1,564 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Optimal speed trajectory and energy management control for connected and automated vehicles

    Get PDF
    Connected and automated vehicles (CAVs) emerge as a promising solution to improve urban mobility, safety, energy efficiency, and passenger comfort with the development of communication technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). This thesis proposes several control approaches for CAVs with electric powertrains, including hybrid electric vehicles (HEVs) and battery electric vehicles (BEVs), with the main objective to improve energy efficiency by optimising vehicle speed trajectory and energy management system. By types of vehicle control, these methods can be categorised into three main scenarios, optimal energy management for a single CAV (single-vehicle), energy-optimal strategy for the vehicle following scenario (two-vehicle), and optimal autonomous intersection management for CAVs (multiple-vehicle). The first part of this thesis is devoted to the optimal energy management for a single automated series HEV with consideration of engine start-stop system (SSS) under battery charge sustaining operation. A heuristic hysteresis power threshold strategy (HPTS) is proposed to optimise the fuel economy of an HEV with SSS and extra penalty fuel for engine restarts. By a systematic tuning process, the overall control performance of HPTS can be fully optimised for different vehicle parameters and driving cycles. In the second part, two energy-optimal control strategies via a model predictive control (MPC) framework are proposed for the vehicle following problem. To forecast the behaviour of the preceding vehicle, a neural network predictor is utilised and incorporated into a nonlinear MPC method, of which the fuel and computational efficiencies are verified to be effective through comparisons of numerical examples between a practical adaptive cruise control strategy and an impractical optimal control method. A robust MPC (RMPC) via linear matrix inequality (LMI) is also utilised to deal with the uncertainties existing in V2V communication and modelling errors. By conservative relaxation and approximation, the RMPC problem is formulated as a convex semi-definite program, and the simulation results prove the robustness of the RMPC and the rapid computational efficiency resorting to the convex optimisation. The final part focuses on the centralised and decentralised control frameworks at signal-free intersections, where the energy consumption and the crossing time of a group of CAVs are minimised. Their crossing order and velocity trajectories are optimised by convex second-order cone programs in a hierarchical scheme subject to safety constraints. It is shown that the centralised strategy with consideration of turning manoeuvres is effective and outperforms a benchmark solution invoking the widely used first-in-first-out policy. On the other hand, the decentralised method is proposed to further improve computational efficiency and enhance the system robustness via a tube-based RMPC. The numerical examples of both frameworks highlight the importance of examining the trade-off between energy consumption and travel time, as small compromises in travel time could produce significant energy savings.Open Acces

    Acoustic Propagation Variation with Temperature Profile in Water Filled Steel Pipes at Pressure

    Get PDF
    Conventional pressure leak testing of buried pipelines compares measurements of pressure with pipe wall temperature. An alternative proposed method uses acoustic velocity measurements to replace pipe wall temperature measurements. Early experiments using this method identified anomalous results of rising acoustic velocities thought to be caused by air solution. This research investigated the anomalous acoustic velocity measurements by evaluation of acoustic velocity variation with pressure, temperature and air solution. Quiescent air solution rate experiments were carried out in water filled pipes. Computer modelling of the air bubble shape variation with pipe diameter was found to agree with bubble and drop experiments over the pipe diameter range from 100 mm to 1000 mm. Bubbles were found to maintain constant width over a large volume range confirmed by experiments and modelling

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Estimating Solar Energy Production in Urban Areas for Electric Vehicles

    Get PDF
    Cities have a high potential for solar energy from PVs installed on buildings\u27 rooftops. There is an increased demand for solar energy in cities to reduce the negative effect of climate change. The thesis investigates solar energy potential in urban areas. It tries to determine how to detect and identify available rooftop areas, how to calculate suitable ones after excluding the effects of the shade, and the estimated energy generated from PVs. Geographic Information Sciences (GIS) and Remote Sensing (RS) are used in solar city planning. The goal of this research is to assess available and suitable rooftops areas using different GIS and RS techniques for installing PVs and estimating solar energy production for a sample of six compounds in New Cairo, and explore how to map urban areas on the city scale. In this research, the study area is the new Cairo city which has a high potential for harvesting solar energy, buildings in each compound have the same height, which does not cast shade on other buildings affecting PV efficiency. When applying GIS and RS techniques in New Cairo city, it is found that environmental factors - such as bare soil - affect the accuracy of the result, which reached 67% on the city scale. Researching more minor scales, such as compounds, required Very High Resolution (VHR) satellite images with a spatial resolution of up to 0.5 meter. The RS techniques applied in this research included supervised classification, and feature extraction, on Pleiades-1b VHR. On the compound scale, the accuracy assessment for the samples ranged between 74.6% and 96.875%. Estimating the PV energy production requires solar data; which was collected using a weather station and a pyrometer at the American University in Cairo, which is typical of the neighboring compounds in the new Cairo region. It took three years to collect the solar incidence data. The Hay- Devis, Klucher, and Reindl (HDKR) model is then employed to extrapolate the solar radiation measured on horizontal surfaces β =0°, to that on tilted surfaces with inclination angles β =10°, 20°, 30° and 45°. The calculated (with help of GIS and Solar radiation models) net rooftop area available for capturing solar radiation was determined for sample New Cairo compounds . The available rooftop areas were subject to the restriction that all the PVs would be coplanar, none of the PVs would protrude outside the rooftop boundaries, and no shading of PVs would occur at any time of the year; moreover typical other rooftop occupied areas, and actual dimensions of typical roof top PVs were taken into consideration. From those calculations, both the realistic total annual Electrical energy produced by the PVs and their daily monthly energy produced are deduced. The former is relevant if the PVs are tied to a grid, whereas the other is more relevant if it is not; optimization is different for both. Results were extended to estimate the total number of cars that may be driven off PV converted solar radiation per home, for different scenarios

    DESIGN AND VERIFICATION OF AUTONOMOUS SYSTEMS IN THE PRESENCE OF UNCERTAINTIES

    Get PDF
    Autonomous Systems offer hope towards moving away from mechanized, unsafe, manual, often inefficient practices. The last decade has seen several small, but important, steps towards making this dream into reality. These advancements have helped us to achieve limited autonomy in several places, such as, driving, factory floors, surgeries, wearables, and home assistants, etc. Nevertheless, autonomous systems are required to operate in a wide range of environments with uncertainties (viz., sensor errors, timing errors, dynamic nature of the environment, etc.). Such environmental uncertainties, even when present in small amounts, can have drastic impact on the safety of the system—thus hampering the goal of achieving higher degree of autonomy, especially in safety critical domains. To this end, the dissertation shall discuss formaltechniques that are able to verify and design autonomous systems for safety, even under the presence of such uncertainties, allowing for their trustworthy deployment in the real world. Specifically, the dissertation shall discuss monitoring techniques for autonomous systems from available (noisy) logs, and safety-verification techniques of autonomous system controllers under timing uncertainties. Secondly, using heterogeneous learning-based cloud computing models that can balance uncertainty in output and computation cost, the dissertation will present techniques for designing safe and performance-optimal autonomous systems.Doctor of Philosoph

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    2022 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Sixteenth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1016/thumbnail.jp
    • …
    corecore