8 research outputs found

    利用N-gram和语义分析的维吾尔语文本相似性检测方法

    Get PDF
    目前自然语言文本相似度估计大多是针对英语等一些大类语言,为了实现维吾尔语文本的相似性检测,提出一种基于N-gram和语义分析的相似性检测方法。首先,根据维吾尔语单词特征,采用了N-gram统计模型来获得词语,并根据词语在文本中的出现频率来构建词语-文本关系矩阵,作为文本模型。然后,采用了潜在语义分析(LSA)来获得词语及其文本之间的隐藏关联,以此解决维吾尔语词义模糊的问题,并获得准确的相似度。在包含重组和同义词替换的剽窃文本集上进行实验,结果表明该方法能够准确有效地检测出相似性。国家自然科学基金资助项目(61762086);新疆维吾尔自治区高校科研计划立项项目(XJEDU2016S090

    Confocal Laser Endomicroscopy Image Analysis with Deep Convolutional Neural Networks

    Get PDF
    abstract: Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming. Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor resection, hundreds to thousands of images may be collected. The high number of images requires significant time and storage load for subsequent reviewing, which motivated several research groups to employ deep convolutional neural networks (DCNNs) to improve its utility during surgery. DCNNs have proven to be useful in natural and medical image analysis tasks such as classification, object detection, and image segmentation. This thesis proposes using DCNNs for analyzing CLE images of brain tumors. Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf DCNNs were used to classify images into diagnostic and non-diagnostic. Further experiments showed that both ensemble modeling and transfer learning improved the classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. Second, a weakly-supervised learning pipeline was developed for localizing key features of diagnostic CLE images from gliomas. Third, image style transfer was used to improve the diagnostic quality of CLE images from glioma tumors by transforming the histology patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional hematoxylin and eosin-stained tissue slides. These studies suggest that DCNNs are opted for analysis of CLE images. They may assist surgeons in sorting out the non-diagnostic images, highlighting the key regions and enhancing their appearance through pattern transformation in real time. With recent advances in deep learning such as generative adversarial networks and semi-supervised learning, new research directions need to be followed to discover more promises of DCNNs in CLE image analysis.Dissertation/ThesisDoctoral Dissertation Neuroscience 201

    Computer Vision Based Early Intraocular Pressure Assessment From Frontal Eye Images

    Get PDF
    Intraocular Pressure (IOP) in general, refers to the pressure in the eyes. Gradual increase of IOP and high IOP are conditions or symptoms that may lead to certain diseases such as glaucoma, and therefore, must be closely monitored. While the pressure in the eye increases, different parts of the eye may become affected until the eye parts are damaged. An effective way to prevent rise in eye pressure is by early detection. Exiting IOP monitoring tools include eye tests at clinical facilities and computer-aided techniques from fundus and optic nerves images. In this work, a new computer vision-based smart healthcare framework is presented to evaluate the intraocular pressure risk from frontal eye images early-on. The framework determines the status of IOP by analyzing frontal eye images using image processing and machine learning techniques. A database of images from the Princess Basma Hospital was used in this work. The database contains 400 eye images; 200 images with normal IOP and 200 high eye pressure case images. This study proposes novel features for IOP determination from two experiments. The first experiment extracts the sclera using circular hough transform, after which four features are extracted from the whole sclera. These features are mean redness level, red area percentage, contour area and contour height. The pupil/iris diameter ratio feature is also extracted from the frontal eye image after a series of pre-processing techniques. The second experiment extracts the sclera and iris segment using a fully conventional neural network technique, after which six features are extracted from only part of the segmented sclera and iris. The features include mean redness level, red area percentage, contour area, contour distance and contour angle along with the pupil/iris diameter ratio. Once the features are extracted, classification techniques are applied in order to train and test the images and features to obtain the status of the patients in terms of eye pressure. For the first experiment, neural network and support vector machine algorithms were adopted in order to detect the status of intraocular pressure. The second experiment adopted support vector machine and decision tree algorithms to detect the status of intraocular pressure. For both experiments, the framework detects the status of IOP (normal or high IOP) with high accuracies. This computer vison-based approach produces evidence of the relationship between the extracted frontal eye image features and IOP, which has not been previously investigated through automated image processing and machine learning techniques from frontal eye images

