
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

November 2015

Application of Techniques for MAP Estimation to Distributed Application of Techniques for MAP Estimation to Distributed

Constraint Optimization Problem Constraint Optimization Problem

Yoonheui Kim
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Operational Research Commons, and the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Kim, Yoonheui, "Application of Techniques for MAP Estimation to Distributed Constraint Optimization
Problem" (2015). Doctoral Dissertations. 546.
https://scholarworks.umass.edu/dissertations_2/546

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/32441873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/546?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

APPLICATION OF TECHNIQUES FOR MAP
ESTIMATION TO DISTRIBUTED CONSTRAINT

OPTIMIZATION PROBLEM

A Dissertation Presented

by

YOONHEUI KIM

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

SEPTEMBER 2015

School of Computer Science

c© Copyright by Yoonheui Kim 2015
All Rights Reserved

APPLICATION OF TECHNIQUES FOR MAP
ESTIMATION TO DISTRIBUTED CONSTRAINT

OPTIMIZATION PROBLEM

A Dissertation Presented

by

YOONHEUI KIM

Approved as to style and content by:

Victor Lesser, Chair

Shlomo Zilberstein, Member

Andrew Mcgregor, Member

Jon Machta, Member

Lori Clarke, Chair
School of Computer Science

ABSTRACT

APPLICATION OF TECHNIQUES FOR MAP
ESTIMATION TO DISTRIBUTED CONSTRAINT

OPTIMIZATION PROBLEM

SEPTEMBER 2015

YOONHEUI KIM

B.S., SEOUL NATIONAL

M.S., UNIVERSITY OF SOUTHERN CALIFORNIA

Ph.D, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser

The problem of efficiently finding near-optimal decisions in multi-agent systems

has become increasingly important because of the growing number of multi-agent

applications with large numbers of agents operating in real-world environments. In

these systems, agents are often subject to tight resource constraints and agents have

only local views. When agents have non-global constraints, each of which is indepen-

dent, the problem can be formalized as a distributed constraint optimization problem

(DCOP). The DCOP is closely associated with the problem of inference on graphi-

cal models. Many approaches from inference literature have been adopted to solve

DCOPs. We focus on the Max-Sum algorithm and the Action-GDL algorithm that

are DCOP variants of the popular inference algorithm called the Max-Product algo-

rithm and the Belief Propagation algorithm respectively. The Max-Sum algorithm

iv

and the Action-GDL algorithm are well-suited for multi-agent systems because it is

distributed by nature and requires less communication than most DCOP algorithms.

However, the resource requirements of these algorithms are still high for some multi-

agent domains and various aspects of the algorithms have not been well studied for

use in general multi-agent settings.

This thesis is concerned with a variety of issues of applying the Max-Sum algo-

rithms and the Action-GDL algorithm to general multi-agent settings. We develop a

hybrid algorithm of ADOPT and Action-GDL in order to overcome the communica-

tion complexity of DCOPs. Secondly, we extend the Max-Sum algorithm to operate

more efficiently in more general multi-agent settings in which computational com-

plexity is high. We provide an algorithm that has a lower expected computational

complexity for DCOPs even with n-ary constraints. Finally, In most DCOP litera-

ture, a one-to-one mapping between a variable and an agent is assumed. However, in

real applications, many-to-one mappings are prevalent and can also be beneficial in

terms of communication and hardware cost in situations where agents are acting as

independent computing units. We consider how to exploit such mapping in order to

increase efficiency.

v

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Introduction . 1
1.2 Action-GDL and Max-Sum and MAP estimation . 4
1.3 Motivating Examples . 6

1.3.1 Meteorological Command and Control . 6
1.3.2 Sensor Network . 9

1.4 Optimizing Message Passing Algorithms for DCOPs 12

1.4.1 Applying Inference Technique to Reduce Communication
Overhead of DCOP . 13

1.4.2 Applying Inference Technique to Reduce Computational
Burden in DCOPs . 14

1.4.3 Exploiting the Mapping of Agents and Variables 15

1.5 Contributions . 17
1.6 Thesis Organization . 18

2. LITERATURE REVIEW ON DCOP ALGORITHMS 19

2.1 Exact Algorithms . 20
2.2 Approximate Algorithms . 24
2.3 Summary . 32

vi

3. APPLYING INFERENCE TECHNIQUE TO REDUCE
COMMUNICATION OVERHEAD OF DCOP 33

3.1 Background . 33

3.1.1 AND/OR Search Tree and Context-minimal AND/OR Search
Graph . 34

3.1.2 Distributed Constraint Optimization and Junction-Tree 37
3.1.3 DJAO(k) . 38

3.1.3.1 First phase: heuristics generation . 38
3.1.3.2 Second phase: search on AND/OR junction graph 39
3.1.3.3 Search in distributed settings . 43
3.1.3.4 DJAO on AND/OR search junction graph 43
3.1.3.5 Bounds on partial solution . 44
3.1.3.6 DJAO(k) . 45
3.1.3.7 Approximate DJAO(k) . 50

3.2 An Example of DJAO . 50

3.2.1 A Simple Example of DJAO . 50
3.2.2 A More Complicated Example of DJAO . 54

3.3 Empirical Evaluation . 57
3.4 Conclusions . 61

4. APPLYING INFERENCE TECHNIQUE TO REDUCE
COMPUTATIONAL BURDEN IN DCOPS . 63

4.1 Background . 63
4.2 Fast Belief Proagation for N-ary DCOP . 65

4.2.1 G-FBP . 67
4.2.2 G-FBP Algorithm with Partial Lists . 69
4.2.3 Time Complexity and Selection of K . 69
4.2.4 Independence Assumption and Correlation Measure 73

4.3 Experiments . 75

4.3.1 Random Graphs . 75
4.3.2 Multiagent Radar Coordination Domain . 77

4.4 Conclusion . 80

5. EXPLOITING THE MAPPING OF AGENTS AND
VARIABLES . 81

vii

5.1 The Configuration of the Semi-centralized Structure and NetRad
domain . 81

5.2 Exploiting Semi-Centralization . 82

5.2.1 Using Organization Structure . 84
5.2.2 Starting with Known Policy . 86
5.2.3 Using the Structure for Policy Generation . 88

5.3 Experimental Results . 90

5.3.1 Experimental Setting . 90
5.3.2 Performance of Max-Sum on NetRad . 91
5.3.3 Starting with Initial Policy . 93
5.3.4 Performance of Max-Sum in a Two-Level Hierarchy 94

5.4 Conclusion . 95

6. CONCLUSIONS AND FUTURE RESEARCH 101

6.1 Contributions . 101
6.2 Future Research . 103

BIBLIOGRAPHY . 106

viii

LIST OF TABLES

Table Page

3.1 Performance of Optimal DJAO(k) on Random Binary DCOP
Instances . 58

3.2 Sensor Network Instances . 60

ix

LIST OF FIGURES

Figure Page

1.1 Graph Coloring Example and Two constraint graph representation 2

1.2 A result of radars’ scan in the NetRad system . 7

1.3 Sensor Network example and two constraint graph representations for
EAV and PEAV formulations . 11

3.1 an AND/OR search graph . 36

3.2 an AND/OR search graph based on a junction tree 40

3.3 Example of junction tree and the constraint functions 50

3.4 Merged constraint function in A2 . 51

3.5 Messages in Action-GDL . 51

3.6 Filtered Messages in DJAO . 51

3.7 The resulting function at A1 (root agent) . 53

3.8 Updated utility function at the root after the search 53

3.9 Example of junction tree and the added constraint functions 54

3.10 Messages from A4 to A3 . 55

3.11 Local function and messages combined for A3 . 55

3.12 Message before and after filtering from A3 to A1 . 55

3.13 The resulting function at the root . 56

3.14 The resulting function at the root . 57

x

3.15 The resulting function at the root . 57

3.16 Performance of Approximate DJAO(k=10) . 59

4.1 Example of FBP technique. The largest item 15 of va that has index 6 is

summed with 3 in vb with the same index (which maps to specific

value combination of variables). Therefore, items with value smaller

than 3 in vb can be ignored as any value smaller than 3 cannot yield a

value larger than (15 + 3). We also limit the items smaller than 11 in

va by applying the same idea. In this example only 2 computations are

required to compute the maximum value using this technique. 64

4.2 Example of Message List Generation. Each value in boxes denotes
individually sorted message values from the variable nodes to the
function nodes. The domain size is 2 for vb and it is 3 for va and
vc thus the message size. In order to compute the message to va,
messages from vb and vc (qb→1 and qc→1 respectively) are summed
to generate the partial message list [15, 11] instead of the
complete list [15, 11, 8, 8, 4, 1] with |La| = 2. 68

4.3 Example of G-FBP technique as in Algorithm 1 . 71

4.4 The computation time of Max-Sum(MS), Max-Sum with

G-FBP(MS+G-FBP) and Max-Sum with G-FBP with correlation

measure(selective MS+G-FBP) . For Figure(a), the domain size of 10

was used. Datapoint (5, 3.6) is omitted to see the general trend. The

performance of algorithms was (507178.5, 55070.6, 195056.9) for MS,

MS+G-FBP and selective MS+G-FBP respectively. For Figure(b) the

arity setting of (3, 2.8) was used. 76

4.5 (a) The computation time ratio of MS+G-FBP and MS+GSC-FBP to

MS. K value is in brackets. (b) Time taken at each cycle. K = 11. 79

4.6 Performance improvement using correlation measure. K = 11. 79

5.1 An example structure of the NetRad domain where an agent owns
multiple variables: An MC&C controls and manages multiple
radars . 82

5.2 2-level Hierarchy Scheme . 89

5.3 Radar 1 (R1) can choose to scan Event 1 (Ev1), Event 2 (Ev2) or to
scan both depending on the utility. Scanning all phenomena in a
radar’s range of sufficient quality may not be possible given the
time limit to scan. 90

xi

5.4 Gen:Genetic, MS:Max-Sum, Neg:Negotiation. The algorithm is run
with the same number of tasks (weather phenomena) as the
number of radars. The Genetic algorithm is run with a
computation time limit of 10 minutes. We set the time limit to 10
minutes in order to get reasonable optimization. Given less than
10 minutes, the utility generated by the centralized optimization
were significantly lower than the other approaches. 96

5.5 Experiment with different number of phenomena. The basis is 48
weather phenomena and this is increased to 120 phenomena (i.e.
2.5). 97

5.6 The results using initial policy (a) The decentralized computation
time of Max-Sum including policy generation time (b) T-test
result on hypothesis that each policy improves the computation
time of regular Max-Sum with α = 0.05 (c) Value convergence
trend at each round (d) Number of Max-Sum rounds 98

5.7 Performance of MS-Init. MS:Max-Sum, Neg:Negotiaton, MS-Init:
Max-Sum with IMS . 99

5.8 Performance of MS2L . 100

xii

CHAPTER 1

INTRODUCTION

1.1 Introduction

In cooperative multi-agent systems, agents make local decisions that attempt

to maximize the overall performance of the system subject to certain constraints

and limitations. The decisions that agents make based solely on their local views

are often suboptimal for many applications. Thus, coordination among agents is

crucial to arrive at optimal decisions or near-optimal decisions. This coordination

problem has been of primary concern to the multi-agent system field since its incep-

tion [1, 2]. There has been a vast body of literature that has focused on developing

algorithms which generate strategies where multiple agents act together towards a

common objective. Of late, many researchers are framing this coordination problem

as a distributed constraint optimization problem (DCOP) in which there are multiple

relations among agents and each relation is independent of each other and involves a

number of agents [3].

Distributed constraint optimization has been a popular approach among a wide

group of researchers due to its straightforward representation as a graphical model

and the abundant literature on inference on graphical models that can be applied to it.

A DCOP consists of variables, the constraint functions among the variables, and the

agents who own a subset of variables. The goal of the DCOP is to find a set of variable

values (decisions) that maximizes the sum of the constraint functions. DCOP have

been successfully applied to distributed task allocation [4], sensor coordination [5, 6],

and coalition formation [7]. However, distributed constraint optimization is NP-

1

hard [3], and the computational complexity and the communication overhead required

by many complete algorithms make them unusable for real world systems [8, 9]. Thus,

our emphasis in this thesis will be on complete and approximate distributed constraint

optimization algorithms that use much less resources than traditional approaches.

Formally, a DCOP can be defined as a tuple 〈A,X,D,F〉.

• A = {A1, . . . , Ak} is a set of agents,

• A set of variables X = {X1, . . . , Xr}, where each variable has a finite domain

(maximum size N) of possible values that it can be assigned.

• D = {D1, . . . ,Dr}, where a variable Xi can take a value xi in the domain Di,

• A set of constraint functions F = (F1, . . . , Fk), where each constraint function,

Fj : Xj → <, takes as input any setting of the variables Xj ⊆ X and provides a

real valued utility.

B

A
C D

(a) Area Map

A

DC

B

(b) Constraint Graph

DC
A

B

F4

F3

F2

F1

(c) Factor Graph Representa-
tion

Figure 1.1: Graph Coloring Example and Two constraint graph representation

In a DCOP, we assume that each agent exclusively owns one or more variables and

determines the value assignment on its owned variables. An agent only knows about

the constraint functions associated with its variables. The DCOP problem can be

represented using a constraint network as shown in Figure 1.1, where there is a node

corresponding to each variable Xi. There is an edge (hyper-edge) for each constraint

Fj that connects all the variables that are involved in the function Fj. In the graph

2

coloring example where adjacent areas are supposed to be in different colors, each

area is represented as a node and the node can take a color as its value. Because two

adjacent areas have a constraint to be colored differently, the nodes that represent

these areas are connected by an edge. In the factor graph notation, constraints are

represented explicitly as nodes called factor nodes and are shown as black squares in

Figure 1.1(c).

The objective in the DCOP is to find the complete variable configuration x that

maximizes
∑

j Fj(x
j). This problem is equivalent to a special subclass of the well

studied problem of MAP estimation in graphical models [10]. DCOP finds the agents’

action choices given the current constraint relations on variables whereas MAP esti-

mation problem finds the variable assignment that is most likely given the observa-

tion. In other words, DCOP is equivalent to a distributed MAP estimation where

no observation is given. Due to these similarities, several message-passing algorithms

for MAP estimation such as Max-Product [11] have been adapted to DCOPs. The

examples include the Max-Sum algorithm [12] and the Action-GDL algorithm [13].

However, these algorithms are not practical for some DCOP domains due to their

high computational and communication complexity. Moreover, DCOP is designed

for a distributed environment where each variable is owned by an agent and these

adapted algorithms do not exploit these domain characteristics, which leaves room for

improvement. Since MAP estimation has been an active research fields for various

type of problems, there have been many techniques developed for various environ-

ments and adopting these techniques to DCOP seems a natural step to improve

DCOP algorithms. However, the MAP estimation algorithms using message passing

are not directly applicable to these environment without modifications for two rea-

sons. First, even though these MAP estimation algorithms using message passing can

be easily transformed into a DCOP algorithm, this converted algorithm may require

a large number of messages or large-sized messages making them not applicable for

3

real distributed applications with low communication bandwidth. Secondly, MAP

estimation algorithms are designed for a repeated usage given a single fixed model

and different observations, whereas in DCOP, the model is constructed to be solved

once given the relations on variables. Therefore, preprocessing techniques that are

applied offline cannot be directly applied to the DCOP algorithms.

In summary, this thesis studies the issues that arise when we adapt inference

techniques to resource-constrained multi-agent domains. Our goal is to improve the

efficiency of inference-based DCOP algorithms by exploiting the different character-

istics of multi-agent domains and the different problem structures in the domains.

Specifically this thesis investigates the following questions using the Max-Sum algo-

rithm and the Action-GDL algorithm as prototypical examples:

• How can the most important information be selected to minimize communication

for DCOPs in environments with scarce communication resources?

• How can the offline preprocessing step in inference algorithms be avoided in the

algorithms for one-shot DCOP problems?

• How can the situation where agents manage multiple variables be exploited in

terms of reducing communication and computation resources needed to solve

DCOP?

1.2 Action-GDL and Max-Sum and MAP estimation

Max-Sum [12] and Action-GDL[13] are message-passing DCOP algorithms belong-

ing to the class known as Generalized Distributive Law (GDL) [14]. Max-Sum and

Action-GDL are simple variations of the Max-Product algorithm where the global

utility function is maximized.

Action-GDL produces the optimal solution for any graph. Action-GDL performs

message-passing on the tree structure [15] corresponding to the DCOP problem. In

this graph, cliques which contain a set of variables are associated with constraint

4

functions. The algorithm consists of two phases, utility propagation and value prop-

agation. The utility message µij from clique i to clique j :

µij(sij) = max
sij

[
F (xi) +

∑
k∈Cch

µk→i(sik)
]
, (1.1)

where sij contains the variables that exists in both clique i and j, and xi contains

variables in clique i, and Cch contains the child cliques of clique i. This algorithm pro-

duces an optimal solution but requires messages with exponential size, thus limiting

its applicability to real distributed domains.

Max-Sum produces the optimal solution in an acyclic graph or a good approxi-

mate solution in a cyclic graph [11]. The Max-Sum algorithm iteratively performs

message-passing on the factor graph [16] corresponding to the DCOP problem. In

this graph, there is a variable node for each variable and there is a factor node for

each constraint function. A function node is connected to a variable node if the cor-

responding constraint function contains that variable in its domain. The messages

exchanged in Max-Sum are of two types:

The message qi→j from Variable i to Function j :

qi→j(xi) = αij +
∑

k∈Mi\j
rk→i(xi) (1.2)

αij is a scalar set such that
∑

xi
qi→j(xi) = 0, and Mi contains the indices of

function nodes connected to variable node i.
The message rj→i from Function j to Variable i:

rj→i(xi) = max
xj\i

[
Fj(xj) +

∑
k∈Nj\i

qk→j(xk)
]
, (1.3)

where Nj contains the indices of variable nodes connected to the function node j in

the factor graph.

The objective of Maximum a posteriori estimation is to find the values of variables

that maximize the sum of the node and edge potentials. In junction tree algorithm

5

and loopy belief propagation, algorithms that solve MAP estimation, on a pairwise

graphical model, computing a message mA→B between two neighboring cliques A =

(i, j) and B = (i,k) is equivalent in complexity to solving

mA→B(yi) = Ψi(yi) + max
yj

[Ψj(yj)︸ ︷︷ ︸
va

+ Φi,j(yi, yj)︸ ︷︷ ︸
vb

], (1.4)

where Φi,j(yi, yj) is the edge potential and Ψi(yi) is the sum of node potential Φ(yi|xi)

and any first-order messages over yi, that is, the sum of the values only related to yi

given the observation xi (similarly for Ψj(yj)).

For a DCOP, the values of node potential and value potential in the equation 1.2,

are fixed given the values of yi and yj because no observation is considered in DCOP

and therefore, Max-Sum and Action-GDL are solving a distributed MAP estimation

where no observation is given or assumed.

1.3 Motivating Examples

In order to motivate the thesis from a practical perspective, this section describes

two examples of application domains where the techniques developed in this thesis

will be evaluated.

1.3.1 Meteorological Command and Control

NetRad detects and predicts hazardous weather phenomena using a network of

radars to sense the atmosphere [17]. The goal of NetRad is to detect a tornado

within 60 seconds of formation and to closely track its centroid. Netrad consists of a

dense network of small adaptive radars, where radars’ scanning ranges overlap. The

radars collaborate with each other to sense the same volume of the atmosphere as

some measurements on weather phenomena can only be performed using multiple

6

Figure 1.2: A result of radars’ scan in the NetRad system

radars [17] or to avoid redundant scanning at the same volume by multiple radars

where it is not needed.

A network of meteorological Command and Control (MC&C) [18] agents are the

main controlling components of NetRad. Each MC&C is responsible for controlling

one or more radars. The MC&C agent ingests data from its associated radars, identi-

fies meteorological features in this data, reports important features to end-users, and

determines each radar’s future scan strategy based on detected features and end-user

requirements. The MC&C agent dynamically schedules the radars in order to adjust

to the weather phenomena at each moment and to meet changing end-user require-

ments. The system works on a cycle of 60 seconds and in each cycle, the system

gathers and processes the sensed data and schedules the radars for the next cycle.

7

The system requires careful planning to get the maximum coverage on the weather

phenomena for several reasons. First, each cycle is too short to cover the full range

of each radar, and the radars are able to scan only a limited spatial volume at each

cycle. Second, there are pinpointing tasks that require the coordinated scanning by

multiple radars of the same region and they produce zero utilities if the requirements

on the number of concurrently scanning radars are not met. Third, each phenomenon

has a different degree of importance (for example, storms and tornadoes have higher

priorities than other phenomena), thus each has a different maximum total utility.

This application domain can be formulated as a DCOP in the following way:

the radars are mapped to variables, an MCC to an agent, and a phenomenon to a

constraint. The domain of a variable is the corresponding radar’s possible scanning

strategies; for a discrete domain, scanning strategies are limited to those that contain

more than one phenomena. A constraint function associated with a phenomenon

is defined over the variables associated with the radars in whose range is the phe-

nomenon. The value of the constraint functions are determined by the quality of the

scans of the associated radars. The objective of this problem is defined as finding the

radar scan strategy that maximizes the sum of utility functions for all phenomena in

the system [5].

More formally, the goal of the system is to find a radar scan strategy r1, . . . , rn

which maximize the sum U of the utilities for all phenomena and represented as,

U =
∑
j

uj(r
pj)× wj (1.5)

where uj denotes the utility for phenomena pj. For each phenomena pj, the weight

wj is a constant determined by the requested user or the weather pattern and rpj

denotes the scanning policy of radars which have phenomena pj in range. The local

utility function uj works as a constraint function with parameter rpj . Since these

variables have finite domains and constraints, the radar scheduling problem can be

8

modeled naturally as a distributed constraint optimization problem with local func-

tions involving subsets of variables.

