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The huge volume of
multimedia data
now available calls
for effective
management
solutions.
Computational
Media Aesthetics
(CMA), one response
to this data-
management
problem, attempts
to handle
multimedia data
using domain-driven
inferences. To
provide a context for
CMA, this article
reviews multimedia
content
management
research. 

T
he Multimedia Content Description
Interface (MPEG-7) is the Moving
Picture Experts Group’s ISO standard
for describing multimedia content. It

provides a rich set of standardized tools for
describing multimedia content. The standard’s
overview contains the rather nostalgic lament,
“Accessing audio and video used to be a simple
matter—simple because of the simplicity of the
access mechanisms and because of the poverty of
the sources.” This is clearly no longer the case. 

Although none of the media in multimedia
are new, the sheer volume in which they’re
stored, transmitted, and processed is, and direct-
ly results from the prevailing winds of Moore’s
law that continue to deny the doomsayers and
power a relentless improvement of relevant tech-
nologies. The tidal wave of unmanaged and
unmanageable data that has developed over the
last decade and is outstripping our ability to ulti-
mately use it has motivated the growing drive for
management solutions. A book without a con-
tents page or index is an annoyance; a data ware-
house with terabytes of video is nearly useless
without a means of searching, browsing, and
indexing the data. In short, such content is wast-
ed without suitable content management. 

Computational media aesthetics (CMA) is one
response to the problem posed by multimedia
content management (MCM).1 CMA focuses on
domain distinctives, the elements of a given
domain that shape its borders and define its

essence (in film, for example, shot, scene, setting,
composition, or protagonist), particularly the
expressive techniques used by a domain’s content
creators. This article seeks to provide a context for
CMA through a review of MCM approaches. 

The semantic gap
Many approaches to MCM are responses to

the much-publicized semantic gap, the sharp dis-
continuity between the primitive features auto-
mated content management systems currently
provide, and the richness of user queries encoun-
tered in media search and navigation, which
impact users’ ability to comfortably and effi-
ciently use multimedia systems.2 

Although the semantic gap problem is com-
plex, it essentially results from the connotation-
al relations that human interpretation introduces
into a problem’s semantic framework, in addi-
tion to the already present denotational mean-
ings. Say you want to retrieve an image that
contains lush, forested hills. There already exists
a many-to-one mapping between the signifier
(the image) and the signified (green hills). To cap-
ture this relational multiplicity, you must extract
the image features that capture the invariant
properties of “green hills,” such as the color
green. If you change the query to “tranquil
scenes,” the problem becomes many-to-many:
the many-to-one denotational link of features to
“green hills,” and the one-to-many connotation-
al relations of “green hills” to other associated
meanings, such as “tranquil” or “beautiful.”
Figure 1 outlines these relationships. 

The presence of a semantic gap invokes a wide
variety of policies regarding reasoning framework
and semantic authority. 

Managing multimedia content 
In 1994, Rowe et al. conducted a survey aimed

at determining the kinds of queries that users
would like to put to video-on-demand (VoD) sys-
tems.3 They identified three types of indexes that
are generally required, of which two are of interest: 

❚ Structural (for example, segments, scenes, and
shots), and

❚ Content (for example, objects and actors in
scenes).

The third index type, bibliographic—title,
abstract, producer, and so on—is too specific for a
broad analysis of MCM. Structure-related indexes
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use primitive features, while content-related
indexes use abstract or logical features. 

Structural indexing
Primitive features infer nothing about the

content of a particular cluster—only that the
content is different from that in surrounding
clusters. Segmenting data into meaningful
“blobs”—that is, finding boundaries within the
data—is one of the most fundamental require-
ments of any MCM-related task. Depending on
the domain, structural units can be shots, para-
graphs, episodes, and so on. Some terminology
applies to more than one domain (for example,
we can refer to both newscasts and feature films
in terms of scenes).

The most broadly applicable structural unit is
the shot, a piece of film resulting from a single
camera run. A shot can be a single frame or many
thousands of frames, and as such forms the most
basic visual structure for any multimedia data
that includes camera footage or simulated cam-
era footage via classical or computer-aided ani-
mation. Consequently, the shot is usually the
first element detected by a MCM system process-
ing multimedia data.

