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Abstract 
Content-based indexing is fundamental to support and 
sustain the ongoing growth of broadcasted sports video. 
The main challenge is to design extensible frameworks to 
detect and index highlight events. This paper presents: 1) 
A statistical-driven event detection approach that utilizes 
a minimum amount of manual knowledge and is based on 
a universal scope-of-detection and audio-visual features; 
2) A semi-schema-based indexing that combines the 
benefits of schema-based modeling to ensure that the 
video indexes are valid at all time without manual 
checking, and schema-less modeling to allow several 
passes of instantiation in which additional elements can 
be declared. To demonstrate the performance of the 
events detection, a large dataset of sport videos with a 
total of around 15 hours including soccer, basketball and 
Australian football is used. 

Keywords:  Extensible sports video indexing, multi-
modal event detection 

1 Introduction 
Sports video indexing approaches can be categorised 
based on low-level (perceptual) features and high-level 
semantic annotation (Djeraba, 2002). There are some 
elements beyond perceptual level (known as the semantic 
gaps) which can make feature based-indexing tedious and 
inaccurate. For example, users cannot always describe the 
visual characteristics of certain objects they want to view 
for each query. In contrast, the main benefit of semantic-
based indexing is the ability to support more intuitive 
queries. However, semantic annotation is generally time-
consuming, and often incomplete due to the limitations of 
manual supervision and the currently available techniques 
for automatic semantic extraction. Therefore, video 
should be indexed using semantic that can be extracted 
automatically with minimal human intervention. Events-
based indexing can be noted as the most suitable indexing 
technique for sport videos as sport highlights on TV, 
magazine or internet are commonly described using a set 
of events, particularly the important or exciting ones. 
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As there is yet a complete solution that can extract all 
events automatically, we need to design frameworks that 
support extensible detection and indexing of (highlight) 
events. Extensibility is emphasized as the algorithms 
developed for automatic extraction of features and 
semantic in sports video need to be extended gradually 
while improving the performance. As a result of more 
extractable contents, the indexing scheme needs to 
support continuous updates. The first and second section 
of this paper addresses each of these issues respectively. 
Following this, the experimental results that use a large 
dataset are reported before we close with some 
conclusions and future work. 

2 Extensible Events Detection 
It has become a well-known theory that sports events can 
be detected based on the occurrences of specific audio 
and visual features which can be extracted automatically. 
To date, there are two main approaches to fuse audio-
visual features. One alternative, called machine-learning 
approach, uses probabilistic models to automatically 
capture the unique patterns of audio visual feature-
measurements in specific (highlight) events. For example, 
Hidden Markov Model (HMM) can be trained to capture 
the transitions of still, standing, walking, throwing, 
jumping-down and running-down states during athletic 
sports’ events (Wu et al., 2002). The main benefit of 
using such approach is the potential robustness, thanks to 
the modest usage of domain-specific knowledge which is 
only needed to select the best features set to describe each 
event. However, one of the most challenging 
requirements for constructing reliable models is to use 
features that can be detected flawlessly during training 
due to the absence of manual supervision. Moreover, 
adding a new feature into a particular model will require 
re-training of the whole model. Thus, it is generally 
difficult to build extensible models that allow gradual 
development or improvement in the feature extraction 
algorithms. To tackle this limitation, our statistical-driven 
models are constructed based on the characteristics of 
each feature. Any addition of a new feature will only 
result on the updates of the rules that were associated 
with that feature.  

Another alternative for audio-visual fusion is to use 
manual heuristic rules. For example, the temporal gaps 
between specific features during basketball goal have a 
predictable pattern that can be perceived manually (Nepal 
et al., 2001).  The main benefit of this approach is the 
absence of comprehensive training for each highlight and 



the computations are relatively less complex. However, 
this method usually relies on manual observations to 
construct the detection models for different events. Even 
though the numbers of domains and events of interest are 
limited and the amount of efforts is affordable, we 
primarily aim to reduce the subjectivity and limitation of 
manual decisions. 

These two approaches still have two major drawbacks, 
namely, 1) the lack of a definitive solution for the scope 
of highlight detection such as where to start and finish the 
extraction. For example, Ekin et al (Ekin and Tekalp, 
2003b) detect goals by examining the video-frames 
between the global shot that causes the goal and the 
global shot that shows the restart of the game. However, 
this template scope was not used to detect other events. 
On the other hand, Han et al (Han et al., 2003) used a 
static temporal-segment of 30-40 sec (empirical) for 
soccer highlights detection. 2) The lack of a universal set 
of features for detecting different highlights and across 
different sports.  Features that best describe a highlight 
are selected using domain knowledge. For instance, 
whistle in soccer is only used to detect foul and offside, 
while excitement and goal-area are used to identify goal 
attempt (Duan et al., 2003). 

In order to solve the first drawback, some approaches (Xu 
et al., 1998, Li and Ibrahim Sezan, 2001) have claimed 
that highlights are mainly contained in a play scene. 
However, based on a user study as reported in our earlier 
paper (Tjondronegoro et al., 2004b) , we have found that 
most users need to watch the whole play and break to 
understand fully an event. For example, when a whistle is 
blown during a play in soccer video, we would expect 
that something has happened. During the break, the close-
up views of the players, a replay scene, and/or the text 
display will confirm whether it was a foul or offside. 
Consequently, it is expected that automated semantic 
analysis should also need to use both play and break 
segments to detect highlights. As for the second 
drawback, we aim to reduce the amount of manual choice 
of features set. For instance, it is quite intuitive to decide 
that the most effective event-dependent features to 
describe a soccer foul are whistle, followed by referee 
appearance. However, we were able to identify some 
additional characteristics of foul that could be easily 
missed by manual observation such as shorter duration 
(compared to shoot) and less excitement (compared to 
foul), based on statistical features that will be discussed in 
section 2.2. 

2.1 Play-Break as Standard Scope of Events 
Most broadcasted sport videos use transitions of typical 
shot types to emphasize story boundaries while aiding 
important contents with additional items. For example, a 
long global shot is normally used to describe an attacking 
play that could end with scoring of a goal. After a goal is 
scored, zoom-in and close-up shots will be dominantly 
used to capture players and supporters celebration during 
the break. Subsequently, some slow-motion replay shots 
and artificial texts are usually inserted to add some 
additional contents to the goal highlight. Based on this 
example, it should be clear that play-break sequences 

should be effective containers for a semantic content 
since they contain all the required details. Using this 
assumption, we should be able to extract all the 
phenomenal features from play-break that can be utilized 
for highlights detection. Thus, as shown in Figure 1, the 
scoping of highlight (event) detection should be from the 
last play-shot until the last break shot.  

