsupervised multi-
variate analysis that identifies an orthogonal
transformation (Pearson 1901).

principal component regression: Regularized regres-
sion by principal component analysis (Massy
1965).

principal coordinate analysis: A method in multidimen-
sional scaling. Similar to principal component
analysis on a distance matrix if the distance mea-
sure is Euclidean (Mardia, Kent, and Bibby 1979,
section 14.3).

principal covariate regression: Multivariate analysis
technique (de Jong and Kiers 1992).

principal manifold: Generalization of principal curves, a
non-linear version of principal component analy-
sis. (DeMers and Cottrell 1993)

probabilistic neural network: A term used in Specht
(1990) to denote kernel density estimation.
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probabilistic principal component analysis: Principal
component analysis with modeling of a isotropic
noise (Tipping and Bishop 1997). The same as
sensible principal component analysis.

profile likelihood: A likelihood where some of the vari-
ables — e.g., nuisance variables — are maxi-
mized (Berger, Liseo, and Wolpert 1999, equa-
tion 2)

�� �� � � � ����
�

� �� � � � � � 	 (A.22)

radiological convention: Used in connection with
transversal or axial images of the brain to de-
note the right side of the image is to the left side
of the brain, - as opposed to the “neurological
convention”.

rank: The size of a subspace spanned by the vectors in
a matrix

rank deficient: According to Hansen (1996) a matrix is
said to be rank deficient if there is a well-defined
gap between large and small singular values, cf.
ill-posed

regularization: The method of stabilizing the model esti-
mation.

relative entropy: A distance measure between two distri-
butions (Kullback and Leibler 1951).

� �� ��� � � � � �� � �� � �� �
� �� � �� (A.23)

Other names are cross-entropy, Kullback-Leibler
distance (or information criterion), asymmetric
divergence, directed divergence.

robust statistics: Statistics designed to cope with outliers.

run: A part of an experiment consisting of several
measurements, e.g., several scans. The measure-
ments in a run is typically done with a fixed fre-
quency. Multiple runs can be part of a session and
a run might consist of one or more trials or events.

saliency map: A map of which inputs are important for
predicting the output.

saturation recovery: Type of MR pulse sequence.

self-organizing learning: The same as unsupervised
learning

sensible principal component analysis: Principal com-
ponent analysis with modeling of an isotropic
noise coined by Roweis (1998). The same as
probabilistic principal component analysis (Tip-
ping and Bishop 1997)

session: A part of the experiment: An experiment might
consists of multiple sessions with multiple sub-
jects and every session contain one or more runs.

sigmoidal: S-shaped. Often used in connection about the
non-linear function in an artificial neural network.

slice timing correction: In fMRI: Correction for the dif-
ference in sampling between slices in a scan.
Slices can acquired interleaved/non-interleaved
and ascending/descending.

softmax: A vector function that is a generalization of the
logistic sigmoid activation function suitable to
transform the variables in a vector from the in-
terval � 	 � �� � to �� � 
� so they can be used as
probabilities (Bridle 1990)

�� � exp��� �
� � exp��� � � 	 (A.24)

spatial independent component analysis: Type of in-
dependent component analysis in functional
neuroimaging (Petersson, Nichols, Poline, and
Holmes 1999a). See also temporal component
analysis.

statistic: A value extracted from a data set, such as the em-
pirical mean or the empirical variance.

statistical parametric images: A term used by Peter T.
Fox et al. to denote the images that are formed
by statistical analysis of functional neuroimages.

statistical parametric mapping: The process of getting
statistical parametric maps: Sometimes just de-
noting voxel-wise t-tests, other times ANCOVA
GLM modeling with random fields modeling, and
sometimes also including the preprocessing: re-
alignment, spatial normalization, filtering, ...

statistical parametric maps: A term used by Karl J. Fris-
ton and others to denote the images that are
formed by statistical analysis of functional neu-
roimages, especially those formed from the pro-
gram SPM.

supervised (learning/pattern recognition): Estimation
of a model to estimate a “target”, e.g., classifi-
cation (the target is the class label) or regression
(the target is the dependent variable) estimation
with labeled data.

synonymy: The notion that several words have the same
meaning. The opposite of polysemy.

system: The part of the physical world under investiga-
tion. Interacts with theenvironmentthroughinput
andoutput.

system identification: In the framework of input-system-
output: To find the system from (a set of) in-
puts and outputs. The same aslearning, although
system identificationusually refers to parametric
learning.
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temporal independent component analysis: Type of
independent component in functional neuroimag-
ing (Petersson, Nichols, Poline, and Holmes
1999a). See also spatial independent component
analysis

test set: Part of a data set used to test the performance (fit)
of a model. If the estimate should be unbiased the
test set should be independent of the training and
validation set.

time-activity curve: The curve generated in connection
with dynamic PET images

total least square: Multivariate analysis estimation tech-
nique

training: Term used in connection with neural networks
to denote parameter estimation (parameter opti-
mization). Sometimes called learning.

training set: Part of a data set used to fit the parameters
of the model (not the hyperparameters). See also
test and validation set.

trial: An element of a psychological experiment usu-
ally consisting of a stimulus and a response.

truncated singular valued decomposition: Singular
value decomposition of a matrix� �� �� � where
only a number of components, say� � ���� �� �,
are maintained�

�� � ���� � � (A.25)

where the diagonal�� is �
� � 
� � 
� � � � 	 	 	 � � �. The
truncated SVD matrix is the� -ranked matrix
with minimum 2-norm and Frobenius norm of the
difference between all� -ranked matrices and� .

univariate statistics: Statistics with only one response
variable, as opposed to multivariate analysis.

unsupervised learning: Learning with only one set of
data, — there is no target involved. Clustering
and principal component analysis is usually re-
garded as unsupervised.

voxel: A 3-dimensional pixel. The smallest picture ele-
ment in a volumetric image.

validation set: Part of a data set used to tune hyperparam-
eters.

weights: The model parameters of a neural network.

white noise: Noise that is independent (in the time dimen-
sion).

z-score: Also called “standard score” and denotes a ran-
dom variable transformed so the mean is zero and
the standard deviation is one. For a normal dis-
tributed random variable the transformation is:

�� �
� 	 ��
	� (A.26)

A.3 General Abbreviations

This list contains acronyms within the areas of statistics and functional neuroimaging. All the abbreviation from (Law
1996) is listed. The Acrophile web-service provides more general types of acronyms (Larkey et al. 2000).