An edit or transitional device joins two con-
secutive shots. An edit can be a cut, a fade in or
out, a dissolve, or a special transition such as a
wipe or any number of special effects.
Segmenting shots, therefore, involves generating
an index of transitional effects. For many appli-
cations, cut detection (identifying where two dis-
joint pieces of footage have been spliced
together) is mostly a solved problem, with ade-
quate sustainable precision and recall perfor-
mance. Detecting other transitional devices
remains an active area of research, but the shot
index with which dependent processes must
work is generally adequate to the task.

Shot segmentation alone is only marginally
helpful. For example, assume an average short
novel has 10 paragraphs per page, meaning the
entire work would have from 1,000 to 2,000
paragraphs. This figure is similar to the number
of shots that make up an average feature-length
film. If the novel’s table of contents listed every
paragraph, it would resemble, in usefulness, what
we obtain when we segment multimedia data
into shots alone. Although it might be useful for
a class of readers, it would be inadequate to the
needs of most readers.

The inadequacy of purely shot-based indexes
has prompted researchers to investigate higher-

order taxonomies. Do abstractions above the
shot exist? Do even further abstractions exist
beyond these? These taxonomies demand meth-
ods for clustering shots into hierarchical units,
which in turn require a similarity measure.
Several routes to a shot similarity measure exist,
but nearly all of them start with a simple repre-
sentation.

Keyframe similarity measure. A keyframe
is a common technique for representing a shot.
In effect,  keyframes reduce a series of shots to
a series of images for the purposes of judging
similarity.

The simplest policy for obtaining keyframes
from a series of shots is to take the first frame, or
the first and last frames, of each shot.4 Zhuang et
al., however, note that for a frame to be repre-
sentative of a shot, it should contain the shot’s
“salient content.”5 This has led to more complex
policies for selecting keyframes with this rather
abstract property. 

Yeo and Liu and Gunsel and Tekalp extract
multiple keyframes by comparing color changes
if motion has substantially changed color com-
position.6 Zhang et al. also detect cinematic ele-
ments, such as zooming and panning, to
generate keyframes (first and last frame of a zoom
and panning frames with less than 30 percent
overlap).6 Wolf calculates motion estimates based
on optic flow and selects local minima as
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keyframes.6 He assumes that important content
will cause the camera to pause and focus on it. 

Even more complex policies use clustering
algorithms. Such approaches cluster frames using
a similarity metric, such as color histograms, and
then select a keyframe from the most significant
clusters.

Atemporal shot similarity. Regardless of how
you extract the keyframes, you’ll end up with a
series of representational images for the shot
sequence. You can then use image metrics—the
similarity between shots A and B reduces to the
similarity between their respective keyframes.  

Pentland et al., for example, use a semantic pre-
serving representation to enable image search and
retrieval, and note its application to video via
keyframe search.7 They attempt to align feature
similarity with human-judged similarity using
“perceptually significant” coefficients they
extract from the images. In particular, they sort
video keyframe similarity using appearance- and
texture-specific descriptions. 

Other work using image content to determine
similarity includes the Query by Image Content
(QBIC) system, which also indexes by color (his-
tograms), texture (coarseness, contrast, and direc-
tionality), and shape (area, circularity,
eccentricity, and so on). VisualSeek uses indexes
for region color, size, and relative and absolute
spatial locations to find images similar to a user’s
diagrammatic query. 

Chang and Smith bridge image and video
domains by basing shot similarity on keyframe
image features such as color, texture, and shape,
assuming that each video shot has consistent
visual feature content.8 Their work targets art and
medical image databases and VoD systems.

Atemporal similarity features found in work
explicitly directed at video generally draw from
these pioneering sources in the image-similarity-
matching domain. Setting, a key video feature,
provides a correspondence of the general back-
ground or objects that make up the viewable area

from one frame to the next within a given shot.
Developers typically harness setting-based simi-
larity using a color histogram-based feature,
which colocates—with respect to a distance met-
ric—keyframes of a similar setting, while remain-
ing largely invariant to common video
transformations such as camera angle change.

Gunsel and Tekalp use YUV space color his-
togram differences to define similarity between
shots.6 They use the equation

(1)

where G is the number of bins and H(i) the value
for the ith Y, U, or V color bin, respectively.
Presumably, applying a threshold to the con-
structed N × N similarity matrix (where N is the
number of shots) results in shot clusters of user-
specified density. 