 
Figure 1. Extracting Events from Play-Break. 

Analysis of camera-views transition in a sports video has 
been used successfully for play-break segmentation (Ekin 
and Tekalp, 2003a). We have extended this approach by 
adding replay-based correction to improve the 
performance. Figure 2 shows how a replay scene (R) can 
fix the boundaries of play-break sequences – which are 
formed by a sequential play scene (P) and break scene 
(B). Please note that “.s” indicates start while “.e” 
indicates end. For example, R.s is short for the start of 
replay scene.  

 
Figure 2. Locations of Replays in Play-breaks. 

Based on these scenarios, an algorithm to perform replay-
scene based play-break segmentation has been developed. 
This algorithm aims to: 1) fix the inaccurate boundaries 
of play-break sequences due to shorter breaks; 2) locate 
missing sequences due to missed breaks; and 3) avoid 
false sequences due to falsely detected play which is 
followed by a break. 

Algorithm to fix play-break boundaries, based on 
replay scene locations 
 If (A.s > B.s) & (A.e < B.e) 
  A strict_during B 
 If (A.s > B.s & A.e <= B.e) OR (A.s >= B.s & A.e < B.e)  
  A during B 
 If A.e = B.e 
  A meets B 
(1) If [R strict_during P] & [(R.e – P.e) >= dur_thres] 
       B.s = R.s; B.e = R.e; Create a new sequence where [P2.s = R.e+1] & 
 [P2.e P.e] 
(2) If [R strict_during P] & [(R.e – P.e) <= dur_thres] 
        P.e = R.e; B.s = R.e+1 
(3) If [R meets B] & [R.s < P.e] 
        P.e = R.s 
(4-5) If [R during B] & [R meets B] ) OR (If [R strict_during B]) 
        No processing required 
(6) If  [R during B] & [(R.e – P2.s) >= dur_thres] 
        B.e = R.e; Amend the neighbor sequence: [P2.s = R.e+1] 
(7) If [R during P2] & [(R.e – P2.s) >= dur_thres] 
        Attach sequence 2 to sequence 1 (i.e. combine seq 1 and seq 2 into  
  one  sequence) 



It is important to note that some broadcasters insert some 
advertisements (ads) in-between or during the replay. To 
obtain the correct length of the total break, the total 
length of the ads has to be taken into account.  

2.2 Statistical-Driven Events Detection 
As most of the current cinematic-heuristics for highlight 
detection are heavily based on manual discoveries and 
domain-specific rules, we aim to minimize the amount of 
manual supervision in discovering the phenomenal 
features that exist in each of the different highlights. 
Moreover, in developing the rules for highlight detection, 
we should use as little domain knowledge as possible to 
make the framework more flexible for other sports with 
minimum adjustments. For this purpose, we have 
conducted a semi-supervised training from different 
broadcasters and different matches for each highlight to 
determine the characteristics of play-break sequences 
containing different highlights and no highlights. It is 
semi-supervised training as we manually classify the 
specific highlight that each play-break sequence contains. 
Moreover, the automatically detected play-break 
boundaries and mid-level features locations within each 
play-break such as excitement are manually checked to 
ensure the accuracy of training.  

During training, statistics of each highlight are calculated 
with the following parameters (the examples are based on 
AFL video): 

� SqD = duration of currently-observed play-break 
sequence. For example, we can predict that a 
sequence that contains a goal will be much longer 
than a sequence with no highlight. 

� BrR = duration of break / SqD. Rather than 
measuring the length of a break to determine a 
highlight, the ratio of break segment within a 
sequence is more robust and descriptive. For 
example, we can distinguish goal from behind based 
on the fact that goal has a higher break ratio than 
behind due to a longer goal celebration and slow 
motion replay. 

� PlR = duration of play scene / SqD. We find that 
most non-highlight sequences have the highest play 
ratio since they usually contain very short break. 

� RpD = duration of (slow-motion) replay scene in the 
sequence. This measurement implicitly represents the 
number of replay shots which is generally hard to be 
determined due to many camera changes during a 
slow motion replay. 

� ExcR = duration of excitement / SqD. Typically, a 
goal consists of a very high excitement ratio whereas 
a non-highlight usually contains no excitement. 

� NgR = duration of the frames containing goal-
area/duration of play-break sequence. A high ratio of 
near goal area during a play potentially indicate goal.  

� CuR = length of close-up views that includes crowd, 
stadium, and advertisements within the sequence / 
SqD. We find that the ratio of close-up views used in 
a sequence can predict the type of highlight. For 
example, goal and behind highlights generally has a 

higher close-up views due to focusing on just one 
player such as the shooter and goal celebration.  

The statistical data of the universal feature sets within 
each highlight after a training that uses 20 samples is 
presented in Table 1. Based on the trained statistics, we 
have constructed a novel set of ‘statistical-driven’ 
heuristics to detect soccer, AFL, and basketball 
highlights. We do not need to use any domain-specific 
knowledge, thereby making the approach less-subjective 
and robust when applied for similar sports.  As each 
feature can be considered independently, more features 
can be introduced without the necessity to make major 
changes in the highlight classification rules. Moreover, 
our model does not need to be re-trained as a whole, 
thereby promoting extensibility. Hence, our approach will 
reap the full benefit when larger set of features are to be 
developed/improved gradually. 

Highlight classification is performed as: 
RpR)R,CuR,PlR,(D,NgR,ExcHighlightClassify_[HgtClass] =  

where, HgtClass is the highlight class most likely 
contained by the sequence, while D, NgR, and so on are 
the statistical parameters described earlier. This equation 
will be performed according to the sport genre.  

