2,016 research outputs found

    FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks

    Full text link
    [EN] Opportunistic networks are becoming a solution to provide communication support in areas with overloaded cellular networks, and in scenarios where a fixed infrastructure is not available, as in remote and developing regions. A critical issue, which still requires a satisfactory solution, is the design of an efficient data delivery solution trading off delivery efficiency, delay, and cost. To tackle this problem, most researchers have used either the network state or node mobility as a forwarding criterion. Solutions based on social behaviour have recently been considered as a promising alternative. Following the philosophy from this new category of protocols, in this work, we present our ¿FriendShip and Acquaintanceship Forwarding¿ (FSF) protocol, a routing protocol that makes its routing decisions considering the social ties between the nodes and both the selfishness and the device resources levels of the candidate node for message relaying. When a contact opportunity arises, FSF first classifies the social ties between the message destination and the candidate to relay. Then, by using logistic functions, FSF assesses the relay node selfishness to consider those cases in which the relay node is socially selfish. To consider those cases in which the relay node does not accept receipt of the message because its device has resource constraints at that moment, FSF looks at the resource levels of the relay node. By using the ONE simulator to carry out trace-driven simulation experiments, we find that, when accounting for selfishness on routing decisions, our FSF algorithm outperforms previously proposed schemes, by increasing the delivery ratio up to 20%, with the additional advantage of introducing a lower number of forwarding events. We also find that the chosen buffer management algorithm can become a critical element to improve network performance in scenarios with selfish nodes.This work was partially supported by the "Camilo Batista de Souza/Programa Doutorado-sanduiche no Exterior (PDSE)/Processo 88881.133931/2016-01" and by the Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018, Spain, under Grant RTI2018-096384-B-I00".Souza, C.; Mota, E.; Soares, D.; Manzoni, P.; Cano, J.; Tavares De Araujo Cesariny Calafate, CM.; Hernández-Orallo, E. (2019). FSF: Applying machine learning techniques to data forwarding in socially selfish Opportunistic Networks. Sensors. 19(10):1-26. https://doi.org/10.3390/s19102374S1261910Trifunovic, S., Kouyoumdjieva, S. T., Distl, B., Pajevic, L., Karlsson, G., & Plattner, B. (2017). A Decade of Research in Opportunistic Networks: Challenges, Relevance, and Future Directions. IEEE Communications Magazine, 55(1), 168-173. doi:10.1109/mcom.2017.1500527cmLu, X., Lio, P., & Hui, P. (2016). Distance-Based Opportunistic Mobile Data Offloading. Sensors, 16(6), 878. doi:10.3390/s16060878Zeng, F., Zhao, N., & Li, W. (2017). Effective Social Relationship Measurement and Cluster Based Routing in Mobile Opportunistic Networks. Sensors, 17(5), 1109. doi:10.3390/s17051109Khabbaz, M. J., Assi, C. M., & Fawaz, W. F. (2012). Disruption-Tolerant Networking: A Comprehensive Survey on Recent Developments and Persisting Challenges. IEEE Communications Surveys & Tutorials, 14(2), 607-640. doi:10.1109/surv.2011.041911.00093Miao, J., Hasan, O., Mokhtar, S. B., Brunie, L., & Yim, K. (2013). An investigation on the unwillingness of nodes to participate in mobile delay tolerant network routing. International Journal of Information Management, 33(2), 252-262. doi:10.1016/j.ijinfomgt.2012.11.001CRAWDAD Dataset Uoi/Haggle (v. 2016-08-28): Derived from Cambridge/Haggle (v. 2009-05-29)https://crawdad.org/uoi/haggle/20160828Eagle, N., Pentland, A., & Lazer, D. (2009). Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 15274-15278. doi:10.1073/pnas.0900282106Tsai, T.-C., & Chan, H.-H. (2015). NCCU Trace: social-network-aware mobility trace. IEEE Communications Magazine, 53(10), 144-149. doi:10.1109/mcom.2015.7295476Hui, P., Crowcroft, J., & Yoneki, E. (2011). BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks. IEEE Transactions on Mobile Computing, 10(11), 1576-1589. doi:10.1109/tmc.2010.246Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19-20. doi:10.1145/961268.961272Cao, Y., & Sun, Z. (2013). Routing in Delay/Disruption Tolerant Networks: A Taxonomy, Survey and Challenges. IEEE Communications Surveys & Tutorials, 15(2), 654-677. doi:10.1109/surv.2012.042512.00053Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A Survey of Social-Based Routing in Delay Tolerant Networks: Positive and Negative Social Effects. IEEE Communications Surveys & Tutorials, 15(1), 387-401. doi:10.1109/surv.2012.032612.00004Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data MULEs: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2-3), 215-233. doi:10.1016/s1570-8705(03)00003-9Burns, B., Brock, O., & Levine, B. N. (2008). MORA routing and capacity building in disruption-tolerant networks. Ad Hoc Networks, 6(4), 600-620. doi:10.1016/j.adhoc.2007.05.002Shaghaghian, S., & Coates, M. (2015). Optimal Forwarding in Opportunistic Delay Tolerant Networks With Meeting Rate Estimations. IEEE Transactions on Signal and Information Processing over Networks, 1(2), 104-116. doi:10.1109/tsipn.2015.2452811Li, L., Qin, Y., & Zhong, X. (2016). A Novel Routing Scheme for Resource-Constraint Opportunistic Networks: A Cooperative Multiplayer Bargaining Game Approach. IEEE Transactions on Vehicular Technology, 65(8), 6547-6561. doi:10.1109/tvt.2015.2476703Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L. S., & Rubenstein, D. (2002). Energy-efficient computing for wildlife tracking. ACM SIGPLAN Notices, 37(10), 96-107. doi:10.1145/605432.605408Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient Routing in Intermittently Connected Mobile Networks: The Single-Copy Case. IEEE/ACM Transactions on Networking, 16(1), 63-76. doi:10.1109/tnet.2007.897962Zhang, L., Wang, X., Lu, J., Ren, M., Duan, Z., & Cai, Z. (2014). A novel contact prediction-based routing scheme for DTNs. Transactions on Emerging Telecommunications Technologies, 28(1), e2889. doi:10.1002/ett.2889Okasha, S. (2005). Altruism, Group Selection and Correlated Interaction. The British Journal for the Philosophy of Science, 56(4), 703-725. doi:10.1093/bjps/axi143Hernandez-Orallo, E., Olmos, M. D. S., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2015). CoCoWa: A Collaborative Contact-Based Watchdog for Detecting Selfish Nodes. IEEE Transactions on Mobile Computing, 14(6), 1162-1175. doi:10.1109/tmc.2014.234362