You can constrain cluster formation beyond a
shot’s visual features. Applying time constraints
to the shot similarity problem, for example, rec-
ognizes the existence of the scene or story unit
structure within a given film, and the binding
semantic relationship they impart to the shots
within the structure. The assumption here is that
true similarity lies not in visual similarity but in
the relationships that are formed and mediated
by the scenic construct. Part of this construct is
the proximity in time of participating shots,
which time-constrained models attempt to reflect
through shot similarity.

Yeung et al. combine visually similar shot
clustering (based on keyframe color histograms)
with shot time proximity to obtain the scene’s
higher-level video structure.4 They augment
their approach with shape and other spatial
information. 

A scene is a dramatic unit of one or more
shots usually taking place during one time peri-
od and involving the same setting and charac-
ters. Generally considered the most useful
structural unit on the next level of the video
structure taxonomy, scenes are a popular target
for video segmentation. In practice, however,
they’re remarkably agile, eluding many schemes
formulated to detect them.

Hanjalic et al. segment movies into logical
story units (LSUs) or episodes using a visual dis-
similarity measure.9 The measure is simply a
color histogram difference applied to a possibly
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composite keyframe (in the case of shots with
multiple keyframes). Their algorithm, also called
the overlapping links method,10 uses three rules to
generate the LSU segmentation from the shot
visual dissimilarity measures. 

Figure 2 shows an example episode these rules
detected.

Unbiased test subjects manually generate scene
groundtruth—the canonical list and location of
story units against which we can assess system per-
formance—and boundaries recorded by all subjects
are deemed probable and kept. Hanjalic et al. note
that many of the missed boundaries are scenes that
form part of a larger sequence, for example, a wed-
ding ceremony, reception, and party.9

Zhao et al. measure shot similarity using the
weighted sum of a keyframe visual similarity
component and a shot temporal distance com-
ponent, assuming that the visual correlation of
scene shots diminishes over time.11 They then
subject the shot similarity sequence to a sliding
window, a simpler approach than the overlap-
ping links method. A scene boundary forms wher-
ever the ratio of shot similarities on either side of
the middle shot exceeds a threshold. The authors
assume that scenes are semantically correlated
shots, and therefore boundary detection involves
determining two shots’ semantic relationship
(compounded by means of the sliding window).

Temporal shot similarity. Aside from
assumptions such as setting and temporal prox-
imity, we must also consider the full spatial–
temporal nature of video and the rich informa-
tion source it provides. An arbitrary image sepa-
rated from an inference-enabling context defies
useful association, but frame images have a spe-
cial relationship, dictated by the constraints of
the filming process, with the preceding and/or
following image. 

The most common temporal features for
determining shot similarity are shot duration,
motion (frame-to-frame activity or optic flow),
and audio characteristics (frequency analysis, for
example). Veneau et al. include shot duration,
perhaps the simplest temporal feature, as one of
three shot signatures and use the Manhattan dis-
tance to cluster shots into scene transition graphs
(STGs).12 The thrust of their work, however, is the
cophenetic matrix—a matrix of the similarity val-
ues at which a pair of objects, in this case shots,
become part of the same cluster—and the user’s
ability to tune the segmentation threshold. 

Rui et al. introduce time adaptive grouping,13 in

which shot similarity is a weighted function of
visual similarity and time locality. They also
include a shot activity temporal feature in the
visual component:

(2)

where Acti is the activity of the ith shot, Ni is the
number of frames in shot i, and Diffk, k−1 is a color
histogram difference between successive frames.
They calculate shot similarity as

ShtSimi,j = Wc ∗ShtClrSimi,j + Wa ∗ShtActSimi,j (3)

where Wc and Wa are color and activity weights,
respectively; and i and j are two shots (every shot
i is compared with every other shot j). ShtSim is
shot similarity; ShtClrSim is shot color similari-
ty; and ShtActSim is shot action similarity. They
factor each shot similarity component by a tem-
poral attraction value, which decreases as the
respective frames grow apart. ShtSim forms
groups of shots, and then their system applies a
scene construction phase, similar in effect to the
overlapping links method.

