
 

 

 

 

Image quality evaluation  
in X-ray medical imaging 
based on Thiel embalmed  
human cadavers  

 

An De Crop 

 

 

 

 

 

 

 

Promotor: Prof. Dr. H. Thierens Co-promotor: Prof. Dr. K. D’Herde 
Thesis submitted in fulfillment of the requirements for the degree of  
Doctor in Medical Sciences 

Department of Basic Medical Sciences 
Faculty of Medicine and Health Sciences 
2015  



  



 

 

Universiteit Gent 

Faculteit Geneeskunde en Gezondheidswetenschappen 

Vakgroep Medische Basiswetenschappen 

Dienst Medische Fysica 

 

Supervisors:             Examination Board 

Prof. Dr. H. Thierens (promotor)          Chairman: Prof. Dr. ir. C. De Wagter
1
 

Prof. Dr. K. D’Herde (co-promotor)            Prof. Dr. L. Van Hoorebeke
1
 

               Prof. Dr. G. Villeirs
1
 

Guidance Committee:       Prof. Dr. ir. B. Vanderstraeten
1
 

Prof. Dr. ir. K. Bacher             Prof. Dr. P. Parizel
2
 

Prof. Dr. T. Van Hoof                    Dr. M Thijssen
3
 

         Prof. Dr. J. Casselman
4
 

 

 

1 Ghent University, Ghent, Belgium 

2 University Hospital Antwerp, Belgium 

3 Ziekenhuis Rijnstate, The Nederland 

4.AZ Sint Jan Brugge-Oostende AV, Belgium 

 

 

Research institute: 

Ghent University  

Faculty of Medicine and Health Sciences  

Department of Basic Medical Sciences  

Medical Physics Division  

De Pintelaan 185 B3  

B-9000 Ghent, Belgium  

Tel.:  +32-9-264 65 19  



 

 



 

Dankwoord 

Het dankwoord, eindelijk… Ik heb er zo naar uitgekeken, en nu weet ik niet waar te beginnen. 

Ik denk dat ik ga beginnen met: YES!!!!!!!!!!!!!!!!!!!!!!! Het waren bijzonder aangename, 

leerrijke en uitdagende jaren, maar zoals zovelen die ik ken, doe ik dat laatste jaar toch liever 

niet nog een keer. Maar kom, nu mag ik beginnen aan het meest gelezen deel van een 

doctoraat: het dankwoord. En in plaats van dat verlossende gevoel, word ik er eigenlijk een 

beetje melancholisch van, want ondanks de lastige eindsprint, waren het toch 7 fantastische 

jaren. 

Eerst en vooral gaat mijn dank natuurlijk uit naar mijn promotor, Prof. dr. H. Thierens. Tijdens 

mijn eerste kandidatuur, toen ik nog mocht genieten van “waarde studenten” en “finaal 

besluiten wij”, had ik nooit gedacht dat u ooit nog de promotor ging worden van mijn 

doctoraat. Na al die jaren sta ik nog steeds versteld van al uw kennis. Ik ben dan ook 

ontzettend dankbaar dat ik de mogelijkheid heb gekregen om gebruik te maken van dit vat vol 

informatie. Zeker dit laatste jaar (toen u al iets minder tijd moest spenderen aan de “waarde 

studenten”), heb ik bijzonder veel bijgeleerd uit de constructieve discussies en uw 

avondlijke/nachtelijke thesisverbeteruurtjes hebben ervoor gezorgd dat ik de deadline gehaald 

heb. Ik hoop dat u tijdens uw emeritaat dan ook de tijd vindt voor de dingen waar u zo van 

geniet en wie weet komen we elkaar nog wel eens tegen op een (niet al te hoge) berg. 