In order to classify which highlight is contained in a 
sequence, the algorithm uses some measurements. For 
example, in soccer, G, S, F, and Non are the highlight-
score for goal, shoot, foul and non-highlight respectively. 
Each of these measurements is incremented by 1 point 
when certain rules are met. Thus, users should be able to 
intuitively decide the most-likely highlight of each 
sequence based on the highest score. However, to reduce 
users’ workload, we can apply some post-processing to 
automate/assist their decision. 
Feature Soccer 

G=Goal, S=Shoot, 
F=Foul, 
N=Non_(avg; max; 
min) 

AFL 
G=Goal, B=Behind, 
M=Mark, T=Tackle, 
N=Non_(avg; max; 
min) 

Basketball 
G=Goal, F=Foul, 
FT=Free throw, 
T=Timeout_(avg; max; 
min) 

Duration 
(D) 

Gd_(73; 104; 43) 
Sd_(36, 73; 10) 
Fd_(38; 72;  14) 
Nd_(24; 40; 5) 

Gd_(72; 120; 40) 
Bd_(31; 53; 7) 
Md_(26; 65; 8) 
Td_(25; 63; 10) 
Nd_(20; 42; 8) 

Gd_(24; 51.6; 9.6) 
Fd_(28.8; 60; 12) 
FTd_( 20.4; 30; 11) 
Td_(124.8; 255; 25) 

Play Ratio 
(PlR) 

Gp_(0.30; 0.46; 0.07) 
Sp_(0.57; 0.87; 0.15) 
Fp_(0.64; 0.97; 0.08) 
Np_(0.73; 0.91; 0.47) 

Gp_(0.17; 0.33;0.06) 
Bp_(0.38; 0.92; 0.10) 
Mp_(0.62; 0.86; 0.26) 
Tp_(0.55; 0.83; 0.08) 
Np_(0.52; 0.81; 0.17) 

Gp_(0.71; 0.94; 0.27) 
Fp_(0.48; 0.72; 0.13) 
FTp_(0.50; 0.81; 0.23) 
Tp_(0.12; 0.24; 0.05) 

Near Goal 
(NgR) 

Gn_(0.47; 1; 0.13) 
Sn_(0.55; 0.93; 0) 
Fn_(0.23; 0.81; 0) 
Nn_(0.17; 0.1; 0) 

Gn_(0.13; 0.43; 0.02) 
Bn_(0.10; 0.39; 0.02) 
Mn_(0.02; 0.23; 0) 
Tn_(0.01; 0.05; 0) 
Nn_(0.01; 0.08; 0) 

Gn_(0.49; 0.92; 0.04) 
Fn_( 0.43; 0.93; 0) 
FTn_(0.55; 1; 0.05) 
Tn_(0.34; 0.85; 0) 

Excitement 
(ExcR) 

Ge_(0.45; 0.83; 0.10) 
Se_(0.35; 0.79; 0) 
Fe_(0.20; 0.50; 0) 
Ne_(0.2;0.6; 0) 

Ge_(0.29; 0.54; 0) 
Be_(0.38; 0.86; 0) 
Me_(0.32; 0.91;0) 
Te_(0.22; 0.59; 0) 
Ne_(0.30; 0.75; 0) 

Ge_(0.41; 0.82; 0.05) 
Fe_(0.34; 0.78; 0) 
FTe_(0.44; 0.90; 0) 
Te_(0.24; 0.43; 0.05) 

Close-up 
(CuR) 

Gc_(0.26; 0.51; 0.08) 
Sc_(0.23; 0.74; 0) 
Fc_(0.12; 0.29; 0) 
Nc_(0.2; 0.6; 0) 

Gc_(0.35; 0.86; 0) 
Bc_(0.35; 0.76; 0) 
Mc_( 0.28; 0.56; 0) 
Tc_(0.18; 0.44; 0) 
Nc_(0.29; 0.69; 0) 

Gc_(0.11; 0.3; 0) 
Fc_(0.27; 0.69; 0) 
FTc_(0.26; 0.68; 0) 
Tc_(0.49; 0.78; 0.16) 
Nc_(0.2; 0.63; 0) 

Replay 
(RpD) 

Gr_(25; 34; 20) 
Sr_(6; 16; 0) 
Fr_(6; 23; 0) 
Nr_(0; 0; 0) 

Gr_(9; 23; 0) 
Br_(6; 40; 0) 
Mr_(1; 14;0) 
Tr_(4; 14; 0) 
Nr_(0; 0; 0) 

Gr_(0; 0; 0) 
Fr_(4.8; 13; 0) 
FTr_(0; 0; 0) 
Tr_(16; 40; 0) 

Table 1. Statistics of Soccer, AFL, and Basketball 
Highlights. 

The essence of highlight classification is on comparing 
the value of each input parameter against the typical 
statistical characteristics: min, avg, and max which are 



denoted as a stat. The following algorithm describes the 
calculation that can be applied to any sport (using soccer 
as an example). 

Common event classification algorithm 
),,,statRegion(  )_Region(Det_SoccerLet  G NFS statstatstatval,val =

 
Perform 

)()()()()()_Region(Det_Soccer  region1..n RpR,PlR,CuR,ExcR,NgR,D=  

For region1 to regionn 

Increment the corresponding highlight score //G, Sh, F, Non in this case 

where, 
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),...,min(AvgD   21 nAvgDAvgDMinAvgD = , ),...,min(TD   21 nTDTDMinTD = .  

It is to be noted that in Det_soccer_region(val), Xstat  
matches the value input. Therefore, when val is NgR, then 

Gstat = {Gn_avg, Gn_max, Gn_min} is used according to 
the statistics-table.  

In addition to the common algorithm, we can improve the 
accuracy of the event classification for a particular sport 
based on its statistical phenomena. This concept is 
described in the rest of this section.  

2.2.1 Events Classification in Soccer 
When play ratio, sequence duration and near goal ratio 
fall within the statistics of goal or shoot, it is likely that 
the sequence contains goal or shoot. Otherwise, we will 
usually find a foul or non-highlight. However, shoot often 
has similar characteristics with foul. In order to 
differentiate goal from shoot, and shoot/foul from non-
highlight, we apply some statistical features: 

� Goal vs. Shoot: Compared to shoot, goal has longer 
duration, more replays and more excitement. 
However, goal has shorter play scene due to the 
dominance of break during celebration. 

� Shoot, Foul, vs. Non-highlight (None): None does 
not contain any replay whereas foul contains longer 
replay than shoot in average. Foul has the lowest 
close-up ratio as compared to shoot and none. None 
has the shortest duration as compared to shoot and 
foul. None contains the least excitement as compared 
to shoot and foul, whereas foul has less excitement 
than shoot. 

Based on these findings, the following algorithm is 
developed. 