Hammoud et al. cluster shots based on color,
image correlation, optic flow, and so on.14 Using
an extension of Allen’s relations, they form the
clusters into a temporal cluster graph that pro-
vides semantic information such as “this scene
occurs during this one”—that is, the scene is an
inset such as a flashback. Mahdi et al. extend this
work to remove one-shot scene anomalies.15

Assuming that similar shot durations belong to
the same scene, they add a rhythm constraint to
check that the difference between the shot
thought to be a scene boundary and the shot
previous (minus the mean) are within a certain
number of standard deviations from the entire
cluster variation.

Huang et al. observe that scene changes are
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Figure 2. Story unit formation via overlapping links. Arrows indicate visually

similar shots, which help form the boundaries of the story unit (or episode).
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usually accompanied by color, motion, and
audio change, whereas shot changes usually
produce only visual and/or motion changes.16

Their feature set includes a color histogram,
phase correlation function similar to a motion
histogram, and a set of clip-level audio features
(including nonsilence ratio, frequency centroid,
and bandwidth).

Kender and Yeo seek scenes or story units with
a shot-to-shot coherence measure.17 Using frame
similarity metrics, they aim to transform the shot
sequence rather than parse it, thus leaving room
for a user-specified sensitivity level. Their algo-
rithm includes a human memory retention
model that seeks to capture the extent to which
we can perceive and assimilate temporally near
and visually similar stimuli into higher-order
structures. Coherence is essentially how well a
shot recalls a previous shot in terms of its color
similarity and the time between the two shots.
Candidates for scene segmentation appear where
this recall is at a local minimum. 

Sundaram and Chang extend this concept of
coherence, coupling it with audio segmenta-
tion.18 They define a video scene as a collection
of shots with an underlying semantic, and
assume the shots are chromatically consistent.
Audio scenes contain a number of unchanging
dominant sound sources, and scenes are shot
sequences with consistent audio and video
characteristics over a specified time period.
Hence, they label scene boundaries where a
visual change occurs within an audio change’s
neighborhood.

Vendrig et al. note that previous approaches
fail to achieve truly robust results because “visu-
al similarity as computed by image-processing
systems can be very different from user percep-
tion.”19 Some features might segment only part
of a film, or some films and not others. They
throw the problem back into an interactive set-
ting. In their approach, the LSU segmentation
groundtruth depends on users who terminate the
session after attaining the desired segmentation.
After an initial automatic segmentation, consec-
utive LSUs that might have resulted from over-
clustering (through a shot number threshold) are
subjected to a number of automatically selected
features. The user then rates the features’ effec-
tiveness in terms of the shot similarity results.

Like Vendrig and Worring,10 Truong et al.20

mention the two major trends in scene boundary
extraction: 

❚ time-constrained clustering and 

❚ time-adaptive grouping. 

They note that time-constrained clustering
depends on clustering parameters, and that clus-
tering inhibits a system’s ability to observe shot
progression, which helps it find scene bound-
aries. Time-adaptive grouping depends on find-
ing local minima within a noisy signal, and refers
to viewer perception rather than cinematic con-
vention. The authors also assert that neither
technique adequately deals with at least one of
two issues: 

❚ Researchers should model shot color similari-
ty as continuous rather than discrete, because
changing camera angles or motion might
result in filming shots within a scene with dif-
ferent lighting or shading.

❚ Fast motion or slow disclosure shots can cause
only part of a shot to be similar to another,
and developers should therefore use the same
number of frames to evaluate this similarity. 

Their shot similarity metric addresses the first
issue using an algorithm that gradually com-
putes, then excludes, regions with the highest
color shade similarity by recursively adding com-
ponent color similarities from the most similar
to the least for a given representative frame pair.
Truong et al. address the second issue by apply-
ing this color similarity metric to any two repre-
sentative shot frames from a pair of shots and
recording the maximum similarity found.20 Film
convention is explicitly the dominant force
behind algorithmic decisions.

Wang et al. introduce a scene-extraction
method based on a shot similarity metric that
includes frame feature (color moments and a
fractal texture feature) substring matching to
detect partial similarity.21 A sliding pair of tiles,
similar to Zhao et al.’s window,11 generates a
shot-by-shot visual dissimilarity measure, with
local minima consequently deemed scene seg-
ments. They then merge scene segments into
more complex scene types based on the number
of visually similar threads in a segment and the
camera focal length behavior. 

