3,790 research outputs found

    Scene extraction in motion pictures

    Full text link
    This paper addresses the challenge of bridging the semantic gap between the rich meaning users desire when they query to locate and browse media and the shallowness of media descriptions that can be computed in today\u27s content management systems. To facilitate high-level semantics-based content annotation and interpretation, we tackle the problem of automatic decomposition of motion pictures into meaningful story units, namely scenes. Since a scene is a complicated and subjective concept, we first propose guidelines from fill production to determine when a scene change occurs. We then investigate different rules and conventions followed as part of Fill Grammar that would guide and shape an algorithmic solution for determining a scene. Two different techniques using intershot analysis are proposed as solutions in this paper. In addition, we present different refinement mechanisms, such as film-punctuation detection founded on Film Grammar, to further improve the results. These refinement techniques demonstrate significant improvements in overall performance. Furthermore, we analyze errors in the context of film-production techniques, which offer useful insights into the limitations of our method

    Extensible Detection and Indexing of Highlight Events in Broadcasted Sports Video

    Get PDF
    Content-based indexing is fundamental to support and sustain the ongoing growth of broadcasted sports video. The main challenge is to design extensible frameworks to detect and index highlight events. This paper presents: 1) A statistical-driven event detection approach that utilizes a minimum amount of manual knowledge and is based on a universal scope-of-detection and audio-visual features; 2) A semi-schema-based indexing that combines the benefits of schema-based modeling to ensure that the video indexes are valid at all time without manual checking, and schema-less modeling to allow several passes of instantiation in which additional elements can be declared. To demonstrate the performance of the events detection, a large dataset of sport videos with a total of around 15 hours including soccer, basketball and Australian football is used

    Intelligent Cinematic Camera Control for Real-Time Graphics Applications

    Get PDF
    E-sports is currently estimated to be a billion dollar industry which is only growing in size from year to year. However the cinematography of spectated games leaves much to be desired. In most cases, the spectator either gets to control their own freely-moving camera or they get to see the view that a specific player sees. This thesis presents a system for the generation of cinematically-pleasing views for spectating real-time graphics applications. A custom real-time engine has been built to demonstrate the effect of this system on several different game modes with varying visual cinematic constraints, such as the rule of thirds. To create the cinematic views, we encode cinematic rules as cost functions that are fed into a non-linear least squares solver. These cost functions rely on the geometry of the scene, minimizing residuals based on the 3D positions and 2D reprojections of the geometry. The final cinematic view is found by altering camera position and angle until a local minimum is met. The system was evaluated by comparing video output from a traditional rigidly constrained camera and the results of our algorithm’s optimally solved views. User surveys are then used to qualitatively evaluate the system. The results of these surveys do not statistically find a preference between the cinematic views and the rigidly constrained views. In addition, we present performance and timing considerations for the system, reporting that the system can operate within modern expectations of latency when enough constraints are placed on the non-linear least squares solver

    Toward automatic extraction of expressive elements from motion pictures : tempo

    Full text link
    This paper addresses the challenge of bridging the semantic gap that exists between the simplicity of features that can be currently computed in automated content indexing systems and the richness of semantics in user queries posed for media search and retrieval. It proposes a unique computational approach to extraction of expressive elements of motion pictures for deriving high-level semantics of stories portrayed, thus enabling rich video annotation and interpretation. This approach, motivated and directed by the existing cinematic conventions known as film grammar, as a first step toward demonstrating its effectiveness, uses the attributes of motion and shot length to define and compute a novel measure of tempo of a movie. Tempo flow plots are defined and derived for a number of full-length movies and edge analysis is performed leading to the extraction of dramatic story sections and events signaled by their unique tempo. The results confirm tempo as a useful high-level semantic construct in its own right and a promising component of others such as rhythm, tone or mood of a film. In addition to the development of this computable tempo measure, a study is conducted as to the usefulness of biasing it toward either of its constituents, namely, motion or shot length. Finally, a refinement is made to the shot length normalizing mechanism, driven by the peculiar characteristics of shot length distribution exhibited by movies. Results of these additional studies, and possible applications and limitations are discussed

    Automatic semantic video annotation in wide domain videos based on similarity and commonsense knowledgebases