ACA: Author cocitation analysis

ACF: Autocorrelation function

AIC: Akaike’s information criterion (or “An informa-
tion criterion)

AIR: Automated image registration (program and
method for aligning neuroimages)

ANCOVA: Analysis of covariance.

ANOVA: Analysis of variance.

AR: Autoregressive

ARMA: Autoregressive moving average.

ARMAX: Autoregressive moving average, exogenous (in-
puts).

aMRI: Anatomical magnetic resonance imaging (or im-
age). Used to distinguish it from an fMRI.

ANOVA: Analysis of variance.

APEX: Adaptive principal components extraction.

AR: auto regressive (model).

ARMA: autoregressive moving average (model).

ARMS: Adaptive rejections Metropolis sampling.

ARS: Adaptive rejection sampling. Sampling tech-
nique.

ASCII: American Standard Code

BA: 1: Brodmann area. 2: Broca’s area.

BGO: Bismuth germanate oxide

BIC: Bayesian information criterion

BIC: Information criterion B

BOLD: Blood oxygen level-dependent.

Bq: Becquerel

CBF: Cerebral blood flow.

CCA: Canonical correlation analysis

CGI: Common gateway interface

Ci: Curie
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COG: Center of gravity

CSF: Cerebral spinal fluid.

CT: Computer tomography

CVA: Canonical variate analysis.

DAG: Directed acyclic graph.

DBM: Deformation-based morphometry.

DOF: Degrees of freedom.

DTI: Diffusion tensor image.

DWI: Diffusion weighted image.

ED: Effective Dose

EEG: Electroencephanography or electroen-
cephanogram

efMRI: Event-related functional Magnetic Resonance

ENG: Electronystagmography

EMG: Electromyogram.

EOG: Electro-oculography.

EPI: Echo-planar imaging. Type of MRI pulse se-
quence. Used in fMRI.

erfMRI: Event-related functional magnetic resonance
imaging. Also efMRI.

EM: Expectation Maximization

ESM: Electrocortical Stimulation mapping.

FA: Flip angle.

FAIR: Flow-Sensitive Alternating Inversion Recovery

FDG: Fluorodeoxyglucose�
�

F-2fluoro-2-deoxyglucose

FID: Free induction decay.

FIR: Finite impulse response.

fMRI: Functional magnetic resonance imaging (or im-
age).

FOV: Field of view. The dimension of the scanner im-
age.

FVM: Functional volumes modeling.

FWHM: Full width half max.

GE: Gradient echo

GLM: 1: General linear model. 2: Generalized linear
models.

GLMM: Generalized linear mixed models. Generalized
linear models with random effects.

GLS: Generalized least squares

H2-15O: Oxygen-15 labeled water.

HME: Hidden Markov Model.

HPD: Highest posterior density.

HRF: Hemodynamic response function.

HTML: Hypertext markup language.

HTTP: Hypertext transfer protocol.

ICA: Independent component analysis

ICBM: International Consortium for Brain Mapping

idf: Inverse document frequency

IIR: Infinite impulse response.

iOIS: Intraoperative optical imaging of intrinsic signals.

IR: 1: Information retrieval. 2: Intraoperative in-
frared (imaging). 3: Inversion recovery. Type of
MRI pulse sequence.

IRF: Impulse response function

ISI: 1: Institute for Scientific Information. 2: Inter-
stimulus intervals. 3: Interscan Interval.

ITI: Inter-trial interval

LED: Light emitting diode

LMS: Least mean square

LON: Lateral orthogonalization network

LOO: Leave-one-out

MAP: Maximum a posteriori

MANCOVA: Multivariate analysis of covariance

MANOVA: Multivariate analysis of variance.

MCMC: Markov chain Monte Carlo.

MDL: Minimum description length.

MDS: Multidimensional scaling

MEG: Magnetoencephalography.

MLE: Maximum likelihood estimator.

MRF: Markov random field.

NCS: Nerve conduction

NMR: Nuclear magnetic resonance.

OIS: Optical imaging of intrinsic signals.

PACF: Partial auto-correlation function.

PCA: Principal component analysis.

PCoA: Principal coordinate analysis

PCR: Principal component regression.

pdf: probability density function
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PDF: Portable Document Format

PET: Positron Emission Tomography.

PLS: Partial least squares (also called projected latent
structures).

PLSA: Probabilistic latent semantic analysis

pMRI: Perfusion based MRI.

PPCA: Preliminary principal component analysis

PMT: Photomultiplier tube

PSTH: Poststimlus Time Histograms (neurophysiology)

rCBF: Regional cerebral blood flow

relCBF: Relative cerebral blood flow

RF: Radio frequency. The pulse that is used in MRI
to excite the nucleus of the atom.

ROI: Region of interest.

MRI: Magnetic resonance imaging (or image)

MRS: Magnetic resonance spectroscopy

rCBF: Regional cerebral blood flow

rCBV: Regional cerebral blood volume

rCMR: Regional cerebral metabolism rate

rCMRglu: Regional cerebral metabolic rate of glucose

rCMRO2: Regional cerebral metabolic rate of oxygen

rcounts: Regional counts

rOEF: Regional oxygen extraction fraction

SE: Spin Echo.

sICA: spatial independent component analysis

S/N: Signal-to-Noise

SNR: Signal-to-noise ratio.

SOM: Self-organizing map.

SOA: Stimulus onset asynchrony

SPCA: Sensible Principal component analysis

SPI: Statistical parametric images

SPM: 1: Statistical parametric mapping. 2: Statistical
parametric maps. 3: A program for analysis of
functional neuroimages.

SR: Saturation Recovery. Type of MRI pulse se-
quence.

Sv: Sievert

SVD: Singular value decomposition.

SVC: Small volume correction

TAC: Time-activity curve

TE: Echo time

tICA: temporal independent component analysis

TLS: Total least square

TR: Repetition time. Repeat time

TSVD: Truncated singular value decomposition

URL: Uniform resource locator

VAC: Vertical projection of anterior commissure

VBM: Voxel based morphometry

VOI: Volume of Interest

VPC: Vertical projection of posterior commissure

VRML: Virtual Reality Modeling Language

A.4 Anatomical names and abbreviations

anterior: Frontal.

caudal: Referring to a direction toward the tail (of the
spinal cord). Opposite rostral.

contralateral: Opposite side. Opposite ipsilateral.

dorsal: Relating toward the back. Opposite ventral.

fundus: Bottom.

inferior: Bottom or below. Opposite superior.

ipsilateral: Same side. Opposite contralateral.

lateral: Toward the side. Opposite medial.

medial: Toward the middle. Opposite lateral.

posterior: Back. Sometimes used for caudal or dorsal.

rostral: Referring to the part of the spinal cord (and brain)
toward in the nose. Opposite caudal. Somehow
equivalent: superior, anterior, ventral.

superior: Top or above.

ventral: Referring to the “belly-side” (frontal part) of the
spinal cord. Opposite dorsal.
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No. Sub Location Function
1 (Intermediate) postcentral gyrus Somatosensory
2 (Caudal) postcentral gyrus Somatosensory
3 (Rostral) Postcentral gyrus Somatosensory
4 Frontal lobe, precentral gyrus, Gigantopyramidal (Primary) motor cortex

4a Anterior Self generated movements(?)
4p Posterior Roughness discrimination(?)