The authors classify five scene types: parallel,
concentration, enlargement, general, and serial.
The approach is currently of limited practical use
because they must manually generate camera
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focal length information. What’s enlightening,
however, is the attention to general filmic tech-
niques, and the attempt to detect them.

All of the approaches detailed thus far are
founded on some measure of shot similarity.
Regardless of explicit domain, the shot construct
is key to unlocking views of the veiled semantic
landscape. Shot similarity measures can drive infer-
ences of the form, “the texture or colors of this
shot is like this other shot, and not like that shot,”
and it’s this power that the software harnesses, ini-
tially for simple clustering, and then with greater
domain directedness toward scene segmentation,
and so on. Given content management’s semantic
nature, however, simple shot-similarity-based
methods can’t address some of the most useful
questions, such as Where is the film’s climax? or Is
this the sports section of a newscast?

Content indexing
Logical or abstract features map extracted fea-

tures to content. Although these features can
address the segmentation problem, they natural-
ly target a new problem class—content—and
applications that depend on that knowledge,
such as genre recognition or scene classification.

Another way to compare the emphases of
primitive feature-based work and abstract feature-
based work is to consider characterizing func-
tions based on similarity or discrimination.
Similarity seeks to determine objects’ relations to
each other. Discrimination aims to determine if
an instance object qualifies as a member of a par-
ticular class. A discriminant function might
detect a face within a shot whereas a similarity
function might capture how two faces are alike.
Obviously one type can include part of the other.

Abstract features for explicit indexing
Beyond supporting similarity and segmenta-

tion, abstract features enable powerful explicit
indexing. In the image retrieval realm, some
researchers claim that the only route to semanti-
cally rich indexing (“this image contains a dog,”
for example) is through human annotation. Is
this also true for the larger multimedia domain,
and for film in particular? Many researchers are
seeking the filmic analog of tools to find the
aforementioned dog—that is, content-related
information meaningful in the context of film.

Semantic indexing and scene classification.
Nam et al. apply a  toolbox of feature sets for
characterizing violent content signatures—for

example, an activity feature detects action, color-
table matching detects flame, and an energy
entropy criterion captures sound bursts.22 The
authors gathered their data sets from several R-
rated movies and graph a sampling of their
results. They note that “any effective indexing
technique that addresses ... higher-level seman-
tic information must rely on user interaction and
multilevel queries.”

Yoshitaka et al. mix shot length, summed
luminance change (shot dynamics), color his-
togram similarity, and shot repetition patterns to
classify scenes as conversation, increasing ten-
sion, or hard action.23 They classify scene type
using a rule hierarchy, from less to more strict. For
example, the least strict conversation scene detec-
tion rule simply requires a shot pattern of either
ABA′B′ or ABB′A′, whereas the most strict requires
(ABA′B′ or ABB′A′) and (visual dynamics of each
shot < σ) and (shot length of each shot > τ). Film
grammar—the body of rules and conventions for
the filmmaking craft—explicitly motivates this
approach, unlike the implicit approach of
Yoshitaka’s more recent work.

Saraceno and Leonardi also propose a scene
classifier.24 Their system identifies four scene
types: dialog, story, action, and generic (not
belonging to the first three types, but with con-
sistent audio characteristics). Like Yoshitaka et al.,
they separate audio from visual processing and
then use a rule set to recombine them, but they
also classify scenes by audio type (silence, speech,
music, and miscellaneous), leveraging these types
to distinguish the scene classes. 

With a broader domain and an accordingly
altered scene definition, Huang et al. classify
television-derived data as news, weather, basket-
ball, or football.25 They attempt to capture the
different genres’ timeliness by exploring com-
peting hidden Markov model (HMM) strategies.
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In one strategy, they combine all features in a
super vector that they feed to the HMM, which
is an effective classifier but training-data hungry.
Another, extensible, strategy recognizes the lack
of correlation among modal features (audio,
color, and motion) and trains an independent
HMM for each mode. The authors note that all
strategies provide better performance than single
modalities, as multimodal features can more
effectively resolve ambiguities.

Alatan et al. address scene classification by
reflecting content statefulness.26 Their system
classifies audio tracks into speech, silence, and
music coupled with visual information such as
face and location to form an audio–visual token,
which it passes to an HMM. They identify useful
properties of statistically based approaches, par-
ticularly as they relate to natural language, which
they view as similar to film. They attempt to
model dialogue scenes, action scenes, and estab-
lishing shots to create a dialogue/nondialogue
classification. The system can only split the given
data into three consecutive scenes, however.
They  obtain groundtruth subjectively—from the
first words of a conversation to the last. 