    Um estudo comparativo das abordagens de detecção e reconhecimento de texto para cenários de computação restrita

    Get PDF
    Orientadores: Ricardo da Silva Torres, Allan da Silva PintoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Textos são elementos fundamentais para uma efetiva comunicação em nosso cotidiano. A mobilidade de pessoas e veículos em ambientes urbanos e a busca por um produto de interesse em uma prateleira de supermercado são exemplos de atividades em que o entendimento dos elementos textuais presentes no ambiente são essenciais para a execução da tarefa. Recentemente, diversos avanços na área de visão computacional têm sido reportados na literatura, com o desenvolvimento de algoritmos e métodos que objetivam reconhecer objetos e textos em cenas. Entretanto, a detecção e reconhecimento de textos são problemas considerados em aberto devido a diversos fatores que atuam como fontes de variabilidades durante a geração e captura de textos em cenas, o que podem impactar as taxas de detecção e reconhecimento de maneira significativa. Exemplo destes fatores incluem diferentes formas dos elementos textuais (e.g., circular ou em linha curva), estilos e tamanhos da fonte, textura, cor, variação de brilho e contraste, entre outros. Além disso, os recentes métodos considerados estado-da-arte, baseados em aprendizagem profunda, demandam altos custos de processamento computacional, o que dificulta a utilização de tais métodos em cenários de computação restritiva. Esta dissertação apresenta um estudo comparativo de técnicas de detecção e reconhecimento de texto, considerando tanto os métodos baseados em aprendizado profundo quanto os métodos que utilizam algoritmos clássicos de aprendizado de máquina. Esta dissertação também apresenta um método de fusão de caixas delimitadoras, baseado em programação genética (GP), desenvolvido para atuar tanto como uma etapa de pós-processamento, posterior a etapa de detecção, quanto para explorar a complementariedade dos algoritmos de detecção de texto investigados nesta dissertação. De acordo com o estudo comparativo apresentado neste trabalho, os métodos baseados em aprendizagem profunda são mais eficazes e menos eficientes, em comparação com os métodos clássicos da literatura e considerando as métricas adotadas. Além disso, o algoritmo de fusão proposto foi capaz de aprender informações complementares entre os métodos investigados nesta dissertação, o que resultou em uma melhora das taxas de precisão e revocação. Os experimentos foram conduzidos considerando os problemas de detecção de textos horizontais, verticais e de orientação arbitráriaAbstract: Texts are fundamental elements for effective communication in our daily lives. The mobility of people and vehicles in urban environments and the search for a product of interest on a supermarket shelf are examples of activities in which the understanding of the textual elements present in the environment is essential to succeed in such tasks. Recently, several advances in computer vision have been reported in the literature, with the development of algorithms and methods that aim to recognize objects and texts in scenes. However, text detection and recognition are still open problems due to several factors that act as sources of variability during scene text generation and capture, which can significantly impact detection and recognition rates of current algorithms. Examples of these factors include different shapes of textual elements (e.g., circular or curved), font styles and sizes, texture, color, brightness and contrast variation, among others. Besides, recent state-of-the-art methods based on deep learning demand high computational processing costs, which difficult their use in restricted computing scenarios. This dissertation presents a comparative study of text detection and recognition techniques, considering methods based on deep learning and methods that use classical machine learning algorithms. This dissertation also presents an algorithm for fusing bounding boxes, based on genetic programming (GP), developed to act as a post-processing step for a single text detector and to explore the complementarity of text detection algorithms investigated in this dissertation. According to the comparative study presented in this work, the methods based on deep learning are more effective and less efficient, in comparison to classic methods for text detection investigated in this work, considering the adopted metrics. Furthermore, the proposed GP-based fusion algorithm was able to learn complementary information from the methods investigated in this dissertation, which resulted in an improvement of precision and recall rates. The experiments were conducted considering text detection problems involving horizontal, vertical and arbitrary orientationsMestradoCiência da ComputaçãoMestre em Ciência da ComputaçãoCAPE
    corecore