165 research outputs found

    Task-based detectability in anatomical background in digital mammography, digital breast tomosynthesis and synthetic mammography.

    Get PDF
    Objective.Determining the detectability of targets for the different imaging modalities in mammography in the presence of anatomical background noise is challenging. This work proposes a method to compare the image quality and detectability of targets in digital mammography (DM), digital breast tomosynthesis (DBT) and synthetic mammography.Approach. The low-frequency structured noise produced by a water phantom with acrylic spheres was used to simulate anatomical background noise for the different types of images. A method was developed to apply the non-prewhitening observer model with eye filter (NPWE) in these conditions. A homogeneous poly(methyl) methacrylate phantom with a 0.2 mm thick aluminium disc was used to calculate 2D in-plane modulation transfer function (MTF), noise power spectrum (NPS), noise equivalent quanta, and system detective quantum efficiency for 30, 50 and 70 mm thicknesses. The in-depth MTFs of DBT volumes were determined using a thin tungsten wire. The MTF, system NPS and anatomical NPS were used in the NPWE model to calculate the threshold gold thickness of the gold discs contained in the CDMAM phantom, which was taken as reference. Main results.The correspondence between the NPWE model and the CDMAM phantom (linear Pearson correlation 0.980) yielded a threshold detectability index that was used to determine the threshold diameter of spherical microcalcifications and masses. DBT imaging improved the detection of masses, which depended mostly on the reduction of anatomical background noise. Conversely, DM images yielded the best detection of microcalcifications.Significance.The method presented in this study was able to quantify image quality and object detectability for the different imaging modalities and levels of anatomical background noise

    Modelos de observador aplicados a la detectabilidad de bajo contraste en tomografía computarizada

