53,535 research outputs found

    Effective Live Cloud Migration

    Get PDF
    Cloud providers offer their IaaS services based on virtualization to enable multi-tenant and isolated environments for cloud users. Currently, each provider has its own proprietary virtual machine (VM) manager, called the hypervisor. This has resulted in tight coupling of VMs to their underlying hardware hindering live migration of VMs to different providers. A number of user-centric approaches have been proposed from both academia and industry to solve this issue. However, these approaches suffer limitations in terms of performance (migration downtime), flexibility (decoupling VMs from underlying hardware) and security (secure live migration). This paper proposes LivCloud to overcome such limitations. An open-source cloud orchestrator, a developed transport protocol, overlay network and secured migration channel are crucial parts of LivCloud to achieve effective live cloud migration. Moreover, an initial evaluation of LAN live migration in nested virtualization environment and between different hypervisors has been considered to show the migration impact on network throughput, network latency and CPU utilization. The evaluation has demonstrated the need for optimization within the LAN environment

    Crowdsourced Live Streaming over the Cloud

    Full text link
    Empowered by today's rich tools for media generation and distribution, and the convenient Internet access, crowdsourced streaming generalizes the single-source streaming paradigm by including massive contributors for a video channel. It calls a joint optimization along the path from crowdsourcers, through streaming servers, to the end-users to minimize the overall latency. The dynamics of the video sources, together with the globalized request demands and the high computation demand from each sourcer, make crowdsourced live streaming challenging even with powerful support from modern cloud computing. In this paper, we present a generic framework that facilitates a cost-effective cloud service for crowdsourced live streaming. Through adaptively leasing, the cloud servers can be provisioned in a fine granularity to accommodate geo-distributed video crowdsourcers. We present an optimal solution to deal with service migration among cloud instances of diverse lease prices. It also addresses the location impact to the streaming quality. To understand the performance of the proposed strategies in the realworld, we have built a prototype system running over the planetlab and the Amazon/Microsoft Cloud. Our extensive experiments demonstrate that the effectiveness of our solution in terms of deployment cost and streaming quality

    Towards effective live cloud migration on public cloud IaaS.

    Get PDF
    Cloud computing allows users to access shared, online computing resources. However, providers often offer their own proprietary applications, APIs and infrastructures, resulting in a heterogeneous cloud environment. This environment makes it difficult for users to change cloud service providers and to explore capabilities to support the automated migration from one provider to another. Many standards bodies (IEEE, NIST, DMTF and SNIA), industry (middleware) and academia have been pursuing standards and approaches to reduce the impact of vendor lock-in. Cloud providers offer their Infrastructure as a Service (IaaS) based on virtualization to enable multi-tenant and isolated environments for users. Because, each provider has its own proprietary virtual machine (VM) manager, called the hypervisor, VMs are usually tightly coupled to the underlying hardware, thus hindering live migration of VMs to different providers. A number of user-centric approaches have been proposed from both academia and industry to solve this coupling issue. However, these approaches suffer limitations in terms of flexibility (decoupling VMs from underlying hardware), performance (migration downtime) and security (secure live migration). These limitations are identified using our live cloud migration criteria which are rep- resented by flexibility, performance and security. These criteria are not only used to point out the gap in the previous approaches, but are also used to design our live cloud migration approach, LivCloud. This approach aims to live migration of VMs across various cloud IaaS with minimal migration downtime, with no extra cost and without user’s intervention and awareness. This aim has been achieved by addressing different gaps identified in the three criteria: the flexibility gap is improved by considering a better virtualization platform to support a wider hardware range, supporting various operating system and taking into account the migrated VMs’ hardware specifications and layout; the performance gap is enhanced by improving the network connectivity, providing extra resources required by the migrated VMs during the migration and predicting any potential failure to roll back the system to its initial state if required; finally, the security gap is clearly tackled by protecting the migration channel using encryption and authentication. This thesis presents: (i) A clear identification of the key challenges and factors to successfully perform live migration of VMs across different cloud IaaS. This has resulted in a rigorous comparative analysis of the literature on live migration of VMs at the cloud IaaS based on our live cloud migration criteria; (ii) A rigorous analysis to distil the limitations of existing live cloud migration approaches and how to design efficient live cloud migration using up-to-date technologies. This has led to design a novel live cloud migration approach, called LivCloud, that overcomes key limitations in currently available approaches, is designed into two stages, the basic design stage and the enhancement of the basic design stage; (iii) A systematic approach to assess LivCloud on different public cloud IaaS. This has been achieved by using a combination of up-to-date technologies to build LivCloud taking the interoperability challenge into account, implementing and discussing the results of the basic design stage on Amazon IaaS, and implementing both stages of the approach on Packet bare metal cloud. To sum up, the thesis introduces a live cloud migration approach that is systematically designed and evaluated on uncontrolled environments, Amazon and Packet bare metal. In contrast to other approaches, it clearly highlights how to perform and secure the migration between our local network and the mentioned environments

    CyberLiveApp: a secure sharing and migration approach for live virtual desktop applications in a cloud environment