The constraint graph in the radar domain has a special structure common in multi-

agent domains where variables and constraints represent physical entities. In the radar

domain, the scanning range of each radar is finite, and only spatially closely located

radars can scan a shared location. Therefore, a constraint created for each phenom-

ena is connected to a finite number of variables and the combination of variables

that a constraint can connect to is limited to sets of variables that share scannable

locations. Also, this domain can be easily extended to more complex domain such

as one involving n-ary constraints, which this thesis addresses. In the dense network

of radars, a phenomenon that can be scanned by two or more radars forms an n-ary

constraint.

In this domain, a weather phenomena may span across radar ranges of multi-

ple MC&Cs. Coordination between multiple MC&C requires communication which

is costly. However, communication for coordination among radars within a single

MC&C has no cost.

1.3.2 Sensor Network

The second application domain we consider is a sensor network domain in [19],

where sensors are coordinated in order to make observations. The sensors are located

on each side of the corridors with a certain interval as shown in Figure 1.3(a) where

green circles denote sensors along the corridor. Sensors on all four corners of one

location must be focused on this location for them to sense objects in it. The sensors

determine the direction to focus at a given time in order to coordinate observation

with highest rewards. It is a specialized case of DiMES framework (Distributed

Multi-Event Scheduling). DiMES is a framework to model the problems occurring in

real-world domains involving joint activities.

9

In the DiMES framework, a set of resources R is assigned to an event set E. Time

domain is represented as time interval as [Tearliest + (t− 1)δ, Tearliest + tδ] where δ is

the duration of each time slot. We assume equal-length time slots without a loss of

generality. A k-th event Ek is characterized with three elements,(Ak, Lk, V k), the

set of resources, the number of contiguous time slots for which the resources Ak are

needed, and the value vector which describes the heterogeneous importance of an

event to the resources respectively. V k
n is an element of V k which denotes the value

per time slot to the n-th resource for scheduling event Ek. We assume that a resource

cannot schedule two events simultaneously and the value of scheduling an event is

independent of the time the event is assigned.

A schedule S is defined as a mapping from the event set to the time domain. We

assume the event is not disjoint, i.e., event Ek must be scheduled in Lk contiguous

slots. The event is scheduled when all resources in Ak agree to assign the time slots to

event Ek. A schedule is conflicted if two events with at least one common resource are

scheduled in a manner such that assigned time slots overlap. The utility of a resource

is the sum of the values from scheduled events. The DiMES problem is NP-hard.

Three DCOP formulations with binary constraints have been suggested in [19]

for DiMES problem: time slots as variables (TSAV), events as variables (EAV), and

private events as variables (PEAV). We describe the two commonly used formulations

EAV and PEAV among them. In these formulations, the variables in DCOP are

defined for each event and each variable can take on a valid starting time slot so that

the starting time is early so that the remaining time is enough for the event to finish.

PEAV formulation is identical to EAV except that valuation information for each

resource is only known to agents representing the resource’s interests. This privacy

requirement leads to additional variables that represents each resource. Conserving

privacy is represented as internal links within variables pertaining to the specific

resource and the valuation information is only on these internal links.

10

(a) Sensor Network Scenario (b) EAV formulation

S1

E1 E3E2

E4

S1 S2

S2

(c) PEAV formulation

Figure 1.3: Sensor Network example and two constraint graph representations for
EAV and PEAV formulations

11

In this thesis, the sensor network domain is formulated with PEAV formulation

where variables are represented as an observation of each location. Each constraint

is formulated between locations constraining that two adjacent locations cannot be

observed at a time; thus, the domain of each variable is possible time slots plus a null

value that denotes the event is not scheduled. Because each observation is assumed

to be made in one time slot, the constraint of consecutive assignment does not exist.

The Figure 1.3(b) shows a constraint graph of EAV formulation resulted from the

scenario in Figure 1.3(a). There exists 10 sensors at each vertex of squares along the

corridors. There are 4 locations that needs to be observed. A constraint function is

created for each pair of the locations that use the same resource and this constraint

function describes a condition that the value of these two variables cannot be identical.

For example, a constraint is created between the two adjacent locations as shown in

Figure 1.3(b) because the sensors needed for observation on these locations partially

overlap. The constraint function is defined such that a penalty is charged if the two

variables have the same value, i.e. the observations at the adjacent locations happens

at the same time. Taking this example to PEAV adds variables for each sensors in

order to have the valuation information for each observation on the internal links only.

Figure 1.3(c) shows this more complicated constraint graph with sensor variables.

The connection between sensor variables to the event variables are represented as the

connection between dotted circles and the event variable for simplicity. In addition,

sensor variables S1 and S2 are drawn twice for simplicity as well. These examples

based on DiMES framework create a moderate sized DCOPs that can be solved using

exact DCOP solvers.

1.4 Optimizing Message Passing Algorithms for DCOPs

In the next three subsections, we briefly outline the research that we have com-

pleted as part of the thesis.

12

1.4.1 Applying Inference Technique to Reduce Communication Overhead

of DCOP

We start with problems that arise when we apply inference techniques to DCOP

environments with constrained communication resources. DCOP algorithms can be

categorized into inference-based and search-based algorithms. Action-GDL [13] and

ADOPT [3] are some of the most well-known exact algorithms for each category.

Search-based algorithms are efficient in that the search can be terminated without

searching the full space whereas, inference-based algorithms can reduce the number

of messages by sending the aggregated utility. However, the message size of Action-

GDL is exponential whereas the number of messages are exponential in ADOPT and

a framework that have a reasonable size messages and number of messages is desired.

The search space for graphical models [20] is constructed using independence

relations in the models to efficiently search the solution space. Therefore, we develop

a similar approach that captures benefits from both Action-GDL and ADOPT. We

extend the AND/OR search space by Dechter et al[20] that exploits independencies

encoded by the graphical model. An AND/OR search tree is a search space with

additive AND nodes whose subtrees denote disjoint search spaces under different

variables in addition to OR nodes in traditional search trees whose subtrees denote

disjoint search spaces under values of variables. By using these independencies, the

technique reduces the size of search space from O(exp(n)) to O(n · exp(m)), where

m is the depth of the pseudo-tree [21] and n is the number of variables. DCOP

algorithms such as ADOPT [3] and BnB-ADOPT [22] can be viewed as distributed

search algorithms on this AND/OR search space.

However, on the search space used with ADOPT and BnB-ADOPT, functions

are evaluated only when their scope is fully assigned along the path. The search

backtracks to evaluate different variable assignment which occurs among the domain

of a single variable at each level. This complete decentralization in value selection

13

in the distributed setting results in an exponential number of messages in ADOPT.

In [23], we introduce AND/OR search graph on a junction tree where each level is

associated with each clique in the junction tree in a DCOP (See Fig. 2), consequently

yielding a more compact search graph with a lower number of nodes. By using the

fact that communication complexity is far greater concern in the domain, we provide a

scheme to generate heuristic functions to perform efficient search on this search space.

This work was published in AAAI 2014 [23] and will be described in Chapter 3.

1.4.2 Applying Inference Technique to Reduce Computational Burden in

DCOPs

We also address the computational complexity of DCOPs for n-ary DCOPs. Since

the inception of work on DCOPs in the multi-agent community, most research has

focused on developing the algorithms for the simplest form of DCOPs with binary con-

straints. Although this is a representative class of the problems, various environments

which can straightforwardly adopt DCOP formalism cannot be easily represented in

this class and extra modeling effort is required. Both example domains described

in Chapter 1.3 need n-ary constraints. Although the DCOP with n-ary constraints

can be translated into binary constraints, the translation introduces extra variables

and an exponential number of constraints and makes the model unnecessarily com-

plex. Also, this translation step, which differs for each domain, is a burden to the

system designer who tries to efficiently model the problem structure. Additionally it

simplifies the constraint graph structure which can save communication

However, computing on these n-ary constraints requires exponential time and low-

ering the computational burden on these constraints is essential in using these models.

We applied recent work by McAuley et al [24] that uses order statistics of variable con-

figuration and reduces the computational complexity of the task to find the maximum

sum of variable values as given in Equation 1.2. Faster maximization computation

14

was achieved through the offline presorting of the values of local functions based on

different variable configurations. By filtering variable configurations that cannot lead

to the maximum value, a lower expected complexity is achieved given independence

assumptions about the data. Because the objective of the DCOP is to find a set of

agents’ actions that maximizes the sum of constraint functions, any DCOP algorithm

requires the same operation on each node that finds the variable configuration that

maximizes the sum of multiple constraint functions.

However, the application of inference techniques to these extended DCOPs is not

straightforward because the settings of inference techniques are different from those

of multi-agent domains. The computation is done centrally and there is no notion

of communication cost. Also, the inference techniques often assume repeated use of

the constructed graphical models, which then enables the use of preprocessing steps.

Thus, applying these approaches to DCOP environments requires significant exten-

sion and modification of inference algorithms. The technique by McAuley et al [24]

requires computationally expensive preprocessing which is not feasible in DCOP do-

mains where each model is used only once. Therefore, we provided a modified max-

imization operator that does not require significant preprocessing and still obtains

lower expected complexity than that of the Max-Sum algorithm. We also provide a

correlation measure which can be used to selectively apply the scheme relaxing the

order statistics independence assumption given in the McAuley’s scheme. We experi-

mentally show the advantage of the approach over the standard Max-Sum algorithm.

This work was published in AAMAS 2013 [25] and will be described in Chapter 4

1.4.3 Exploiting the Mapping of Agents and Variables

Finally, We address issues regarding agents in multi-agent domains where agents

are associated with real hardware. Agents in DCOPs in real distributed applications

are individual physical entities with computing units. Consequently, communication

15

among these agents entails cost. In the system, these agents form a management layer

that controls the value of nodes, computes the solutions, and exchanges messages

produced during the management process. Thus, the computation within agents is

serialized, whereas the computation of agents runs concurrently. Often, in the DCOP

literature, a one-to-one mapping between a variable and an agent is assumed for

simplicity. However, this one-to-one mapping introduces a communication cost for

each message between the nodes and is not beneficial in environments with scarce

communication resources. Also, having as many agents as the number of variables

increases the hardware cost in the system.1 Therefore, we consider domains where one

agent manages more than one node. This one-to-many mapping brings up interesting

questions. Among many, we question how to modify a DCOP algorithm to exploit

such a one-to-many mapping to save resources.

In Chapter 5, we studied the problem of exploiting such a mapping. The agents

and variables form a partially centralized structure as the agents manages multiple

variables in the system. This research resulted in two modifications to the Max-Sum

algorithm that exploit the partial centralization imposed by the hardware structure

that significantly reduces communication overhead. We developed a variant of the

Max-Sum algorithm which starts with a pre-computed policy computed using infor-

mation on variables within the single agent. Also, we provide a message passing

schedule for the Max-Sum algorithm where agents process the local information ag-

gressively before sending out the resulting messages to other agents. We show exper-

imentally these modifications significantly improve the communication and computa-

1We assume that a processor contains one agent and this is commonly assumed in multi-agent
systems because we consider an agent an autonomous entity that can reason independent of other
agents. Although there can be a different model that multiple agents map to a single processor, then
our question would be to generate an efficient mapping between each processor to the nodes contained
in the single processor. In that case, agents are processes and multiple processes are assigned to a
single processor. Because the communication among processors are significantly costlier than the
communication across processes in a single processor, the mapping from nodes to processors needs
to be considered.

16

tional performance of the Max-Sum algorithm in NetRad radar domain. This work

was published in IAT-2010 [5].

1.5 Contributions

The work described in this thesis makes important contributions to the state of

the art in the algorithms for DCOP. We improve the efficiency and extend the applica-

bility to more complicated settings of DCOP algorithms, the Max-Sum algorithm and

Action-GDL algorithm. The existing contributions of this work can be summarized

as follows:

• We built a search space that requires much less messages than ADOPT by using

junction tree structure unlike the search structure in ADOPT. Also, we develop

a two phase search algorithm, which we call DJAO, that constructs a heuristic

function using filtering technique for an efficient search on the constructed search

space. This algorithm significantly reduces communication overhead without los-

ing any accuracy by avoiding sending all required information as in Action-GDL.

This is the first work that combines features of ADOPT and Action-GDL for

DCOPs. Because DJAO is a search algorithm, the search can be prematurely

terminated within a fixed error bound if desired leading to further reduction in

communication.

• We extend the technique that reduces the expected complexity of the operation

to find the maximum sum to n-ary DCOP. Also, we provide a correlation measure

to determine dynamically the appropriate cases to apply the technique since its

efficiency is sensitive to characteristics of the data sets. There is no existing work

on lowering the computational difficulty in solving n-ary DCOPs.

• We present a novel message-passing schedule for the Max-Sum algorithm in do-

mains where multiple variables map to a single agent. This technique facilitates

effective problem solving through the use of a locally generated pre-computed

17

policy and two phase propagation on the Max-Sum algorithm and saves commu-

nication and computational resources. To the best of our knowledge, this work is

the first research that exploits many variables to one agent mapping given by the

hardware structure to efficiently solve DCOPs.

1.6 Thesis Organization

The remainder of this thesis is structured in the following manner: In Chapter

2, we discuss related research on distributed constraint optimization, including both

complete and approximate algorithms. Subsequently, in Chapter 3, we develop an

algorithm that combines ADOPT and Action-GDL and provide a scheme to generate

heuristics which reduces communication overhead for this algorithm. Next, in Chapter

4, we provide an algorithm that reduce computational burden for n-ary DCOPs. After

that, in Chapter 5, we present various techniques that exploits partial centralization

imposed by the hardware. We finally summarize the contributions in this thesis and

outline future directions in Chapter 6.

18

CHAPTER 2

LITERATURE REVIEW ON DCOP ALGORITHMS

A DCOP is a non-linear optimization problem which involves multiple agents. It

is NP-hard [3], thus computationally intensive. There is a communication overhead

because the solution is computed in a distributed manner by multiple agents. Because

the application domains of the DCOPs are often resource-constrained, there has been

extensive research on developing more efficient exact and approximate algorithms.

Our focus is on the Max-Sum algorithm, one of the most used approximate algorithms

for DCOP and Action-GDL algorithm, one of the best exact algorithms for DCOP.

Both approaches are belief-propagation-based algorithms among many. The Max-

Sum algorithm is applicable to general DCOPs and is known to produce reasonable

solutions for cyclic graphs with minimal communication. The Action-GDL algorithm

is an exact algorithm and is known to require only (2N) messages where N is the

number of agents.

We review exact algorithms and approximate DCOP algorithms in this Chapter.

Typically, DCOP algorithms are classified into two categories, search-based algo-

rithms and belief-propagation-based ones (or dynamic programming based). Many

search-based algorithms originated from constraint satisfaction algorithms whereas

belief-propagation based algorithms originated from inference algorithms for graph-

ical models. Therefore, we first briefly overview these two categories of exact algo-

rithms for DCOPs including Action-GDL and then present approximate algorithms

in both classes including the Max-Sum algorithm in the later section. Next, we focus

on the variants of the Max-Sum algorithm, one of which algorithms this thesis con-

19

centrates on. Finally, we overview a new emerging class of algorithms using linear

and quadratic programming for DCOPs.

2.1 Exact Algorithms

The complete search algorithms distributedly search the solution space sufficiently

so that they can guarantee the optimality of the found solution. Firstly, we review

search-based algorithms and then belief-propagation based algorithms.

In the main loop of search-based algorithms, a search process is distributedly

conducted via messages. The search ends when the agents perceive that the total

utility cannot be improved by changing values of local variables.

In OptAPO [26], the search is conducted by multiple mediators which are dynam-

ically selected among agents. Each mediator asynchronously conducts a centralized

branch and bound search on the constructed search tree with variables within its

scope and finds the optimal assignment of variables within the scope. A mediator

controls the values of the variables in its scope. When variables outside the scope

(external variables) are in a conflicting relation with the variables inside the scope

(internal variables) and this conflict cannot be resolved by changing the values of in-

ternal variables, conflicting external variables are added to the scope of the mediator.

The mediator then conducts another centralized branch and bound search within the

new scope and propagates new values of variables in the optimal assignment to other

nodes outside the scope. This local branch and bound search occurs until the ter-

mination increasing scope. The messages in OptAPO are exchanged to control this

mediation process until each agent finds that it cannot improve the solution. The

mediator receives the value assignment and the constraint functions of internal vari-

ables and, consequently, the maximum message size does not asymptotically exceed

the total constraint function size. The only significant computation is the branch

and bound search of the mediator. Because a mediator increases its scope until the

20

optimal solution is found, the mediator might include all variables in his scope. The

mediator exploits the context of previous solution of smaller scope in this case so that

the search may quickly terminate; however, this whole process of repetition of check-

ing local solutions and increasing the scope may become equivalent to a centralized

branch and bound search in the worst cases.

In ADOPT [3], the search occurs on trees constructed based on partial ordering

of variables. Each node participates in a distributed search process by exchanging

messages with its parent and children. Limited information is shared among the

nodes. Each message contains either values of the neighboring variables or overall

cost information of subtree such as an upper bound, a lower bound and a threshold.

Each node limits the search space of its subtree by setting its value to a locally optimal

value and the search backtracks whenever the bounds cannot be satisfied with the

current local values. The size of each message does not exceed O(N + D) where N

is the the variable domain size and D is the number of neighbors. The computation

required in the search process is the summation over the bounds received from the

neighbors and choosing a value assignment that maximizes the benefit over possible

values in its variable domain. Thus, the computation in each node is O(N + D) as

well. BnB-ADOPT [22] is a similar version with different search strategy. It uses

depth-first search rather than the best-first search of ADOPT and it uses much less

computational and communication resources than ADOPT for most DCOP domains.

However, the bottleneck of both algorithms is in the number of sent messages. These

algorithms work as if each step in the search process is conducted in a different node.

As a consequence, the number of messages becomes exponential in the number of

variable and the domain size of each variable.

There are also complete dynamic programming-based algorithms such as Action-

GDL and DPOP, and they are analogous to the junction tree inference algorithm [27].

Action-GDL constructs a clique tree, DPOP a pseudo tree. They compute solutions

21

based on received messages on the trees, utilizing dynamic programming. Each mes-

sage represents a marginalized utility distribution over the domain of shared variables.

In both Action-GDL and DPOP, messages are delivered in two passes, one from leaf

nodes to the root node and the other from the root node to leaf nodes. Therefore, the

number of messages is linear in the number of variables. It is shown that a pseudo

tree that DPOP constructs during the execution is a particular junction tree among

many possible junction trees in Action-GDL [13]. The computational complexity and

the communication overhead is analogous to that of junction tree belief propagation

algorithm. The size of each message is exponential in the induced width of created

clique trees for action-GDL and in the maximum number of parents of any node plus

the children in the pseudo tree for DPOP. It has been shown that constructing a

clique tree with the minimum induced width is NP-hard [27]. The computational

complexity relates to the size of the clique node where each node goes through each

possible combination of variable values within the clique. Although the number of

messages of Action-GDL and DPOP is linear in the number of variables, the size of

messages can be exponential in the number of variables common in two neighboring

cliques. It is reported that the size of total messages can be as large as multi-gigabytes

for network of fewer than 100 variables [9].

ADOPT, Action-GDL and DPOP all require a tremendous amount of commu-

nication in order to guarantee optimality of their solutions. OptAPO is reported

to require less communication than the other approaches, however it still requires a

significant number of messages and it is reported that it conducts multiple media-

tion process when the network gets large and suffers scalability issue [28, 9]. Overall,

although the complete search algorithms produce optimal solutions, they in general

require too much communication and lack scalability for real practical applications

and therefore approaches are developed for reducing this overhead.

22

There are algorithms that are variants of DPOP and Action-GDL algorithms.

These algorithms focus on reducing the communication overhead but not the com-

putational effort. This is due to the fact that one of main challenges in exact belief-

propagation based algorithms such as DPOP and Action-GDL is the exponential

growth in message size with the linear increase of number of variables in cliques.

Some algorithms are developed in order to reduce the message size using function

filtering [29]. Function filtering produces a modified function which returns a prede-

termined value for the values that exceed a certain boundary value. Thus, the value

which equals this boundary value in the modified function are not transmitted, and

therefore reduces the size of messages in the next iteration. [29] performs multiple

iterations of DPOP with increasing message size and terminates when the computed

error bound is in an acceptable range. [30] decomposes the constraint function

into lower-arity functions summarizing out a set of variables and the communica-

tion can be saved by transmitting these lower-arity constraint function values. These

approaches perform repetitive operations on the constraint functions thus they are

computationally more expensive than the original algorithms though saving commu-

nication resources. Additionally, PC-DPOP [28] reduces communication by limiting

communication up to a constant by partially centralizing the computation for a group

of nodes, which creates messages larger than the specified size in DPOP. It sends util-

ity functions instead of messages limiting message sizes in these cases. However, the

message size cannot be smaller than the local constraint functions size and sending

constraint functions can be also costly in many domains.

Additionally, MB-DPOP [31] solves a DCOP for domains with a limited cache size.

The algorithm identifies cycle-cutset nodes whose values are instantiated throughout

the algorithm to limit the maximum cache size and perform a DPOP with fixed

contexts on cycle-cutset nodes. Although the algorithm limits the cache size, it

iterates over all instantiations. Therefore, the solution quality is the same with DPOP

23

and the computational and communication overhead in this algorithm is at least

identical to the original DPOP.

2.2 Approximate Algorithms

Similarly to the optimal DCOP algorithms, approximate DCOP algorithms also

can be divided into search-based or belief-propagation based algorithms. Search-

based approximation algorithms conduct search on very limited solution subspaces.