5 Superior parietal lobule, preparietal
6 Frontal lobe / Precentral gyrus, agranular frontal Part ofPremotor cortex
7 Superior parietal lobule / precuneus
8 Mesial frontal cortex, intermediate frontal Frontal eye field
9 Superior frontal gyri / (medial) prefrontal cortex, granual frontal

10 Anterior prefrontal cortex / medial frontal gyrus, frontopolar Cognition(?)
11 Orbitofrontal cortex, prefrontal Cognition(?)
12 Prefrontal Cognition(?)
13 (Only in monkey)
14 (Only in monkey)
15 (Only in monkey)
16 (Only in monkey)
17 Occipital lobe, striate Vision, primary visual cortex
18 Occipital lobe, extra striate, parastriate Vision, secondary visual cortex
19 Occipital lobe, peristriate Vision
20 Inferior temporal Visual
21 Middle temporal Visual
22 Temporal lobe, posterior superior temporal gyrus, superior temporal (Spoken) language, Wernicke
23 Posterior cingulate, ventral posterior cingulate Cognition(?)
24 Anterior cingulate gyrus, ventral anterior cingulate Cognition(?), autisma, attentionb

25 Inferior anterocaudal cingulate gyrus, subgenual Cognition(?)
26 Ectosplenial Cognition(?)
27 (Only in monkey)
28 Amygdala, entorhinal
29 Granular retrolimbic
30 Retro-splenial region, agranular retrolimbic
31 Posterior cingulate gyrus
32 Mesial frontal cortex / Anterior cingulate Motor
33 Pregenual Cognition(?)
34 Parahippocampal gyrus, dorsal entorhinal Olfaction
35 Perirhinal cortex Cognition(?)
36 Ectorhinal cortex Cognition(?)
37 Posterior fusiform, occipitotemporal Visual
38 Superior temporal / Inferior temporal pole, temporopolar Emotion
39 Angular gyrus, parieto-occipeto-temporal junction (Perception of written) language
40 Supramarginal gyrus / parietal lobe Somatosensory(?)
41 Temporal lobe, Heschl’s gyrus, anterior transverse temporal Hearing
42 Temporal lobe, Heschl’s gyrus, posterior transverse temporal Hearing
43 Subcentral
44 Inferior frontal gyrus, opercular Speech, Broca
45 Inferior frontal gyrus, triangular Speech, Broca
46 Prefrontal cortex, middle frontal Cognition(?), response selectionc

47 Insula / Inferior frontal gyrus, orbital Cognition(?)
48 Retrosubicular
49 (Only in monkey)
50 (Only in monkey)
51 (Only in monkey)
52 Parainsula

aHaznedar, Buchsbaum, Wei, Hof, Cartwright, Bienstock, andHollander (2000)
bBush, Frazier, Rauch, Seidman, Whalen, Jenike, Rosen, and Biederman (1999)
c(Rowe et al. 2000)

Table A.1: Brodmann numbers. Some of the information in this table was taken from web-pages of Mark Dubin (University
of Colorado) http://spot.colorado.edu/ dubin/talks/brodmann/, NeuroNames (Bowden and Martin 1995) and (Heimer 1994).
The function column is tentative.
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Type Subtype Example
Perception Audition Lexical coding

Noise
Speech
Words

Gustation
Olfaction
Somethesis Pain

Temperature
Vibration

Vision Color
Letters
Letter recognition
Motion
Objects
Patterened stimulation
Photic stimulation
Retinotopy
Shape
Spatial discrimination
Words

Motion Execution Hand flexion
Oculomotor saccades
Saccades
Somatopy

Music
Preparation Articulatory coding
Speech

Cognition Attention Divided
Motion
Selection
Selective
Letter recognition

Language First letter word generation
Orthography
Phonology
Phonological discrimination
Phonological processing
Primed words
Recalled words
Semantic association
Semantic categorization
Semantic generation
Semantics
Words
Word generation

Mathematics
Memory Primed words

Recalled words
Emotion Anxiety
Disease
Drug

Table A.2: BrainMap™ “Behavioral effects”. Only a part of the behavioral effects is shown as there are approximately 300
different types.



Appendix B

Derivations

B.1 Principal component analysis as constrained variance maximization

Theorem B.1.1 With maximization of the variance of a linear project� � �� under the constraint��� � 

the

parameters� will be determined as the maximal eigenvectors of the covariance matrix of��
� � max� eig ���� � 	 (B.1)

Proof B.1.1

�PCA �  �� � � ���� 

(B.2)

� � ����� � ���� 

(B.3)

� � �� ��� �� �� � ���� 

(B.4)

� � ����� ��� � ���� 

(B.5)

� �� ���� � ���� 

(B.6)

The maximum of the first part under the constraint can be foundwith Mardia et al. (1979, theorem A.9.2) and is simply
the maximal eigenvector, — the eigenvector corresponding to the largest eigenvalue�

� � max� eig ���� � 	 �
(B.7)

B.2 Ridge regression and singular value decomposition

In connection with using canonical ridge analysis on large singular matrices the ridge penalization does not have to be
applied in the large space but can be confined to a smaller space, e.g., with dimension� � ���� �� �� �. Somewhat
similar derivations appear in (Kustra and Strother 2000, appendix A), (Kustra 2000, appendix F).