    Get PDF
    In recent years we have witnessed the rapid advent of cloud computing, in which the remote software is delivered as a service and accessed by users using a thin client over the Internet. In particular, the traditional desktop application can execute in the remote virtual machines without re-architecture providing a personal desktop experience to users through remote display technologies. However, existing cloud desktop applications mainly achieve isolation environments using virtual machines (VMs), which cannot adequately support application-oriented collaborations between multiple users and VMs. In this paper, we propose a flexible collaboration approach, named CyberLiveApp, to enable live virtual desktop applications sharing based on a cloud and virtualization infrastructure. The CyberLiveApp supports secure application sharing and on-demand migration among multiple users or equipment. To support VM desktop sharing among multiple users, a secure access mechanism is developed to distinguish view privileges allowing window operation events to be tracked to compute hidden window areas in real time. A proxy-based window filtering mechanism is also proposed to deliver desktops to different users. To support application sharing and migration between VMs, we use the presentation streaming redirection mechanism and VM cloning service. These approaches have been preliminary evaluated on an extended MetaVNC. Results of evaluations have verified that these approaches are effective and useful

    Investigating Emerging Security Threats in Clouds and Data Centers

    Get PDF
    Data centers have been growing rapidly in recent years to meet the surging demand of cloud services. However, the expanding scale of a data center also brings new security threats. This dissertation studies emerging security issues in clouds and data centers from different aspects, including low-level cooling infrastructures and different virtualization techniques such as container and virtual machine (VM). We first unveil a new vulnerability called reduced cooling redundancy that might be exploited to launch thermal attacks, resulting in severely worsened thermal conditions in a data center. Such a vulnerability is caused by the wide adoption of aggressive cooling energy saving policies. We conduct thermal measurements and uncover effective thermal attack vectors at the server, rack, and data center levels. We also present damage assessments of thermal attacks. Our results demonstrate that thermal attacks can negatively impact the thermal conditions and reliability of victim servers, significantly raise the cooling cost, and even lead to cooling failures. Finally, we propose effective defenses to mitigate thermal attacks. We then perform a systematic study to understand the security implications of the information leakage in multi-tenancy container cloud services. Due to the incomplete implementation of system resource isolation mechanisms in the Linux kernel, a spectrum of system-wide host information is exposed to the containers, including host-system state information and individual process execution information. By exploiting such leaked host information, malicious adversaries can easily launch advanced attacks that can seriously affect the reliability of cloud services. Additionally, we discuss the root causes of the containers\u27 information leakage and propose a two-stage defense approach. The experimental results show that our defense is effective and incurs trivial performance overhead. Finally, we investigate security issues in the existing VM live migration approaches, especially the post-copy approach. While the entire live migration process relies upon reliable TCP connectivity for the transfer of the VM state, we demonstrate that the loss of TCP reliability leads to VM live migration failure. By intentionally aborting the TCP connection, attackers can cause unrecoverable memory inconsistency for post-copy, significantly increase service downtime, and degrade the running VM\u27s performance. From the offensive side, we present detailed techniques to reset the migration connection under heavy networking traffic. From the defensive side, we also propose effective protection to secure the live migration procedure

    Performance degradation assessment and VM placement policy in cloud

    Get PDF
    In virtualized servers, with live migration technique pages are copied from one physical machine to another while the virtual machine (VM) is running. The dynamic migration of virtual machines encumbers the data center which in turn reduces the performance of applications running on that particular physical machine. A considerable number of studies have been carried out in the area of performance evaluation during live VM migration.  However, all the aspects related to the migration process have not been examined for the performance assessment. In this paper, we propose a novel approach to evaluate the performance during migration process in different types of coupled machine environment. It is presented here that the state of art VM migration technology requires further improvement in realizing effective migration by monitoring comprehensive performance value. We introduced the parameter, θ, to compare performance value which can be used for controlling and halting unsuccessful migration and save significant amount of time in migration operation.  Our model is capable of analyzing real time scenario of cloud performance assessment targeting VM migration strategies. It also offers the possibility of further expanding to universal models for analyzing the performance variations that occurs as a result of VM migration

    A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Get PDF
    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful

    Towards Hybrid Cloud-assisted Crowdsourced Live Streaming: Measurement and Analysis

    Full text link
    Crowdsourced Live Streaming (CLS), most notably Twitch.tv, has seen explosive growth in its popularity in the past few years. In such systems, any user can lively broadcast video content of interest to others, e.g., from a game player to many online viewers. To fulfill the demands from both massive and heterogeneous broadcasters and viewers, expensive server clusters have been deployed to provide video ingesting and transcoding services. Despite the existence of highly popular channels, a significant portion of the channels is indeed unpopular. Yet as our measurement shows, these broadcasters are consuming considerable system resources; in particular, 25% (resp. 30%) of bandwidth (resp. computation) resources are used by the broadcasters who do not have any viewers at all. In this paper, we closely examine the challenge of handling unpopular live-broadcasting channels in CLS systems and present a comprehensive solution for service partitioning on hybrid cloud. The trace-driven evaluation shows that our hybrid cloud-assisted design can smartly assign ingesting and transcoding tasks to the elastic cloud virtual machines, providing flexible system deployment cost-effectively

    Toward Smart Moving Target Defense for Linux Container Resiliency

    Full text link
    This paper presents ESCAPE, an informed moving target defense mechanism for cloud containers. ESCAPE models the interaction between attackers and their target containers as a "predator searching for a prey" search game. Live migration of Linux-containers (prey) is used to avoid attacks (predator) and failures. The entire process is guided by a novel host-based behavior-monitoring system that seamlessly monitors containers for indications of intrusions and attacks. To evaluate ESCAPE effectiveness, we simulated the attack avoidance process based on a mathematical model mimicking the prey-vs-predator search game. Simulation results show high container survival probabilities with minimal added overhead.Comment: Published version is available on IEEE Xplore at http://ieeexplore.ieee.org/document/779685
    • …
    corecore