In many algorithms, agents utilize the value information of a small subset of variables,

i.e. their direct neighbors to decide their variable values. In belief-propagation based

approximate algorithms, agents perform the utility distribution calculation given the

limited information on neighbors’ utility distribution. This utility information can be

inaccurate due to the cyclic graph structure in the algorithms such as the Max-Sum

algorithm. On these cyclic graphs, there exist multiple paths that utility information

can be delivered. Thus, some utility information is multiply counted, and leads to

inexact utility calculation. On the other hand, message contents can be summarized

for saving communication resource generating approximate solutions.

The search-based approximate algorithms find the best possible configuration of a

local group of nodes. Two of the most well-known approximate search algorithms

are Distributed Breakout algorithm (DBA) and Distributed Stochastic algorithm

(DSA) [32]. Both DBA and DSA originate from approximate algorithms for constraint

satisfaction problems and were modified into algorithms for constraint optimization

problems. In these algorithms, agents constantly update their variable values given

the configuration of direct neighbors until convergence without any quality guaran-

tees.

In DBA, a node with the highest number of conflicts in the neighborhood receives

the highest priority and gets a chance to improve its value. The node decreases

its priority after changing its value or after finding out that it cannot improve the

24

current solution. Other nodes with the next highest priority get a chance to change

at the next iteration. Agents will continue this operation until termination. At each

iteration, each node shares the priority information and the value of each variable.

Therefore, a fixed communication cost is incurred at each iteration. At each iteration,

the nodes with the highest priorities in the neighborhood are selected to perform a

computation to choose their variable values which yield the lowest number of conflicts

given the fixed values of neighborhood variables. Because DBA may not converge to

a solution and may run indefinitely, the algorithm runs either until the convergence

or a fixed number of iterations.

In DSA, each node changes the value stochastically when the cost can be improved.

DSA does not transmit priority information as in DBA. Thus, there is no commu-

nication in an iteration where a node does not exchange a value. As a consequence,

DSA often involves less communication than DBA. Like DBA, a node computes and

finds the best possible value assignment of its variables given the assignment of the

neighborhood variables.

In addition to DBA and DSA originated from approximate algorithms for DisCSP,

the approximate version of ADOPT with a quality bound has also been developed [3].

It is a slight variation of ADOPT in that it starts with an acceptable error bound.

In this variant, nodes allow an error within the bound and do not try to improve the

solution when the cost is in an acceptable range. Therefore, the search space where

the cost is within the given threshold is not explored. Even with this allowance,

the behavioral aspect of the algorithm remains similar and the algorithm still often

requires a significant number of messages and backtracks to parent nodes in the tree

many times when the cost exceeds the allowable range.

Another class of search-based approximate algorithms, which has attracted much

attention recently, is the DALO algorithm [33] which provides a quality guarantee

using conditions on optimality. The optimality analysis on the solutions of DALO

25

can be constructed. It guarantees the quality of the solution q in proportion to the

quality of optimal solution q∗, that is q = αq∗. This optimality is achieved when

a fixed subset of variables cannot improve their solution by a single variable value

change within the group.

There are many different optimality notions which define different optimality con-

ditions. The first optimality that provides a quality guarantee is k-optimality [34].

A solution that satisfies k-optimality has a property that the utility of the solution

cannot be improved by changing variables’ values in any k-sized neighborhood. A

k-sized neighborhood refers to any group of k variables that are connected to each

other through constraints. A quality bound is derived by considering the assignments

that 1) exactly k variable values are different from a k-optimal solution and 2) the

values of deviated variables from the k-optimal solution equals the variable value in

the globally optimal solution. Consequently, for these assignments, constraint func-

tions yield the same values in k-optimal solution or optimal solution depending on

whether the associated variables are deviated or not. A relation between k-optimal

solution and optimal solution is derived using relations on constraint function values

on these assignments. Furthermore, on graphs where we can limit the assignments to

those that all deviated variables are connected through constraints, a tighter bound

can be achieved. The t-optimality [33] is a condition that provides the guarantee on

the solution quality for a locally optimal solution in variable groups which contain

all nodes within the distance of t. For example, t-optimality of t = 1 forms groups

of variables which contain all directly connected neighbors of each variable. As a

result, the size of each group can be arbitrarily large in t-optimality depending on

the connectivity. A star-shaped graph contains one group that includes all variables.

The last and the most recent optimality guarantee, C-optimality [35], combines these

two criteria and can handle both distance and region size optimality, thus subsumes

k- and t-optimality.

26

The DALO algorithm finds the variable assignment that satisfies one of these

properties on variable values. The DALO algorithm is similar to OptAPO in that a

leader of groups controls the local search process in each neighborhood. In DALO,

the neighborhood does not change as in an earlier version of OptAPO [36] during the

algorithm and only guarantees the optimality within the neighborhood. In the main

loop of DALO, the algorithm first exchange all the constraint functions within the

defined neighborhoods and elects the leader of each neighborhood. Then, the leader

continues to centrally compute the optimal solution of its region repeatedly until a

local optima is achieved in all regions. Conflicts in variable values are resolved using

heuristics that gives priorities to certain leaders to ensure incremental improvement

of the solution. Communication happens when a node transfers its variable value

to the leaders of all neighborhoods that the node belongs to upon a value change

and a leader node sends control messages that prevents simultaneous variable value

change in the overlapped neighborhoods. Each leader centrally computes the best

variable assignment in the neighborhood assuming the fixed variable values outside

the neighborhood and change the variable values in the neighborhood to the values

that yield the best result. Thus, the computational complexity can be as high as the

total number of possible assignment of the variables in the neighborhood.

Although the solution quality bound is provided by these algorithms, in order to

gain a tight bound, a bigger neighborhood is needed. This requirement causes more

computation and communication because the computation for each neighborhood is

centralized. Moreover, these bounds are often loose. In [35], it was shown that

having almost entire graph-sized neighborhood (5 for a graph with 6 variables) only

produces 2
3

and 1
2

for C-optimality and t-optimality respectively. This means the

achieved solution is guaranteed to be greater than two third of the optimal solution

for C-optimality and a half for t-optimality respectively.

27

Among belief-propagation based algorithms for DCOP, the Max-Sum algorithm [12]

is the DCOP variation of loopy belief propagation algorithm [37]. Loopy belief prop-

agation algorithm is known as a fast and efficient algorithm for many inference prob-

lems in practice and so does Max-Sum have these performance characteristics in many

multi-agent domains [38, 6, 12, 7]. In the Max-Sum algorithm, a constraint function is

represented as a node called a function node. Variable nodes and function nodes form

bipartite graphs called factor graphs. The main routine of the algorithm is repetition

of computing messages and exchanging the messages between variable and function

nodes until values in the messages converge. Each message contains the possible max-

imum benefit for each value of the variable from the nodes’ local view. The Max-Sum

produces an optimal solution when the bipartite factor graph forms a tree. When a

factor graph has cycles, the optimality of the solution is not guaranteed, however it is

known to produce good solutions even with cycles [12, 5]. The size of these messages

equals the single variable domain size and the communication overhead is significantly

lower than other DCOP algorithms and thus suitable to many resource-constrained

applications in multi-agent fields. The function nodes find variables configurations

which maximize the constraint function values by iterating all possible combination

of variable values connected to these nodes. This procedure determines the computa-

tional complexity of the algorithm. Therefore, the computational complexity is higher

than the algorithms such as DBA and DSA where variables choose their value given

the fixed values of other variables, but much lower than the exact algorithms such

as Action-GDL and DPOP that reformulate the constraint graphs into a tree-like

structure.

BnB Max-Sum [6] was developed as a computationally more efficient variants of

Max-Sum. It performs a branch and bound search in function nodes to reduce the

computational complexity of the maximization operator. In each function node, a

search tree is constructed with variables associated with the constraint function. The

28

search tree branches out with values of a variable at each level and on the tree a branch

and bound search is performed. Thus, each node may not need to go through all

possible combinations of variables and possibly reduce the computational complexity.

Because a branch and bound search process estimates the upper and lower bound of

a constraint function without instantiating the variable values located in the subtree,

constraint functions that can be evaluated only with a subset of variable values are

required. This requirement on the constraint function limits the application to many

realistic applications with constraint functions that cannot be evaluated with partial

variables assignment.

Fast Max-Sum [7] minimizes the size of the solution space of the constraint func-

tion significantly in the task allocation domain by reducing the domain size of the

variables. In the task allocation domain, the utility of a task is represented as a con-

straint function of agents’ actions. The domain of this function is each agent’s action

choices. With the underlying assumption that execution of one task does not affect

the utility for other tasks, from the perspective of task A, actions other than the

actions for task A can be summarized as ¬A, that is, not executing the task A. Thus,

all agents have only two action choices such as A and ¬A from task A’s perspective.

This property significantly reduces the possible number of action combination of mul-

tiple agents for each task. However, in some domains, the assumption that every task

and action are independent may not be feasible. If an action of an agent affects mul-

tiple tasks or different combination of multiple agents’ actions yield different results,

this technique cannot be applied. For example, in the Radar domain, scanning one

phenomenon may affect multiple variables associated with other phenomena when a

single radar’ scanning range includes those phenomena.

Bounded Max-Sum [8] provides a quality measure which measures the ratio of

the solution to the optimal solution. The algorithm modifies a DCOP by removing

arcs which produce cycles and then solves the modified problem with the resulting

29

tree. When it removes each arc, it selects a specific arc that produces the minimal

distance from the original problem, thus minimizing the solution quality loss. By using

these computed loss from removing arcs, the algorithm computes the distance from

the original optimal solution. Although the problem is now solved on the tree, the

complexity of solving on the tree remains the same as the original constraint functions

are used. Also, there is overhead of selecting which arcs to remove. This step has the

same complexity with solving the original problem. Arc removal is a deterministic

process and there is no way to adjust the quality bound and the quality bound is

bound to a constraint graph. This bound can be only obtained after constructing the

tree structure from the resulting constraint graph of DCOPs.

Another variant of Max-Sum is Max-Sum-AD [39] with value propagation step

which operates in a tree-like structure by communicating in a pre-defined order. Max-

Sum-AD only sends messages to neighbors with a lower priority in one iteration, only

to the ones with a higher priority in another iteration. After the message propagation

step, the algorithm then propagates variable values in order for agents to select the

actual best given the neighboring variables’ actual values. Therefore, each agent does

not select a value that is most likely to maximize the utility as in the Max-Sum, but

a value that actually produces the computed utility.

Tractable higher order potentials [40, 41] are used to reduce the computational

complexity of binary Max-Sum where variables only take on two values. By using

these special types of constraint functions for the binary Max-Sum, the computation

of Max-Sum can be linear in the number of variables in function nodes instead of

exponential. For example, a constraint function that satisfies the one and only con-

dition which takes on a value 1 only for one value assignment, the linear complexity

can be obtained because the one assignment that takes on the value 1 needs to be

identified and others automatically takes a value 0.

30

Finally, the divide-and-coordinate approach [38] iteratively divides the search

space into segments (divide stage) and searches a solution within the subproblem

and then coordinates the solution among agents (coordinate stage). Because each

agent always solves problems in the context of each segment, the algorithms using

this approach do not give an optimal solution. However, the quality of solution for

subproblem is always an upper bound of the quality of equivalent subpart of global

solution. Therefore, the quality bound of a solution can be computed with the sum

of solutions of subproblems and the overall quality. DacSA algorithm [38] uses this

divide-and-coordinate approach. In the divide step in DacSA, each agent formu-

lates and solves a subproblem as a linear program concerning its own variables with

associated constraints. Constraints on coordination across agents are specified as La-

grangian multipliers. In the coordinate step, the algorithm updates the coordination

parameters using the subgradient method.

DeQed [42] is another algorithm that is based on the divide-and-coordinate ap-

proach, thus is very similar to DacSa. However, DeQed uses a different encoding of

variables. In DeQed, a single variable in the linear program is a vector of D×1 dimen-

sion. Each variable is a vector that denotes which value the corresponding variable

takes in DCOP, i.e. the i-th value of this vector takes the value 1 if the corresponding

variable in DCOP takes the i-th value and all the rest take 0. This encoding produces

a corresponding quadratic program and solving the program is quite the same with

DacSa.

Additionally, message passing algorithms using linear programming and quadratic

programming for MAP estimation [43, 44] have been developed. Although these

are not DCOP algorithms, these have potentials for DCOP algorithms as they are

inherently distributed thus scalable and are able to provide bounds on the solution

by computing exact solutions of relaxed problems.

31

2.3 Summary

There have been many algorithms developed to solve DCOPs in multi-agent do-

mains. These algorithms can be categorized as search-based or belief-propagation

based algorithms depending on the information the messages transfer. Also, they

are categorized as exact methods or heuristic methods based on the exactness of the

solution. Because of the resource constraints in multi-agent domains, exact methods

require too much computation and communication resources and are generally not

appropriate for realistic applications. Therefore, there has been much efforts to re-

duce these resource requirements for both approximate and exact algorithms in these

domains.

Among the DCOP algorithms, the belief propagation based algorithms has shown

promising performance and interesting characteristics. The Action-GDL algorithm

is an exact algorithm which only requires a linear number of messages providing an

optimal solution. The Max-Sum algorithm produces good solutions in practice. There

has been an intensive research on belief propagation algorithms in machine learning

community and many approaches can be readily applied to DCOPs. For these reasons,

we have chosen the Max-Sum algorithm and the Action-GDL algorithm as the focus

of our thesis for trying to improve and extend it to more complex settings of DCOP

technology.

32

CHAPTER 3

APPLYING INFERENCE TECHNIQUE TO REDUCE
COMMUNICATION OVERHEAD OF DCOP

This chapter addresses exponential message size in exact algorithms such as Action-

GDL and DPOP. It is the first algorithm that combines Action-GDL and ADOPT.

It requires much less communication than Action-GDL and DPOP in many domains.

Additionally, the algorithm has the anytime property that can be terminated given

the allowed error bound.

3.1 Background

The challenges in exact algorithms such as Action-GDL and DPOP lie in expo-

nential message sizes in the induced width of the dual constraint graph. That is,

the size of a message between agents is exponential in the number of variables in the

separator of two neighboring cliques in the dual graph. This exponential message size

can be close to gigabytes for DCOP in realistic applications.

Many researchers have tried to overcome this communication complexity of Action-

GDL and DPOP. Several variants of DPOP have been developed for reducing commu-

nication. [28] is a variation of DPOP where the computation is partially centralized

to avoid sending large messages. However, this approach may centralize a large part

of the problem solving. Because the potential function is known to only local agents,

potential function needs to be transferred, leading to additional communication. [45]

prunes the message size by removing violating configurations when there are hard

constraints. This approach exploits hard constraint in order to save communication.

33

However, this approach does not apply to the domains without such constraints. [29]

uses the function filtering approach to reduce the communication overhead. A func-

tion filtering estimates the possible lower bound and filters all variable configurations

that lead to a smaller value. This approach sends unpruned Action-GDL messages

based on the computed lower bound. The search is implicit in that it constantly

constructs Action-GDL messages to update the bounds.

Our approach to this problem was to formulate a novel algorithm that uses search

to efficiently find a solution with low communication overhead; this algorithm, called

distributed junction tree AO search algorithm (DJAO), conducts a distributed search

on the AND/OR space built based on distributed junction trees [15]. DJAO operates

in two phases. In the first phase, heuristic upper and lower bounds for variable

value configurations are created using a bottom-up propagation scheme similar in

character to Action-GDL [13]. Except that instead of transmitting values for all

configurations, we transmit only the filtered upper and lower bounds of configuration

values. The next phase using these heuristics conducts an ADOPT-like [3, 22] search

on AND/OR search graph based on the junction tree, which we call AND/OR search

junction graph, to find a solution with desired precision. This two-phase strategy

reduces overall communication significantly.

3.1.1 AND/OR Search Tree and Context-minimal AND/OR Search Graph

AND/OR search space [46] is introduced to exploit independencies encoded by the

graphical model. AND/OR search tree is a search space with additive AND nodes

whose subtrees denote disjoint search spaces under different variables in addition to

OR nodes in traditional search trees whose subtrees denote disjoint search spaces

under values of variables. AND nodes decompose the search space in their subtrees

under Generalized Distributive Law framework [14]. It reduces the size of DCOP

search space from O(exp(n)) to O(n · exp(m)), where m is the depth of the pseudo-

34

tree and n is the number of variables. In connection with DCOP, ADOPT [3] and

BnB-ADOPT [22] can be viewed as a distributed search algorithms on this AND/OR

search space.

Definition 1 (AND/OR search tree)

Given a COP instance P, its primal graph G and a pseudo-tree T of G, the associated

AND/OR search tree ST (P) has alternating levels of OR nodes and AND nodes. The

OR nodes are labeled Xi and correspond to variables. The AND nodes are labeled

〈Xi, a〉 and correspond to value assignments in the domains of variables. The root of

the AND/OR search tree is an OR node, labeled with the root of T. The children of

an OR node Xi are AND nodes labeled with assignments 〈Xi, a〉, consistent along the

path from the root. The children of an AND node 〈Xi, a〉 are OR nodes labeled with

the children of variable Xi in T. The path of a node n ∈ ST , denoted PathST
(n), is

the path from the root of ST to n, and corresponds to a partial value assignment to

all variables along the path.

An example of AND/OR search tree is given in Fig. 3.1(a). Because AND nodes

decompose the problem into separate subproblems, variables in different subtrees of

an AND node n are considered independently given the value assignment along the

path to n. The arcs in ST are annotated by appropriate labels of the cost functions.

Definition 2 (label) The label l(Xi, 〈Xi, a〉) is defined as the sum of all the cost

functions values for which variable Xi is contained in their scope and whose scope is

fully assigned along the path from root to n.

Definition 3 (value) The value v(n) of a node n ∈ ST , is defined recursively as

follows: (i) if n = 〈Xi, a〉 is a terminal AND node then v(n) = l(Xi, 〈Xi, a〉); (ii) if

n = 〈Xi, a〉 is an internal AND node then v(n) = l(Xi, 〈Xi, a〉) +
∑

n′∈succ(n) v(n′);

(iii) if n = Xi is an internal OR node then v(n) = maxn′∈succ(n) v(n′), where succ(n)

are the children of n in ST .

35

In [20], AND/OR search graph shown in Fig. 3.1(c) was introduced to reduce

the size of the search tree in Fig 3.1(a) by merging two nodes that root identical

subtrees. Context-based merge operation is defined as merging nodes when two

AND nodes share same variable assignments on the ancestors of these nodes, that

have connections in G to these nodes or their descendants, or two OR nodes share

assignments on these nodes and ancestors of nodes, that have connections in G to

nodes’ descendants.

D

1

1

0 0 110

B

0

C

1 0

C D

1

1

0 0 110

B

0

AND

OR

AND

OR

AND

OR

D D

0

A

1

C

1 0

C

(a)

B D

C

A

(b)
.5

0 1

B

0

C C D C

10 0 1

AND

OR

AND

OR

OR D C

AND

0

A

1

1

B

(c)

BD
ABC

AB

(d)

Figure 3.1: an AND/OR search graph

36

Definition 4 (context minimal AND/OR graph) The AND/OR search graph

of G that is closed under context-based merge operator is called context minimal

AND/OR search graph.

3.1.2 Distributed Constraint Optimization and Junction-Tree

A distributed constraint optimization problem (DCOP) instance P = 〈A,X, D,F〉

is formally defined by the following parameters:

• A set of variables X = {X1, . . . , Xr}, where each variable has a finite domain D

(maximum size N) of possible values that it can be assigned.

• A set of constraint functions F = (F1, . . . , Fk), where each constraint function,

Fj : Xj → <, takes as input any setting of the variables Xj ⊆ X and provides a

real valued utility.

In DCOP, we assume that each variable xi is owned by an agent ai ∈ A and that

an agent only knows about the constraint functions in which it is involved. The DCOP

can be represented using a constraint network, where there is a node corresponding

to each variable xi and where there is an edge (hyper-edge) for each constraint Fj

that connects all variables that are involved in the function Fj.

The objective in the DCOP is to find the complete variable configuration x that

maximizes
∑

Fj∈F Fi(xi).

The dual constraint graph [21] is a transformation of a non-binary network into a

special type of binary network. It contains cliques (or c-variables) domains of which

ranges over all possible value combinations permitted by the corresponding constraint

functions, and shared variables in any two adjacent cliques have same values.

A junction tree (or join tree) [27] T is a subgraph of the dual graph which is a tree

and satisfies the condition that cliques associated with a variable x form a connected

subset of T . A Junction tree is represented as a tuple 〈X,C,S,F〉. where X is a set

of variables, C is a set of cliques, where each clique Ci is a subset of variables Ci ⊆ X;

37

S is a set of separators, where each separator is an arc between two adjacent cliques

containing their intersection; and F is a set of potentials, where each potential in F

is assigned to each clique in C.

A distributed junction tree [15] decomposes a DCOP into a series of subproblems,

some of which can be solved in parallel. A subproblem represented as a clique ci ∈ C

can be solved independently given the local constraint functions fi ∈ F and the values

from neighbors on separator si ∈ S. Separators S specify which values will be used

in the neighboring cliques in order to compute the solution for its local subproblem.

3.1.3 DJAO(k)

3.1.3.1 First phase: heuristics generation

Preprocessing techniques to supply the search with heuristic values has success-

fully been used to enhance both centralized and decentralized search methods. [47, 48].