Specific algorithm to classify highlight events in soccer  

Perform  region1..3 = Det_Soccer_Region (PlR), (D), (NgR) 
accordingly 
If all region1, 2 and 3 = 1 or 2  
 //Most likely to be goal or shoot 
 Increment G and Sh 

 Perform )()()()_Region(Det_Soccer  region 4..7 D, PlR, RpD, ExcR=  
 For region4 to region7 
  If current region = 1, Increment G 
  Else if current region = 2, increment Sh 
  Else 
   //Most likely to be foul, shoot, or non 
   Increment F, Sh, Non 
   Perform )()()()(_Region Det_Soccer  region 4..7 RpD, D, ExcR, CuR=  
 For region4 to region7 
  If current region = 2, increment Sh 
  Else if current region = 3, Increment F 
  Else if current region = 4, increment Non 

It should be noted that the more compact representation 
of this algorithm is presented in Figure 3, where {val} is 
the convention 
of )),..((val),l_Region(vaDet_Soccerregion 211..N Nval= . Thus, 
squares denote the statistics that need to be checked, 
whereas the non-boxed texts are the associated highlight 
point(s) that will be incremented based on the outputs of 
each region. This representation is used for describing 
other sports. 

2.2.2 Events Classification in AFL 
In AFL, a goal is scored when the ball is kicked 
completely over the goal-line by a player of the attacking 
team without being touched by any other player. A 
behind is scored when the football touches or passes over 
the goal post after being touched by another player, or the 
football passes completely over the behind-line. A mark 
is taken if a player catches or takes control of the football 
within the playing surface after it has been kicked by 
another player a distance of at least 15 meters and the ball 
has not touched the ground or been touched by another 
player. A tackle is when the attacking player is being 
forced to stop from moving because being held (tackled) 
by a player from the defensive team. Based on these 
definitions, it should be clear that goal is the hardest 
event to achieve. Thus, it will be celebrated longest and 
given greatest emphasis will be given by the broadcaster. 
Consequently, behind, mark and tackle can be listed in 
the order of its importance (i.e. behind is more interesting 
than mark).  

Figure 4 shows the highlight classification rules for AFL. 
Let G, B, M, T, Non be the highlight-score for goal, 
behind, mark, tackle and non-highlight respectively. 
Thus, for AFL event detection: 

),,,,statRegion(  )gion(Det_AFL_Re G NTMB statstatstatstatval,val = . 

The algorithm firstly checks that if current PlR belongs to 
Gstat  (i.e. output = 1) and NgR is greater than the 

minimum of the typical value for goal and behind, then 
the sequence is most likely to contain either goal or 
behind. This is followed by comparing: ExcR, RpD, and 
PlR values: the outputs determine which score is 
incremented from G or B.  

Else (if PlR does not belong to Gstat ), it is more likely to 
contain mark, tackle, or none. This is followed by 
comparing: D, CuR, PlR, and RpR values: the outputs 
determine which score is incremented from M, T, or N. 



 
Figure 3. Highlight Classification Rules for Soccer  

 
Figure 4. Highlight Classification Rules for AFL. 

 
Figure 5. Highlight Classification Rules for Basketball 

2.2.3 Events Classification in Basketball 
Compared to soccer and AFL, goals in basketball are not 
celebrated and do not need a special resume such as kick 
off. Therefore, it is noted that the rules applied to soccer 
and AFL cannot be used directly for basketball goals.  

Figure 5 shows the highlight classification rules for 
basketball. Let G, FT, F, T be the highlight-score for 
goal, free-throw, foul, and timeout respectively. Thus, for 
basketball event detection, let: 

),,,statRegion(  )n(ball_RegioDet_Basket G TFFT statstatstatval,val =  
The algorithm firstly checks if current PlR belongs to 

Tstat  (i.e. output = 4), then the sequence is most likely to 
contain timeout. This is followed by comparing: Cur, 
RpD, NgR, and D values: each time that the output of 
comparison is equal to 4, T is further incremented. 

Else (if current PlR does not belong to Tstat ), it is more 
likely to contain goal, free-throw, or foul (if RpD > 0). 
This is followed by checking: 

If NgR belongs to region Gstat or FTstat  (i.e. output = 1 or 
2), then the comparison is based on the values of: CuR, 
PlR, D, and NgD: the outputs determine which score is 
incremented from G or FT.  

Else, (if NgR does not belong to region Gstat or FTstat ), 
then the comparison is based on the values of: CuR, PlR, 
NgD, and ExcR: each time that the output of comparison 
is equal to 3, F is further incremented. 

3 Extensible Indexing 
For the indexing of events, OO modeling is recognized 
for its ability to support complex data definitions. We 
have identified two main alternatives in using O-O for 
modelling data based on the models presented in AVIS 
(Adali et al., 1996) and OVID (Oomoto and Tanaka, 
1997), namely, schema-based and schema-less,. A 
schema-based model (Adali et al., 1996) can be 

composed of three types of entities (i.e. index-able items) 
in a video database, namely, 1) video objects, which 
capture entities that present in the video frames, 2) 
activity types, which is the subject of a frame sequence, 
and 3) event, which is the instantiation of an activity type. 
Thus, their model has allowed users to query the location 
of the occurrence of their desired object or events. The 
main benefit of using a schema-based model is its 
capability to support easy updates due to the strict 
components that have to be followed exactly for each 
entity. However, the main limitation is the difficulty to 
include new description during instantiation of video 
models due to the static schema; therefore, the model is 
not extensible.  

In contrast, schema-less modeling (Oomoto and Tanaka, 
1997) is designed based on the fact that each video 
interval can be regarded as a video object, in which the 
attributes can be objects, events, or other video objects. 
Thus, the content of a video object is more dynamic. 
Moreover, they also proposed dynamic calculation of 
inheritance, overlap, merge and projection of intervals to 
satisfy user queries. However, there are two main 
problems of schema-less modelling. First, query 
difficulties arise as users/developers must inspect the 
attribute definition of each object to develop a query 
because each object has its own attribute structure. 
Second, the total dependency on users or applications for 
supervising the instantiation of video objects occurs due 
to the fact that a schema is not present. 

In order to combine the strengths of schema-based and 
schema-less modelling, this section demonstrates the 
utilization of XML to design and construct a semi-schema 
based video model.  Schema-based matching ensures that 
the video indexes are valid during data operations such as 
insertion, thereby minimizing the need of manual 
checking. However, the model is also semi-schema based 
as it allows additional declared elements in the 
instantiated objects as compared to its schema definition. 
Moreover, not all elements in an object need to be 
instantiated at one time as video content extraction often 
requires several passes due to the complexity and lengthy 
processing; thereby supporting an extensible modeling 
scheme.In addition to the strength of OO modeling, the 
video model also attempts to benefit from relational 
modeling scheme. In particular, the utilization of 
referential integrity  (Connolly and Begg., 2002) allows 
an object to include elements which are referenced from 
the existing objects within the database. The main 
purpose is to reduce objects being added within another 
object(s), thereby avoiding complex hierarchies and 
potential redundancies. Hence, in overall, the proposed 
video model supports object-relational modeling 
approach while adopting semi-schema based index 
construction and maintenance. 