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Medicina, leída el 15/01/2016. Tesis formato europeo (compendio de artículos)Introduction. Medical imaging has become one of the comerstones in modem healthcare. Computed tomography (CT) is a widely used imaging modality in radiology worldwide. This technique allows to obtain three-dimensional volume reconstructions ofdifferent parts of the patient with isotropic spatial resolution. Also, to acquire sharp images of moving organs, such as the heart orthe lungs, without artifacts. The spectrum ofindications which can be tackled with this technique is wide, and it comprises brain perfusion, cardiology, oncology, vascular radiology, interventionism and traumatology, amongst others. CT is a very popular imaging technique, widely implanted in healthcare services worldwide. The amount of CT scans performed per year has been continuously growing in the past decades, which has led to a great benefit for the patients. At the same time, CT exams represent the highest contribution to the collective radiation dose. Patient dose in CT is one order ofmagnitude higher than in conventional X-ray studies. Regarding patient dose in X-ray imaging the ALARA criteria is universally accepted. It states that patient images should be obtained using adose as low as reasonably achievable and compatible with the diagnostic task. Sorne cases ofpatients' radiation overexposure, most ofthem in brain perfusion procedures have come to the public eye and hada great impact in the USA media. These cases, together with the increasing number ofCT scans performed per year, have raised a red flag about the patient imparted doses in CT. Several guidelines and recommendation for dose optimization in CT have been published by different organizations, which have been included in European and National regulations and adopted by CT manufacturers. In CT, the X-ray tube is rotating around the patient, emitting photons in beams from different angles or projections. These photons interact with the tissues in the patient, depending on their energy and the tissue composition and density. A fraction of these photons deposit all or part of their energy inside the patient, resulting in organs absorbed dose. The images are generated using the data from the projections ofthe X-ray beam that reach the detectors after passing through the patient. Each proj ection represents the total integrated attenuation of the X-ray beam along its path. A CT protocol is defined as a collection of settings which can be selected in the CT console and affect the image quality outcome and the patient dose. They can be acquisition parameters such as beam collimation, tube current, rotation time, kV, pitch, or reconstruction parameters such as the slice thickness and spacing, reconstruction filter and method (filtered back projection (FBP) or iterative algorithms). All main CT manufacturers offer default protocols for different indications, depending on the anatomical region. The user can frequently set the protocol parameters selecting amongst a range of values to adapt them to the clinical indication and patient characteristics, such as size or age. The selected settings in the protocol affect greatly image quality and dose. Many combinations ofsean parameters can render an appropriate image quality for a particular study. Protocol optimization is a complex task in CT because most sean protocol parameters are intertwined and affect image quality and patient dose...Introducción. La imagen médica se ha convertido en uno de los pilares en la atención sanitaria actual. La tomografía computarizada (TC) es una modalidad de imagen ampliamente extendida en radiología en todo el mundo. Esta técnica permite adquirir imágenes de órganos en movimiento, como el corazón o los pulmones, sin artefactos. También permite obtener reconstrucciones de volúmenes tridimensionales de distintas partes del cuerpo de los pacientes. El abanico de indicaciones que pueden abordarse con esta técnica es amplio, e incluye la perfusión cerebral, cardiología, oncología, radiología vascular, intervencionismo y traumatología, entre otras. La TC es una técnica de imagen muy popular, ampliamente implantada en los servicios de salud de hospitales de todo el mundo. El número de estudios de TC hechos anualmente ha crecido de manera continua en las últimas décadas, lo que ha supuesto un gran beneficio para los pacientes. A la vez, los exámenes de TC representan la contribución más alta a la dosis de radiación colectiva en la actualidad. La dosis que reciben los pacientes en un estudio de TC es un orden de magnitud más alta que en exámenes de radiología convencional. En relación con la dosis a pacientes en radiodiagnóstico, el criterio ALARA es aceptado universalmente. Expone que las imágenes de los pacientes deberían obtenerse utilizando una dosis tan baja como sea razonablemente posible y compatible con el objetivo diagnóstico de la prueba. Algunos casos de sobreexposición de pacientes a la radiación, la mayoría en exámenes de perfusión cerebral, se han hecho públicos, lo que ha tenido un gran impacto en los medios de comunicación de EEUU. Estos accidentes, junto con el creciente número de exámenes TC anuales, han hecho aumentar la preocupación sobre las dosis de radiación impartidas a los pacientes en TC. V arias guías y recomendaciones para la optimización de la dosis en TC han sido publicadas por distintas organizaciones, y han sido incluidas en normas europeas y nacionales y adoptadas parcialmente por los fabricantes de equipos de TC. En TC, el tubo de rayos-X rota en tomo al paciente, emitiendo fotones en haces desde distintos ángulos o proyecciones. Estos fotones interactúan con los tejidos en el paciente, en función de su energía y de la composición y densidad del tejido. Una fracción de estos fotones depositan parte o toda su energía dentro del paciente, dando lugar a la dosis absorbida en los órganos. Las imágenes se generan usando los datos de las proyecciones del haz de rayos-X que alcanzan los detectores tras atravesar al paciente. Cada proyección representa la atenuación total del haz de rayos-X integrada a lo largo de su trayectoria. Un protocolo de TC se define como una colección de opciones que pueden seleccionarse en la consola del equipo y que afectan a la calidad de las imágenes y a la dosis que recibe el paciente. Pueden ser parámetros de adquisición, tales como la colimación del haz, la intensidad de corriente, el tiempo de rotación, el kV, el factor de paso parámetros de reconstrucción como el espesor y espaciado de corte, el filtro y el método de reconstrucción (retroproyección filtrada (FBP) o algoritmos iterativos). Los principales fabricantes de equipos de TC ofrecen protocolos recomendados para distintas indicaciones, dependiendo de la región anatómica. El usuario con frecuencia fija los parámetros del protocolo eligiendo entre un rango de valores disponibles, para adaptarlo a la indicación clínica y a las características del paciente, tales como su tamaño o edad. Las condiciones seleccionadas en el protocolo tienen un gran impacto en la calidad de imagen y la dosis. Múltiples combinaciones de los parámetros pueden dar lugar a un nivel de calidad de imagen apropiado para un estudio en concreto. La optimización de los protocolos es una tarea compleja en TC, ya que la mayoría de los parámetros del protocolo están relacionados entre sí y afectan a la calidad de imagen y a la dosis que recibe el paciente...Depto. de Radiología, Rehabilitación y FisioterapiaFac. de MedicinaTRUEunpu

    Image quality evaluation in X-ray medical imaging based on Thiel embalmed human cadavers

    Get PDF

    Model-Based Iterative Reconstruction in Cone-Beam Computed Tomography: Advanced Models of Imaging Physics and Prior Information