In this section we describe a scheme for generating initial heuristic estimates hUB and

hLB used in DJAO(k), based on a new function filtering technique, which we call

Soft Filtering, described here. [30, 29] used the Function Filtering technique [29] on

DCOPs to prune variable configurations of local nodes, that do not yield the opti-

mal solution. We use the soft function filtering technique to generate heuristics that

maintains the tuples that potentially yield the optimal solution while summarizing

the rest with upper and lower bounds. Unlike the heuristics in [47, 48] which are

generated by solving lower complexity problems than the original, DJAO solves the

original problem and focuses on reducing communication by filtering tuples that are

unlikely to be part of the optimal solution.

The Soft Filtering technique used in DJAO summarizes constraint functions to

reduce communication required for transmitting such function. A simple difference

from Function Filtering is that the Soft Filtering technique provides summarized

lower and upper bounds on filtered configurations. Let the variable configuration

38

S in message m be divided into two sets filtered configurations SF , and non-filtered

configurations SNF . Let UB be the upper bounds of values on variable configurations

and LB the lower bounds.

The values UBm and LBm in the messages are filtered as follows.

UBm(v) =

UB(v) if v ∈ SNF

maxSF
UB(v) if v ∈ SF

LBm is similarly defined with max replaced with min.

Example Consider a function F with 10 values, from 0 to 9 for the domain

v0, . . . , v10. Thus, F has LB and UB such that LB(vi) = UB(vi). The soft filtered

functions UBm and LBm by 90% of F is UBm(vi) = 8, LBm(vi) = 0 for 0 ≤ i ≤ 8,

UBm(v9) = LBm(v9) = 9.

Filtered configurations are summarized as a filtered tuple with a single upper and

lower bounds, therefore reducing the number of items in each message from ‖2S‖ to

2‖SNF‖+ 2. The optimal strategy is guaranteed to remain in the search space as no

solution is completely dropped. This summarization builds a basis for the next phase

where an ADOPT-like search finds a solution within a desired accuracy. Among many

ways to select which items to filter, we select items in the bottom (100− d)% of the

function range.

3.1.3.2 Second phase: search on AND/OR junction graph

On the pseudo-tree based search graph, functions are evaluated only when their

scope is fully assigned along the path. The search backtracks to evaluate different

variable assignment which occurs among the domain of a single variable at each level.

This complete decentralization in value selection in the distributed setting results

in the exponential number of messages in ADOPT. Instead, we introduce AND/OR

search graph on a junction tree where each level is associated with functions in a

DCOP (See Fig. 3.2), consequently yielding a more compact search graph with a

39

lower number of nodes. This search graph is a context-minimal AND/OR search

graph upon construction.

0

111000

00C 10C 11C1D

10

OR

OR

AND

AND

AB

01

0D 01C

1

Figure 3.2: an AND/OR search graph based on a junction tree

Definition 5 (AND/OR search junction graph)

Given a DCOP instance P and its junction tree T , the associated AND/OR search

graph ST (P) has alternating levels of OR nodes and AND nodes. The OR nodes are

labeled Ci:〈Si, a,Ni〉 where a are variables assignments in the domains of variables in

separators Si whose value are propagated from ancestors and newly appeared variables

Ni in clique Ci. These OR nodes correspond to the cliques with partial assignment.

The AND nodes are labeled 〈Sij,b〉 and correspond to value assignments in the do-

mains of the separator between clique Ci and its child Cj. The root of the AND/OR

search graph is an OR node, labeled with the root of T. The children of an AND node

〈Sij,b〉 are OR nodes who is labeled with Cj:〈Sj,b,Nj〉 with the same assignment on

variables in separators.

Example Consider the graphical model in Fig. 3.1(b) describing a graph coloring

problem over domains {0,1}. An AND/OR search graph based on a possible pseudo-

tree is given in Fig 3.1(c) and an AND/OR search junction graph in Fig 3.1(d) is

given in Fig. 3.2. Observe that the function evaluation on l({A,B}, a) occurs at the

expansion of nodes at level 3 in Fig. 3.1(c) instead of at level 1 in Fig. 3.2 generating

40

unguided search until the third expansion. It also elongates the backtrack path leading

to an increase in the number of nodes needed to visit to evaluate a single function.

Theorem 1 Given a DCOP instance P and a junction tree T , its AND/OR search

graph is sound and complete. It contains all and only solutions.

[Proof: By definition, all the arcs of ST (P) are consistent. Also, by definition

of junction trees, ST (P) contains at least one AND node that assigns values of each

variable. Therefore, the assignment that consists of labels of the AND nodes in

the solution graph is a solution of P . Also, by definition of the AND/OR tree,

every solution of P corresponds to a variables assignment in ST (P). Finally, the

value v(n) of a variable assignment is derived by combination of arc values along the

corresponding APT (n). By construction, each function of F contribute to one and

only one arc value on APT (n) which matches the variable assignment. Therefore, it

yields the cost of a solution. �

Intuitively, the solution space in AND/OR search graph is identical to the junction

tree, thus it contains all and only solutions. Consequently, any search algorithm that

traverses the AND/OR search graph in a depth-first manner is guaranteed to have

a time complexity equal to the time complexity of Action-GDL [13] on the same

junction tree which is exponential in the tree width.

Theorem 2 The size of search tree has exactly same size as the total complexity of

junction tree as no subtree is redundant. The depth of the graph does not exceed the

number of agents.

The search result for its subtree is stored at each node, therefore no identical

subtree is explored twice and a value assignment on a cost function is never repeated.

The arcs in ST are annotated by appropriate labels of the cost functions. The nodes in

ST are associated with a value, accumulating the result of the computation resulted

from the subtree below. We define labels similar with one defined in Def. 3.

41

Definition 6 label: The label l(Ci:〈Si, a,Ni〉, 〈Sij,b〉) of the arc from the OR node to

the AND node 〈Sij,b〉 is defined as the cost function values contained in the clique

Ci whose scope is fully assigned with values from the parent OR node and and child

AND node.

The value of v(n) of a node n ∈ ST (P) is computed in the same way as in Def. 3.

Likewise, the value of each node can be recursively computed from leaves to root. We

can show that:

Proposition 1 Given an AND/OR search graph ST (P) of a DCOP instance, the

value function v(n) is the maximum cost solution to the subproblem rooted at n,

subject to the current variable instantiation along the path from root to n. If n is the

root of ST , then v(n) is the maximum cost solution to P.

[Proof: By construction, value of each AND node is deterministic given the child

nodes and the path PSG to the node. The value of each OR node is the maximum

value of its child nodes, thus unless value of its child nodes has suboptimal value,

it chooses the best value. By construction, every possible variable assignment is

examined in the subtree, thus the value function v(n) is the maximum cost function.

Intuitively, We verify the value of nodes are identical to the values produced

during the execution of Action-GDL. The value of an AND node is identical to the

value of corresponding assignments in the messages from the corresponding clique

of Action-GDL given the context along the search path to these nodes. Valuation

of OR nodes is combination of local utility functions and values of its child nodes

and corresponds to the maximum achievable value of variable assignments given the

variable assignments along the search path.

Proposition 2 AND/OR search junction graph ST (P) is context-minimal upon con-

struction

42

The separators Si and Sij contain variables that build a context for each clique

and a single node is created for each value assignment in the separator, thus it is

context-minimal.

3.1.3.3 Search in distributed settings

Each agent in the system distributedly conducts its share of search for the nodes

on ST (P) it owns. Agents are responsible for valuation of owned nodes and path

determination.

Definition 7 agent ownership: Each node in ST (P) is owned by an agent. Agent Ai

owns all nodes associated with its own clique Ci: OR nodes Ci : 〈Si, a,Ni〉 and child

AND nodes of these are assigned to Ai.

For example, suppose clique AB, ABC and BD in Fig 3.1(d) are owned by agent

A1, A2, and A3 respectively. OR nodes of clique BD are C3:〈B, 0, D〉, C3:〈B, 1, D〉.

These nodes and child AND nodes of these are assigned to A3.

Search procedure between nodes belonging to different agents incurs communica-

tion. When a child OR node Ci : 〈Si, a,Ni〉 is chosen for expansion, agent transmits

partial assignments a to an agent who owns the child nodes. Updated function values

are sent to the agent who owns the parent node on the search path when the search

backs up. Search paths that incur communication are displayed as dotted lines in

Fig. 3.2.

3.1.3.4 DJAO on AND/OR search junction graph

If each node n ∈ ST (P) is assigned a heuristic lower-bound estimate LB(n) and

heuristic upper-bound estimate UP(n), then we can calculate the lower and upper

bound estimates of assignments and dominated search space can be pruned.

43

3.1.3.5 Bounds on partial solution

Similarly to [46], a partially expanded search graph, denoted as PSG, contains

the root node, will have a frontier containing all the nodes that were generated but not

expanded. Each expansion of a leaf node of a PSG updates the lower and upper bound

estimates on AND/OR search graph. An active partial subtree APT (n) rooted at a

node n ending at a tip node t contains the path between n and t, and all Or children

of AND nodes on the path. A dynamic heuristic function of a node n relative to the

current PSG given the initial heuristic functions hUB and hLB can be computed.

Definition 8 (Dynamic Lower and Upper Bound) Given an active partial tree

APT (n), the dynamic heuristic estimate of upper and lower bound function, UB(n)

and LB(n), is defined recursively as follows: (i) if there is a single node n in APT (n)

and is evaluated, then UB(n) = v(n) = LB(n) else if n is a single node in APT

UB(n) = hUB(n) and LB(n) = hLB(n); (ii) n = 〈Sij,b〉 is an AND node, having OR

children m1, . . . ,mk, and

label = l(Ci : 〈Si, a,Ni〉, 〈Sij,b〉), then

UB(n) = min(hUB(n), label +
∑k

i=1 UB(mi))

LB(n) = max(hLB(n), label +
∑k

i=1 LB(m)) ;

(iii) if n = Ci : 〈Pi, a, Ni〉 where n is an OR node, having an AND child m, then

UB(n) = min(h(n), UB(m)) and LB(n) = max(h(n), LB(mi)).

Theorem 3 LB(n) is a lower bound on the optimal solution to the subproblem rooted

at n, namely LB(n) ≤ v(n), and also by definition LB(n) ≥ hLB(n). Also, UB(n) ≥

v(n) and UB(n) ≤ hLB(n).

Proof: We will prove by induction assuming the correctness of heuristics that v(n) ≤

hUB(n), v(n) ≥ hLB(n).

44

Basis: At leaf nodes of AND/OR junction search graph, it is trivial that v(n) =

UB(n)=LB(n) as v(n) is computed using local constraints and does not involve any

heuristic function.

Induction step: At any AND node having OR children m1, . . . ,mk,

v(n) = label +
∑

i v(mi) ≤ label +
∑

i UB(mi),

where v(mi) ≤ UB(mi).

v(n) ≤ min(hUB(n), label +
∑

i UB(mi)) = UB(n),

where v(n) ≤ hUB(n).

At any OR node having AND child m = argmaxi v(mi),

v(n) = v(m) ≤ UB(m)

v(n) ≤ min(hUB(n), UB(m)) = UB(n).

LB(n) ≤ v(n) can be proved similarly. Therefore,

LB(n) ≤ v(n) ≤ UB(n). �

Also, UB(n) and LB(n) provides tighter bounds than the initial heuristic func-

tions.

Proposition 3 (Pruning rule) Given PSG, for any AND node n and its sibling

m, if UB(n) < LB(m) or UB(n) = LB(n) then subtree below n can be pruned.

3.1.3.6 DJAO(k)

We now set up a DJAO search on ST (P) whose nodes are assigned to agents.

Starting from the root agent given the initial heuristic upper and lower bound func-

tions hUB and hLB, the objective is to search one of the solution that satisfies the

termination condition while pruning dominated candidate solutions.

45

Algorithm 1: DJAO(k)(1)
procedure Init()

wait← 0 ; // number of waited messages

ki ← 0, kc ← 0 ; // own and child’s k value

mb ← nil ; // OR node in par(ai) to backtrack to

m∗,m∗∗; // OR node with max, second max UB

nc; // AND node context-compatible with mb

procedure RootRun()

Init();
UpdateM();
if (CheckTermination()) then

Send(TERMINATE) to ∀c ∈ succ(ai);
terminate;

end

ki ← UB(m∗)−max(UB(m∗∗)− k, LB(m∗));
wait← ‖succ(ai)‖;
Send(VALUE, m∗, ki);
loop forever
while (message queue is not empty) do

pop msg off message queue;
When Received(msg);
if (CheckTermination()) then

Send(TERMINATE) to ∀c ∈ succ(ai);
terminate;

else if (wait==0) then

UpdateM();
ki = UB(m∗)−max(UB(m∗∗)− k, LB(m∗));
Send(VALUE, m∗, ki) to ∀c ∈ succ(ai);

end

procedure Run()

Init();
loop forever
while (message queue is not empty) do

pop msg off message queue;
When Received(msg);
if (Decide BackUp() && wait==0) then

Send(COST, mb, UB(mb), LB(mb)) to par(ai)

else if (wait==0) then

UpdateM();
Send(VALUE, m∗, kc), to ∀c ∈ succ(ai)

end

46

Algorithm 2: DJAO(k)(2)
procedure UpdateM()

m∗ = argmaxUB(m), for m ∈ succ(nr);
m∗∗ = argmaxUB(m), for m ∈ succ(nr) \m∗;
procedure When Received(COST, m, vUB , vLB)

wait← wait− 1, UB(m)← vUB , LB(m)← vLB;
UB′(n)← UB(n), where n = par(m) ;
UB(n)← max(UB(n), UB(m)) ;
LB(n)← max(LB(n), LB(m));
procedure When Received(VALUE, m, k)

ki ← k,mb ← m,wait← ‖succ(ai)‖;
nc ← context− compatible(m),;
procedure Decide BackUp()

if (UB(nc)− UB′(nc) ≥ ki) then

return true;
else

kc ← (ki − (UB(n)− UB′(n)))/‖succ(ai)‖;
return false;

end

procedure When Received(TERMINATE)

Send(TERMINATE) to ∀c ∈ succ(ai);
terminate;
procedure Check Termination()

if (UB(nr) == LB(nr)) then

return true;
else if for ∀m∈ succ(nr)\m∗, UB(m) ≤ LB(m∗) then

return true;
return false;

47

DJAO agents use three types of messages: VALUE, COST, and TERMINATE.

At the start, the root agent expands the OR nodes from its AND node and selects

the best branch in the subtree and sends VALUE messages containing variable values

on the chosen branch to its child nodes.

Upon receipt of a VALUE message, an agent evaluates whether the back-up con-

dition is satisfied for the given value assignments b in the message. If the back-up

condition is satisfied, the agent backs up with updated values by sending a COST

message to its parent. Otherwise, it expands the OR nodes compatible with b and

selects the best branch and sends VALUE message to its children.

Upon receipt of COST message containing the updated lower and upper bounds

on the chosen expanded OR nodes from all child nodes, it recalculates the lower and

upper bounds of its AND node. It then re-evaluates the back-up condition for the

received VALUE message. Unless it satisfies the back-up condition, then the question

of which branch to select is re-examined and the agents sends another VALUE message

to its children. These steps are repeated until a termination condition in Prop 4 holds

for the root agent. It then sends a TERMINATE message to each of its children and

terminate. Upon receipt of a TERMINATE message, each agent does the same.

Proposition 4 Given an OR node n and AND nodes

m1, . . . ,mk at the root agent, DJAO(k) is terminated if UB and LB satisfies the

condition UB(n) = LB(n) or

∃i, UB(mj) ≤ LB(mi) for ∀j, i 6= j.

Each agent stores the lower and upper bounds of expanded nodes and updates

these values upon each COST message arrival. The memory requirement for each

agent does not exceed O(nd) where n is the size of variable domain and d is the

induced width of the junction tree.

Among many different search strategies which determines the back-up condition

for solving COP and DCOP, best-first search and depth-first branch-and-bound search

48

have been primarily studied [46, 49, 3, 22]. Best-first search always follows the best

item found and in the distributed setting whenever there is an update, agents propa-

gate it to all ancestors whose best items may change. On the other hand, depth-first

search retains the current path until it is certainly dominated or the true value of

node v(n) is found. In [50], ADOPT (k) that provides a trade-off between these two

extremes, where the search keeps the current path until the distance between the best

solution on the current path and the best solution found so far becomes greater than

a given constant k.

Similarly, we developed DJAO(k), which subsumes both depth-first and best-

first search strategy on AND/OR search junction graph. It performs depth-first

when k = ∞, best-first when k = ε, and a hybrid when ε < k < ∞, where k is

the distance between the best found solution UB(m∗) and the next best solution

UB(m∗∗) found so far. Unlike ADOPT(k) which uses the best solutions based on

the subproblems provided by the node’s subtree, the search uses a measurement

that considers a more global perspective on the current best solution. The search

backtracks when UB(m∗) ≤ max(UB(m∗∗) − k, LB(m∗)), which occurs as soon as

the best solution is dominated by the second best with the best-first strategy with

k = ε, and when the true value for m∗ is found (Thus, UB(m∗) = LB(m∗).) with the

depth-first strategy with k =∞.

Algorithm 1 and 2 shows the pseudocode of DJAO(k), where ai is a generic agent,

par(ai) its parent agent, succ(ai) its set of child agents, par(n) the parent node of

the node n in the search graph, succ(n) the set of node n’s child nodes, and nr the

AND node of the root agent. The root agent runs RootRun() which contains search

initiation whereas all other agents runs Run(). The pseudo-code uses a predicate

context− compatible(m) to select a node whose variable value assignment matches

that of the node m.

49

3.1.3.7 Approximate DJAO(k)

An approximate version of the algorithm can be obtained by relaxing the con-

straint on upper and lower bound gap similar to search-based DCOP algorithms [3,

51]. Approximate DJAO with an error bound e terminates when the solution contains

no more than error e such that that value of the found solution n is no worse than

v(n∗)− e, where n∗ is the optimal solution. The corresponding termination condition

is LB(n) ≥ UB(n) − e or ∃i, UB(mj) ≤ LB(mi) + e for ∀j, i 6= j. Also, the search

backtracks when UB(m∗) ≤ max(UB(m∗∗)− k, LB(m∗) + e).

3.2 An Example of DJAO

3.2.1 A Simple Example of DJAO

BD
ABC

AB f(A,B) :

A B
0 0 0
0 1 4
1 0 5
1 1 1

f(B,D) :

B D
0 0 0
0 1 1
1 0 4
1 1 2

f(A,C) :

A C
0 0 0
0 1 2
1 0 3
1 1 0

f(B,C) :

B C
0 0 1
0 1 4
1 0 5
1 1 2

Figure 3.3: Example of junction tree and the constraint functions

On the junction tree in Figure 3.3, let there be three agents, A1, A2 and A3 for the

cliques AB, ABC and BD respectively. The constraint function f(A,B) are assigned

to clique AB, f(A,C) and f(B,C) to clique ABC, f(B,D) to BD.

Phase 1:

The first phase starts by the agent A2 computing the local potential b by merging

f(A,C) and f(B,C) in the clique ABC as well as A3 (Figure 3.4).

50

f(A,B,C) :

A B C
0 0 0 1
0 0 1 6
0 1 0 5
0 1 1 4
1 0 0 4
1 0 1 4
1 1 0 8
1 1 1 2

Figure 3.4: Merged constraint function in A2

Each agent who does not own the root node generates a filtered message once

they received from all the child agents (agents who own the child OR nodes). The

message from A2 and A3 to A1 in Action-GDL would be as shown in Figure 3.5.

MA3→A1 :
B
0 1
1 4

MA2→A1 :

A B
0 0 6
0 1 5
1 0 4
1 1 8

Figure 3.5: Messages in Action-GDL

Filtered messages are created and sent with the filtering rate l = 80. FS denotes

the filtered set of variable configurations. For the message MA2→A1 , the function

range is 4(= 8 − 4), thus items with upper bound equal or less than (4+ 4*0.8) are

filtered except (A=1, B=1) as shown in Figure 3.6

MA3→A1 :
B hLB hUB

1 4 4
FS 1 1

MA2→A1 :
A B hLB hUB

1 1 8 8
FS 4 6

Figure 3.6: Filtered Messages in DJAO

51

Once messages received, A1 calculates potential b as the total sum of received

messages and local functions(Figure 3.7).

52

f(AB) :

A B LB UB
0 0 5 7
0 1 12 14
1 0 10 12
1 1 13 13

Figure 3.7: The resulting function at A1 (root agent)

The second phase

A1 checks the termination condition on the possible solution with the highest

upper bound (A=0, B=1). Since LB(A=0, B=1) does not dominate UB(A=1, B=

1), the search starts. A1 computes the distance k1 between the maximum and the

second maximum upper bounds. The distance k1 = 14 − 13 = 1 The algorithm

backtracks to the source of upper and lower bound gap from received messages with

a target of reducing the upper bound by k1. The search backtracks when the upper

bound decreases by equal or more than min(k, k1). The upper and lower bound gap

originates only from MA2→A1 . Therefore, A1 sends a VALUE message with a variables

configuration (A=0, B=1) and min(k, k1) to A2. A2 receives this VALUE message

and prepares a COST message as it is a leaf node. It then sends a COST message

LB(0, 1) = 5, UB(0, 1) = 5. Upon receipt of the COST message, the root updates its

table.

f(A,B) :

A B LB UB
0 0 6 7
0 1 12 12
1 0 11 12
1 1 13 13

Figure 3.8: Updated utility function at the root after the search

53

Since the lower bound of (A,B) = (1, 1) dominates upper bounds of all other

configurations, the termination condition is satisfied and the search terminates.

3.2.2 A More Complicated Example of DJAO

We assume another agent A4 added to the problem which handles clique BDE. Let
there be additional potentials f(B,E) and f(D,E) as given in Fig. 3.9.