The sport video indexing is designed using two main 
abstraction classes, namely, segment and event. Each 
segment is instantiated with a unique key of segment Id 
into either: video-, visual-, or audio-segment. A segment, 
as shown in Figure 7, can be instantiated as video-, audio- 
or visual-segment which are extracted from a raw video 
track when mid-level features (e.g. whistle and 



excitement) can be detected. An event can be instantiated 
into generic (e.g. interesting event), domain-specific (e.g. 
soccer goal), or further-tactical (e.g. soccer free kick) 
semantics. Events and segments are chosen as they can 
provide an effective description for many sport games.  
For example, most users will benefit from watching 
soccer goals as the most celebrated and exciting event. 
Segments are used as the text-alternative annotations to 
describe the goal. As shown in Figure 6, the last near-goal 
segment in a play-break sequence containing goal 
describe how the goal was scored. Face and text displays 
can inform who scored the goal (i.e. the actor of the 
event) and the updated score. Replay scene shows the 
goal from different angles to further emphasize the details 
of how the goal is scored. In most cases, when the replay 
scene is associated with excitement, the content is more 
important. Excitement during the last play shot in a goal 
is usually associated with descriptive narration about the 
goal. In fact, we (human) often can hear a goal without 
actually seeing it. 

 
Figure 6. Goal Event with Segment-Based 

Annotations. 

We have utilized some of the main benefits from using 
XML to store and index the extracted information from 
sport videos: 

� XML is extensible by allowing additional 
information without affecting others. This is 
important to support gradual developments of feature 
extraction techniques that can add extractable 
segments and events. 

� XML is internally descriptive and can be displayed 
in various ways.  This is important to allow users 
browsing the XML data directly, while search results 
can also be returned as XML that can provide direct 
link(s) to the video location. 

� XML fully supports semi-structured aspects that 
match video database characteristics: 1) Object can 
be described using attributes (properties), other 
objects (i.e. nested object), or heterogeneous 
elements (i.e. any element). Instantiated objects from 
the same class may not have the same number of 
attributes as not all attributes are compulsory, 
depending on the min and max occurs. 2) XML 

supports two types of relationships: nesting and 
referencing. However, to reduce redundancy, we 
have used referencing instead of nested object class. 

We have used XML Schema to define and construct the 
XML-based video schema as it has replaced DTD as the 
most descriptive language. Due to its expressive power, 
XML schema has also been used as the basis of MPEG-7 
DDL (Data Definition Language) and XQuery data 
model. Therefore, we should be able to easily leverage 
our proposed model to support MPEG-7 standard 
multimedia descriptions and XQuery implementation. For 
a more compact representation of XML schema, this 
section will demonstrate the use of ORA-SS (Object-
Relationship-Attribute notation for Semi-Structured data) 
(Dobbie et al., 2000) to design the video model as shown 
in Figure 7 to Figure 9  (that is located on the last page). 
ORA-SS notation is chosen for its ability to represent 
most of XML schema’s features. It is to be noted that our 
diagrams extend the ORA-SS notation by demonstrating 
a more complex sample which integrate inheritance 
diagram with schema diagram. We have also introduced 
two additional notations: 1) italic texts indicate abstract 
object, 2) (in Figure 9) indicates repeated object to 
avoid complex/crossing lines. 

The followings describe the overall video indexing 
model. As shown in Figure 9, a sport video (SV) is a type 
of video segment which consists of SV components, 
overall summary, and hierarchical summary. SV 
components are composed of: 1) segment collection 
which stores a flat-list of audio, visual and audio 
segments that can be extracted from the sport video, 2) 
syntactic relation collection which stores all the syntactic 
relations such as ‘composed of’ and ‘starts after’ between 
one source segments and one or more destination 
segments, and 3) semantic relation collection which 
records all the semantic relations such as ‘is actor of’ and 
‘appears in’ between  one source segment or semantic 
object and one or more destination segments or semantic 
objects. Overall summary describes the sport video game 
as a whole; it includes where (stadium), when (date time), 
who (teams that compete), final result, and match 
statistics. Match statistics can be stored as XML tags or a 
visual frame such as text displays that depicts the number 
of goals, shots, fouls, red/yellow cards, and counter 
attacks in a soccer game. Hierarchical summary is 
composed of comprehensive summary and highlight 
events (HE) summary.  Comprehensive summary 
describes sport video in terms of play-break sequences 
which are the main story decomposition unit in most of 
sport videos. For example, an attacking attempt during a 
play is stopped when there is a goal or foul. Each play-
break can contain zero or one (key) event and can be 
decomposed into one or more play and break shots. Each 
play or break can be described by text-alternative 
annotations, including face, replay and excitement which 
are referenced (segments) from segment collection. On 
the other hand, HE summary organizes highlight events 
into common summary theme such as soccer goals and 
basketball free throws. 

Each time sport video is instantiated, it will be specialized 
into the classified genre, such as soccer video, basketball 



video and AFL video. Therefore, a soccer video will 
inherit all components of (general) sport video while 
providing extra attributes such as sport category and 
some extra components. In particular, for each type of 
sport video, we can extract domain specific events such as 
soccer goal. Each domain event can be described using 
specific roles such as goal scorer. It should be noted that 
goal scorer will reference to a player that is defined 
elsewhere in order to avoid nested components.  
Similarly, domain events are referenced by hierarchical 
summaries. Finally, a sport video database is composed 
of one or more classified sport videos, and one semantic 
object collection. Semantic object collection defines the 
details of all the semantic objects that appear in the sport 
videos. For example, player can be instantiated into 
soccer player which is described by the specific attributes 
of a soccer player such as squad number, and preferred 
position. 

 
Figure 7. Extensible Indexing Scheme (1). 

 
Figure 8. Extensible Indexing Scheme (2). 

It is to be noted that in order to achieve a faster gradual 
index construction, all segments should be able to be 
extracted incrementally in the same level, without 
concerning about the hierarchy. For example, assuming 
that PB1 contains P1, P2, and B1, the system should be 
able to add B1 without necessarily attaching it to PB1. 
This allows the system to easily add P1 and P2 at later 
time. Therefore, hierarchy structures should be stored 
separately as a hierarchical view or processed 
dynamically when required by users for browsing.  