Lemma B.2.1 (Exponential of ridge regularized covariance for singular data matrix) With the matrix� �� � � � of
rank� � ���� �� � singular value decomposed��� � � svd �� �, � is a rational number and� � �

:

�� �� � � 
� 	� � ��� � � (B.8)

where the diagonal matrix� is defined as

� � �� � � � 
� 	� 	
(B.9)

Proof B.2.1

�� �� � � 
� 	� � ����� ��� ��� � � � 
� �� (B.10)

�
���� ���� � � � 
� �� (B.11)

� ��� �� � � � 
� 	� (B.12)

� ��� �� � � � � 
�� � 	� (B.13)

� �� �� � � � 
� 	 � � �
�

(B.14)
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With (Mardia et al. 1979, corollary A.6.4.1):

� � �� � � � 
� 	� � � 	 �
(B.15)

Lemma B.2.2 (Covariance of singular ridge regularized prewhitened matrices) With the singular value decomposi-
tion of two matrices� � ��

� � and
� � ���� the ridge regularized prewhitening of the covariance between the two

matrices becomes

�� �� � �� 
� 	���� � �� �� �� � �� 
� 	���� � �� �� ��� ��� � (B.16)

With the diagonal matrices defined as

� � � �� � � �� 
� 	���� � (B.17)

� � � �� � � �� 
� 	���� � � (B.18)

where� � ���� �� � and� � ���� �� �.
Proof B.2.2 The proof is shown for the first part of equation B.16 involving� . The other part follows from a symmetry
argument.

�� �� � �� 
� 	���� � � � �� �� � �� 
� 	���� �
��

� ��� (B.19)

� �� �� � �� 
� 	���� ��� � (B.20)

By using lemma B.2.1

� � �� � � �� 
� 	���� � ���� � (B.21)

� � �� � � �� 
� 	���� �� � (B.22)

� �� �� � (B.23)

With the diagonal matrix defined as

� � � �� � � �� 
� 	���� � (B.24)

� diag � 

�� 
�

� � �� � 	 	 	 �

�

� 
�� � �� � � (B.25)

where

� is the� ’th diagonal element.

�

Theorem B.2.1 (Canonical correlation vectors from canonical ridge analysis of singular matrices) If the singular
value decomposition of two matrices� �� � � � and

� �� � � � are � � ��� � and
� � ���� the canonical

correlation vectors� �� � � � and� �� � � � and the diagonal matrix� with canonical correlation coefficientsare
found as

� � � �� �� � �� (B.26)

� � � �� ��� �� (B.27)

� � � ��� � � ��� � (B.28)

where
�� �� � � � and

�� �� � � � are scaled right eigenvectors and the diagonal matrices� �� � � � and
� �� � � �

contain� eigenvalues each from a symmetric� � � eigenvalue decomposition

��� � � reig ��� ������ ��� � 	 (B.29)

��� � � reig ��� ��� ��� ���� 	 (B.30)
�� � � �diag �diag ����� ��� �� 	� ����� (B.31)
�� � � �diag �diag ����� ����� 	� ����� (B.32)
�� � � �� � � �� 
� 	�� � (B.33)
�� � � �� � � �� 
� 	�� � (B.34)

� � � �� � � �� 
� 	���� � (B.35)

� � � �� � � �� 
� 	���� � � (B.36)
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where� may also be computed as

� � � �� ����� ��� � �� (B.37)

Proof B.2.3 With an abusive notation the canonical correlation vectorsand coefficients can be written as

��� � � �� �� � �� 
� 	���� svd
��� �� � �� 
� 	���� � �� �� �� � �� 
� 	����� �� �� � �� 
� 	���� (B.38)

With lemma B.2.2

� �� �� � �� 
� 	���� svd ��� �� ��� ��� �� �� �� �� �� � �� 
� 	���� (B.39)

The singular vector and values of the matrix
� �� � � � are now found via eigenvalue decomposition of the outer product

matrix

�� � � �� �� ��� ����� ����� �� � (B.40)

� �� �� �� �� �� �� �� �
�� ������ �� �� �� �� �� �� �

(B.41)

The matrices� and
�

are permuted

�� � �� ������ �� ��� �� � (B.42)

� �� ������ ��� � � (B.43)

and the matrices
�� and�� are right eigenvalue decomposed

��� � � reig ��� � (B.44)��� � � reig ��� � (B.45)

The two eigenvalue decomposition are related through (Mardia et al. 1979, theorem A.6.2), i.e. the non-zero eigenvalues
are equal� � � � � � (the square of the singular values) and the eigenvectors arefound as

�
�

columns

�� � �� (B.46)

� �� �� �� (B.47)

The eigenvector matrix
��

can be scaled so it contains standardized eigenvectors

� � �� �
diag

�
diag

� �� � ���� ����� (B.48)

� �� �� �� �diag �diag ����� �� ��� �� �� 	������ (B.49)

� �� �� �� �diag �diag ����� ��� �� 	� ����� 	 (B.50)

To arrive at the matrix� canonical correlation vector the square root of the ridge regularized covariance should be applied
(Mardia et al. 1979, definition 10.2.8) to the eigenvectors

� � �� �� � �� 
� 	���� � (B.51)

With lemma B.2.1 and with
�
� � � �� � � �� 
� 	����

� � �
� �� �� (B.52)

and inserting equation B.50

� � �
� �� ��� �� �� �diag �diag ����� ��� �� 	������ (B.53)
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with
�� � � �

� �� �
� � �� �� �� �diag �diag ����� ��� �� 	� ����� (B.54)

and the definition
�� � � �diag �diag ����� ��� �� 	� �����

� � �� �� � �� (B.55)

The result for� follows either from symmetric derivation or� �� � �� ����� ��� �� �� �
� �� �� �

�� ���� �� �
� �� �� �

(B.56)

��
is the same matrix as

�� and thus the non-standardized eigenvectors of
��

, i.e.,
� �� can be found as

���� � reig ��� � (B.57)

� � �� (B.58)

� �� ����� ��� �� (B.59)
�
� � �� �� � �� 
� 	���� � (B.60)

� � �
� ����� ����� ��� �� (B.61)

� � �� ����� ��� �� �
(B.62)

B.3 Mutual information

Find the mutual information between two multivariate Gaussian variables:
� �� �� � �� �� � � � �� � 	 � �� �� � (B.63)

Plug-in the entropy for the multivariate Gaussian distribution:

�


� �� ���� ��� ���� �� � 


� �� ���� ��� ���� �� 	


� �� ���� �� �� �� � ���� ��� ������ ���

����� (B.64)

�


� ��

�
���

��� ��� ���� ���� ��� ���� �
��� �� �� �� � ���� ��� ������ ���

����

�
��� (B.65)

�


� �� ���� ����� ����� ��� ������ ���

����
(B.66)

Mardia, Kent, and Bibby (1979, equation A.2.3j):

�


� �� ���� ����� ����� ����� 	 ���� ���� ��� � (B.67)

�


� �� ���� ����� 	 �������� ��� � (B.68)

Mardia, Kent, and Bibby (1979, equation A.2.3k):

�


� �� ���� ����� ��
� � � ���� ���� ���� ��� � (B.69)

�


� ��



�
� � � ���� ���� ���� ��� � (B.70)

� 	


� �� �
� � � ���� ���� ���� ��� �	 (B.71)

Which is the same as (Mardia, Kent, and Bibby 1979, equation A.2.3n):

� 	


� �� �
� � � ���� ���� ���� ��� �	 (B.72)
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B.4 The Bilinear model

B.4.1 Canonical correlation analysis

Theorem B.4.1 (CCA as part of BLM) With the bilinear model

� � 	� � �
(B.73)

� � 	� � � (B.74)

together with the conditions �	 � �� (B.75)� �� � � �� (B.76)�� � � �� � (B.77)

the maximum likelihood estimate of� is the left canonical correlation vectors of� andY.