BDE
ABC

AB

BD

f(B,E) :

B E
0 0 0
0 1 4
1 0 5
1 1 1

f(D,E) :

D E
0 0 0
0 1 4
1 0 1
1 1 2

Figure 3.9: Example of junction tree and the added constraint functions

The first phase:

Firstly, in addition to A2, the agents A4 computes the local potential merging

f(B,E) and f(D,E).

f(B,D,E) :

B D E
0 0 0 0
0 0 1 8
0 1 0 1
0 1 1 6
1 0 0 5
1 0 1 4
1 1 0 6
1 1 1 3

The function values are summarized in the OR node on the variables in the sep-

arators. A normal message and a filtered message with 80% filtering from A4 to A3

would be as follows.

54

MA4→A3 :

B D
0 0 8
0 1 6
1 0 5
1 1 6

MA4→A3 :
B D hLB hUB

0 0 8 8
FS 5 6

Figure 3.10: Messages from A4 to A3

This filtered message then merged to compute the local potentials for the agent

A3 as given in. 3.11.

f ′(B,D) :

B D hLB hUB

0 0 8 8
0 1 6 7
1 0 9 10
1 1 7 8

Figure 3.11: Local function and messages combined for A3

A message from A3 to A1 before filtering M and after filtering MF changes to

Fig. 3.12. A1 receives all messages and combines with local functions as shown in

Fig. 3.13.

MA3→A1 :
B hLB hUB

0 8 8
1 9 10

MFA3→A1 :
B hLB hUB

1 9 10
FS 8 8

Figure 3.12: Message before and after filtering from A3 to A1

55

f(AB) :

A B LB UB
0 0 12 14
0 1 17 20
1 0 17 19
1 1 18 19

Figure 3.13: The resulting function at the root

The second phase

The second phase in which the search is conducted starts in the root checking the

termination condition for the item with the highest upper bound. The distance D1

between the maximum and the second maximum is 20− 19 = 1. The source of upper

and lower bound gap originates from both messages, it backtracks to recover to both

A3 and A2. The targeted change limit on the bound D1/W = 1/2, where the W is

the number of child agents it backtracks and is 2 in the example. It sends a VALUE

message of (A=0, B=1) and (B=1) to A2 and A3 respectively.

When A3 receives this VALUE message, it checks the source of the bound gap.

It finds the gap originated from the received message (and not from local filtering

in the process of message MA3→A1 production) and the upper bound cannot be

changed locally. It backtracks to recover 1/2 and sends a VALUE message to A4.

The maximum value for the variable configuration (B=1) is enabled by (D=0), and

thus it sends a VALUE message of (B=1, D=0). A4 replies with a COST value

LB(1, 0) = 5, UB(1, 0) = 5. A3 updates the cost table based on this COST message

and returns a COST message LB(1) = 9, UB(1) = 9.

Upon receiving a VALUE message, A2 does the same for the previous example

and replies with a COST message LB(0, 1) = 5, UB(0, 1) = 5. The updated table at

the agent A1 is given in Fig. 3.14

Because there is no single variable configuration that dominates, the search con-

tinues and A1 sends A2 responsible for the gap a VALUE message of (A=1, B=0) and

56

f(AB) :

A B LB UB
0 0 12 14
0 1 18 18
1 0 17 19
1 1 18 18

Figure 3.14: The resulting function at the root

receives a COST message LB(1, 0) = 4, UB(1, 0) = 4 in return. The updated cost

table of A1 is shown in Fig. 3.15.

f(AB) :

A B LB UB
0 0 12 14
0 1 18 18
1 0 17 17
1 1 18 18

Figure 3.15: The resulting function at the root

As a result, both (A= 0, B = 1) and (A= 1, B = 1) dominates and the search

terminates with existing upper and lower bound gap on the variable configuration

(A=0, B=0).

3.3 Empirical Evaluation

In this section we evaluate the performance of DJAO search. For each experiment,

we report the communication costs, NCCCs(non-concurrent constraint check), and

solution quality for approximate solutions with respect to optimal solutions. We

used a DJAO that sends VALUE messages to at most 25 nodes when there are

ties. We evaluate and compare our approach with Action-GDL and ADOPT(k) with

k=4000 which was reasonable among 400, 4000, and 40000. Communication costs are

57

c Algorithm Total Bytes NCCCs Msgs

20

DJAO(k = ε) 227744 25627367 667
DJAO(k = 10) 260708 25991283 615
DJAO(k = 100) 229503 20898049 664
DJAO(k = 500) 271962 34144648 1485

Action-GDL 394690 2741859 18
ADOPT(K=4000) 1217757 4341532 206082

25

DJAO(k = ε) 1540523 794393531 2888
DJAO(k = 10) 1509601 835729595 2804
DJAO(k = 100) 1508705 570976502 2478
DJAO(k = 500) 2516606 1792901180 9263

Action-GDL 3679104 25942425 18
ADOPT(K=4000) 54556373 417172726 8992463

30

DJAO(k = ε) 1513317 734471121 3203
DJAO(k = 10) 2204580 1117448830 3505
DJAO(k = 100) 1513698 553233251 2910
DJAO(k = 500) 4084228 2759254975 17741

Action-GDL 4568592 33038068 18
ADOPT(K=4000) 37285466 219714985 6334245

Table 3.1: Performance of Optimal DJAO(k)
on Random Binary DCOP Instances

58

0 1 2 4 80

5

10

15

20

25

Accuracy Loss(%)

Sa
vi

ng
s

W
R

T
G

D
L

Overall Communication Cost

l=0.8
l=0.7
l=0.6

(a) Communication Savings

0 1 2 4 80
5

10
15
20
25
30
35
40

Accuracy LossC
on

st
ra

in
t C

he
ck

s
W

R
T

G
D

L Overall Computation Cost

l=0.8
l=0.7
l=0.6

(b) Computation time

0 1 2 40.85
0.88
0.91
0.94
0.97

1

Accuracy Loss(%)

So
lu

tio
n

Q
ua

lit
y

Solution Quality

l=0.8
l=0.7
l=0.6
Solution Bound

(c) Solution Quality

0 1 2 4 81
21
41
61
81

101
121
141
161
181

Accuracy Loss

M
es

sa
ge

 C
ou

nt
 W

R
T

G
D

L Message Count

l=0.8
l=0.7
l=0.6

(d) Message Count

Figure 3.16: Performance of Approximate DJAO(k=10)

59

Algorithm Total Bytes NCCCs Msgs

A
DJAO(k = ε) 163,360 22,217,301 315

DJAO(k = 100, 000, 000) 155,021 25,413,935 326
Action-GDL 3,624,186 19,905,921 126

ADOPT(K=30,000,000) 11,121,364 24,068,428 2,005,732

B
DJAO(DJAOk = ε) 278,168 30,441,957 325

DJAO(k = 100, 000, 000) 238,696 21,998,565 342
Action-GDL 4,274,606 24553995 126

ADOPT(K=30,000,000) 54,735,040 166,542,715 9,869,280

C
DJAO(k = ε) 207,801 9,379,233 194

DJAO(k = 100, 000, 000) 120,516 7,509,783 191
Action-GDL 1,294,382 6,419,231 78

ADOPT(K=30,000,000) 1,009,124 2,625,136 178,301

D
DJAO(k = ε) 718,528 31,980,359 405

DJAO(k = 100, 000, 000) 482,654 43,316,277 474
Action-GDL 10,321,229 58,754,948 126

ADOPT(K=30,000,000) 21,573,856 66,347,439 3,812,541

Table 3.2: Sensor Network Instances

measured as the number of bytes sent during execution1 and the message count of

both UTIL and VALUE messages. For approximate results, we show the true utility

of found solution which is often much higher than the estimated lower bound.

We experimented on random binary DCOP instances with 10 variables of domain

size 10. The function cost are randomly generated over the range 〈0, . . . , 200〉. We

varied the number of constraint functions c 20, 25 and 30 and averaged our results over

20 instances for each value of c. Total communication amount is largely determined

by the structure of junction tree. Thus, five junction trees were constructed for

each problem instance. Initial heuristics were generated using soft filtering where the

bottom 70% is filtered. The table shows DJAO requires less communication than

both ADOPT and Action-GDL, especially when the network connectivity is high.

The best-first search-like DJAO when k = ε consistently performed well in these

experiments.

1A single variable value is 4bytes, and cost 8bytes.

60

Table. 3.2 shows the results on sensor network instances from a public reposi-

tory [52] with a heuristic which filters 90% (l = 0.9). Table. 3.1 and 3.2 show DJAO

requires up to an order of magnitude less communication than both ADOPT2 and

Action-GDL without significant increase in computational costs. Compared to the

random DCOP instances, function ranges in sensor network instances are wider and

a large set of clearly dominated variable configurations results in significant commu-

nication savings with DJAO. DJAO with high k values performed better in terms of

communication on these lower connectivity graphs compared to the random DCOP

instances.

Lastly, in an experiment on the same problem instances, we measured the methods’

trend as the solution quality guarantee changes. We evaluated 20 instances for each

quality loss ranging from loss = 0% to loss = 8% using a heuristics which filters

80%(l=0.8) and 70%(l=0.7). Results in Fig. 3.16 show that DJAO gains significant

savings in communication as the error bound increases. With 80% heuristics, it

transmits about 18 times less information than that of Action-GDL when loss = 8%

while it uses 13 times more computation (NCCCs) and about 130 messages per agent.

3.4 Conclusions

We addressed the problem of solving DCOP exactly and with precise approxi-

mation bounds by developing a new distributed algorithm called DJAO. There are

three novel ideas in DJAO. Firstly, it uses an AND/OR junction graph representa-

tion, which builds a basis for efficient search in the distributed settings. The second

is a two phase search strategy that combines characteristics of ADOPT and Action-

GDL. The third is a soft filtering technique to significantly reduce communication

2Results from [50]

61

without losing any accuracy. We also showed experimentally significant reduction in

communication required by DJAO in comparison with ADOPT and Action-GDL.

62

CHAPTER 4

APPLYING INFERENCE TECHNIQUE TO REDUCE
COMPUTATIONAL BURDEN IN DCOPS

The objective of this chapter is to address problems when we apply techniques

for MAP estimation to DCOPs. Due to different settings of inference problem on

graphical models from those of multi-agent domains, we need to modify techniques

for MAP estimation to apply to DCOPs. We are particularly interested in recent

work by McAuley et al. [24] that uses order statistics of variable configuration to

reduce the computational complexity of the maximization operation. We apply this

technique to Max-Sum in order to save computational resources in various DCOP

environments.

4.1 Background

This section presents the work by McAuley et al. [24] on reducing the expected

complexity of maximization operation. Their technique, called Fast Belief Propaga-

tion (FBP), finds a particular variable configurations that yields the maximum sum

of two sorted lists of length N with an expected complexity of O(
√
N). Assuming

the order statistics of variables on the lists are independent, the technique achieves

an expected time of O(N
√
N) to compute a single Max-Sum message for a binary

constraint, which is smaller than O(N2) required by the naive approach.

The Fast Belief Propagation (FBP) [24] optimizes the maximization operator of

Equation (1.3) by using presorted constraint functions. Given a binary constraint,

it uses two lists–a list of presorted constraint function values and a list of incoming

63

message values that are sorted online. This operation amounts to maximizing the

sum of two lists va and vb:

max
i

{
va[i] + vb[i]

}
(4.1)

The FBP algorithm performs the above operation with an expected O(
√
N) time

complexity, as opposed to O(N) of the naive algorithm, where N is the length of the

list.

3
7 5 3 2 1

65 14 2

15 11
3 16 2

8 23
4
4

5

4

pa[i]

pb[i]
Lb

La
va[pa[i]]

vb[pb[i]]

Figure 4.1: Example of FBP technique. The largest item 15 of va that has index 6 is

summed with 3 in vb with the same index (which maps to specific value combination of

variables). Therefore, items with value smaller than 3 in vb can be ignored as any value

smaller than 3 cannot yield a value larger than (15 + 3). We also limit the items smaller

than 11 in va by applying the same idea. In this example only 2 computations are required

to compute the maximum value using this technique.

Figure 4.1 describes the main idea of the FBP algorithm. The list pa and pb

denote the permutation arrays of va and vb. For further details, please refer to [24].

As the expected computational complexity to find the maximum of two such lists

is O(
√
N), the FBP algorithm achieves the total expected complexity of O(N1.5) for

the Max-Sum maximization operation, which is better than O(N2) time required by

the naive algorithm. The main drawback of the FBP approach is that it requires the

complete problem to be specified ahead of time as constraint functions need to be

presorted. Further, this approach is only applicable to pairwise graphs and runtime

guarantees do not extend to arbitrary arity graphs.

64

4.2 Fast Belief Proagation for N-ary DCOP

Despite the importance of n-ary constraints in real applications, there has been

little work devoted to developing algorithms that handle n-ary constraints [53, 32,

12, 13] Further, these studies do not directly tackle the computational difficulty in

handling n-ary constraints in DCOPs.

Max-Sum performs repetitive maximization operations for each constraint to se-

lect the locally best configuration of its associated variables given its local function

and a set of incoming messages. The complexity of this step grows exponentially as

the number of associated variables (constraint arity) grows. We address this bot-

tleneck and also provide formal guarantees regarding the expected runtime improve-

ment, which could be very significant, up to an exponential improvement over the

naive scheme. Reducing such computational overhead is particularly crucial in the

multiagent setting, where agents are often assumed to be resource constrained such as

mobile robots [6, 54]. There has been research [29, 30] in DCOP that tries to reduce

the amount of communication, however there has not been any improvement in the

overall computational complexity of DCOP algorithms. An exception is the work

using tractable higher order potentials for binary DCOP [41], which applies only to

a special class of DCOP.

Although the FBP technique offers substantial benefit on binary constraints, it

cannot be directly used on graphs with n-ary constraints. Moreover, based on their

theoretical analysis on n-ary constraint functions, the benefit decreases with higher-

arity functions. Additionally, the order statistics of variables on lists summed in the

scheme should be positively correlated or independent for the theoretical analysis to

hold. However, this property easily gets violated in domains where a variable’s value

can affect multiple constraint function values in the opposite ways. When the order

statistics of these lists are negatively correlated, the technique may perform worse

than a simple technique using dynamic programming. Lastly, the constraint graphs

65

are required to be given offline for computational savings. Often, a DCOP is a one-

shot problem in which an expensive preprocessing sorting step that dominates the

actual problem complexity is not realistic. Additionally, in many DCOP applications

constraint function values and domains of variables often change dynamically.

To remedy these limitations, we have developed a variant of McAuley’s technique,

which we call Generalized Fast Belief Propagation (G-FBP). Our approach is fun-

damentally different from that of FBP in that it does not require the offline and

complete sorting of data as in FBP; rather it uses partially sorted lists. The key idea

behind our approach is that often, only a small representative sample of values from

different message/value lists is needed to efficiently perform the maximization proce-

dure. Further, our approach works for arbitrary arity graphs as opposed to pairwise

graphs required by the FBP algorithm [24]. We also provide a theoretical analysis

of the expected runtime complexity for this general case and show that we can in-

deed achieve the O(N
√
N) complexity for pairwise graphs with only partially sorted

lists. For m-ary graphs, this translates into an expected complexity of O(mN
m+1

2)

as opposed to the exhaustive approach’s complexity of O(mNm), which is a signifi-

cant reduction. Further, we also note that an advanced version of FBP is presented

in [55], which has a theoretical expected complexity of O(mN
(m−1)2

m
+1) for general

m-ary graphs. Our approach has strictly better expected complexity.

Additionally, we devise a correlation measure which decides whether the order

statistics of lists are negatively correlated. We then use this measure to conditionally

apply G-FBP scheme to a particular maximization operation. Given the definition

of correlation on order statistics, we show that this measure correctly computes the

correlation.

Finally, we add another feature to our approach, which leads to an extended ver-

sion of G-FBP called GSC-FBP. This approach reuses computation from the previous

66

iterations results. Its effectiveness lies in the fact that messages become less likely to

change in later stages of the algorithm.

4.2.1 G-FBP

G-FBP that uses two partially sorted lists, to find the maximum sum as in Equa-

tion (1.3), instead of completely sorted lists used in FBP. We construct two lists called

the value list and the message list by selecting and sorting only the top KN
m−1

2 items

of both lists in FBP where N is the domain size, m is the number of associated vari-

ables and K is a constant. The main idea behind such select-then-sort operation is

that for the maximization operation, only the top KN
m−1

2 will be required most of

the time; the unsorted entries are not accessed in most cases. Partial sorting and

using a single message list are keys to generalizing the approach to n-ary constraints

while keeping the same complexity.

Value list: Intuitively, the value list corresponds to a partially sorted version of the

constraint function Fj given the specific value of a single variable in Equation (1.3).

There is one value list defined for every constraint function Fj and every value of

variable Xi that is in the scope of Fj. It contains 〈index-value〉 pairs as:

Lb(j, xi) =
{〈

xj, Fj(x
j)
〉
|xj(i) = xi

}
(4.2)

where xj is a complete assignment to all the variables in the scope of function Fj; the

condition xj(i) = xi implies that the i-th variable is fixed to a particular value xi in

every xj. If the constraint function is m-ary (or involve m variables), then the length

of each value list is Nm−1. Instead of completely sorting this list, which is expensive,

we select the top KN
m−1

2 values of Lb(j, xi), which are then sorted in decreasing order

and inserted back to the front of this list.

Message list: Intuitively, the message list represents a partially sorted list corre-

sponding to the sum of incoming messages q to a function node, as shown in the

second term of Equation (1.3). There is one message list defined for every constraint

67

8 14

07

1115

7 5 1
vcva

f1

va K
√

N = 2

qb→1

qc→1
qa→1

vcvcvb

Figure 4.2: Example of Message List Generation. Each value in boxes denotes
individually sorted message values from the variable nodes to the function nodes.
The domain size is 2 for vb and it is 3 for va and vc thus the message size. In order
to compute the message to va, messages from vb and vc (qb→1 and qc→1 respectively)
are summed to generate the partial message list [15, 11] instead of the complete list
[15, 11, 8, 8, 4, 1] with |La| = 2.

function Fj and every variable Xi(Not every value of variable) that is in the scope of

Fj. It contains 〈index-value〉 pairs as:

La(j,Xi) =
{〈

xj\Xi,
∑

k∈Nj\i
qk→j(x

j(k))
〉}

(4.3)

where xj(k) denotes the assignment to the variable Xk under xj. The length of every

complete list La is Nm−1 and selecting the top most items requires iterating over all

values. Fortunately, each message contains values on a single neighboring variable

and are independent of each other in Max-Sum. Using the independency among

messages, we do not iterate the items in the list La completely in order to select

the top elements. In our implementation, we incrementally construct each message

list partially that only contains the top KN
m−1

2 items sorted in descending order,

without ever generating the complete Nm−1 sized lists. Although these message lists

are constructed per iteration unlike value lists, there are only m such lists for each

m-ary constraint in constrast to (m × N) value lists. The overhead of constructing

message lists for a single message is O(logmK×N m−1
2) and this does not dominate the

expected complexity O(N ×N m−1
2) of computing a message for an m-ary constraint

for a reasonable K. Figure 4.2 shows an example of a partial message list.

68

4.2.2 G-FBP Algorithm with Partial Lists

We now describe the complete steps of the G-FBP maximization procedure that

operates using such partial value and message lists where the ranks of items in the

unsorted part are not known. For ease of exposition, we describe the Algorithm 1 in

terms of the maximization problem in Equation (4.1). The main difference of G-FBP

from the FBP algorithm is the lists va and vb are partially sorted. Thus, we need to

process items whose matching items are not found in the other list. In Algorithm 1

lines 13–15 saves the missing items for the later processing in lines 27–30. Also, we

need to detect the case when the maximization cannot be performed using the sorted

component of lists (lines 32–24). In these cases, we compute sums for all variable

value combinations to find the maximum. The example of applying this procedure

is shown in Figure 4.3. Algorithm 2 describes the steps of computing Equation (1.3)

using G-FBP in Alg. 1 in Max-Sum.

4.2.3 Time Complexity and Selection of K

The main intuition behind G-FBP is that the probability of finding the maximum

value within the sorted section is very high with an appropriate K given the inde-

pendence assumption of two lists. [24] uses enumerative combinatorics to construct

the analysis on the probability of items with the same index not existing in topmost

M items in the lists of size N . Under the assumption that the order statistics of two

sorted lists are independent, this probability is computed as the probability of getting

M red-colored balls where we randomly select M balls out of the box in which there

are (N −M) red-colored balls and M blue-colored balls.

Using the same notion, the probability of not finding the matching items within

K
√
N items in the lists of size N is

69

Algorithm 1 G-FBP(va, vb) : Find max(va[i] + vb[i])

Require: permutation array pa and pb that partially sort va and vb in decreasing order(i.e
pa[i] is the index of ith largest value of va.

1: {Initialization}
2: Smiss

b ← φ, Smiss
a ← φ, valmax ← −∞

3: enda ← len(pa), endb ← len(pb)
4: itra ← 0, boundfound← false
5: if (pa[1] ∈ pb) ∧ (pb[1] ∈ pa) then
6: indexmax ← argmaxi∈{pa[1],pb[1]}{va[i] + vb[i]}
7: valmax ← va[indexmax] + vb[indexmax]
8: enda ← p−1a [pb[1]], endb ← p−1b [pa[1]]
9: boundfound← true

10: end if
11: while itra < enda {Until bounding items are found} do
12: itra ← itra + 1
13: if pa[itra] /∈ pb then
14: Smiss

b ← Smiss
b ∨ {pa[itra]}

15: else
16: boundfound← true
17: if va[pa[itra]] + vb[pa[itra]] > valmax then
18: indexmax ← pa[itra]
19: valmax ← va[indexmax] + vb[indexmax]
20: end if
21: if p−1b [pa[itra]] < endb then
22: endb ← p−1b [pa[itra]]
23: end if
24: end if
25: end while
26: repeat 10-24 while interchanging a and b
27: {Process unmatched items by directly calculating from the constraint function and

messages}
28: for all i ∈ Smiss

a ∨ Smiss
b do

29: compute the value va[i] + vb[i] by going through the value table and messages and
update valmax.