Het is het laatste jaar veel ter sprake gekomen: eigenlijk ben je ‘niets’ van mij, maar ik vrees 

dat er zonder jou ook niets van dit doctoraat in huis zou zijn gekomen. Dus daarom Klaus, of in 

het lang, Prof. Dr. ir. K. Bacher, bedankt!! In het begin van mijn doctoraat heb je mij gezegd: 

“wie het hardste zaagt, die wordt eerst geholpen”. Nu hoor ik mij te excuseren voor het vele 

zagen, maar dat ga ik niet doen. Mocht ik opnieuw moeten beginnen, ik zou waarschijnlijk nog 

veel harder zagen. Het is namelijk ongelooflijk hoeveel je van ‘straling’ weet. Ik ben dan ook 

bijzonder blij dat ik het geluk heb gehad om, ondanks onze titelloze relatie, door u begeleid te 



 

worden. Ik heb ontzettend veel van u geleerd, maar wees gerust, het is niet omdat ik vertrek 

uit Gent, dat ik niet meer kan/zal zagen. 

Ook mijn copromotor, Prof. Dr. K. D’Herde, verdient een woord van dank. De samenwerking 

met de afdeling anatomie was onontbeerlijk voor dit doctoraat. In dit kader wil ik zeker ook 

Prof. Dr. T. Van Hoof bedanken. Tom, ettelijke uren hebben we samen al scannend 

doorgebracht, soms tot in de nachtelijke uurtjes. We hebben massa’s roze kaderkes gezien, 

versleept en er ook soms op gevloekt. Gelukkig krijgen we die ondertussen wel al op de juiste 

plaats. Bedankt voor de enorm vlotte samenwerking, voor je goede humeur, de babbels en 

voor je perfecte stem-imitaties van de plaatselijke hoogwaardigheidsbekleders. De (ex)-

medewerkers van de dienst anatomie verdienen zeker ook een woord van dank: Aron, 

Michael, Isabelle: bedankt voor al het gezeul en voor de vlotte samenwerking. 

Bedankt aan de leden van de examencommissie. Jullie feedback en kritische opmerkingen 

hebben mij geholpen om het onderste uit de kan te halen. 

Als je een doctoraat wil schrijven over de link tussen klinische en fysisch-technische 

beeldkwaliteit, dan is de samenwerking met radiologen natuurlijk cruciaal. Vooral de input van 

Dr. Smeets en Dr. Casselman hebben mij enorm vooruit geholpen. Dr. Smeets, u heeft 

onnoemelijk veel beelden voor mij uitgelezen. Met veel geduld en enthousiasme heeft u mij 

geholpen met het zoeken naar voorbeelden op de PACS, het aanduiden van Chinese 

vrijwilligers, het zoeken naar de juiste kwaliteitscriteria. En dankzij u herken ik fissuren, 

micronodulaire structuren en laten we vooral de pneumothorax niet vergeten. Dr. Casselman, 

ik had nooit gedacht dat ik de metaalartefactenstudie nog in mijn doctoraat zou kunnen 

verwerken, maar dankzij uw medewerking, enthousiasme, gedrevenheid en enorme kennis 

verliep deze studie als een trein. 

Ook alle assistenten die beelden hebben uitgelezen mogen zeker niet ontbreken in dit 

dankwoord: Merel Vergauwen, Barbara Smet, Ulla Kiendys, Mathias Van Borsel, Tom Dewaele, 

Nicolas Bossu, Elke Vereecke en Jaime Pamplona. 

De laatste studie van dit doctoraat zou nooit zo vlot verlopen zijn zonder de medewerking van 

Melissa Dhierens. Melissa, voor QCC werkten we altijd al vlot samen, maar het was zeer leuk 

om eens te mogen samenwerken voor het onderzoek ook. Veel succes met de verdere 

loopbaan en natuurlijk ook met de kindjes. 



 

 

Als doctoraatsstudent krijg je natuurlijk thesisstudenten toegewezen. Het was altijd een beetje 

afwachten of er niemand ging flauwvallen, maar jullie hebben de eerste kennismaking met 

Thiel lichamen allemaal met glans doorstaan. Siska (ook al was je officieel dan nog niet mijn 

thesisstudent), Jolien, Eline en Monica: bedankt voor het sorteren van beeldjes, het tekenen 

van ROI’s en de talloze analyses in ellenlange excelfiles. 