Proof B.4.1 The maximum likelihood estimate of� is found by the solution to the generalized eigenvalue problem
(Burnham, MacGregor, and Viveros 1999, equation 10)

�� ��� ���� � �� � � ������ � �� 	 � � � ���� (B.78)

Inserting equations B.76 and B.77 and substituting��� � � �� and��� � � ��

���� ����� ��� � ��� ����� ��� 	 � � ����� (B.79)

With an invertable���
��� �� ���� ����� ��� � ��� ����� ��� 	 � � �� (B.80)

������ ��� ����� ��� � ����� ��� ����� ��� 	 � � �� (B.81)

�
� � ����� ��� ����� ��� 	 � � �� (B.82)

� � ����� ��� ����� ���� � �� (B.83)

����� ��� ����� ���� � �� 	 � (B.84)

����� ��� ����� ���� � � �� 	 
� (B.85)

With
�
� � � 	 


����� ��� ����� ���� � �
�
� 	

(B.86)

The square root of the eigenvalues in
�
� are the canonical correlation coefficients and� is identified as the left canonical

correlation vectors.
�

B.5 Molgedey-Schuster ICA

The Molgedey Schuster transformation can be derived by regarding an autoregression function from (time/space) shift
� � �

to � � � with the regression coefficients in
�

and additive noise�

� � � �� � � 	
(B.87)

With the additive noise independent in both in objects and variables

 �� � � � 
� � 
� � (B.88)

the parameters can be estimated with maximum likelihood (ordinary least squares solution)

�� � �� �� ��� � �� � 	 (B.89)
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Now the� �� � � � are regarded as observations generated from� unknown sources� �� � � � that are mixed linearly
using a mixing matrix� �� � � �:

� � �� 	
(B.90)

The sources are regarded as independent between the� variables (i.e. the� sources):

�� � � � � (B.91)

where� is a diagonal matrix denoting the covariance. The covariance between� � �
and� � � should also be regarded

as independent among the� variables of the sources:

���� � � � 	 (B.92)

� is now substituted with the sources and the mixing matrix, i.e., expand equation B.89 from equation B.90
�� � ���� �� ����� ��� �� �� � (B.93)
�� � �� �������� � ����� � (B.94)
�� � �� ������ � �� � � (B.95)

� ��� �� � � �� � � (B.96)

�� �� � � � � (B.97)

� �� � � ��� � � � (B.98)�� � � ��� ��� � � � (B.99)

With a diagonal matrix� � � ��� � regarded as the eigenvalues the right side terms can be regarded as the left eigenvalue
decomposition of

��
:

leig �
�
� � � � ���� 	

(B.100)

Thus the mixing matrix� is identified as the left eigenvector of

�
�

.

Theorem B.5.1 (Molgedey-Schuster ICA with SVD)With the singular value decompositions of the original matrix
��� � � svd�� � and the shifted matrix� � �� � � svd�� � � the source� and mixing matrix� from a symmetri-
cal Molgedey-Schuster independent component analysis is found as

� �
�
��� � 	 (B.101)

� � �
�
� �� 	 (B.102)

where
�
� is the left eigenvectors

�
� ��

�
�
�
� �



� 	
 �� �� �� � � � �� � 	 	 (B.103)

A derivation appears in (Hansen and Larsen 1998) differing with respect to the one shown below in the scaling between
the source and the mixing matrix.

Proof B.5.1 Symmetrized Molgedey-Schuster ICA finds the left eigenvectors of the following matrix

� �


� �� �� ��� �� �� � � � �� � 	 (B.104)

The data matrices are substituted with the singular value decompositions��� � � svd�� � and� � �� � � svd�� � �
� �



�
����� �

���� �� �� �� � � ��� �� ��� �� (B.105)

� �


�
�� ��

�
�� �� � �� � � �� �� ��� �� (B.106)

� �


�
�� ��� �� �� �� �� � � � �� � 	 �� �� �� �� (B.107)

�� �


��� �



� �� �� � � � �� � 	 �� ������ �� �

�

(B.108)

�
� ��

�
�
�
� �



� 	
 �� �� �� � � � �� � 	 	 (B.109)
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With (Mardia et al. 1979, theorem A.6.2) modified for left eigenvalue problems the original mixing matrix� is found as

� �
�
��

� � 	 (B.110)

The sources� are found as

�� � � (B.111)

�
�
��

� � � ��
� � (B.112)

�
�
� � � (B.113)

� � �
�
� �� 	 �

(B.114)

B.6 Distance between two vectors

Two univariate Gaussian distributions (or rather just functions) are considered. These should have the same variance and
separated by

�
, so one may be set with the mean in� � � �

and the other in� � � �
.

B.6.1 The product of two Gaussian distributions

The sum of the products over the variable� (the inner product):

� �
� �
��



���	 � �	
 �	 


�	 �
� �� 


� ��	 � �	
 �	 

�	 � �� 	 � ��� �� (B.115)
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�	
 �	 

�	 � ��� � 	 ��� �

� � �� �� (B.116)
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	 �

� � 	
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	 �
� �

� �
�	 � �� �� (B.117)

This is a definite integral involving an exponential function which is listed by Spiegel (1968, formula 15.75)
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	 � �� (B.118)
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	 � � (B.119)
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���	 � �	
 �	 � �

�	 � � 	
(B.120)

B.6.2 Kullback-Leibler distance

Kullback-Leibler distance with� as the reference:

� �� ��� � � 	
� �
��

� �� � �� � �� �� �� � �� (B.121)

Insert the Gaussian distributions

� 	
� �
��
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����� �
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����� �
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 �	 ��� �
� � 	 � �� (B.122)
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The function in the first integral is odd. The second integralis listed by Spiegel (1968, formula 15.72) and is just an
ordinary unnormalized Gaussian distribution:

�



�
��	 � �

� �
� �� ��	 �� (B.127)
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Appendix C

Example of web-services

Many of the analysis and visualization methods described can be extended to Internet services. Figure C.1 shows simple
examples with cluster analysis and visualization of a result volume: From the main window in figure C.1(a) it is possible
to get to either the cluster analysis upload window, figure C.1(b), or the result volume visualization figure C.1(e).