30: end for
31: {failure case}
32: if boundfound == false then
33: process unsorted part of the list and update valmax

34: end if
35: return valmax

70

?
? ?? ?

Step 0
15 11

36 ? ??

3
7 5 1 2 4 3

12 54 6

pa[i]

pb[i]

va[pa[i]]

vb[pb[i]]

La

Lb

We are given a message list La of length 2 and a value
list Lb of only 2 items sorted where the length of sorted
parts is 2.
Note that the part of the list La beyond 2 items is not
computed and the shaded part of Lb is not sorted.

?
? ?? ?

?

Step 1

3
7 5 1 2 4 3

12 54 6

15 11
36 ? ??

pb[i]

pa[i]
La

Lb

va[pa[i]]

vb[pb[i]]

In step 1, we process the first item in La and cannot
locate the matching item in Lb with index 6 (We do
not keep the location of unsorted items). We add this
item with index 6 to Smiss

b and continue.
Smiss
b = {6}

? ??
? ???

?
Step 2

3

15 11
3

7 5 1 2 4 3
12 54

6

6

pa[i]

pb[i]

va[pa[i]]

vb[pb[i]]Lb

La

In step 2, we try to process an item in Lb and we find
a matching item in La with index 3 and thus we can
find the temporary maximum of 18.
valmax ← 18
We set aend to the location of the matching item as
we found one.
aend ← 2

Step 3

In step 3, we proceed in La and reached the second
entry on La. We have already reached aend and are
done with lists.
We process Smiss and compute the item with the index
6 using the constraint function and received messages
and find the value 18 and do not update valmax as it is
not larger than the current maximum. At this point,
since there are no more items in Smiss

b and Smiss
a , the

algorithm terminates.

Figure 4.3: Example of G-FBP technique as in Algorithm 1

71

Algorithm 2 compute rj→i in Equation (1.3) with G-FBP

1: messagechanged = false
2: if cycle==0 then
3: for all xi ∈ Xi do
4: construct Lb(j, xi)
5: end for
6: end if
7: for all k ∈ Nj \ i do
8: if qk→j has changed then
9: messagechanged = true

10: end if
11: end for
12: if messagechanged == true then
13: construct La(j,Xi)
14: end if
15: for all xi ∈ Xi do
16: rj→i(xi) = G− FBP (Lb(j, xi), La(j,Xi))
17: end for
18: return rj→i

P (X > K
√
N ;N) =

(N −K
√
N)!(N −K

√
N)!

(N − 2K
√
N)!N !

(4.4)

≤
(

(N −K
√
N)

N

)K
√
N

, (4.5)

where Equation 4.5 can be derived by simply expanding Equation 4.4 and using the

relation N−K
√
N−i

N−i < N−K
√
N

N
to replace the intermediate terms. For the case of list

size N = 10, 000, K
√
N = 200, the probability bound is as small as 0.0176. In other

words, when there are two lists of length 10000 and 200 items are selected and sorted,

the probability of finding matching items in 200 items on two lists is as large as

0.9824.

In Alg. 1, the algorithm iterates over all items if any set of items with the same

index (that is, same variable configuration) is not found in the sorted part of the

lists (see line 31–34). Therefore, finding such items is critical to the performance of

the algorithm. In order to increase the probability of finding the matching items in

sorted part of the lists, we increase the size of sorted parts. More specifically, with

72

G-FBP that uses partially sorted lists, a specific condition is required to hold for the

expected complexity for finding the maximum to be O(
√
N) given the lists of size N .

Theorem 4 The expected time complexity of O(
√
N) holds with partial lists when

(1− K√
N

)K
√
N < 1√

N
.

Proof: The expected running time is estimated based on the number of summed

items evaluated in order to find the maximum. The expected number of summations

E(Σ) is given as
∑N−1

i=0 P (X > i;N). The probability P (X > i;N) is the probability

that the rank X of an item is not smaller than i. In our setting with partial lists, the

probability of certain items to be in the unsorted part equals the probability of not

finding the maximum within K
√
N . Thus, the probability becomes:

P (X > i;N) = P (X > K
√
N) if i > K

√
N (4.6)

We re-write the expected number of summations as

E(Σ) =
K
√
N∑

i=0

P (X > i) +
N−1∑

i=K
√
N+1

P (X > K
√
N) (4.7)

=

K
√
N∑

i=0

P (X > i) +

N−1∑
i=K

√
N+1

(N −K
√
N)!(N −K

√
N)!

(N − 2K
√
N)!N !

(4.8)

≤
N−1∑
i=0

P (X > i) +
N−1∑

i=K
√
N+1

(
1− K

√
N

N

)K
√
N

(4.9)

In Equation 4.9, we already know from [55] that the first term is O(
√
N). The

second summation equates to (N −K
√
N)/
√
N by the condition of the theorem and

is dominated by
√
N . Therefore, the expected time complexity is O(

√
N)�

4.2.4 Independence Assumption and Correlation Measure

The guarantee of the expected complexity of the FBP technique is constructed

based on the assumption that the ranks of the items on the two lists are independent.

However, the independence assumption of the FBP technique does not hold generally.

If the two lists are negatively correlated, the expected complexity does not hold. It

73

is likely that the G-FBP scheme fails to find the maximum item using partial lists,

thereby increasing the time complexity of the algorithm. Therefore, if we can detect

negative correlation, then we avoid applying the G-FBP approach.

We modify the Spearman’s rank correlation measure [56] to measure the correla-

tion among two partially sorted lists.

Let x and y be two lists of length N where rxi
and ryi are the ranks of the respective

items with index i. Let rm = K
√
N+ 1

2
be the imaginary median rank. Our redefined

correlation measure is :

ρ′ =

∑
i(kxi

)(kyi)√∑
i k

2
xi

∑
i k

2
yi

(4.10)

where the rank (for each list) is calculated as:

ki =

(N−K

√
N)

K
√
N

(ri − rm), if ri < rm((K√N+1+2K
√
N)

2
− rm

)
, if ri > rm.

Definition 9 Given the item xi of list x, and rank of two positions r1 and r2 on list

y such that |r1 − rxi
| < |r2 − rxi

|, the ranks of two lists x and y of equal length are

positively correlated when P (ryi = r1) > P (ryi = r2). They are negatively correlated

when P (ryi=r1)<P (ryi =r2). They are independent when P (ryi=r1)=P (ryi =r2).

That is, if the lists are positively correlated, the items with same index are likely to

appear at nearby locations in two lists. Using the above definition, we can state the

following result about our modified correlation measure:

Theorem 5 For any sample set s of the items with ranks in the range 0 ≤ r ≤ 3
4
rm,

the following holds. When the ranks of the two lists are independent, then the expected

value of the correlation measure for a set s is E(ρ′s) = 0. When the two lists are

positively correlated, then E(ρ′s) ≥ 0 and when the lists are negatively correlated, then

E(ρ′s) ≤ 0.

With the Definition 9, we can construct a relation of the probabilities of an item

being at specific ranks. We use this relation to compute the sign of the expected

74

value of ki of an item in set s and also the sign of E(kxi
kyi) in the numerator in

Equation 4.10. E(
∑
X) =

∑
E(X), so we can determine the sign of the expected

value of the correlation measure of set s.

4.3 Experiments

We evaluated the effectiveness of our approach against the Max-Sum algorithm

on two sets of problems with n-ary constraints. We call the Max-Sum with G-FBP

technique as MS+G-FBP. Also, the approach that selectively applies G-FBP based

on data correlation is experimented as selective Max-Sum+G-FBP. For fairness of

comparison, we used an implementation of Max-Sum that uses dynamic program-

ming with the worst case complexity of O(Nm) for a single constraint instead of the

standard Max-Sum with O(mNm) where the arity is m and the domain size is N .

The two sets of DCOP instances that are used in our experiments are:

• 50 instances of random graphs with 25 variables with domain sizes from 10 to 30,

and 15 constraints with the maximum arity of 2,3,4 or 5 with different average

constraint arities.

• 25 instances of graphs in the radar coordination domain with 48 variables with

domain size up to 15 and 96 constraints with the maximum arity 4.

We focus on the computational aspect of the algorithms because our approach does

not affect the solution quality. Because the computational complexity of DCOPs is

determined by the constraint arity among the parameters related to graph topology

as well as by the domain size, we experiment on varying these two parameters .

4.3.1 Random Graphs

Our initial tests perform a comparison over randomly generated DCOPs with

n-ary constraints. We characterize each scenario by the maximum constraint arity

(mmax), an average constraint arity (mavg) and the variable domain size (N). We have

75

explored scenarios with mmax from 2 to 5, mavg from 1.6 to 4.4 with an increment of

0.4 and N from 10 to 30. From our knowledge, this problem set is one of the most

computationally expensive problems for a DCOP. For the first problem set, we fixed

the value K to 2 in regard to the length of the sorted parts of lists. This value is

chosen based on the probability analysis from Section 4.2.3.

(2, 1.6) (2, 2.0) (3, 2.0) (3, 2.4) (3, 2.8) (4, 2.8) (4, 3.2) (4, 3.6) (4, 4.0)
0

5000

10000

15000

Constraint Arity (Maximum, Average)

T
im

e
[m

s
]

MS
MS+G−FBP
selective MS+G−FBP

(a) Computation time as the constraint arity increases

10 12 14 16 18 20 22 24 26 28 30
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Domain Size

T
im

e[
m

s]

MS
MS+G−FBP
selective MS+G−FBP

(b) Computation time as the domain size increases

Figure 4.4: The computation time of Max-Sum(MS), Max-Sum with G-FBP(MS+G-FBP)

and Max-Sum with G-FBP with correlation measure(selective MS+G-FBP) . For Figure(a),

the domain size of 10 was used. Datapoint (5, 3.6) is omitted to see the general trend.

The performance of algorithms was (507178.5, 55070.6, 195056.9) for MS, MS+G-FBP and

selective MS+G-FBP respectively. For Figure(b) the arity setting of (3, 2.8) was used.

76

Figure 4.4 shows the results for various arity settings and domain sizes. We observe

that Max-Sum with G-FBP technique (MS+G-FBP) clearly outperforms Max-Sum

(MS) for higher arities and larger domain sizes. Concretely, with G-FBP technique,

the performance improved by 89% for an arity setting of (5,3.6) and the domain size

of 10 and the performance improved by 82% for the domain size of 30 and arity

setting of (3, 2.8). As the constraint arity and domain size increases, the number of

entries that MS+G-FBP examines does not increase as much as the number of total

entries. This increases the gain of MS+G-FBP. For lower arities and smaller domain

size, MS performs better than MS+G-FBP because the overhead of sorting partial

lists dominates the gain from finding the maximum value for shorter lists.

However, the use of the correlation measure in selective MS+G-FBP is not ben-

eficial in this problem sets. Because the randomly generated constraint values leads

the independence explained in Section 4.2.4 to hold, and thus there is no benefit in

selectively applying G-FBP here and causes an additional overhead of computing the

correlation measure as shown in Figure 4.4.

4.3.2 Multiagent Radar Coordination Domain

Our next problem set is created from the abstracted radar coordination and

scheduling application based on the real-time adaptive NetRad system [57]. Radars

collect real-time data on the location and importance of phenomena and the sys-

tem schedules the radars to focus their sensing on scheduled weather phenomena.

This scheduling step can be thought of as a DCOP. See [5], for more details on the

formulation.

We developed a simulator in the Farm simulator framework [58]. Although it

is a simulation environment, the utility functions are constructed based on the real

scenario and the same utility function is used in the deployed system [57]. Our

scenario involves 48 radars with a scenario of 96 phenomena with random locations,

77

size, and type. The radars are placed in a grid with overlapping regions with other

radars. This scenario creates problem instances with 48 variables, 96 constraints with

the maximum arity of 4. In this data set, we do not directly control the constraint arity

nor the domain size. These numbers vary in the experiments, so we categorized the

computational difficulty of each problem instance by the maximum factor size. The

maximum factor size is computed as the number of recorded entries in the constraint

functions totaling O(mNm) for an m-ary constraint, where N is the maximal domain

size of associated variables. We report the average runtime of 25 runs.

As shown in Figure 4.5(a), both MS+G-FBP and MS+GSC-FBP outperform MS

with an appropriate K as discussed in Section 4.2.3. However, there is not a significant

difference between them when a reasonable K is chosen for at least this domain. As

shown in Figure 4.5(b), the time savings in later iterations of MS+G-FBP dominate

the sorting overhead in the initial iteration, and leads to superior performance to MS.

MS+G-FBP takes 36% less computation time than MS for the factor sizes in the range

(10000, 40000] and K=11. The performance improvement by MS+G-FBP is not so

significant as on the first dataset, because most constraints have lower arity and some

variables have smaller domain size than the one related to the maximum factor size

and also because of the data dependencies. Unlike randomly generated data sets, here

variables have more structured dependencies through constraint functions and the

independence assumption in Section 4.2.4 does not hold in this domain and MS+G-

FBP performs poorly on instances of strongly negatively correlated lists. Therefore,

we examine the use of correlation measure on this domain further.

On Experiments in Figure4.6, we selectively applied G-FBP scheme (selective

MS+G-FBP) when the correlation measure with the sample set of K
√
N

2
largest items

in a value list computed as in Equation 4.10 is positive. Selective MS+G-FBP takes

55% less computation time than MS in contrast to 36% for MS+G-FBP. As in Fig-

ure 4.6(b), selective MS+G-FBP almost always finds the maximum item in sorted

78

~2500 ~5000 ~10000~400000

0.2

0.4

0.6

0.8

1

1.2

Factor Size

%

o
f

T
i
m
e

o
f

M
S

G−FBP(5) GSC−FBP(5) G−FBP(11) GSC−FBP(11)

(a) Time

1 2 3 4 50

2

4

6

8

Cycle

T
i
m
e
(
s
)

MS MS+G−FBP MS+GSC−FBP

(b) Time Per Cycle

Figure 4.5: (a) The computation time ratio of MS+G-FBP and MS+GSC-FBP to MS. K

value is in brackets. (b) Time taken at each cycle. K = 11.

~2500 ~5000 ~10000 ~400000

0.2

0.4

0.6

0.8

1

Factor Size

%
 o

f T
im

e
of

 M
S

MS+G−FBP
selective MS+G−FBP

(a) Time

0 5 10 15−0.1

0

0.1

0.2

0.3

K

Fa
ilu

re
 R

at
e

0.0016

0.1591

0.0001

0.0443

0.0000

0.0183

0.0000

0.0088

0.0000

0.0042

0.0000

0.0013

0.0000

0.0011

MS+G−FBP
selective MS+G−FBP

(b) Failing Probability

Figure 4.6: Performance improvement using correlation measure. K = 11.

79

parts of lists and the failure rate becomes zero when K > 8. Note that MS+G-FBP

sometimes fails even with larger K values.

4.4 Conclusion

We presented a new approach, called generalized fast belief propagation (G-FBP),

which optimizes the key computational bottleneck of the maximization operator in

the popular Max-Sum algorithm. Our approach is applicable to a general setting in

the context of arbitrary arity graphs as opposed to some previous approaches which

operate only on pairwise graphs. We provide a significant reduction in the time

complexity of computing a single message in the Max-Sum algorithm from O(Nm) to

O(mN
m+1

2) for general m-ary graphs. The key idea of our approach that distinguishes

it from previous approaches is that only a small number of values are accessed from

partially sorted lists to efficiently perform the maximization operation in Max-Sum,

rather than performing the complete sorting. We also provide theoretical results

regarding the number of samples required and a proof of expected complexity.

We also devised a correlation measure to determine whether to apply G-FBP

based on correlation of order statistics of data. We showed that in the radar domain

where the data correlation occurs, using this correlation measure brings down the

probability of using G-FBP on negative correlated data close to zero.

Finally, we added another extension that reuses computation from the previous

iteration. It shows effectiveness when the messages are near convergence and reduce

the computation time further from Max-Sum with G-FBP.

80

CHAPTER 5

EXPLOITING THE MAPPING OF AGENTS AND
VARIABLES

In this chapter, we discuss how to utilize agents as a component of the DCOP

model. In order to efficiently solve DCOPs, we consider environments where an

agent may control more than one variable. When agents control multiple variables,

the variables in each agent form a partially centralized structure. We tackle the

issue of how to modify distributed algorithms to exploit this partial centralization.

We are interested in how to reduce the communication and computational burdens

by exploiting low overhead communication among variables within an agent. This

problem has not been studied extensively by the DCOP community where agents

and nodes commonly have a one-to-one mapping in which every message leads to

communication among agents.

5.1 The Configuration of the Semi-centralized Structure and

NetRad domain

In addition to the basic model of DCOP < A,X,D, F > in Section 1.1, We define

an additional parameter R to the DCOP model that maps agents to variables and

constraint functions. This mapping function R assigns the variables v in X to an

agent in A. We call the variables that are mapped into agent a as members of a.

Each agent controls the value of its members.

The agents handles outgoing and incoming messages of the members as well as

the computation regarding the members. The communication among members of an

81

Figure 5.1: An example structure of the NetRad domain where an agent owns multiple
variables: An MC&C controls and manages multiple radars

agent is free whereas across members of two different agents are commonly not free.

In NetRad domain already introduced in Section 1.3.1, each MC&C agent contains

a subgraph that represents the radars (variable nodes) that are controlled by that

MC&C. However, these subgraphs are not totally disjoint since weather phenomena

(function nodes) may span multiple MC&Cs where radars in these MC&Cs can scan

the phenomena. The phenomena that are shared among MC&Cs incur communi-

cation cost because the radars in the scannable range of these phenomena reside in

multiple MC&C and they need to be coordinated through non-free communication

messages.

5.2 Exploiting Semi-Centralization

Decentralized coordination in large-scale systems of cooperative agents requires

large computational and communication resources and often is not feasible in realistic

problems requiring real-time deadlines: The decentralized computation of an optimal

coordination policy often requires control overhead involving the construction of the

structure for solving the problem, e.g. establishing a pseudo-tree for DPOP. In a

82

realistic decentralized setting of multiple agents, the establishment of a constraint

optimization problem often occurs online and needs to be solved as quickly as possible

and thus control overhead should be minimized. Also, the requirement for quick

delivery of the solution limits the amount of communication or computation. Even

without these problems, as networks get very large, communication and computation

burden still can be extensive given the time and bandwidth constraints and thus

minimizing these resource requirements in these settings is valuable.

There have been studies [59, 60] on exploiting semi-centralization on distributed

constraint satisfaction problems (DisCSP), however both works, which focus on prun-

ing non-satisfying local solutions before checking satisfiability across agents, do not

apply to DCOPs where local pruning may eliminate globally optimal solutions. There

are works [26] on DCOP that try to partially centralize computation in order to ef-

ficiently find the optimal solution in local neighborhoods. The partial centralization

reduces communication and achieve the optimality of the solution. However, this

centralization is not concerned with the mapping from variables to agents. The scope

of local search is determined by the constraints among variables and intermediate

state of the search process of each agent. Thus, instead of naively solving multiple

nodes’ tasks in each processor, as we would in the totally centralized environment,

we try to use the partial centralization given by the hardware structure to reduce the

communication and computational resources needed.

Given the fixed mapping of nodes and agents, we try to exploit partial central-

ization within agents. In order to improve the algorithmic performance using partial

centralization, we exploit locality of nodes’ dependency. We hypothesize that because

the nodes’ dependency is restricted to a subset of nodes that are adjacent or close in

proximity in the constraint graph, readily transferring information of such proximal

nodes helps nodes’ reach solutions more quickly. Since nodes tied to one agent has

83

such proximity and access to the information of other nodes contained in one agent

have much lower cost, aggressive information processing within agents is reasonable.

5.2.1 Using Organization Structure

In so doing, we modify the Max-Sum algorithm to cater to this partial centraliza-

tion in each processor by adding a local processing stage and creating denser messages

reducing the communication overhead and computational burden. We modify Max-

Sum to work on two levels for general graphs with cycles in order to increase the

algorithm efficiency in the context of clustered hardware resources. We modified the

message passing schedule of Max-Sum to propagate sometimes within a subgraph of

the factor graph associated with clustered hardware resources. There is no modifica-

tion to the algorithm except skipping the computation of outgoing messages to the

nodes outside the partition, thus saving inter-processor communication. This mod-

ified Max-Sum, which we call MS2L, alternates between a global propagation cycle

and a local propagation cycle so as to ensure that the utility values can also travel to

other parts of the graph.

In the algorithm, information is shared among nodes through messages and the

algorithm converges to a single point when there is no new information flowing in any

direction [17]. We conjecture that the communication can be more efficient when this

information sharing is delayed until a subset of nodes become closer to consensus.

By delaying sending messages outside the local processor until more developed values

are constructed within each MCC, we expect to reduce inter-processor communica-

tion without affecting overall performance. Also, in order to avoid getting into local

optima, we ensure that the algorithm periodically communicates globally. Therefore

we modify Max-Sum to have following message passing schedule.