    Get PDF
    Cone-beam computed tomography (CBCT) represents a rapidly developing imaging modality that provides three-dimensional (3D) volumetric images with sub-millimeter spatial resolution and soft-tissue visibility from a single gantry rotation. CBCT tends to have small footprint, mechanical simplicity, open geometry, and low cost compared to conventional diagnostic CT. Because of these features, CBCT has been used in a variety of specialty diagnostic applications, image-guided radiation therapy (on-board CBCT), and surgical guidance (e.g., C-arm based CBCT). However, the current generation of CBCT systems face major challenges in low-contrast, soft-tissue image quality – for example, in the detection of acute intracranial hemorrhage (ICH), which requires a fairly high level of image uniformity, spatial resolution, and contrast resolution. Moreover, conventional approaches in both diagnostic and image-guided interventions that involve a series of imaging studies fail to leverage the wealth of patient-specific anatomical information available from previous scans. Leveraging the knowledge gained from prior images holds the potential for major gains in image quality and dose reduction. Model-based iterative reconstruction (MBIR) attempts to make more efficient use of the measurement data by incorporating a forward model of physical detection processes. Moreover, MBIR allows incorporation of various forms of prior information into image reconstruction, ranging from image smoothness and sharpness to patient-specific anatomical information. By leveraging such advantages, MBIR has demonstrated improved tradeoffs between image quality and radiation dose in multi-detector CT in the past decade and has recently shown similar promise in CBCT. However, the full potential of MBIR in CBCT is yet to be realized. This dissertation explores the capabilities of MBIR in improving image quality (especially low-contrast, soft-tissue image quality) and reducing radiation dose in CBCT. The presented work encompasses new MBIR methods that: i) modify the noise model in MBIR to compensate for noise amplification from artifact correction; ii) design regularization by explicitly incorporating task-based imaging performance as the objective; iii) mitigate truncation effects in a computationally efficient manner; iv) leverage a wealth of patient-specific anatomical information from a previously acquired image; and v) prospectively estimate the optimal amount of prior image information for accurate admission of specific anatomical changes. Specific clinical challenges are investigated in the detection of acute ICH and surveillance of lung nodules. The results show that MBIR can substantially improve low-contrast, soft-tissue image quality in CBCT and enable dose reduction techniques in sequential imaging studies. The thesis demonstrates that novel MBIR methods hold strong potential to overcome conventional barriers to CBCT image quality and open new clinical applications that would benefit from high-quality 3D imaging

    CT Image Quality Assessment: From Phantom Development to Human Observer Studies

    Get PDF
    Purpose: To assess the Computed Tomography (CT) image quality by: first, developing custom phantoms with variable, controllable and repeatable texture features for the assessment of high-resolution CT scanners; second, applying the dynamic Fluence Field Modulation (FFM) technique and validating its efficacy by conducting a human observer study. Methods: Procedural routines for texture generation were developed based on constrained sphere packing within specified volumes. Repeatability in phantom production was investigated by printing ensembles phantoms of the same design. They were scanned and registered for assessment of measures across different prints, permitting computation of standard deviation volumes and various radiomic measures to quantify variability. Tissue contrast control was achieved by immersing these phantoms in potassium phosphate solutions with varying concentrations. Dynamic FFM was achieved by combining view-dependent Tube Current Modulation (TCM) and spatially modulating the X-ray beam through the Moiré patterns produced by the relative motion of Multiple Aperture Devices (MADs). Three different FFM imaging protocols were designed, and a 9 Alternative Forced Choice (9AFC) human observer study was to be conducted to evaluate their imaging performances. Results: All texture inserts being developed exhibited great similarity with respect to the corresponding anatomical textures. The textures further depended on the 3D printer nozzle size: smaller nozzle resulted in higher printing quality and precision but with higher variability. Although biased from the ground truth, the low standard deviations of the radiomics and the standard deviation maps indicated high repeatability of the texture features. Results for the assessment of different FFM imaging protocols via the human observer study are ongoing pending Institutional Review Board (IRB) review. Conclusion: The 3D printed texture phantoms offer a highly repeatable and flexible method to probe the ability of high-resolution CT to reproduce textures in reconstructed images. With increasing focus on task-based image quality and radiomics, such custom phantoms have the potential to play an increasing role in imaging performance assessments. The observer study with different FFM strategies helps to evaluate the detectability of certain texture features in CT scans. In summary, both the procedural phantom generation and the human observer study are effective methods for probing CT image quality

    Medical Image Registration: Statistical Models of Performance in Relation to the Statistical Characteristics of the Image Data

    Get PDF
    For image-guided interventions, the imaging task often pertains to registering preoperative and intraoperative images within a common coordinate system. While the accuracy of the registration is directly tied to the accuracy of targeting in the intervention (and presumably the success of the medical outcome), there is relatively little quantitative understanding of the fundamental factors that govern image registration accuracy. A statistical framework is presented that relates models of image noise and spatial resolution to the task of registration, giving theoretical limits on registration accuracy and providing guidance for the selection of image acquisition and post-processing parameters. The framework is further shown to model the confounding influence of soft-tissue deformation in rigid image registration — accurately predicting the reduction in registration accuracy and revealing similarity metrics that are robust against such effects. Furthermore, the framework is shown to provide conceptual guidance in the development of a novel CT-to-radiograph registration method that accounts for deformation. The work also examines a learning-based method for deformable registration to investigate how the statistical characteristics of the training data affect the ability of the model to generalize to test data with differing statistical characteristics. The analysis provides insight on the benefits of statistically diverse training data in generalizability of a neural network and is further applied to the development of a learning-based MR-to-CT synthesis method. Overall, the work yields a quantitative approach to theoretically and experimentally relate the accuracy of image registration to the statistical characteristics of the image data, providing a rigorous guide to the development of new registration methods
    corecore