Using the proposed video model, we have demonstrated a 
sport video indexing scheme that supports: 

� Extensible video indexes that allow gradual 
extraction of segments and events without affecting 
the others. For example, we can introduce more 
segments and events incrementally without affecting 
the existing ones. Similarly, more semantic objects, 
such as stadium and referee, can be introduced at a 
later stage when many sport videos share the same 
stadium and referee.  

� Object-Relationship modeling scheme. In particular, 
we have demonstrated that inheritance and 
referencing are important features in video database 

modeling. Inheritance enables us to reuse existing 
parent components while refining them with more 
specific items. Referencing enables us to store video 
components into a flat list which can be referenced 
by hierarchical structures to avoid redundancies. 

� Semi-schema based modeling scheme. As shown in 
Figure 7, we allow users/applications to add ANY 
additional elements (or attributes) into a segment 
description as long as the element has been declared 
somewhere else in the proposed schema, or other 
schema within a particular scope. In fact, we may 
attach ANY into other elements in our data model to 
allow more flexibility as users often know better 
what they want to describe than developers. 
However, we aim gradually modifying the schema 
with new components, especially when the extra 
information provided by users can be used to enrich 
the current video model. 

4 Experimental Results 
Performance results for mid-level features extraction (that 
are required during training and evaluation) including 
view classification, near-goal, and excitement, have been 
presented in our previous papers (Tjondronegoro et al., 
2004a). For AFL and basketball videos, we only need to 
ensure that the adaptive thresholds are effective for each 
video sample. For this purpose, we compare the truth and 
the automatic results of features detection on each video 
for duration of 5-10 minutes. We then select the best 
empirical thresholds that can be applied to all videos 
within the same domain. Missing and/or false detections 
on individual mid-level features detection have less 
significant impacts on the highlights classification as the 
models depend on the fusion of all features. For example, 
soccer goal will still be detectable even if the near goal 
ratio and excitement is not detected perfectly. 
Nevertheless, the more accurate mid-level features can be 
extracted, the highlight points will be more accurately 
calculated. Hence, during experiment we have set a 
minimum value that highlight point should reach to be 
trusted. For all sport videos, we have successfully applied 
a minimum of 3 points for all highlights which means that 
at least 3 mid-level features can be detected. In almost all 
cases, highlights can be detected with a 6 to 7 point 
minimum threshold. 

Table 2 will describe the video samples used during 
experiment. For each sport, we have used videos from 
different competitions, broadcasters and/or stage of 
tournament. The purpose is, for example, final match is 
expected to contain more excitement than a group match 
while exhibition will show many replay scenes to display 
players’ skills. Our experiment was conducted using 
MATLAB 6.5 with image processing toolbox. The videos 
are captured directly from a TV tuner and compressed 
into ‘.mpg’ format which can be read into MATLAB 
image matrixes. 

Sample Group  (Broadcaster) Videos “team1-teams2_period-[duration]” 

Soccer: UEFA Champions League 
Group Stage Matches (SBS) 

ManchesterUtd-Deportivo1,2-[9:51, 19:50]  

Madrid-Milan1,2[9:55,9:52] 

Soccer: UEFA Champions league 
(SBS) 

Juventus-Madrid1,2:[19:45,9:50] 

Milan-Internazionale1,2:[9:40,5:53] 



Elimination Rounds Milan-Depor1,2-[51:15,49:36] (S1) 

Madrid-BayernMunich1,2-[59:41,59:00] (S2) 

Depor-Porto-[50:01,59:30] (S3) 

Soccer: FIFA World cup  

Final (Nine) 

Brazil-Germany [9:29,19:46] 

Soccer: International Exhibition 
(SBS) 

Aussie-SthAfrica1,2-[48:31,47:50] (S4) 

Soccer: FIFA 100th Anniversary 
Exhibition (SBS) 

Brazil-France1,2-[31:36,37:39] (S5) 

AFL League 

Matches (Nine) 

COL-GEEL_2-[28:39] (A3) 

StK-HAW_3-[19:33] (A4) 

Rich-StK_4-[25:20] (A5) 

AFL League 

Matches (Ten) 

COL-HAW_2-[28:15] (A1) 

ESS-BL_2-[35:28] (A2) 

BL-ADEL_1,2:[35:33,18:00] (A6) 

AFL League 

Final rounds (Ten) 

Port-Geel_3,4-[30:37,29:00] (A7) 

Basketball: Athens 2004 Olympics 
(Seven) 

Women: AusBrazil_ 1,2,3-[19:50,19:41,4:20] (B1) 

Women: Russia-USA_3-[19:58] (B2) 

Men: Australia-USA_1,2-[29:51,6:15] (B3) 

Basketball: Athens 2004 Olympics 
(SBS) 

Men: USA-Angola_2,3-[22:25,15:01] (B4) 

Women: Australia-USA_1,2-[24:04-11:11] (B5) 

Table 2. Sample Video Data. 

4.1 Performance of Play-Break Segmentation 
Play-break scoping plays a significant role to ensure that 
we can extract all of the features that usually exist in each 
highlight. Moreover, the statistics (especially play-/break- 
dominance) will be affected when the play-break 
sequences are detected perfectly. Table 3 to Table 5 
depicts the performance of the play-break segmentation 
algorithm on soccer, AFL and basketball videos, 
respectively. It is to be noted that that RC = Replay-based 
(P-B sequence) Correction, PD = perfectly detected, D = 
detected, M = missed detection, F = false detection,  Tr = 
Total number in Truth, Det = Total Detected, RR = Recall 
Rate, PR= Precision Rate, and PD decr = perfectly 
detected decrease rate if RC is not used; Tru= PD+D+M, 
Det = PD+D+F, RR = (PD+D+M)/Tru * 100%, PR= 
(PD+D)/Det * 100%, and PD_Decr = (PD-D)/PD * 
100%. The results demonstrate that RC is generally useful 
to improve the play-break segmentation performance. It is 
due to the fact that many (if not most) replay scenes, 
especially soccer and AFL use global (i.e. play) shots. 
This is shown by all PD_decr, RR, and PR as RC always 
improves all of these performance statistics. In particular, 
the RR and PR for soccer 1-1 with RC are 100% each but 
they are reduced to below 50% without RC. In soccer 1-1 
without RC, the PD dropped from 49 to 12 (i.e. 75% 
worse) whereas M increases from 0 to 25 and F increases 
from 0 to 5. This is due to the fact that soccer1 video 
contains many replay scenes which are played abruptly 
during a play, thereby causing a too-long play scene and 
missing a break. However, based on the statistics shown 
in Table 5, RC for basketball may not be as important as 
that of soccer and AFL. It is because basketball’s replay 
scene uses more break shots such as zoom-in and close-
up, as compared to soccer and basketball. 