Data uploading is complex for functional neuroimaging: Apart from the very large sizes data is often distributed
over several files and the form interface associated with HTML does not allow multiple file select or selection of entire
directories. Furthermore, auxiliary information apart from the image data might be needed, e.g., design matrices. For
small-sized data sets in ASCII representation the multi-line text HTML element can be used. This is the case for the
web-page displayed in figure C.1(b). The particular data setentered is the small Iris data set (Fisher 1936; Mardia et al.
1979, table 1.2.2). A small Perl CGI script is used on the server-side to parse the data, construct a Matlab script and
output the HTML web-page displayed in figure C.1(c). A Matlabjob is then spawned with the constructed Matlab script
— in this case the Matlab job runs the K-means clustering algorithm from the Lyngby toolbox. After a small amount of
processing time the Matlab script produces plots and resultfiles that are added to a temporary directory on the web-server
accessible to the user that uploaded the file. The files are already linked to by the HTML web-page constructed by the
Perl script. Figure C.1(d) shows a plot of this simple cluster analysis.

When binary files are to be handled the file upload facility in HTTP can be used, see, e.g., (Guelich, Gundavaram, and
Birznieks 2000, page 97+). Figure C.1(e) shows a screenshotof a web-page involved in this procedure where a volume
in the ANALYZE format (which consists of a data file and a header file) can be uploaded. For the particular visualization
displayed in figure C.1(f) an example data sets from the SPM distribution shared by Paul Kinahan and Douglas C. Noll
was used, see http://www.fil.ion.ucl.ac.uk/spm/data/: A 12 scan single subject PET study with a left hand finger opposition
task, — which is part of a larger study (Kinahan and Noll 1999). Thus the activation in the left side of the brain is very
likely the primary motor area corresponding to the left hand. In this case the output is to PostScript and JPEG image files
as well as Matlab “fig” files, but it would be trivial to add VRMLsupport. This last example shows that it is possible to
make web-services for analysis and visualization of volumes.

The form interface in HTML does not allow particular advanced user interactions, and the file transfer of large data set
can be tedious. However, web-services can have advantages:Centralized web-services might have more computational
power, so that the preprocessing and analysis are performedquickly once the data is uploaded. Motion correction requires
comparable little interactive setup and a large amount of computer time. Furthermore, it is easy to parallelize and should
thus be able to run easily on a (Beowulf) cluster of computers. Centralized web-services might also be able to implement
new algorithms faster without the need of the user to update his/her software. Lastly, analyses that the user would not
normal invoke, e.g., diagnostic, can be run in the “background”.
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(a) Main window

(b) Cluster upload window

(c) Clustering result window
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Figure C.1: Web-services: Screenshots from pages with web-services.
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Appendix E

Articles and abstracts

I have been author or listed as co-author on several published papers. Boldface entries are reprinted on the following
pages.

• Time-series modeling of fMRI data

– In (Nielsen, Hansen, Toft, Goutte, Mørch, Svarer, Savoy, Rosen, Rostrup, and Born 1997, page 159)the
FIR model was compared to a fitted Gamma density model for the analysis of an fMRI time-series data set.

– In (Nielsen, Goutte, and Hansen 1999, page 160)an artificial neural network was used as a nonlinear model
for fMRI time-series.

– (Goutte, Nielsen, and Hansen 2000, pages 161–174)introduced the smooth FIR with Bayesian modeling.
(Nielsen, Goutte, and Hansen 2001a) is a short abstract of this work.

• Clustering of functional neuroimages

– (Goutte, Toft, Rostrup, Nielsen, and Hansen 1999b, pages 175–187) introduced K-means clustering on
the cross-correlation function and also examined hierarchical clustering of fMRI data. (Toft, Hansen, Nielsen,
Strother, Lange, Mørch, Svarer, Paulson, Savoy, Rosen, Rostrup, and Born 1997) is an abstract of this work.

– Feature clustering in connection with fMRI data was described in (Goutte, Nielsen, Svarer, Rostrup, and
Hansen 1998).

– K-means clustering was applied on a PET data set by Balslev, Law, Frutiger, Sidtis, Nielsen, Christiansen,
Strother, Svarer, Rottenberg, Paulson, and Hansen (2000) and an article of this work is under review (Balslev,
Nielsen, Frutiger, Sidtis, Christiansen, Svarer, Strother, Rottenberg, Hansen, Paulson, and Law 2001).

– K-means clustering was also applied on single trial fMRI in (Purushotham, Nielsen, Hansen, and Kim 1999)
and (Purushotham, Nielsen, Hansen, and Kim 2000).

• Other multivariate analysis of functional neuroimages

– Canonical ridge analysis for functional neuroimages was introduced in(Nielsen, Hansen, and Strother 1998,
page 188).

– Probabilistic principal component analysis was examined in (Hansen, Larsen, Nielsen, Strother, Rostrup,
Savoy, Svarer, and Paulson 1999a, pages 189–199)with abstract (Hansen, Nielsen, Toft, Strother, Lange,
Mørch, Svarer, Paulson, Savoy, Rosen, Rostrup, and Born 1997).

– Nonlinear multivariate analysis of functional neuroimages by artificial neural networks was described in
(Hansen, Mørch, and Nielsen 1998).

• Comparison of functional neuroimage analysis.

– Nine different analysis methods were compared in(Lange, Strother, Anderson, Nielsen, Holmes, Kolenda,
Savoy, and Hansen 1999, pages 200–221)with the abstract (Lange, Hansen, Anderson, Nielsen, Savoy, Kim,
and Strother 1998).

– In (Hansen, Nielsen, Strother, and Lange 2000c) it is shown that the consensus model computed as the aver-
aged over histogram-equalized result images from eight different analyses on the same image data outperforms
each individual model.
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• Visualization

– Functional neuroimaging visualization especially with reference to the Virtual Reality Modeling Language
has been described in(Nielsen and Hansen 1997, pages 222–225), (Nielsen and Hansen 1998, page 226),
(Nielsen and Hansen 2000a, pages 227–232)and (Chen, Nielsen, and Hansen 1999).