Assuming that semantic concepts are related,
and hence their absence or presence can imply
the presence of other concepts, Naphade and
Huang seek to model such relations within a
probabilistic framework.27 Their system contains
multijects, probabilistic multimedia objects, con-
nected by a multinet, which explicitly models
their interaction. The system can then exploit
the existence of one object (whose features are
perhaps readily recognizable) to detect related
concepts (whose features are not so invariant) via
these associations. In such a setting, the system
can use prior knowledge (such as the knowledge
that action movies have a higher probability of
explosions than comedies) to prime the belief
network. The aim of their work is semantic
indexing, and they use the multiject examples of
sky, snow, rocky terrain, and so on.

Roth also considers concepts within contexts,
rather than in isolation.28 His system represents
knowledge about a given film using a proposi-
tional network of semantic features. Sensitive
regions, or hot spots delineating regions of inter-
est in successive frames, represent information of
interest—that is, “principal entities visible in a
video, their actions, and their attributes.” The
system doesn’t attempt to determine hot spots
automatically; rather, the main thrust is query-
ing such representations. Roth’s attempt to cou-

ple a knowledge base containing an ontological
concept hierarchy to sensitive region instances
perhaps nears the extreme of envisaged semantic
representation for film.

Genre discrimination. Fischer et al. classify
video by broad genre using style profiles devel-
oped inductively via observation.29 Profiles
include news, tennis, racing, cartoons, and com-
mercials. The authors build style profiles for each
genre based on shot length, motion type (pan-
ning, tilting, zooming, and so on), object
motion, object recognition (specifically logo
matching, with particular application to news-
casts), speech, and music. Each style attribute
detector reports the likelihood of the video
belonging to each genre based only on its style
attribute. The system then pools the detectors’
results using weighted averages and produces the
winning classification. The authors conclude that
even within this limited context, no single style
attribute can distinguish genre; rather, fusing
attributes produces a much more reliable classi-
fication. They also note that “film directors use
such style elements for artistic expression.”

Sahouria and Zakhor’s principal components
analysis- (PCA-)based work classifies sports by
genre.30 Arguing that motion is an important
attribute with the desirable property of invari-
ance despite color, lighting, and to a degree scale
changes, they develop a basis set of attributes for
basketball, ice hockey, and volleyball. They stress
the motions inherent to each—for example,
“hockey shows rapidly changing motions mostly
of small amplitude with periods of extended
motion, while volleyball exhibits short duration,
large magnitude motions in one dimension.” In
effect, the content bubbles to the surface through
the grammar of the coverage.

As a first step in constructing semantically
meaningful feature spaces to capture properties
such as violence, sex, or profanity, Vasconcelos
and Lippman categorize film by “degree of
action.”31 They begin with the premise that
action movies involve short shots with a lot of
activity. Then, they map each movie into a fea-
ture space composed of average shot activity
based on tangent distance, a lighting and camera-
motion invariant, and average shot duration.
They obtain genre groundtruth from the Internet
Movie Database (http://www.imdb.com), seg-
menting their results into regions, with comedy/
romance at one extreme and action at the other.
The authors suggest a simple Gaussian classifier
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based on the mapping would achieve high clas-
sification accuracy. 

In other work,32 Vasconcelos and Lippman
present their Bayesian modeling of video editing
and structure (Bmovies) system. They summarize
video in terms of the semantic concepts action,
close-up, crowd, and setting type, using the
structure-rich film domain in the form of priors
for the Bayesian network. Sensors that detect
motion energy, skin tones, and texture energy
feed the network at the frame level. Because it
uses a Bayesian framework, the system can infer a
concept’s presence given information regarding
another. Importantly, the authors refer to film’s
production codes when choosing semantic fea-
tures to capture, and hint at their use for higher-
level inferences—for example, the close-up
effectively reveals character emotions, facilitat-
ing audience–character bonding, and is therefore
a vital technique in romances and dramas. 

Vasconcelos and Lippman present semantic
concept timelines for two full-length movies.32

Such a representation gives the user an immedi-
ate summary of the video, and lets the user inter-
actively scrutinize the video for higher-level
information. For example, the timeline might
indicate that outdoor settings dominate the
movie, but a user might want further detail—for
example, What sort of setting, forest or desert?