    Get PDF
    In this paper, we introduce a novel framework for automatic Semantic Video Annotation. As this framework detects possible events occurring in video clips, it forms the annotating base of video search engine. To achieve this purpose, the system has to able to operate on uncontrolled wide-domain videos. Thus, all layers have to be based on generic features. This framework aims to bridge the "semantic gap", which is the difference between the low-level visual features and the human's perception, by finding videos with similar visual events, then analyzing their free text annotation to find a common area then to decide the best description for this new video using commonsense knowledgebases. Experiments were performed on wide-domain video clips from the TRECVID 2005 BBC rush standard database. Results from these experiments show promising integrity between those two layers in order to find expressing annotations for the input video. These results were evaluated based on retrieval performance

    Video Categorization Using Semantics and Semiotics

    Get PDF
    There is a great need to automatically segment, categorize, and annotate video data, and to develop efficient tools for browsing and searching. We believe that the categorization of videos can be achieved by exploring the concepts and meanings of the videos. This task requires bridging the gap between low-level content and high-level concepts (or semantics). Once a relationship is established between the low-level computable features of the video and its semantics, the user would be able to navigate through videos through the use of concepts and ideas (for example, a user could extract only those scenes in an action film that actually contain fights) rat her than sequentially browsing the whole video. However, this relationship must follow the norms of human perception and abide by the rules that are most often followed by the creators (directors) of these videos. These rules are called film grammar in video production literature. Like any natural language, this grammar has several dialects, but it has been acknowledged to be universal. Therefore, the knowledge of film grammar can be exploited effectively for the understanding of films. To interpret an idea using the grammar, we need to first understand the symbols, as in natural languages, and second, understand the rules of combination of these symbols to represent concepts. In order to develop algorithms that exploit this film grammar, it is necessary to relate the symbols of the grammar to computable video features. In this dissertation, we have identified a set of computable features of videos and have developed methods to estimate them. A computable feature of audio-visual data is defined as any statistic of available data that can be automatically extracted using image/signal processing and computer vision techniques. These features are global in nature and are extracted using whole images, therefore, they do not require any object detection, tracking and classification. These features include video shots, shot length, shot motion content, color distribution, key-lighting, and audio energy. We use these features and exploit the knowledge of ubiquitous film grammar to solve three related problems: segmentation and categorization of talk and game shows; classification of movie genres based on the previews; and segmentation and representation of full-length Hollywood movies and sitcoms. We have developed a method for organizing videos of talk and game shows by automatically separating the program segments from the commercials and then classifying each shot as the host\u27s or guest\u27s shot. In our approach, we rely primarily on information contained in shot transitions and utilize the inherent difference in the scene structure (grammar) of commercials and talk shows. A data structure called a shot connectivity graph is constructed, which links shots over time using temporal proximity and color similarity constraints. Analysis of the shot connectivity graph helps us to separate commercials from program segments. This is done by first detecting stories, and then assigning a weight to each story based on its likelihood of being a commercial or a program segment. We further analyze stories to distinguish shots of the hosts from those of the guests. We have performed extensive experiments on eight full-length talk shows (e.g. Larry King Live, Meet the Press, News Night) and game shows (Who Wants To Be A Millionaire), and have obtained excellent classification with 96% recall and 99% precision. http://www.cs.ucf.edu/~vision/projects/LarryKing/LarryKing.html Secondly, we have developed a novel method for genre classification of films using film previews. In our approach, we classify previews into four broad categories: comedies, action, dramas or horror films. Computable video features are combined in a framework with cinematic principles to provide a mapping to these four high-level semantic classes. We have developed two methods for genre classification; (a) a hierarchical method and (b) an unsupervised classification met hod. In the hierarchical method, we first classify movies into action and non-action categories based on the average shot length and motion content in the previews. Next, non-action movies are sub-classified into comedy, horror or drama categories by examining their lighting key. Finally, action movies are ranked on the basis of number of explosions/gunfire events. In the unsupervised method for classifying movies, a mean shift classifier is used to discover the structure of the mapping between the computable features and each film genre. We have conducted extensive experiments on over a hundred film previews and demonstrated that low-level features can be efficiently utilized for movie classification. We achieved about 87% successful classification. http://www.cs.ucf.edu/-vision/projects/movieClassification/movieClmsification.html Finally, we have addressed the problem of detecting scene boundaries in full-length feature movies. We have developed two novel approaches to automatically find scenes in the videos. Our first approach is a two-pass algorithm. In the first pass, shots are clustered by computing backward shot coherence; a shot color similarity measure that detects potential scene boundaries (PSBs) in the videos. In the second pass we compute scene dynamics for each scene as a function of shot length and the motion content in the potential scenes. In this pass, a scene-merging criterion is used to remove weak PSBs in order to reduce over-segmentation. In our second approach, we cluster shots into scenes by transforming this task into a graph-partitioning problem. This is achieved by constructing a weighted undirected graph called a shot similarity graph (SSG), where each node represents a shot and the edges between the shots are weighted by their similarities (color and motion). The SSG is then split into sub-graphs by applying the normalized cut technique for graph partitioning. The partitions obtained represent individual scenes in the video. We further extend the framework to automatically detect the best representative key frames of identified scenes. With this approach, we are able to obtain a compact representation of huge videos in a small number of key frames. We have performed experiments on five Hollywood films (Terminator II, Top Gun, Gone In 60 Seconds, Golden Eye, and A Beautiful Mind) and one TV sitcom (Seinfeld) that demonstrate the effectiveness of our approach. We achieved about 80% recall and 63% precision in our experiments. http://www.cs.ucf.edu/~vision/projects/sceneSeg/sceneSeg.htm