This scheme is different from simplifying the problem by breaking the network into

several subgraphs. It only delays the message delivery to make communication more

84

efficient and the computational complexity remains same even in local flooding. This

modification explores how Max-Sum can adapt to the system’s organizational struc-

ture and its associated communication topology as well as the utility structure. In the

NetRad domain, as the connection between function nodes and variables nodes are

determined based on the spatial location of the phenomena and corresponding radars,

dependency structure between nodes are simpler and factor graphs constructed fol-

lowing the domain are more easily decomposable. We exploit this property of the

graph structure in the domain and modify Max-Sum to reduce the required resource

for global level propagation.

Also, in NetRad, the system has an organizational structure where an MCC man-

ages several radars. In this system, MCCs communicate to coordinate with neigh-

boring radars. Because there is a cost to communicate across MCCs, it is beneficial

to simplify computation and communication occurring across MCCs. Therefore, we

adapted Max-Sum to exploit this structure effectively by skipping some outgoing

messages from MCCs in alternating cycles.

1. (Initialization) At any vertices, carry out the global flooding step.

2. (Local flooding) Both variable and function nodes send messages only to the

neighbors within the same MCC. For each local neighbor, given the newest

message on each edge, compute the message values for each local neighbor and

send. Let the neighbors of variable node i be Ni and the nodes in MCC k mk.

In function nodes, it sends the same message to a subset of neighbors Ni ∩mk.

In variable nodes, it computes the message using the previous messages from

neighbors outside the MCC. At cycle t, the message from the variable to function

node is,

qti→j(xi) = αij +
∑

k∈Ni∩mk\j
rtk→i(xi) +

∑
k∈Ni\mk

rt−1k→i(xi)

85

3. (Global flooding) For all neighbors, do a regular message calculation using the

newest message on each edge. Function nodes compute the messages at cycle t

for all neighbors using messages at t−1 for neighbors Ni\mk. The function node

does not have updated messages for all neighbors due to local propagation in the

previous cycle thus it combines previous messages from neighbors outside MCC.

rtj→i(xi) = maxxj\i[Fj(xj) +
∑

k∈(Nj∩mk\i) q
t
k→j(xk)

+
∑

k∈(Nj\(i∪mk))
qt−1k→j(xk)]

4. Repeat step 2 and 3.

5.2.2 Starting with Known Policy

We also generate an initial policy that incorporates the information of constraint

functions local to each processor for the Max-Sum algorithm which normally starts

with no information on neighboring constraints. This information is computed using

partial constraint graphs. These partial constraint graphs are constructed based on

local variables and functions within the agent, and thus can be quickly generated and

computed. As a result of this local processing that has low communication cost, the

algorithm starts closer to the final solution.

We speculate that a good known policy can be used to create such starting mes-

sages as it incorporates non-local information than just the information in a local

function. In the Max-Sum algorithm, a node’s outgoing messages are dependent on

the incoming messages it received in the prior cycles. Also, the first initial messages

will depend only on the local functions. The variable after the first message would

take on the value

x̃i = arg max
xi

∑
j∈Ni

max
xj\i

Fj(xj) (5.1)

86

This message would be the value assuming the best-case setting of other variables

and only incorporates the local preferences. Given a known policy x̂, we modify the

algorithm for function nodes to send the following messages which do not involve

maximization to the connected variable nodes. Function node j to variable node i:

Fj((x̂j \ i) ∪ xi) (5.2)

After receiving these messages, if a variable node were to take on a value, it would

be:

x̃i = arg max
xi

∑
j∈Ni

Fj((x̂j \ i) ∪ xi) (5.3)

Proposition 1 If the assignment x̂ is such that no individual variable can by itself

change its value to increase the global utility, then x̂ is a solution to the assignment

constraints imposed by Equation 5.3. If changing any individual variable’s value will

strictly decrease the global utility, then x̂ is the unique solution for Equation 5.3.

From the perspective of an arbitrary variable node i, all other nodes are fixed to the

configuration specified by x̂. Maximizing
∑

j∈Ni
Fj((x̂j \i)∪xi) leads to maximization

of the global utility given the values of other variables. This is because only the

functions for nodes j ∈ Ni are affected by xi.

If x̂i were not a solution to this, then the algorithm which selected x̂i to be part of

x̂ could have instead selected x̃i to receive a higher utility. Since by supposition, no

individual variable can change its value to increase the global utility, x̂i is a solution

to Equation 5.3. If changing any variable’s value in x̂ will decrease the global utility,

then there can be only one solution to Equation 5.3. Since x̂i is a solution, it must

be the unique solution. �

Thus, in the sense of the above property, we can insert a variable assignment

into a factor graph as a starting solution. The property requires that no single

variable can change its value to increase the utility. This is a desirable property for

an optimization algorithm to have, and a fairly lax one. Any algorithm which does

87

not satisfy this constraint can be followed by a hill-climbing procedure in order to

meet the requirement of Property 1.

In addition to what Property 1 can tell us, Equation 5.3 by itself looks quite

a bit better than Equation 5.1. While the assignment still only considers directly

neighboring function nodes, it does so using better assumptions. For nodes other

than itself, it assumes a configuration that is known to exist rather than a separate

maximization for each function node. The assumed variable assignments are also

known to be consistent with a good global utility, and xi will fit itself into this

assignment.

After the messages from function nodes to variable nodes, we allow the variable

nodes to send one set of messages before proceeding with the regular algorithm. This

is so the next set of messages from function nodes will have a starting point other

than assuming uniform functions in variable node messages.

5.2.3 Using the Structure for Policy Generation

We provide a scheme which computes a policy which can be used as in Sec-

tion 5.2.2. Instead of generating a policy for the whole problem, we tried to compute

the locally optimal policy for subproblems associated with each MCC (See Figure 5.2).

We break the full factor graph into factor subgraphs for each MCC that contains only

the radars and phenomena in each MCC and each is smaller than the original factor

graph. In this way, we first solve a smaller problem within MCCs and then solve

a bigger problem using the information from the smaller problem. This is the key

difference between local propagation in Section 5.2.1 as we break down the factor

graph into subgraphs each of which has decreased complexity.

In order to accomplish this, we assign each phenomenon to one MCC to avoid

redundant utilities for shared phenomena in computing the initial policy. Conse-

quently, the domain of variable nodes and parameter values in the cost function at

88

Figure 5.2: 2-level Hierarchy Scheme

the function nodes are smaller than the original problem. Thus the computation at

each function node fj that belongs to the set of nodes mk, which belong to MCCk,

is done only for each neighbor vi ∈ mk.

rj→i(xi) = max
xj\i

[F ′j(xj ∧mk) +
∑

k∈Nj∧mk\i
qk→j(xk)] (5.4)

The message from variable node vi to function node fj for fj ∈ mk is,

qi→j(xi) = αij +
∑

k∈Mi∧mk\j
rk→i(xi). (5.5)

We assume that function F ′j with a subset of arguments that excludes the variable

nodes outside the MCC can be deduced from the original function Fj. Additionally,

the domain of variable vi is a subset of its domain in the original problem only relevant

to fj ∈ mk. The subproblem is used to create the policy used as prior information on

local functions.

89

5.3 Experimental Results

5.3.1 Experimental Setting

Figure 5.3: Radar 1 (R1) can choose to scan Event 1 (Ev1), Event 2 (Ev2) or to scan
both depending on the utility. Scanning all phenomena in a radar’s range of sufficient
quality may not be possible given the time limit to scan.

We experimented with the Max-Sum algorithm on an abstract simulation environ-

ment of the NetRad radar system developed in the Farm simulator framework [58]. In

this simulator, weather tasks are abstracted as circular areas as shown in Figure 5.3.

Aspects such as the utility function, the effective range of radars, and the separation

between radars, however, are the same as in the operational testbed. For further

information on the simulation environment, see [61].

For a statistically meaningful result, we repeated each instance for 100 runs by

randomly generating the weather phenomena varying in their size, location and im-

portance. To make the results more easily interpretable, each trial is run for only one

radar scan cycle rather than for a sequence of radar scans.

90

The computation time is measured in CPU Time. The experiments were run on a

single machine although we assumed that there are several computation units working

in parallel in a simulated time step. The time complexity in the decentralized setting

results from the sum of the longest time taken in the local computation at each MCC

for each round.

We do not account for any communication delay in measuring the completion

time. For measurement on communication amount, the control messages to con-

struct the network as well including the connectivity establishment between nodes

and information sharing on possible values that each variable can take were counted

as communication. The total amount of communication is measured in bytes consid-

ering one double number as 8 bytes and one integer as 4 bytes.

5.3.2 Performance of Max-Sum on NetRad

In order to evaluate the performance of several alternative optimization algo-

rithms, we varied the number of radars and the number of phenomena. We com-

pare the performance of the Max-Sum algorithm, a decentralized negotiation algo-

rithm [61], an exact distributed constraint optimization algorithm [62] and a central-

ized optimization algorithm based on a genetic algorithm that is currently used for

local optimization in the negotiation algorithm in each MCC. The negotiation algo-

rithm, specifically developed for the NetRad problem domain, is an iterative two step

process performed concurrently at each MCC. In the first step, each MCC performs a

local optimization based on its local tasks and knowledge of its neighboring MCCs’s

proposed scan schedules. In the second step, MCCs negotiate with their neighbors

so as to make adjustments to their scheduling based on the strategy of other MCCs.

This two step process for performing the distributed optimization tries to maximize

the parallelism at the MCC level and to minimize communication among MCCs. In

contrast, the standard Max-Sum algorithm does not consider such an organizational

91

structure and is completely decentralized. The Max-Sum algorithm does not explicitly

take into account that certain communication links are within an MCC cluster and

others are between MCC clusters. The genetic algorithm uses a centralized approach;

no communication is required and it utilizes only one processor.

Different Network Sizes and Number of Phenomena

In order to evaluate the general performance and the scalability of the alternative

optimization algorithms, we evaluated the performance on different sized networks

with different number of phenomena. In scenarios with different sized networks, there

are the same number of phenomena as the number of radars in the network as shown

in Figure 5.4. We also compared the algorithms with DPOP [62] which gives globally

optimal solution on 48 and 96 radar cases; however, we were not able to use DPOP

on bigger networks due to memory constraints. We have varied the parameters of

the genetic algorithm to improve its performance but it still remains inferior to other

methods. This conclusion applies similarly to an optimization algorithm based on

Simulated Annealing not shown in the graph due to its general inferior performance

on the problem.

In the next set of experiments, the results of which are shown in Figure 5.5, we

increase the number of phenomena in a 48-radar network, thereby requiring more

coordination among radars and studied how the algorithms perform. The solution

quality of Max-Sum remains the highest while the time complexity remains lower

than the negotiation algorithm. In terms of communication between MCCs, Max-

Sum requires more communication than negotiation, but remains significantly lower in

comparison to DPOP as seen in Table 5.4(f). The communication amount of the Max-

Sum algorithm increases as shown in Figure 5.5(d) because the number of the variables

connected to function nodes in Max-Sum increases as more weather phenomena are

added. Further, communication in the negotiation algorithm decreases in denser

92

networks since this algorithm finds it difficult to find a good strategy to negotiate,

resulting in an early termination within only a few negotiation cycles ; however, this

is not a good thing since it achieves only 90% of the solution quality of Max-Sum in

120 phenomena case.

5.3.3 Starting with Initial Policy

As described in Section 5.2.2 and Section 5.2.3, we provided the algorithm with

3 different approaches for computing the initial policy of a 48 radar network with

the limit of 10 rounds, where we took the results at the last cycle. The initial poli-

cies includes : 1) the solution from the genetic algorithm within MCCs (IGen), 2)

the solution of the Max-Sum algorithm within MCCs (IMS) following the scheme

described in Section 5.2.3, and 3) a randomly generated initial policy (IRand). The

initial policy for IRand was generated in each function node, which leads to poten-

tial inconsistencies among multiple function nodes; however these inconsistencies are

often quickly resolved.

The use of an initial policy in all cases helps the algorithm save computation time

as shown in Figure 5.6(a) and also improves its anytime performance behavior as in

Figure 5.6(c). The quality of the final solution rarely changes by more than a fraction

of utility and the computation time including policy generation decreases. Given the

initial policy, Max-Sum can almost instantly produce the initial messages avoiding

the maximization step and the policy also reduces the number of rounds taken to

converge.

Using initial policies, Max-Sum seems to produce a solution with high utility

quickly because the messages at the initial round are not biased towards the local

functions reaching the final solution quickly as shown in Figure 5.6(c).

IMS provides computation time saving as well as quick convergence speed and

stability, although it requires specific domain structure to be effective. Addition-

93

ally IRand shows less anytime characteristics and some unstable performance, e.g.

showing oscillation between multiple values ending up a higher number of rounds to

converge as in Figure 5.6(d), but it is a quick and easy way to provide an initial policy

without the need to synchronize policies over multiple nodes.

Policy Generation Using Structure

We experimented with the algorithm using IMS further to show how much we

can improve the algorithm using the policy. We ran Max-Sum for 5 cycles where,

for Max-Sum with IMS (MS-Init), we replace the first two cycles with initial policy

computing cycles.

As shown in Figure 5.7, not only does the performance quality remain similar

to Max-Sum, the time complexity decreases by half as well as the communication

amount. This computational saving is due to the fact that the computation on the

factor graph using only local nodes is much simpler than the computation on the

global-level factor graph and also the result of this computation leads to a quicker

convergence on the global level. As messages are exchanged only within MCCs to

compute the initial policy, the number and size of messages also decreases.

5.3.4 Performance of Max-Sum in a Two-Level Hierarchy

We next tried MS2L, the alternating Max-Sum algorithm that uses a repetitive

cycles of local and global propagation of messages as in Section 5.2.1. We experi-

mented with increasing number of phenomena and also with the IMS policy replacing

the first 2 cycles for generating the policy. We ran experiments with various num-

ber of phenomena, as we would like to see the result of MS2L varying the network

connectivity which will increase the need for global propagation.

As shown in Figure 5.8, the utility of MS2L with IMS (MS2L-Init) remains similar.

Moreover, the communication is reduced by half. It also shows the result of MS-

50Comm where we randomly skip the communication 50% of the time and note that

94

the algorithm has not yet converged in the given number of cycles unlike MS2L.

Even in the local propagation cycle, the utility is being propagated as effectively as

the global propagation cycle and half of the global propagation cycles are enough to

reach similar performance. Also by starting with IMS, the computation time can be

also decreased as shown in Figure 5.8(b).

5.4 Conclusion

We applied the Max-Sum approximate constraint optimization algorithm in the

NetRad system for coordinating and scheduling weather-sensing radars. In this sys-

tem, Max-Sum generated policies with high utility but requires more communication

and computation than the negotiation algorithm in some settings. We thus modified

Max-Sum to start with initial policy to guide and expedite the search process. Using

initial policy improves Max-Sum’s anytime performance and saves computation and

communication by 50% for networks with the same number of phenomena as the

number of radars. As part of using a policy, we generated a scheme to create a start-

ing policy which works in the two-level hierarchy solving a partial problem within

the local processor. Additionally, we developed MS2L, an adapted message passing

scheme which alternates between different scopes of the message propagation. This

scheme proved the benefit of exploiting the organizational structure by requiring less

computation and communication than all other tested algorithms with about 50%

communication savings and 5-30% computational savings for dense network where

the number of constraints exceed the number of radars.

95

48 96 144 1920

50

100

150

200

Number of Radars

U
til

ity

Gen
MS
Neg
DPOP

(a) Performance quality

48 96 144 1920

5

10

15

20

Number of Radars

Ti
m

e(
s)

Gen
MS
Neg

(b) Time

48 96 144 1920

1

2

3

4

5

Number of Radars

Ti
m

e(
s)

MS
Neg

(c) Time in the decentralized setting

0 48 96 144 1920

20

40

60

80

Number of RadarsN
um

be
r o

f M
es

sa
ge

s
pe

r M
C

C

Neg
MS

(d) Messages

48 96 1440

500

1000

1500

Number of Radars

C
om

m
un

ic
at

io
n

Am
ou

nt
(b

yt
es

)

MS
Neg

(e) Communication

48 96

MS 687.15 894.71
DPOP 3.98M 35.46M

(f) Communication Amount

Figure 5.4: Gen:Genetic, MS:Max-Sum, Neg:Negotiation. The algorithm is run with
the same number of tasks (weather phenomena) as the number of radars. The Genetic
algorithm is run with a computation time limit of 10 minutes. We set the time limit
to 10 minutes in order to get reasonable optimization. Given less than 10 minutes,
the utility generated by the centralized optimization were significantly lower than the
other approaches.

96

1 1.5 2 2.50

50

100

150

Phenomena/48

U
til

ity

MS
Neg
Gen

(a) Performance Quality

1 1.5 2 2.5
0

100

200

300

400

Phenomena/48
T

im
e(

s)

MS
Neg
Gen

(b) Time Complexity

0 1 1.5 2 2.50

20

40

60

80

100

Phenomena/48N
um

be
r o

f M
es

sa
ge

s
pe

r M
C

C

Neg
MS

(c) Messages

48 96 144 192
0

2000

4000

6000

8000

Phenomena/48

C
o
m

m
u
n
ic

a
ti
o
n
(b

y
te

s
)

MS
Neg

(d) Communication

Figure 5.5: Experiment with different number of phenomena. The basis is 48 weather
phenomena and this is increased to 120 phenomena (i.e. 2.5).

97

0

1

2

3

4

Initial Policy

C
om

pu
ta

tio
n

Ti
m

e(
s)

IRand
IMS
IGen
IWithout

(a)

IRand IMS IGen
pass pass fail

(b)

1 2 3 40.94

0.96

0.98

1

Cycle

Va
lu

e
fo

r E
ac

h
C

yc
le

Rand
Gen
MS
Without

(c)

Rand MS Gen Without0

2

4

6

Initial Policy

N
um

be
r o

f R
ou

nd
s

(d)

Figure 5.6: The results using initial policy (a) The decentralized computation time of
Max-Sum including policy generation time (b) T-test result on hypothesis that each
policy improves the computation time of regular Max-Sum with α = 0.05 (c) Value
convergence trend at each round (d) Number of Max-Sum rounds

98

48 96 144 1920

50

100

150

200

250

Number of Radars

U
til

ity

MS
MS−Init
Max

(a) Performance Quality

48 96 144 1920

1

2

3

4

5

Number of Radars
Ti

m
e(

s)

MS
Neg
MS−Init

(b) Time Decentralized

0 48 96 144 1920

20

40

60

80

100

Number of RadarsN
um

be
r o

f M
es

sa
ge

s
pe

r M
C

C

Neg
MS
MS−Init

(c) Messages

48 96 144 1920

100

200

300

Number of Radars

C
om

m
un

ic
at

io
n

Am
ou

nt
(b

yt
es

)

MS
Neg
MS−Init

(d) Communication

Figure 5.7: Performance of MS-Init. MS:Max-Sum, Neg:Negotiaton, MS-Init:
Max-Sum with IMS

99

1 1.5 2 2.50

20

40

60

80

100

Phenomena/48

U
til

ity

MS
MS2L
MS2L−Init
MS−Init
MS−50Comm

(a) Performance Quality

1 1.5 2 2.50

20

40

60

Phenomena/48
Ti

m
e(

s)

MS
MS2L
MS2L−Init
MS−Init
MS−50Comm

(b) Time Decentralized

0 1 1.5 20

20

40

60

80

100

120

Phenomena/48

N
um

be
r o

f M
es

sa
ge

s
pe

r M
C

C

MS2L−Init
MS2L
MS
MS−Init
MS−50Comm

(c) Messages

1 1.5 2 2.50

2000

4000

6000

8000

Phenomena/48

C
om

m
un

ic
at

io
n

Am
ou

nt
(b

yt
e)

MS
MS2l
MS2L−Init
MS−Init
MS−50Comm

(d) Communication

Figure 5.8: Performance of MS2L

100

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

This thesis sets out to develop new and extensions of existing distributed con-

straint optimization algorithms that require much less computational and commu-

nication resources than traditional approaches. We particularly utilize various tech-

niques from graphical models researches as a starting point to construct these new

approaches. We applied these techniques to applications including Sensor Network

in a PEAV framework and, the CASA radar domain where there are fewer hardware

processors than the number of agents and random instances with n-ary constraints.

In this final chapter, we will summarize the research contributions of this work, as

well as discuss directions for future research.

6.1 Contributions

The work described in this thesis makes a number of important contributions to

the state of the art in the distributed constraint optimization by providing approaches

to handle high computational and communication complexity of DCOP algorithms.

The contributions of this work can be summarized as follows:

• We addressed the problem of solving DCOP exactly and with precise approxima-

tion bounds by developing a new distributed algorithm called DJAO. There are

three novel ideas in DJAO. Firstly, it uses an AND/OR junction graph represen-

tation, which builds a basis for efficient search in the distributed settings. The

second is a two phase search strategy that combines characteristics of ADOPT

and Action-GDL. Because it is a search strategy, the algorithm is also capable of

101

a bounded approximate optimization which requires significantly less communica-

tion. The third is a soft filtering technique to significantly reduce communication

without losing any accuracy.

• We develop a technique, which we call G-FBP, that optimizes the key computa-

tional bottleneck of the maximization operator in the Max-Sum algorithm. Our

approach uses order statistics and data correlation to reduce computational bur-

den by partially sorting constraint functions. This is the first work on reducing

the computational burden in n-ary constraints for DCOP. We provide a significant

reduction in the time complexity of computing a single message in the Max-Sum

algorithm from O(Nm) to O(mN
m+1

2) for general m-ary graphs given the indepen-

dence assumption on data. We also provide a correlation measure that selectively

apply the technique given the data correlation. To our knowledge, this is the first

work that a DCOP algorithm includes an adaptive scheme to emerging interme-

diate computation.