Complex applications. Pfeiffer and Effelsberg
combine many of the techniques previously dis-
cussed to perform a single complex task—to
automatically generate movie trailers or
abstracts.33 An abstract, by definition, contains
the essential elements of the thing it represents,
hence the difficulty of the task. To create a trailer,
the system must know the film’s salient points.
Moreover, it must create an entertaining trailer
without revealing the story’s ending. 

Pfeiffer and Effelsberg’s approach consists of
three steps: 

❚ Video segmentation and analysis, which attempt
to discover structure, from shots to scenes,
and other special events, such as gunfire or
actor close-ups. 

❚ Clip selection, which attempts to provide a bal-
anced coverage of the material and any iden-
tified special events.

❚ Clip assembly, which must seamlessly meld the
disjoint audio–visual clips into a final product. 

The authors found that film directors consid-
er constructing abstracts as an art, and abstracts
differ depending on the data’s genre. Feature film
abstracts attempt to tease or thrill without reveal-
ing too much, documentary abstracts attempt to
convey the essential content, and soap opera
trailers highlight the week’s most important
events. Accordingly, the authors suggest that
abstract formation be directed by parameters
describing the abstract’s purpose.

Wactlar et al. take a retrospective look at the
Informedia project, another complex system
embracing speech recognition, shot detection
using optical flow for shot similarity, face and
color detection for richer indexing, and likely
text location and optical character recognition
(OCR).34 The Informedia project included the
automatic generation of video skims, which are
similar to Pfeiffer and Effelsberg’s video
abstracts,35 but emphasize transmitting essential
content with no thought of viewer motivation. 

Video skim generation uses transcriptions
generated by speech recognition. The authors’
stated domain is broad and includes many hours
of news and documentary video. Notably, they
found that using such “wide-ranging video data,”
was “limiting rather than liberating.” In other
words, the system often lacked a sufficient basis
for domain-guided heuristics. They go on to say
that “segmentation will likely benefit from
improved analysis of the video corpus, analysis
of video structure, and application of cinematic
rules of thumb.”

Computational media aesthetics in MCM
Evaluating MCM approaches in general is dif-

ficult, and it’s often exacerbated by small data sets.
In particular, no standard test sets exist for auto-
mated video understanding, as they do for image
databases and similar domains, against which
developers can assess approaches for their relative
strengths. The sheer number of as yet unenumer-
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ated problems of interest to the multimedia com-
munity, a direct result of the number of subdo-
mains (such as video) exacerbates this problem.
For example, unlike the shot extraction problem,
which is fundamental to the entire domain and
hence supported with standard test sets, the film
subdomain brings with it a plethora of useful
indexes, with many still to be identified.

A deeper cause for the difficulties in evaluat-
ing and comparing the results of different
approaches relates to schematic authority, which
should prompt questions such as Is this interpre-
tive framework valid for the given data?
Schematic authority is most appropriate to the
class of problems that have been examined in
this article, rather than consciously user-centric
frameworks, which often involve iterative query
and relevance feedback. In short, if the units and
structures that we want to index are author
derived, they must be author sought. Neither the
researcher nor the end user can redefine a term
at will if they want to maintain consistency,
repeatability, and robustness.

Final thoughts
What does the CMA philosophy bring to this

situation? Does systematic attention to domain
distinctives, such as film grammar, address these
issues? With regard to evaluation, CMA might
more clearly define a baseline for comparison—
that is, it may clarify the groundtruth source. To a
small degree, CMA also alleviates the need for larg-
er data sets. Film grammar embodies knowledge
drawn from wide experience with the domain; it’s
the distillate of a very large data set indeed. 

Film grammar also provides the reference
point for deciding the most appropriate termi-
nology from a number of options. For example,
Is the scene an appropriate structure? What does
it mean? Does a strata (a shot-based contextual
description) properly belong to film, or is it a sec-
ondary term more suited to user-defined film
media assessment? As for questions regarding the
use of different feature sets, film grammar informs
us of the many techniques available to the film-
maker that manifest differently, hinting that we
may require multiple feature sets in different cir-
cumstances and at different times to more reliably
capture the medium’s full expressiveness. MM
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