7,505 research outputs found

    Metal cutting modelling SPH approach

    Get PDF
    The purpose of this work is to evaluate the use of the smoothed particle hydrodynamics (SPH) method within the framework of high speed cutting modelling. First, a 2D SPH based model is carried out using the LS-DYNAÂź software. The developed SPH model proves its ability to account for continuous and shear localised chip formation and also correctly estimates the cutting forces, as illustrated in some orthogonal cutting examples. Then, the SPH model is used in order to improve the general understanding of machining with worn tools. At last, a hybrid milling model allowing the calculation of the 3D cutting forces is presented. The interest of the suggested approach is to be freed from classically needed machining tests: Those are replaced by 2D numerical tests using the SPH model. The developed approach proved its ability to model the 3D cutting forces in ball end milling

    Analysis of the Machining Process of Inconel 718 Parts Manufactured by Laser Metal Deposition

    Get PDF
    Laser metal deposition (LMD) is an additive manufacturing process that allows the manufacturing of near-net-shape products. This could mean significant savings in terms of materials and costs in the manufacturing of high-performance components for the aeronautical industry. In this work, an analysis of how the LMD processing of alloy 718 affects the final machining has been carried out. For this purpose, a comparative study has been done by means of the monitoring of the end milling process of a part manufactured by LMD and a rough-milled part from forged material. Differences between process outputs such as chip morphology and cutting forces were studied. Material characteristics such as microstructure, hardness and mechanical properties were also analyzed.This research was funded by European Commission grant number 723440 (PARADDISE project), which is an initiative of the Photonics and Factories of the Future Public Private Partnership, and by the Vice-Counselor of Technology, Innovation and Competitiveness of the Basque Government grant number KK-2018/00115 (ADDISEND project) and grant number KK-2019/00004 (PROCODA project)

    The influence of laser assistance on the machinability of the titanium alloy Ti555-3

    Get PDF
    The Ti533-3 alloy is a new titanium alloy which is starting to see increased use in the aeronautical domain to improve the durability of components and to optimize the weight/resistance ratio. This alloy is characterized by greater resistance compared to the more commonly used titanium alloys such as Ti6Al4V. However, a disadvantage of the Ti533-3 alloy is that it is very difficult to machine. In this work, the use of laser-assisted machining has been tested to improve chip formation by a thermal softening phenomenon and to improve the machining productivity of the alloy. A parametric investigation of laser assistance on the machinability of the Ti555-3 titanium alloy shows that: (1) the cutting forces can be greatly decreased if the surface temperature is high; (2) the thermal gradient induced by laser heating modifies the surface integrity in terms of strain hardening and residual stresses in the workpiece; and (3) the chip formation mechanisms are also changed, by increasing the sawteeth frequency when using laser assistanc

    SPH method applied to high speed cutting modelling

    Get PDF
    The purpose of this study is to introduce a new approach of high speed cutting numerical modelling. A Lagrangian smoothed particle hydrodynamics (SPH)- based model is arried out using the Ls-Dyna software. SPH is a meshless method, thus large material distortions that occur in the cutting problem are easily managed and SPH contact control permits a "natural" workpiece/chip separation. The developed approach is compared to machining dedicated code results and experimental data. The SPH cutting model has proved is ability to account for continuous to shear localized chip formation and also correctly estimates the cutting forces, as illustrated in some orthogonal cutting examples. Thus, comparable results to machining dedicated codes are obtained without introducing any adjusting numerical parameters (friction coefficient, fracture control parameter)

    Compensation of a ball end tool trajectory in complex surface milling

    Get PDF
    This work is consecrated to the minimising of machining errors based on a method for the compensation of the trajectory to be machined in hemispherical milling. This compensation is found to be necessary because of the tool deflection due to the cutting forces. In order to remedy to the machining errors, caused by this deflection, a compensation method has been proposed. The latter is inspired from the mirror method, since the compensated position is going to be determined as being the trajectory reflection, deviated onto the mirror. The advantage of this proposed method is that it takes into account the three deflections dx, dy and dz, respectively to the directions X, Y and Z. After that, two-parallel machinings, separated by a groove and achieved absolutely in the same conditions and with the same tool, are carried out, on the same complex part. The first machining is with compensation, but the second is without compensation. The coordinates of the two obtained surfaces are recorded by a 3D measuring machine. The comparison of the two-surfaces shows the presence of an important correction of the tool trajectory, and reveals a similarity between the part obtained by simulation and the one conceived in CAM