4.2 Performance of Soccer Events Detection 
Based on Table 6 and Table 7, most soccer highlights can 
be distinguished from non-highlights with high recall and 
precision. As there are normally not many goal highlights 
in a soccer match, it would be ideal to have a high RR 

over a reasonable PR; 5 out of 7 goals are correctly 
detected from the 5 sample videos while 2 shoots and 1 
non-highlight are classified as goals. The shoot segments 
detected as goals very exciting and nearly result in goal. 
On the other hand, the non-highlight detected as a goal 
also consist of a long duration and replay scenes and 
excited commentaries due to a fight between players.  
The foul detection is also effective as the RR is 81% and 
most of the misdetections are either detected as shoot or 
non which have the closest characteristics. However, the 
PR is considerably low since some shoots and non-
highlights are detected as foul. An alternative solution is 
to use whistle existence for foul detection, but we still 
need to achieve a really accurate whistle detection that 
can overcome the high-level of noise in most of sport 
domains. Only 46 out of 266 non-highlight sequences 
were incorrectly detected as highlights. These additional 
highlights will still be presented to the viewers as there 
are generally not many significant events during a soccer 
video. In fact, most of these false highlights can still be 
interesting for some viewers as they often consist of long 
excitement, near-goal duration and replay scene. 

4.3 Performance Basketball Events Detection 
Highlights detection in basketball is slightly harder than 
soccer and AFL due to the fact that: 1) goals are generally 
not celebrated as much as soccer and AFL, 2) non-
highlights are often detected as goal and vice versa. 
Fortunately, non-highlights mainly just include ball out 
play which hardly happen in basketball matches. Thus, 
we have decided to exclude non-highlight detection and 
replace it with timeout detection which can be regarded 
as non-highlights for most viewers. However, for some 
sport fans, timeouts may still be interesting to show the 
players and coaches for each team and some replay 
scenes. In addition to these problems, sequences 
containing fouls are sometimes inseparable from the 
resulting free throws. For such cases, the fouls are often 
detected as goal due to the high amount of excitement and 
long near-goal. However, fouls which are detected as 
goals can actually be avoided by applying a higher 
minimum highlight point for goal but at the expense of 
missing some goal segments. For our experiment, we did 
not use this option as we want to use a universal threshold 
for all highlights. 

Based on Table 8 and Table 9, basketball goal detection 
achieves high RR and reasonable PR. This is due to the 
fact that goals generally have very unique characteristics 
as compared to foul and free throw. Timeouts can be 
detected very accurately (high RR and PR) due to their 
very long and many replay scenes. Moreover, most 
broadcasters will play some in-between advertisements 
when a timeout is longer than 2 minutes, thereby 
increasing the close-up ratio. Free throw is also detected 
very well due to the fact that free throw is mainly played 
in near-goal position; that is, the camera focuses on 
capturing the player with the ball to shoot. However, it is 
generally distinguishable from goal based on: less 
excitement, higher near goal, and more close-up shott; 
that is, goal scorer is often just shown with zoom-in 
views to keep the game flowing. However, the system 
only detected 28 out of 54 foul events. This problem is 



caused by the fact that after foul, basketball videos often 
abruptly switches to a replay scene which is followed by 
time-out or free-throw. This can be fixed with the 
introduction of additional knowledge such as whistle-
detection. 

4.4 Performance of AFL Events Detection 
As shown in Table 10 and Table 11, the overall 
performance of the AFL highlights detection is found to 
yield promising results. All 37 goals from the 7 videos 
were correctly detected. Although the RR of behind 
detection seems to be low, most of the miss-detections are 
actually detected as goal. Moreover, behind is still a sub-
type of goal except that it has lower point awarded. The 
slightly lower performance for detection of mark and 
tackle detection is caused by the fact that our system does 
not include whistle feature which is predominantly used 
during these events. Based on the experimental results, 
mark is the hardest to be detected and needs additional 
knowledge. In Table 11, PR and RR for behind is N/A as 
1 behind was detected as goal while Mark = N/A because 
5 marks were detected as goal. 

5 Conclusion and Future Work 
We have proposed an extensible approach for detecting 
events in sports video. The use of play-break scoping for 
all highlights have enabled us to obtain statistical-
phenomena of the features contained in each highlight. 
Since the rules for highlight classification are driven by 
the statistics, none or low amount of domain-specific 
knowledge is required. Therefore, the proposed 
algorithms should be more robust for different sports, 
especially, field-ball goal oriented games. Based on the 
experimental results, play-break sequences are proven to 
be effective containers for detecting highlights. Thus, 
play-breaks need to be perfectly segmented and we have 
shown that replay-correction improves the performance. 
We have also proposed a segment-event based video data 
model which is designed using semi-schema-based and 
object-relationship modeling schemes. The schema is 
developed into XML schema with ORA-SS notation. The 
proposed schema is extensible as it supports incremental 
development of algorithms for feature-semantic 
extraction. Moreover, the schema does not need to be 
complete at one time while allowing users to add 
additional elements. We have also emphasized the usage 
of referencing relationship to avoid redundant data. 
Referencing also allows the system to add segments and 
events to achieve more straightforward and faster data 
insertions. In order to further verify and improve the 
robustness of the proposed algorithms for events 
detection we have incorporated more sport genre such as 
volleyball, tennis and gymnastics, into the existing 
dataset. The extracted information will allow the system 
to construct a larger sample of video database data which 
consequently would verify the benefits from using the 
proposed video indexing model.  