• We present techniques to reduce the communication overhead of the Max-Sum

algorithm when each agent owns a set of variables. Our techniques exploits pro-

cessor hardware organizational structure such that partial messages in the Max-

Sum algorithm do not incur communication cost if message transfer occurs within

a processor. Our work is the first work that exploits such setting for a DCOP.

Our study shows that using the techniques communication can be decreased up

to 50% by using the two-hierarchy message passing scheme and generated initial

policy. Also, we showed that using initial policies, the algorithm shows a better

anytime property leading us to save some computational resources as well. We

empirically verified this result on NetRad radar domain.

In summary, this research provides new approaches to make DCOP applicable to

a wider class of application domains.

102

6.2 Future Research

Future research in distributed constraint optimization includes improving existing

algorithms for scalability, parallelism, and privacy. Existing algorithms for distributed

constraint optimization domains can be applied to selective domains, However, many

algorithms are not scalable to complex domains with a large size of problems due

to computational and communication complexities. There are many approaches for

MAP estimation from graphical models community to help the scalability issues in

DCOP. We have applied some of the techniques from graphical models community to

DCOPs to combat the complexity. In Chapter 3, we applied AND-OR search graph

to provide a mechanism that combines ADOPT and Action-GDL. Additionally, in

Chapter 4, we applied the technique for belief propagation that lowers the compu-

tational complexity for DCOPs with n-ary constraints. There are many more recent

approaches for improving inference on graphical models. There have been many re-

searches that try to perform more efficient search on AND/OR search graphs [63, 64]

which can be applied to improve DJAO further. Additionally, there has been active

development on algorithms for optimizing MAP estimation using convex optimization

on linear programs and quadratic programs [44, 43]. Although there have been ap-

proaches that use linear programs and quadratic programs for DCOPs [38, 42], these

are not corresponding translation of message passing algorithms constructed built

using convex optimizations. There is a potential for a new class of DCOP algorithm

based on the message-passing version of these algorithms in the same way that the

Max-Sum and the Action-GDL have been developed .

The issue of scalability is also connected to parallelism as parallelism signifi-

cantly enhances scalability of the algorithms. However, DCOP algorithms, especially

inference-based algorithms such as Action-GDL, DPOP, Max-Sum as well as DJAO

in Chapter 3 have limited parallelism as they have a structured message passing

scheme. Maintaining communication efficiency while keeping parallelism is a delicate

103

issue. Parallel operation generally requires significantly more messaging than its non-

parallel counterpart and balancing these two constraints is an interesting direction to

pursue. Along the same line of research for increasing scalability and parallelism, there

has been recent developments with linear programs on optimization problems [44] and

there has been few works that applies the idea to DCOP. Applying those algorithms to

DCOP seems very promising as linear programs can be transformed into distributed

parallel algorithms.

Also, extending existing models and algorithms for new domains is another future

research direction. In Chapter 5, we dealt with an environment where an agent

manages more than one variable. We developed a scheme on how to modify a DCOP

algorithm to exploit such one-to-many mapping to save resources. However, we have

not studied how to come up with an efficient mapping which saves communication

and time for this environment. Because the computation within an agent is serialized,

evenly distributing the computational complexity across agents is crucial to reduce

the end-to-end computation time. Also, when the variables which interact with each

other are included in one agent, the amount of communication across agents can be

reduced. Additionally, decomposition of the factor graph based on weak dependencies

among nodes can be helpful as information needed to transfer can be minimal for links

with weak dependencies.

Finally, an additional future research direction is to extend DCOP model for dy-

namic environments where new problems that are similar to past problems that have

been already solved. In many practical application domains, the system constructs

and solves a new DCOP whenever a new agent strategy is needed due to the changing

environments. However, these new instances are quite similar to each other as well as

their solutions if the environment gradually changes. Although there are algorithms

that can react to the changes and partially reuse the solution [65, 66], the portion

of the reused solution is minimal. A large part of the solution often needs to be

104

recomputed because a small change in the problem propagates to a large area due

to the contingencies between nodes and such affected nodes need to compute their

solution from scratch. However, solving the problem can be more efficiently done

using information from previously seen problems. New variables appear and exist-

ing variables disappear and the constraint function values can change as well as the

association between variables and constraint functions. Studying the impact of each

change on various algorithms and studying the ways to reuse the previous decisions

in order to expedite problem solving in these environments would be interesting. For

example, in Chapter 4, we process the constraint function by selecting and sorting

partial constraint function and such processed information can be reused effectively

when only a small part of the function changes.

105

BIBLIOGRAPHY

[1] Randall Davis and Reid G. Smith. Negotiation as a metaphor for distributed

problem solving. Artificial Intelligence, 20(1):63 – 109, 1983.

[2] Victor Lesser and Daniel. Corkill. Functionally Accurate, Cooperative Dis-

tributed Systems. IEEE Trans. on Systems, Man, and Cybernetics, SMC-

11(1):81–96, January 1981.

[3] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo. Adopt:

asynchronous distributed constraint optimization with quality guarantees. Artif.

Intell., 161(1-2):149–180, January 2005.

[4] Kathryn Sarah Macarthur, Ruben Stranders, Sarvapali D. Ramchurn, and

Nicholas R. Jennings. A distributed anytime algorithm for dynamic task al-

location in multi-agent systems. In Wolfram Burgard and Dan Roth, editors,

AAAI. AAAI Press, 2011.

[5] Yoonheui Kim, Michael Krainin, and Victor Lesser. Effective Variants of the

Max-Sum Algorithm for Radar Coordination and Scheduling. In Proceedings of

2011 IEEE/WIC/ACM International Conference on Intelligent Agent Technol-

ogy, pages 357–364, Lyon, France, October 2011.

[6] Ruben Stranders, Alessandro Farinelli, Alex Rogers, and Nicholas R. Jennings.

Decentralised coordination of mobile sensors using the max-sum algorithm. In

Proceedings of the 21st international jont conference on Artifical intelligence,

IJCAI’09, pages 299–304, San Francisco, CA, USA, 2009. Morgan Kaufmann

Publishers Inc.

106

[7] Sarvapali D. Ramchurn, Alessandro Farinelli, Kathryn S. Macarthur, and

Nicholas R. Jennings. Decentralized coordination in robocup rescue. Comput.

J., 53(9):1447–1461, 2010.

[8] A. Rogers, A. Farinelli, R. Stranders, and N. R. Jennings. Bounded approximate

decentralised coordination via the max-sum algorithm. Artif. Intell., 175(2):730–

759, February 2011.

[9] Robert Junges and Ana L. C. Bazzan. Evaluating the performance of dcop

algorithms in a real world, dynamic problem. In Proceedings of the 7th interna-

tional joint conference on Autonomous agents and multiagent systems - Volume

2, AAMAS ’08, pages 599–606, Richland, SC, 2008. International Foundation for

Autonomous Agents and Multiagent Systems.

[10] Akshat Kumar, William Yeoh, and Shlomo Zilberstein. On message-passing, map

estimation in graphical models and dcops. In Proceedings of the International

Workshop on Distributed Constraint Reasoning (DCR), pages 57–70, 2011.

[11] Yair Weiss and William T. Freeman. On the optimality of solutions of the

max-product belief-propagation algorithm in arbitrary graphs. volume 47, pages

736–744, 2001.

[12] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination

of low-power embedded devices using the max-sum algorithm. In AAMAS ’08:

Proceedings of the 7th international joint conference on Autonomous agents and

multiagent systems, pages 639–646, Richland, SC, 2008. International Foundation

for Autonomous Agents and Multiagent Systems.

107

[13] Meritxell Vinyals, Juan A. Rodriguez-Aguilar, and Jesús Cerquides. Construct-

ing a unifying theory of dynamic programming dcop algorithms via the general-

ized distributive law. Autonomous Agents and Multi-Agent Systems, 22(3):439–

464, May 2011.

[14] S.M. Aji and R.J. McEliece. The generalized distributive law. Information

Theory, IEEE Transactions on, 46(2):325–343, Mar 2000.

[15] Mark Paskin, Carlos Guestrin, and Jim McFadden. A robust architecture for

distributed inference in sensor networks. In Proceedings of the 4th International

Symposium on Information Processing in Sensor Networks, IPSN ’05, Piscat-

away, NJ, USA, 2005. IEEE Press.

[16] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. Information Theory, IEEE Transactions on, 47(2):498 –519,

feb 2001.

[17] David J. Mclaughlin, V. Ch, Kelvin Droegemeier, Stephen Frasier, Jim Kurose,

Francesc Junyent, Brenda Philips, Ra Cruz-pol, and Jose Colom. Distributed

collaborative adaptive sensing (dcas) for improved detection. In in Proc. Amer-

ican Meteorological Society Annual Meeting, 2005.

[18] M. Zink, D. Westbrook, S. Abdallah, B. Horling, E. Lyons, V. Lakamraju,

V. Manfredi, J. Kurose, and K Hondl. Meteorological Command and Control: An

End-to-end Architecture for a Hazardous Weather Detection Sensor Network. In

Proceedings of the ACM Workshop on End-to-End, Sense-and-Respond Systems,

Applications, and Services (EESR 05), pages 37–42, Seattle, WA, 2005.

108

[19] Rajiv T. Maheswaran, Milind Tambe, Emma Bowring, Jonathan P. Pearce, and

Pradeep Varakantham. Taking dcop to the real world: Efficient complete so-

lutions for distributed multi-event scheduling. In Proceedings of the Third In-

ternational Joint Conference on Autonomous Agents and Multiagent Systems

- Volume 1, AAMAS ’04, pages 310–317, Washington, DC, USA, 2004. IEEE

Computer Society.

[20] Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical mod-

els. Artif. Intell., 171(2-3):73–106, February 2007.

[21] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles

and Techniques - Adaptive Computation and Machine Learning. The MIT Press,

2009.

[22] William Yeoh, Ariel Felner, and Sven Koenig. Bnb-adopt: an asynchronous

branch-and-bound dcop algorithm. In Proceedings of the 7th international joint

conference on Autonomous agents and multiagent systems - Volume 2, AA-

MAS ’08, pages 591–598, Richland, SC, 2008. International Foundation for Au-

tonomous Agents and Multiagent Systems.

[23] Yoonheui Kim and Victor Lesser. Djao: A communication-constrained dcop

algorithm that combines features of adopt and action-gdl. 2014.

[24] Julian John McAuley and Tibério S. Caetano. Exploiting data-independence for

fast belief-propagation. In Johannes Fürnkranz and Thorsten Joachims, editors,

ICML, pages 767–774. Omnipress, 2010.

[25] Yoonheui Kim and Victor R. Lesser. Improved max-sum algorithm for dcop with

n-ary constraints. In AAMAS, 2013.

109

[26] Roger Mailler and Victor Lesser. Solving distributed constraint optimization

problems using cooperative mediation. In Proceedings of the Third International

Joint Conference on Autonomous Agents and Multiagent Systems - Volume 1,

AAMAS ’04, pages 438–445, Washington, DC, USA, 2004. IEEE Computer So-

ciety.

[27] Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegelhal-

ter. Probabilistic Networks and Expert Systems: Exact Computational Methods

for Bayesian Networks. Springer Publishing Company, Incorporated, 1st edition,

2007.

[28] Adrian Petcu, Boi Faltings, and Roger Mailler. Pc-dpop: a new partial cen-

tralization algorithm for distributed optimization. In Proceedings of the 20th

international joint conference on Artifical intelligence, IJCAI’07, pages 167–172,

San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[29] Ismel Brito and Pedro Meseguer. Improving dpop with function filtering. In Pro-

ceedings of the 9th International Conference on Autonomous Agents and Multia-

gent Systems: volume 1 - Volume 1, AAMAS ’10, pages 141–148, Richland, SC,

2010. International Foundation for Autonomous Agents and Multiagent Systems.

[30] Marc Pujol-Gonzalez, Jesus Cerquides, Pedro Meseguer, and J. A. Rodriguez-

Aguilar. Communication-constrained dcops: message approximation in gdl with

function filtering. In The 10th International Conference on Autonomous Agents

and Multiagent Systems - Volume 1, AAMAS ’11, pages 379–386, Richland, SC,

2011. International Foundation for Autonomous Agents and Multiagent Systems.

110

[31] Adrian Petcu and Boi Faltings. Mb-dpop: A new memory-bounded algorithm

for distributed optimization. In Proceedings of the 20th International Joint Con-

ference on Artifical Intelligence, IJCAI’07, pages 1452–1457, San Francisco, CA,

USA, 2007. Morgan Kaufmann Publishers Inc.

[32] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. Distributed

stochastic search and distributed breakout: properties, comparison and appli-

cations to constraint optimization problems in sensor networks. Artif. Intell.,

161(1-2):55–87, January 2005.

[33] Christopher Kiekintveld, Zhengyu Yin, Atul Kumar, and Milind Tambe. Asyn-

chronous algorithms for approximate distributed constraint optimization with

quality bounds. In Proceedings of the 9th International Conference on Au-

tonomous Agents and Multiagent Systems: volume 1 - Volume 1, AAMAS ’10,

pages 133–140, Richland, SC, 2010. International Foundation for Autonomous

Agents and Multiagent Systems.

[34] Jonathan P. Pearce and Milind Tambe. Quality guarantees on k-optimal solutions

for distributed constraint optimization problems. In Proceedings of the 20th

international joint conference on Artifical intelligence, IJCAI’07, pages 1446–

1451, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

[35] Meritxell Vinyals, Eric Shieh, Jesus Cerquides, Juan Antonio Rodriguez-Aguilar,

Zhengyu Yin, Milind Tambe, and Emma Bowring. Quality guarantees for region

optimal dcop algorithms. In The 10th International Conference on Autonomous

Agents and Multiagent Systems - Volume 1, AAMAS ’11, pages 133–140, Rich-

land, SC, 2011. International Foundation for Autonomous Agents and Multiagent

Systems.

111

[36] R. Mailler and V. Lesser. A cooperative mediation-based protocol for dynamic

distributed resource allocation. Trans. Sys. Man Cyber Part C, 36(1):80–91,

January 2006.

[37] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation

for approximate inference: an empirical study. In Proceedings of the Fifteenth

conference on Uncertainty in artificial intelligence, UAI’99, pages 467–475, San

Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[38] Meritxell Vinyals, Marc Pujol, J. A. Rodriguez-Aguilar, and Jesus Cerquides.

Divide-and-coordinate: Dcops by agreement. In Proceedings of the 9th Inter-

national Conference on Autonomous Agents and Multiagent Systems: volume

1 - Volume 1, AAMAS ’10, pages 149–156, Richland, SC, 2010. International

Foundation for Autonomous Agents and Multiagent Systems.

[39] Roie Zivan and Hilla Peled. Max/min-sum distributed constraint optimization

through value propagation on an alternating dag. In Proceedings of the 11th In-

ternational Conference on Autonomous Agents and Multiagent Systems - Volume

1, AAMAS ’12, pages 265–272, Richland, SC, 2012. International Foundation for

Autonomous Agents and Multiagent Systems.

[40] Daniel Tarlow, Inmar E. Givoni, and Richard S. Zemel. HOP-MAP: efficient

message passing with high order potentials. In Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics, AISTATS 2010,

Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pages 812–819, 2010.

[41] Marc Pujol-Gonzalez, Jesús Cerquides, Gonzalo Escalada-Imaz, Pedro Meseguer,

and Juan A. Rodŕıguez-Aguilar. On binary max-sum and tractable hops. volume

1113, Toulouse, France, 12/12/2013 2013.

112

[42] Daisuke Hatano and Katsutoshi Hirayama. Deqed: An efficient divide-and-

coordinate algorithm for dcop. In Proceedings of the 2013 International Confer-

ence on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages 1325–

1326, Richland, SC, 2013. International Foundation for Autonomous Agents and

Multiagent Systems.

[43] Amir Globerson and Tommi S. Jaakkola. Fixing max-product: Convergent

message passing algorithms for map lp-relaxations. In J.C. Platt, D. Koller,

Y. Singer, and S.T. Roweis, editors, Advances in Neural Information Processing

Systems 20, pages 553–560. Curran Associates, Inc., 2008.

[44] Akshat Kumar and Shlomo Zilberstein. Message-passing algorithms for quadratic

programming formulations of MAP estimation. In Fabio Gagliardi Cozman and

Avi Pfeffer, editors, UAI 2011, Proceedings of the Twenty-Seventh Conference on

Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages

428–435. AUAI Press, 2011.

[45] Akshat Kumar, Adrian Petcu, and Boi Faltings. H-dpop: using hard constraints

for search space pruning in dcop. In Proceedings of the 23rd national conference

on Artificial intelligence - Volume 1, AAAI’08, pages 325–330. AAAI Press, 2008.

[46] Radu Marinescu and Rina Dechter. AND/OR branch-and-bound for graphical

models. In Proceedings of the 19th international joint conference on Artificial

intelligence, IJCAI’05, pages 224–229, San Francisco, CA, USA, 2005. Morgan

Kaufmann Publishers Inc.

[47] Syed Ali, Sven Koenig, and Milind Tambe. Preprocessing techniques for acceler-

ating the DCOP algorithm ADOPT. In Proceedings of the Fourth International

Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05,

pages 1041–1048, New York, NY, USA, 2005. ACM.

113

[48] Richard J. Wallace. Enhancements of branch and bound methods for the max-

imal constraint satisfaction problem. In Proceedings of the Thirteenth National

Conference on Artificial Intelligence - Volume 1, AAAI’96, pages 188–195. AAAI

Press, 1996.

[49] Radu Marinescu and Rina Dechter. Best-first AND/OR search for graphical

models. In Proceedings of the 22Nd National Conference on Artificial Intelligence

- Volume 2, AAAI’07, pages 1171–1176. AAAI Press, 2007.

[50] Patricia Gutierrez, Pedro Meseguer, and William Yeoh. Generalizing ADOPT

and BnB-ADOPT. In Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence - Volume Volume One, IJCAI’11, pages

554–559. AAAI Press, 2011.

[51] William Yeoh, Xiaoxun Sun, and Sven Koenig. Trading off solution quality

for faster computation in dcop search algorithms. In Proceedings of the 21st

International Jont Conference on Artifical Intelligence, IJCAI’09, pages 354–

360, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.

[52] Zhengyu Yin. USC DCOP repository. 2008.

[53] Federico Pecora, P. Jay Modi, and Paul Scerri. Reasoning about and dynamically

posting n-ary constraints in adopt. 2006.

[54] Manish Jain, Matthew Taylor, Milind Tambe, and Makoto Yokoo. Dcops meet

the realworld: exploring unknown reward matrices with applications to mobile

sensor networks. In Proceedings of the 21st international jont conference on

Artifical intelligence, IJCAI’09, pages 181–186, San Francisco, CA, USA, 2009.

Morgan Kaufmann Publishers Inc.

[55] T. S. Caetano and J. J. McAuley. Faster algorithms for max-product message-

passing. Journal of Machine Learning Research, 12(4):1349–1388, 2011.

114

[56] C. Spearman. The proof and measurement of association between two things.

The American Journal of Psychology, 100(3/4):441–471, 1987.

[57] James F. Kurose et al. An End-User-Responsive Sensor Network Architecture

for Hazardous Weather Detection, Prediction and Response. In Proceedings of

the Second Asian Internet Engineering Conference, AINTEC, pages 1–15, 2006.

[58] Bryan Horling, Roger Mailler, and Victor Lesser. Farm: A Scalable Environ-

ment for Multi-Agent Development and Evaluation. In Alessandro Garcia Car-

los Lucena, Jaelson Castro Alexander Romanovsky, and Paulo Alencar, edi-

tors, Advances in Software Engineering for Multi-Agent Systems, pages 220–237.

Springer-Verlag, Berlin, February 2004.

[59] M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for

complex local problems. In Proceedings of the 3rd International Conference on

Multi Agent Systems, ICMAS ’98, pages 372–, Washington, DC, USA, 1998.

IEEE Computer Society.

[60] Aaron A. Armstrong and Edmund H. Durfee. Dynamic prioritization of complex

agents in distributed constraint satisfaction problems. In Proceedings of the

fourteenth national conference on artificial intelligence and ninth conference on

Innovative applications of artificial intelligence, AAAI’97/IAAI’97, pages 822–

822. AAAI Press, 1997.

[61] Michael Krainin, Bo An, and Victor Lesser. An Application of Automated Nego-

tiation to Distributed Task Allocation. In 2007 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology (IAT 2007), pages 138–145, Fremont,

California, November 2007. IEEE Computer Society Press.

115

[62] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint op-

timization. In Proceedings of the 19th international joint conference on Artificial

intelligence, IJCAI’05, pages 266–271, San Francisco, CA, USA, 2005. Morgan

Kaufmann Publishers Inc.

[63] Rina Dechter Radu Marinescu and Alexander Ihler. And/or search for marginal

map. In Proceedings of Uncertainty in Artificial Intelligence (UAI 2014), 2014.

[64] Radu Marinescu Akihiro Kishimoto. Recursive best-first and/or search for graph-

ical models. In Proceedings of Uncertainty in Artificial Intelligence (UAI 2014),

2014.

[65] K. Macarthur, A. Farinelli, S. Ramchurn, and N. Jennings. Efficient, supersta-

bilizing decentralised optimisation for dynamic task allocation environments. In

Proceedings of the 3rd International Workshop on Optimization in Multi-Agent

Systems Agents, 2010.

[66] Adrian Petcu and Boi Faltings. Superstabilizing, fault-containing distributed

combinatorial optimization. In Proceedings of the 20th national conference on

Artificial intelligence - Volume 1, AAAI’05, pages 449–454. AAAI Press, 2005.

116

	Application of Techniques for MAP Estimation to Distributed Constraint Optimization Problem
	Recommended Citation

	tmp.1445272146.pdf.lx4ci