• Analysis of BrainMap™ data.

– (Nielsen and Hansen 1999, pages 233–239)describe functional volumes modeling with mixture models.

– Functional volumes modeling with kernel density estimators was described in an unpublished abstract
(Nielsen and Hansen 2000b, page 240).

– (Nielsen, Hansen, and Kjems 2001b, page 242)identified outliers in the BrainMap™ database and a longer
article is submitted toHuman Brain Mapping(Nielsen and Hansen 2001b, pages 243–263).

• Text analysis

– In (Hansen, Sigurðsson, Kolenda, Nielsen, Kjems, and Larsen 2000d) the generalizable Gaussian mixture
model was used for term analysis.

– Author cocitation analysis was described in(Nielsen and Hansen 2001a, pages 264-265).

• Miscellaneous articles.

– The Lyngby Matlab toolbox for functional neuroimaging analysis is described in three abstracts:(Hansen,
Nielsen, Toft, Liptrot, Goutte, Strother, Lange, Gade, Rottenberg, and Paulson 1999b, page 266)
(Hansen, Nielsen, Liptrot, Goutte, Strother, Lange, Gade,Rottenberg, and Paulson 2000b) and (Hansen,
Nielsen, Liptrot, Strother, Lange, Gade, Rottenberg, and Paulson 2001b)

– The predictive performance of artificial markets implemented as web-games was examined in (Pennock,
Lawrence, Giles, and Nielsen 2001c; Pennock, Lawrence, Giles, and Nielsen 2001a; Pennock, Lawrence,
Giles, and Nielsen 2001b), see also http://artificialmarkets.com.

– Persistence of web-citations in scientific literature was documented in (Lawrence, Coetzee, Glover, Pennock,
Flake, Nielsen, Krovetz, Kruger, and Giles 2001; Lawrence,Coetzee, Flake, Pennock, Krovetz, Nielsen,
Kruger, and Giles 2000)
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Abstract

We apply machine learning techniques in the form of Gaussian mixture
models to functional brain activation data. The dataset was extracted
through the WWW interface to the BrainMapTM (Research Imaging Cen-
ter, University of Texas Health Science Center at San Antonio) neu-
roimaging database. Modeling of the joint probability structure of acti-
vation foci and other database entries (e.g. behavioral domain, modality)
enables us to summarize the accumulated body of activation coordinates
in the form of a 3D density and allows us to explore issues like the effect
of the experimental modality on the resulting brainmap

1 Introduction

Neuroimaging experiments based on positron emission tomography (PET), or functional
magnetic resonance imaging (fMRI), are accumulating vast spatio-temporal databases at
a rate that calls for new innovative informatics tools. Neuroscience databases are con-
ceptually and physically linked in complex socio-scientific networks of human relations,
publications, and funding programs. The neuroinformatics challenge is to organize these
networks and make them transparent for the neuroscience community [16]. An important
part of neuroinformatics concerns the process of relating different functional neuroimaging
studies to each other.

A functional neuroimaging study based on fMRI or PET examines the neuralcorrelate of
a mental process as it affects cerebral blod flow, for a recent review see [14]. Under the
functional segregation paradigm the brain image consists of activationhot spots that each
are related to a cognitive component. When discussing the results of a functional study the
observed set of activation foci is compared to foci from other studies reported in the litera-
ture most often by simple visual inspection, see e.g. a meta-analysis onvisual recognition
[5]. Such discussions are naturally driven primarily by the informalneuroscientific insight
of the researchers involved. Description of the set of foci can be given in terms of lobes
or gyri (e.g. dorsolateral prefrontal cortex) or in terms of an informalset of funtional areas
(such as visual areas V1, V2, ...). An increasingly popular, formal and quantitative alterna-
tive is to report foci positions with reference to the Talairach system [17] — a standardized
Euclidean system of reference.

The aim of this work is to explore quantitative and automatic procedures for the com-
parison and discussion of functional data and in this way to pave the road for objective

Figure E.75: Unpublished article (Nielsen and Hansen 1999). Page 1 of 7.
.
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meta-analyses. We use self-optimizing machine learning algorithms to model the densi-
ties of Tailarach coordinates and use VRML (virtual reality modeling language) geometric
hypertext tools as interface to the learned models.

The long term goal is a tool which can assist the neuroimaging researcher in quantifying
and reporting the information content of a study with respect to the accummulated body of
neuroscience.

2 BrainMap

The BrainMapTM database is an extensive collection of papers containing Talairach coordi-
nates from human brain mapping studies maintained by the Research Imaging Center, Uni-
versity of Texas Health Science Center at San Antonio [6, 11]. The access to thedatabase
is provided by either a graphical user interface application or a web-based interface, see
http://ric.uthscsa.edu . The database contains bibliographic information about
the paper, formal descriptions of the study (e.g. modality, behavioral domain, response
type) and 3D coordinates for the functional activations reported in the Talairach system
[17]. BrainMap has been used for meta-analytic modeling under the heading “functional
volumes modeling” [8, 7], see also [9, 13]. In [8] the location of theactivation foci of
the mouth is modeled with a bounding box. The estimation of the mouth area required a
manual editing of the specific foci that where included to form the volumeof interest. In
this contribution we will investigate global patterns of foci foundunder various activation
paradigms and we will use machine learning models with minimal user intervention.

3 Generalizable Gaussian Mixtures

Our primary pattern recognition device will be the Gaussian mixture, see, e.g., [15] for a
review. Gaussian mixture models have been used in single study functional neuroimaging
before, see e.g. [4]. The Gaussian mixture density of a datavectorx, is defined as

������ � ��	
��������������	� � ������	���� ��������	�����	 ����	�� (1)

where the component Gaussians are mixed with proportions�	��� ��, and we have
defined the parameter vector

� ���	��	 . The parameters are estimated from a set of
examples!���"�# ���$$$�% 

. In the pattern recognition literature mixture densities
are mostly estimated by maximum likelihood (ML), using various estimate-maximize (EM)
methods [15]. The (negative log-)likelihood costfunction is defined by&�!'����" �()*���"��� (2)

and is minimize by the ML parameters. The Gaussian mixture model is extremely flexible
and simply minimizing the above costfunction will lead to an “infinite overfit”. It is easily
verified that the costfunction has a trivial (infinite) minimum attained by setting�	 ��	
for

 ���$$�+��, and letting the corresponding covariances shrink to the zero matrix,
while the remaining+’th Gaussian is adapted to the ML fit of the remaining%�+,�
datapoints. This solution is optimal for the training set, but unfortunately has a generaliza-
tion error roughly equal to that of the single “background” Gaussian. To see this, let the

Figure E.76: Unpublished article (Nielsen and Hansen 1999). Page 2 of 7.
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generalization error is defined as the limit

����� ����	

��
���

����������� (3)

The ML mixture adapted on a finite dataset has a generalization error where thesingular
components do not contribute because the data points assigned to the singular datapoints in
the training set together have zero measure. This instability has lead to much confusion in
the literature and needs to be adressed carefully. Basically, there is no way todistinguish
generalizable from non-generalizable solutions, if we only consider thelikelihood function.
The most common fix is to bias the component distributions so that they have a common
covariance matrix, see e.g. [10]. Here we have decided to combine three approaches to
ensure generalizability. First, we compute centers and covariances on different resamples
of the data sets. Secondly, we make an exception rule for sparsely populated components
— the covariance matrix defaults to the scaled full-sample covariance matrix.Finally we
estimate the number of mixture components using the AIC criterion [1].