Als er een groep is die dit dankwoord zeer aandachtig zal lezen, dan zijn het wel de collega’s. 

Mijn eerste INW ervaring dateert al van 2005, toen ik voor mijn thesis van de biomedische 

wetenschappen in de wandelgangen rondliep. Na nog een thesis, een stage en een 

vervangingsopdracht, ging ik in oktober 2008 dan echt bij jullie aan de slag en kreeg ik voor de 

duidelijkheid toch nog eens uitgelegd dat er 2 verschillende diensten op het INW zitten: de 

fyco en de medische fysica. Voor de veiligheid zal ik hier dus ook maar het onderscheid maken. 

Aan de (ex)-collega’s van de fyco: Isabelle, Myriam, Nancy, Levi, Lothar, Robbe en Liesbeth, 

bedankt voor de vele babbels tijdens de middagpauzes. Nele, bedankt voor de talloze 

onnozele computerproblemen die je voor mij hebt opgelost, maar vooral ook bedankt voor de 

opbeurende gesprekken.  

De collega’s van de medische fysica – Kim, Virginie en Régine – bedankt voor de praktische 

ondersteuning en de fijne babbels. Régine, voor het doctoraat hebben we niet veel 

samengewerkt, maar voor het onderwijs des te meer. Bedankt, je hebt mij ontzettend veel 

geleerd. Ik hoop dat je van de welverdiende rust kan genieten samen met je man, kinderen en 

de nog steeds groter wordende groep kleinkinderen. Oud-collega’s Joke en Iris maar zeker ook 

Laurence en Sofie, het was fijn samenwerken, vooral de handige tips en tricks over de eindfase 

van het doctoraat zijn goed van pas gekomen. Charlot, officieel was je niet mijn thesisstudent, 

maar officieus zal ik je toch beschouwen als 1 van mijn eerste studenten. Jouw goede humeur, 

je gedrevenheid maar vooral je enthousiasme voor het onderzoek zullen mij zeker bijblijven. Ik 

wens je ontzettend veel succes in Zuid-Afrika, maar ik ben ervan overtuigd dat je ze daar, net 

zoals je hier gedaan hebt, omver zal blazen. QCC genoten Caro en Lore, amai wat hebben wij 

veel gelachen!!! Ik kan mij eerlijk gezegd echt niet inbeelden dat ik nog zulke hilarische 

conversaties ga voeren met mijn nieuwe collega’s, maar ik hou jullie in elk geval op de hoogte. 

Bedankt voor het uitlezen van de bolletjes, voor de versterking in het QCC-team toen het echt 

nodig was en voor de feedback op alle al dan niet doctoraatgerelateerde perikelen. Dimitri, je 

bent er nog maar net bijgekomen, maar je hebt je al bijzonder goed ingewerkt, je staat met 

gemak je mannetje tussen het vrouwelijk QCC bastion en je “burgie-kennis” is mij al zeer goed 



 

van pas gekomen. Ik wens jullie alle drie bijzonder veel succes voor het vervolg van jullie 

doctoraat en hoop stiekem toch dat ik nog word uitgenodigd op de verdediging. En Lore, als 

mijn assistent-opvolgster wens ik je natuurlijk veel succes met de studenten. Laat je niet kisten 

door de LO’ers, maar als je jouw triatlon resultaten vermeldt, zullen ze wel rap zwijgen denk ik.  

De bureaugenoten, An en Liesbeth. An, tijdens mijn stage kon je mij omver blazen met HVL’s, 

AEC’s en DICOM headers. Maar dankzij jouw vakkundige begeleiding, kan ik ondertussen al 

naarstig meedoen in het omverblazen. Het was je nooit teveel moeite om mee te helpen 

zoeken naar een oplossing voor de talloze kleine en grote problemen die zijn opgedoken 

tijdens mijn doctoraat. Zonder aarzelen schoof je je eigen grandioze stapel werk aan de kant 

om op zoek te gaan naar de perfecte oplossing/uitleg. Hoe jij erin slaagt om alles te 

combineren en om daarbovenop prachtige fotoalbums en knutselwerkjes te fabriceren, het zal 

mij altijd een raadsel blijven. 