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Enhanced Interest Aware PeopleRank for Opportunistic Mobile Social Networks

    Get PDF
    Network infrastructures are being continuously challenged by increased demand, resource-hungry applications, and at times of crisis when people need to work from homes such as the current Covid-19 epidemic situation, where most of the countries applied partial or complete lockdown and most of the people worked from home. Opportunistic Mobile Social Networks (OMSN) prove to be a great candidate to support existing network infrastructures. However, OMSNs have copious challenges comprising frequent disconnections and long delays. we aim to enhance the performance of OMSNs including delivery ratio and delay. We build upon an interest-aware social forwarding algorithm, namely Interest Aware PeopleRank (IPeR). We explored three pillars for our contribution, which encompass (1) inspect more than one hop (multiple hops) based on IPeR (MIPeR), (2) by embracing directional forwarding (Directional-IPeR), and (3) by utilizing a combination of Directional forwarding and multi-hop forwarding (DMIPeR). For Directional-IPeR, different values of the tolerance factor of IPeR, such as 25% and 75%, are explored to inspect variations of Directional-IPeR. Different interest distributions and users’ densities are simulated using the Social-Aware Opportunistic Forwarding Simulator (SAROS). The results show that (1) adding multiple hops to IPeR enhanced the delivery ratio, number of reached interested forwarders, and delay slightly. However, it increased the cost and decreased F-measure hugely. Consequently, there is no significant gain in these algorithms. (2) Directional-IPeR-75 performed generally better than IPeR in delivery ratio, and the number of reached interested forwarders. Besides, when some of the uninterested forwarders did not participate in messages delivery, which is a realistic behavior, the performance is enhanced and performed better generally in all metrics compared to IPeR. (3) Adding multiple hops to directional guided IPeR did not gain any enhancement. (4) Directional-IPeR-75 performs better in high densities in all metrics except delay. Even though, it enhances delay in sparse environments. Consequently, it can be utilized in disastrous areas, in which few people are with low connectivity and spread over a big area. In addition, it can be used in rural areas as well where there is no existing networks