    Dynamic Storyboard Generation in an Engine-based Virtual Environment for Video Production

    Full text link
    Amateurs working on mini-films and short-form videos usually spend lots of time and effort on the multi-round complicated process of setting and adjusting scenes, plots, and cameras to deliver satisfying video shots. We present Virtual Dynamic Storyboard (VDS) to allow users storyboarding shots in virtual environments, where the filming staff can easily test the settings of shots before the actual filming. VDS runs on a "propose-simulate-discriminate" mode: Given a formatted story script and a camera script as input, it generates several character animation and camera movement proposals following predefined story and cinematic rules to allow an off-the-shelf simulation engine to render videos. To pick up the top-quality dynamic storyboard from the candidates, we equip it with a shot ranking discriminator based on shot quality criteria learned from professional manual-created data. VDS is comprehensively validated via extensive experiments and user studies, demonstrating its efficiency, effectiveness, and great potential in assisting amateur video production.Comment: Project page: https://virtualfilmstudio.github.io

    Where does Computational Media Aesthetics Fit?

    Get PDF

    Misdirect movies

    Get PDF
    Misdirect Movies is a curated touring exhibition exploring new possibilities of collage, employing material gleaned from cinema. With access to digital formats, artists are now able to appropriate films to create different and innovative approaches to collage. This builds upon research disseminated in artworks such as The Jump and Frames and the curated exhibition, Unspooling: Artists & Cinema The selected artists explore these ideas in diverse ways to work with narrative through different media. The exhibition will be supplemented by a catalogue, new artwork commissions, a series of artist/curator talks, film screenings, workshops and a website. The idea of the exhibition is to make us look anew at the familiarity of artist's use of collage, moving image and the cinema space. The exhibition includes work by the curators, alongside five artists from the UK, Germany and USA- Elizabeth McAlpine, Dave Griffiths, Cathy Lomax, Rosa Barba and David Reed. The selected artists work across different mediums and have a sustained engagement with the subject of the exhibition. There will be three new commissions launching at touring venues from the selected artists. The exhibition tours from Royal Standard, Liverpool (16-31 March 2013) and tours to Standpoint Gallery, London (5 July- 17 August 2013), Greyfriars, Lincoln (4-26 October 2013) and Meter Room, Coventry (8 November - 1 December 2013). The catalogue is published by Cornerhouse Publications and feature essays by Andrew Bracey, Dr. John Rimmer, Dr. Jaimie Baron, Dr. Maria Walsh and an interview between Dr. Sam George and Sir Christopher Frayling. The catalogue essays reflect the interdisciplinary nature of the exhibition's curatorial focus and feature contributions from visual arts, English literature and film studies backgrounds. The research is further disseminated by talks, critical essays on the website and introduced screenings of artist's films
    corecore