Liesbeth, zelfs toen we nog samen studeerden in 2007 en 2008 vonden de mensen het bizar 

dat we elkaar niet beschouwden als concurrenten. Toen je dan in 2010 bij ons kwam werken 

vroegen ze: “ja maar ja, is dat wel een goed idee, samenwerken met een vriendin”. En toen we 

dit jaar alle twee op zoek moesten naar een job was het weer van: “oei oei, in concurrentie 

met elkaar, zou er geen breuk komen in de vriendschap”. Of het nu in 2007 was of in 2015, ik 

heb mij eerlijk gezegd nooit zorgen gemaakt. Ik ben ervan overtuigd dat wij oprecht het beste 

met elkaar voorhebben en elkaar dus ook het beste gunnen. Ik kan niet beschrijven hoe blij ik 

ben dat ik dit volledige doctoraatsavontuur met jou heb kunnen delen. Maar meer nog vind ik 

het fantastisch dat we al de rest ook hebben kunnen delen, van mening geven over 

keukeninrichting tot het blij in de lucht springen bij het melden van (nog) een zwangerschap. 

Het doctoraatsverhaal is dan voor ons alle twee eindelijk afgelopen, maar wij functioneren nu 

eenmaal beter in duo, dus je bent nog niet van mij vanaf . 

De vrienden, al dan niet stralend , bedankt voor de lunches, brunches en dinerdates. De 

gemeenschappelijke klaaguurtjes hebben deugd gedaan! 

De familie en schoonfamilie: Katrijn en Hans, Stijn en Liesebet, Maaike en Bram, Opa en Oma, 

Mama en Raf, Michiel en Tine, Matthijs en Aijia, Eva en Elie, wat kan ik zeggen, ik ben fan van 

grote families!! Bedankt voor alles, het babysitten, het luisterende oor, de interesse, de 

spellingscontrole, de vele telefoontjes… 



 

 

Vake en moeke, ik weet eerlijk gezegd niet wie het meeste stress heeft gehad voor mijn 

doctoraat, jullie of ik. Toen ik in 2005 schoorvoetend kwam vragen of ik aub mocht gaan 

samenwonen met Thomas, was jullie enige bezorgdheid mijn studies. Tien jaar later kan ik 

jullie met bijzonder veel trots zeggen dat er niets is om jullie zorgen over te maken, alhoewel 

ik sterk betwijfel of jullie er ooit in gaan slagen om jullie geen zorgen te maken over de 

kinderen. Van jullie erfde ik het o zo belangrijke doorzettingsvermogen en het lef om er te 

geraken, bedankt voor alles!! 

Thomas, velen beschouwen een doctoraat als een eenzame rit, maar ik ben het daar niet mee 

eens. Waar je ook was, je was altijd maar een telefoontje van mij verwijderd en onze gsm 

factuur zal dat geweten hebben. Je nuchtere kijk op de zaak, je zalige humor en je geloof in mij 

maakten dit allemaal zoveel gemakkelijker. Het is ondertussen al meer dan 13 jaar geleden dat 

ik je heb gevraagd: “ben je van plan met mijn voeten te rammelen, of hoe zit dat?”. Vier 

huizen, twee thesissen, 1 doctoraat, 1 verbouwing en twee kinderen later, is het antwoord op 

die vraag wel duidelijk: JA! Ik denk dat je er ondertussen uw levensdoel van gemaakt hebt om 

mij op mijn paard te krijgen en ik geniet nog steeds van de twinkellichtjes in je ogen als je weer 

eens in je opzet geslaagd bent. We hebben al veel uitdagingen samen overwonnen dus ik denk 

dat we die nieuwe job en spookje nummer drie ook zonder problemen zullen overleven. 