    Simulation of the deflected cutting tool trajectory in complex surface milling

    Get PDF
    Since industry is rapidly developing, either locally or globally, manufacturers witness harder challenges due to the growing competitivity. This urges them to better consider the four factors linked to production and output: quality, quantity, cost and price, quality being of course the most important factor which constitutes their main concern. Efforts will be concentrated—in this research—on improving the quality and securing more accuracy for a machined surface in ball-end milling. Quality and precision are two essential criteria in industrial milling. However, milling errors and imperfections, duemainly to the cutting tool deflection, hinder the full achieving of these targets. Our task, all along this paper, consists in studying and realizing the simulation of the deflected cutting tool trajectory, by using the methods which are available. In a future stage, and in the frame of a deeper research, the simulation process will help to carry out the correction and the compensation of the errors resulting from the tool deflection. The corrected trajectory which is obtained by the method mirror will be sent to the machine. To achieve this goal, the next process consists—as a first step—in selecting a model of cutting forces for a ball-end mill. This allows to define—later on—the behavior of this tool, and the emergence of three methods namely the analytical model, the finite elements method, and the experimental method. It is possible to tackle the cutting forces simulation, all along the tool trajectory, while this latter is carrying out the sweeping of the part to be machined in milling and taking into consideration the cutting conditions, as well as the geography of the workpiece. A simulation of the deflected cutting tool trajectory dependent on the cutting forces has been realized

    Experimental characterization of friction coefficients at the tool-chip-workpiece interface in cutting: Evaluation of lubrication efficiency of mineral oil

    Get PDF
    Collaboration avec le LTDS/ENISEThe characterization of friction coefficients at the tool-chip-workpiece interface remains an issue. This paper presents a new experimental set-up able to simulate similar tribological phenomena as the ones occurring at the tool-chip-workpiece interface. Especially, this system aims to reach contact pressures up to 3 GPa and sliding velocities between 0 to 1000 m/min, and to obtain an open-tribosystem (continuous regeneration of the tool-workmaterial contact). This system has been applied to the characterization of the tool-chip-workpiece interface during the cutting of an AISI4142 treated steel with TiN coated tools. Two environments have been tested: dry cutting, lubrication with a basic mineral oil. The effect of the mineral oil has been investigated

    Modelling High Speed Machining with the SPH Method

    Get PDF
    The purpose of this work is to evaluate the use of the Smoothed Particle Hydrodynamics (SPH) method within the framework of high speed cutting modelling. First, a 2D SPH based model is carried out using the LS-DYNA¼ software. SPH is a meshless method, thus large material distortions that occur in the cutting problem are easily managed and SPH contact control allows a “natural” workpiece/chip separation. The developed SPH model proves its ability to account for continuous and shear localized chip formation and also correctly estimates the cutting forces, as illustrated in some orthogonal cutting examples. Then, The SPH model is used in order to improve the general understanding of machining with worn tools. At last, a milling model allowing the calculation of the 3D cutting forces is presented. The interest of the suggested approach is to be freed from classically needed machining tests: Those are replaced by 2D numerical tests using the SPH model. The developed approach proved its ability to model the 3D cutting forces in ball end milling

    FEA modeling of orthogonal cutting of steel: a review

    Get PDF
    Orthogonal cutting is probably the most studied machining operation for metals. Its simulation with the Finite Element Analysis (FEA) method is of paramount academic interest. 2D models, and to a lesser extent 3D models, have been developed to predict cutting forces, chip formation, heat generation and temperature fields, residual stress distribution and tool wear. This paper first presents a brief review of scientific literature with focus on FEA modelling of the orthogonal cutting process for steels. Following, emphasis is put on the building blocks of the simulation model, such as the formulation of the mechanical problem, the material constitutive model, the friction models and damage laws
    • 

    corecore