The algorithm which is a modified EM procedure [2], and is defined as follows for given�
.

Algorithm: Generalizable Gaussian Mixture

Initialization

1. Compute the mean vector�� ��������.
2. Compute the covariance matrix of the data set:�� �
�����������

�������
��

.
3. Initialize�� � ���!���.
4. Initialize�� ���.
5. Initialize"�#��$%�.

Repeat until convergence

1. Compute��#����and assign�� to the most likely component.
2. Split the data set in two equal parts&',&(.
3. For each

#
estimate�� on the points in&' assigned to component#

.
4. For each

#
estimate�� on the points in&(assigned to component#

. If the number of datapoints assigned to the
#
’th component is less

than the dimension, let�� �) *��, where
)

is determined so that
the total variance of the component corresponds to the variance of
the datapoints associated with it.

5. Estimate"�#�as the frequency of assigments to component
#
.

3.1 Generalizable Gaussian mixture classifier

In pattern recognition we are interested in the joint density of patterns+and class labels
)
,

denoted by��+!)� ��+!)����+�)�"�)� (4)
where��+�)� is the class conditioned density and"�)� is the marginal class probabilities.
For a labeled dataset we design the classifier by adapting GGM’s to each class separately.
Hence, the joint density can be written

��+!)�� ,
-�
��
��+�#�"�#�)�"�)�! (5)

Figure E.77: Unpublished article (Nielsen and Hansen 1999). Page 3 of 7.
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Figure 1: VRML screen shot (from the left side of the back of the brain)of the GGM
model from the analysis of the effect of thebehavioral domain. It shows isosurfaces in
3 class-conditional densities������. The wireframes correspond to thebehavioral do-
main denotedperception in BrainMap, the surfaces tocognition apart from “M” textured
surfaces beingmotion.

where������ and�	 are the component frequencies and number components found for
class�.

4 Results

We downloaded the entirepaper andexperiment webpages from the BrainMap home-
page containing experiment variables and Talairach coordinates denotedlocations. The
front page of the web interface states that there are 225 papers, 771 experiments and 7683
locations. To each of the locations corresponds amodality, i.e., the type of scanner used
to acquire the data. Furthermore, each location has one or morebehavioral domains:
Perception, cognition, motion, disease, drug andemotion. We used only the first be-
havioral domain in the list and confined us to the three classes:perception, cognition
andmotion. (For some of the experiments the modality and behavioral domain was not re-
ported in the database and in the preliminary experiments reported here wesimply excluded
locations from these experiments.) While modeling the density of locations we found that
some of the locations were strong outliers. Some of these foci were probably erroneous
entries with decimal point errors. When excluding all locations from papers containing
outliers or missingbehavioral domain andmodality we are left with approximately 3800

Figure E.78: Unpublished article (Nielsen and Hansen 1999). Page 4 of 7.
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Figure 2: VRML screen shot from the top (left panel) and the bottom (right panel) of the
brain. The frontal brain is up in the image. The red surfaces correspond tothe behavioral
domain denotedperception, the green tocognition and the blue beingmotion. Textured
surfaces with# are derived from the density offMRI locations,- arePET locations and
= arePET-MRI locations. For visual guidance and reference we have included in the left
panel also a surface reconstruction of the right cortex of the Visible Man [3].

Talairach coordinates.

We applied the GGM on the BrainMap data with the 3D Talairach coordinates as�and the
modality or behavioral domain represented by label�. In figure 1 is shown the isosurface
in the class-conditional densities������ for � � �perception, cognition, motion�. A
characteristic in this view is themotion cluster in the left hemisphere (as e.g., compared to
the right hemisphere) probably stemming from the popular use of theright hand in studies.

In a second experiment we combinedbehavioral domain andmodality for the labels, i.e.
with 9 classes in total. Figure 2 shows that the frontal part of the brain is dominated by
the conjunction ofcognitive andfMRI. We can only speculate about this: Differing spatial
normalization procedures or fMRI motion artifacts could have affected the images or the
fMRI scanner could be more sensitive in the frontal part.PET dominates in the inferior
part of the brain, perhaps explainable by a smaller sensitivity of fMRIin the inferior parts
of the brain, e.g., in the frontal regions due to susceptibility distortions.

The generalization in terms of label prediction is not high, which is due to the high overlap
between classes:

Test set rates Base line probability
Modality 0.17 0.16
Behavior 0.47 0.52 (Figure 1)
Modality+Behavior 0.52 0.56 (Figure 2)

With the density model at hand we are able to pick a new functional neuroimaging study
and automatically label the activation foci and give the amount of novelty inthe experiment

Figure E.79: Unpublished article (Nielsen and Hansen 1999). Page 5 of 7.
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Figure 3: VRML Screen shot of a part of the results from [12]. The glyphs have been
colored according to the posterior probability: The red component denote high probability
for perception, green component forcognition, and blue component formotion.

(in fact, one location outlier was discovered in this way). In figure 3 is shown the results
when the density model with labels frombehavioral domain is applied on a saccadic eye-
movement experiment [12]. The activation foci reported in the paper have automatically
been labeled by the GGM model and the three components of the posterior probabilities
have been piped to the red, green and blue color component. The highest posterior proba-
bility for a singlebehavioral domain is the third focus with the most probable label being
motion. In the paper the foci has been denoted as the supplementary eye field, — an area
associated with the control of eye movements.

5 Conclusion

Machine learning methods can assist the neuroscientists in quality control and provide
context by summarizing large neuroimaging databases.
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Figure E.82: Unpublished abstract (Nielsen and Hansen 2000b).
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