Soccer Play-break detection Video 

PD D M F Tru Det RR PR PD_decr 

S1-1 (RC) 49 0 0 0 49 49 100.00 100.00   

S1-1 12 12 25 5 49 54 48.98 44.44 75.51 

S1-2(RC) 53 0 0 1 53 54 100.00 98.15   

S1-2 36 10 7 1 53 54 86.79 85.19 32.08 

S2-1(RC) 54 1 1 12 56 68 98.21 80.88   

S2-1 53 2 1 12 56 68 98.21 80.88 1.85 

S2-2(RC) 58 1 0 7 59 66 100.00 89.39   

S2-2 55 4 0 7 59 66 100.00 89.39 5.17 

S3-1 (RC) 49 0 0 4 49 53 100.00 92.45   

S3-1 45 4 0 5 49 54 100.00 90.74 8.16 

S3-2 (RC) 69 0 0 3 69 72 100.00 95.83  

S3-2 65 4 0 5 69 74 100.00 93.24 5.80 

S4-1(RC) 49 0 0 9 49 58 100.00 84.48   

S4-1 40 8 1 13 49 62 97.96 77.42 18.37 

S4-2(RC) 47 0 0 9 47 56 100.00 83.93   

S4-2 36 11 0 12 47 59 100.00 79.66 23.40 

S5 (RC) 48 0 0 0 48 48 100.00 100.00   

S5 24 16 8 1 48 49 83.33 81.63 50.00 

Table 3. Play-Break Detection in Soccer Videos. 
AFL Play-break detection 

Video PD D M F Tru Det RR PR PD decr 

A1 (RC) 34 0 0 5 34 39 100.00 87.18   

A1 29 5 0 8 34 42 100.00 80.95 14.71 

A2 (RC) 21 6 0 8 27 35 100.00 77.14   

A2 16 10 1 5 27 32 96.30 81.25 23.81 

A3 (RC) 20 3 0 4 23 27 100.00 85.19   

A3 17 6 0 6 23 29 100.00 79.31 15.00 

A4 (RC) 29 0 0 1 29 30 100.00 96.67   

A4 21 6 2 2 29 31 93.10 87.10 27.59 

A5 (RC) 34 0 0 1 34 35 100.00 97.14   

A5 23 4 7 3 34 37 79.41 72.97 32.35 

A6 (RC) 50 2 0 3 52 55 100.00 94.55  

A6 36 10 6 7 52 59 88.46 77.97 28.00 

A7 (RC) 41 10 4 4 55 59 92.73 86.44   

A7 39 12 4 6 55 61 92.73 83.61 4.88 

Table 4. Play-Break Detection Results in AFL Videos. 
Video Basketball Play-break detection 

 PD D M F Tru Det RR PR PD decr 

B1 (RC) 32 6 2 3 40 43 95.00 88.37   

B1 31 7 2 4 40 44 95.00 86.36 3.13 

B2 (RC) 19 2 0 2 21 23 100.00 91.30   

B2 18 3 0 3 21 24 100.00 87.50 5.26 

B3 (RC) 39 3 0 1 42 43 100.00 97.67   

B3 38 4 0 2 42 44 100.00 95.45 2.56 

B4 (RC) 26 5 2 2 33 35 93.94 88.57   

B4 25 6 0 3 31 34 100.00 91.18 3.85 

B5 (RC) 39 0 1 1 40 41 97.50 95.12   

B5 25 13 2 5 40 45 95.00 84.44 35.90 

Table 5. Play-Break Detection Results in Basketball. 
Highlight classification of 5 videos Ground 

truth 
Goal Shoot Foul Non Truth 

Goal 5 0 2 0 7 

Shoot 2 66 32 12 112 

Foul 0 13 91 13 117 

Non 1 11 34 220 266 

Detected 8 90 159 245   

Table 6. Events Detection Results in Soccer Videos. 
S1 S2 S3 S4 S5 Average 

 
RR PR RR PR RR PR RR PR RR PR RR PR 

Goal 60 100.0 100 50.0 N/A N/A 100 33.3 N/A N/A 86.7 61.1 

Shoot 39.4 76.5 64.0 84.2 80.0 66.7 78.9 71.4 40.0 66.7 60.5 73.1 

Foul 85.2 53.5 68.0 53.1 71.4 78.9 88.9 38.1 92.9 52.0 81.3 55.1 

Non 86.5 82.1 86.3 88.5 90.5 90.5 75.8 100.0 60.0 80.0 79.8 88.2  

Table 7. Distribution of Soccer Events Detection 
Highlight classification of 5 basketball videos Ground truth 

Goal Free throw Foul Timeout Truth 

Goal 56 0 0 2 58 

Free throw 4 14 0 0 18 

Foul 21 2 28 3 54 

Timeout 0 0 0 13 13 

Total Detected 81 16 28 18   

Table 8. Basketball Events Detection Results  



 

 
Figure 9. Extensible Indexing Scheme (3). 

 
B1 B2 B3 B4 B5 Average   

RR PR RR PR RR PR RR PR RR PR RR PR 

Goal 100 72.2 75 50.0 95 70.4 100 72.2 100 66.7 94 66.3 

Free throw 100.0 66.7 100.0 75.0 80.0 100.0 50.0 100.0 66.7 100.0 79.33 88.3 

Foul 64.7 100.0 50.0 100.0 30.8 100.0 37.5 100.0 75.0 100.0 51.59 100.0 

Timeout 100.0 100.0 100.0 50.0 100.0 40.0 100.0 66.7 100.0 100.0 100 71.3  

Table 9. Distribution of Basketball Events Detection  
Highlight classification of 7 videos Ground 

truth 
Goal Behind Mark Tackle Non Truth 

Goal 37 0 0 0 0 37 

Behind 11 12 7 0 2 32 

Mark 15 1 35 8 5 64 

Tackle 4 0 9 20 2 35 

Non 4 4 11 3 33 55 

Detected 71 17 62 31 42  

Table 10. Events Detection Results in AFL Videos 
A1 A2 A3 A4 A5 A6 A7 AVG 

 
RR PR RR PR RR PR RR PR RR PR RR PR RR PR RR PR

Goal 100.0 44.4 100.0 52.9 100.0 57.1 100.0 33.3 100.0 50.0 100.0 63.6 100.0 53.3 100.0 50.7

Behind 50.0 100.0 N/A N/A 33.3 33.3 33.3 66.7 50.0 100.0 33.3 100.0 33.3 50.0 38.9 75.0

Mark 50.0 60.0 N/A N/A 60.0 60.0 77.8 77.8 60.0 42.9 66.7 42.1 47.1 80.0 60.3 60.5

Tackle 80.0 66.7 100.0 75.0 25.0 100.0 100.0 100.0 12.5 33.3 85.7 66.7 50.0 50.0 64.7 70.2

Non 77.8 100.0 33.3 100.0 50.0 50.0 50.0 66.7 71.4 71.4 46.2 100.0 75.0 69.2 57.7 79.6 
Table 11. Distribution of AFL Events Detection 
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