129 research outputs found

    A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN)

    Get PDF
    Industrial wireless sensor network (IWSN) applications are mostly time-bound, mission-critical and highly delay sensitive applications therefore IWSN defines strict, stringent and unique QoS requirements such as timeliness, reliability and availability. In IWSN, unlike other sensor networks, late arrival of packets or delay or disruption to an on-going communication are considered as critical failure. Also, because IWSN is deployed in the overcrowded industrial, scientific, and medical (ISM) band it is difficult to meet this unique QoS requirements due to stiff competition for bandwidth from other technologies operating in ISM band resulting in scarcity of spectrum for reliable communication and/or disruption of ongoing communication. However, cognitive radio (CR) provides more spectral opportunities through opportunistic-use of unused licensed spectrum while ensuring minimal interference to licensed users. Similarly, spectrum handoff, which is a new type of handoff in cognitive radio, has the potential to offer increase bandwidth, reliable, smooth and interference-free communication for IWSNs through opportunistic-use of spectrum, minimal switching-delays, and efficient target channel selection strategies as well as effective link recovery maintenance. As a result, a new paradigm known as cognitive radio industrial wireless sensor network (CR-IWSN) has become the interest of recent research efforts. In this paper, we highlight and discuss important QoS requirements of IWSN as well as efforts of existing IWSN standards to address the challenges. We discuss the potential and how cognitive radio and spectrum handoff can be useful in the attempt to provide real-time reliable and smooth communication for IWSNs.The Council for Scientific and Industrial Research (CSIR), South Africa [ICT: Meraka].http://www.elsevier.com/locate/jnca2018-11-01hj2017Electrical, Electronic and Computer Engineerin

    Hybrid Fuzzy Logic Scheme for Efficient Channel Utilization in Cognitive Radio Networks

    Get PDF
    © 2013 IEEE. The proliferation of mobile devices and the heterogeneous environment of wireless communications have increased the need for additional spectrum for data transmission. It is not possible to altogether allocate a new band to all networks, which is why fully efficient use of the already available spectrum is the demand of the day. Cognitive radio (CR) technology is a promising solution for efficient spectrum utilization, where CR devices, or secondary users (SUs), can opportunistically exploit white spaces available in the licensed channels. SUs have to immediately vacate the licensed channel and switch to another available channel when they detect the arrival of the incumbent primary user. However, performance for the SU severely degrades if successive channel switching happens. Moreover, taking the channel-switching decisions based on crisp logic is not a suitable approach in the brain-empowered CR networks (CRNs) where sensing information is not only imprecise and inaccurate but also involves a major uncertainty factor. In this paper, we propose a fuzzy logic-based decision support system (FLB-DSS) that jointly deals with channel selection and channel switching to enhance the overall throughput of CRNs. The proposed scheme reduces the SU channel switching rate and makes channel selection more adaptable. The performance of the proposed scheme is evaluated using a Matlab simulator, and a comprehensive comparison study with a baseline scheme is presented. The simulation results are promising in terms of the throughput and the number of handoffs and making our proposed FLB-DSS a good candidate mechanism for SUs while making judicious decisions in the CR environment

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Connected Vehicles: Solutions and Challenges

    Get PDF
    Abstract-Providing various wireless connectivities for vehicles enables the communication between vehicles and their internal and external environments. Such a connected vehicle solution is expected to be the next frontier for automotive revolution and the key to the evolution to next generation intelligent transportation systems (ITSs). Moreover, connected vehicles are also the building blocks of emerging Internet of Vehicles (IoV). Extensive research activities and numerous industrial initiatives have paved the way for the coming era of connected vehicles. In this paper, we focus on wireless technologies and potential challenges to provide vehicle-to-x connectivity. In particular, we discuss the challenges and review the state-of-the-art wireless solutions for vehicle-to-sensor, vehicleto-vehicle, vehicle-to-Internet, and vehicle-to-road infrastructure connectivities. We also identify future research issues for building connected vehicles
    • …
    corecore