    Enhanced Community-Based Routing for Low-Capacity Pocket Switched Networks

    Get PDF
    Sensor devices and the emergent networks that they enable are capable of transmitting information between data sources and a permanent data sink. Since these devices have low-power and intermittent connectivity, latency of the data may be tolerated in an effort to save energy for certain classes of data. The BUBBLE routing algorithm developed by Hui et al. in 2008 provides consistent routing by employing a model which computes individual nodes popularity from sets of nodes and then uses these popularity values for forwarding decisions. This thesis considers enhancements to BUBBLE based on the hypothesis that nodes do form groups and certain centrality values of nodes within these groups can be used to improve routing decisions further. Built on this insight, there are two algorithms proposed in this thesis. First is the Community-Based- Forwarding (CBF), which uses pairwise group interactions and pairwise node-to-group interactions as a measure of popularity for routing messages. By having a different measure of popularity than BUBBLE, as an additional factor in determining message forwarding, CBF is a more conservative routing scheme than BUBBLE. Thus, it provides consistently superior message transmission and delivery performance at an acceptable delay cost in resource constrained environments. To overcome this drawback, the concept of unique interaction pattern within groups of nodes is introduced in CBF and it is further renewed into an enhanced algorithm known as Hybrid-Community-Based- Forwarding (HCBF). Utilizing this factor will channel messages along the entire path with consideration for higher probability of contact with the destination group and the destination node. Overall, the major contribution of this thesis is to design and evaluate an enhanced social based routing algorithm for resource-constrained Pocket Switched Networks (PSNs), which will optimize energy consumption related to data transfer. It will do so by explicitly considering features of communities in order to reduce packet loss while maintaining high delivery ratio and reduced delay

    A Survey on Energy-Efficient Strategies in Static Wireless Sensor Networks

    Get PDF
    A comprehensive analysis on the energy-efficient strategy in static Wireless Sensor Networks (WSNs) that are not equipped with any energy harvesting modules is conducted in this article. First, a novel generic mathematical definition of Energy Efficiency (EE) is proposed, which takes the acquisition rate of valid data, the total energy consumption, and the network lifetime of WSNs into consideration simultaneously. To the best of our knowledge, this is the first time that the EE of WSNs is mathematically defined. The energy consumption characteristics of each individual sensor node and the whole network are expounded at length. Accordingly, the concepts concerning EE, namely the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective, are proposed. Subsequently, the relevant energy-efficient strategies proposed from 2002 to 2019 are tracked and reviewed. Specifically, they respectively are classified into five categories: the Energy-Efficient Media Access Control protocol, the Mobile Node Assistance Scheme, the Energy-Efficient Clustering Scheme, the Energy-Efficient Routing Scheme, and the Compressive Sensing--based Scheme. A detailed elaboration on both of the basic principle and the evolution of them is made. Finally, further analysis on the categories is made and the related conclusion is drawn. To be specific, the interdependence among them, the relationships between each of them, and the Energy-Efficient Means, the Energy-Efficient Tier, and the Energy-Efficient Perspective are analyzed in detail. In addition, the specific applicable scenarios for each of them and the relevant statistical analysis are detailed. The proportion and the number of citations for each category are illustrated by the statistical chart. In addition, the existing opportunities and challenges facing WSNs in the context of the new computing paradigm and the feasible direction concerning EE in the future are pointed out

    Congestion aware forwarding in delay tolerant and social opportunistic networks

    Get PDF
    We propose an approach for opportunistic forwarding that supports optimization of multipoint high volume data flow transfer while maintaining high buffer availability and low delays. This paper explores a number of social, buffer and delay heuristics to offload the traffic from congested parts of the network and spread it over less congested parts of the network in order to keep low delays, high success ratios and high availability of nodes. We conduct an extensive set of experiments for assessing the performance of four newly proposed heuristics and compare them with Epidemic, Prophet, Spay and Wait and Spay and Focus protocols over real connectivity driven traces (RollerNet) and with a realistic publish subscribe filecasting application. We look into success ratio of answered queries, download times (delays) and availability of buffer across eight protocols for varying congestion levels in the face of increasing number of publishers and topic popularity. We show that all of our combined metrics perform better than Epidemic protocol, Prophet, Spray and Wait, Spray and Focus and our previous prototype across all the assessed criteria
    corecore