Hanne en Lucas, mijn allerliefste engeltjes maar zeker ook mijn allergrootste spookjes. Niets 

beter dan kinderlijke onschuld om mij altijd terug met mijn twee voeten op de grond te zetten 

en de relativiteit van alles te doen inzien. Jullie onvoorwaardelijke liefde is goud waard. 

BEDANKT!!! 

An 

September 2015 
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Summary 

Image quality analysis represents a crucial component in the radiation dose optimization 

process in medical imaging. Physical-technical image quality parameters focus more on the 

performance of the imaging equipment and do not address the clinical performance of the 

image modality. Clinical image quality describes the effectiveness at which an image can be 

used for its intended purpose. However, the link between clinical and physical-technical image 

quality is still an open question. The aim of this PhD dissertation is to assess the image quality 

of different clinical X-ray applications using both clinical and physical image quality 

parameters. Moreover, the correlation between physical-technical and clinical image quality 

parameters is investigated. 

Chest radiography is one of the most frequently performed diagnostic X-ray examinations. The 

frequent use and diagnostic importance of chest X-ray makes it an interesting topic for 

optimization of image quality and patient dose. Therefore, the correlation between clinical 

and physical-technical image quality was assessed for digital chest radiography. Clinical image 

quality of chest radiographs was assessed by means of three human cadavers, conserved using 

the Thiel embalming technique. Physical-technical image quality was assessed using the 

CDRAD 2.0 contrast-detail phantom. Four experienced radiologists assessed the image quality, 

using a visual grading analysis (VGA) technique based on the European Quality Criteria for 

Chest Radiology. The CDRAD images were scored manually and automatically using dedicated 

software, both resulting in an Image Quality Figure inverse (IQFinv) value. For both manually 

and automated obtained IQFinv values, a statistically significant correlation (r = 0.80, P < 0.01 

and r = 0.92, P < 0.001, respectively) with the VGA scores was observed, supporting the value 

of contrast-detail phantom analysis for evaluating clinical image quality in chest radiography. 

As the first study showed an excellent correlation between clinical and physical-technical 

image quality in digital chest radiography, the correlation in chest CT was investigated in the 
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second study. To this end, the potential dose reduction of iterative reconstruction (IR) 

compared to conventional filtered back projection based on different clinical and physical-

technical image quality parameters was assessed. Clinical image quality was assessed using 

three Thiel embalmed human cadavers. Four experienced radiologists assessed the image 

quality, using a VGA technique based on the European Quality Criteria for Chest Tomography. 

A Catphan phantom was used to assess physical-technical image quality parameters such as 

noise, contrast-detail and contrast-to-noise ratio (CNR). Correlation coefficients between 

clinical and physical-technical image quality varied from 0.88 to 0.92, depending on the 

selected physical-technical parameter. Depending on the strength of SAFIRE, the potential 

dose reduction based on noise and CNR and IQFinv varied from 14.0% to 67.8%, 16.0% to 71.5% 

and 22.7% to 50.6% respectively. Potential dose reduction based on clinical image quality 

varied from 27% to 37.4%, depending on the strength of SAFIRE. Our results demonstrate that 

noise assessments in a uniform phantom overestimate the potential dose reduction for the 

SAFIRE IR algorithm.  

A variety of tools is available to diminish dental metallic artifacts in head and neck CT imaging. 

However, up till now, no comparison of the effect of different tools was made. Therefore, the 

diminishing effect on artifacts of the following techniques was studied: altering kVp, 

application of model based iterative reconstruction (Veo), use of virtual monochromatic 

images and metal artifact reduction software (MARs). Clinical image quality was assessed 

using a Thiel embalmed cadaver. Four experienced radiologists assessed the image quality, 

using a VGA technique. Physical-technical image quality was assessed in a uniform 

polymethylmethacrylate (PMMA) cylindrical phantom and in the Catphan phantom. Significant 

influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 

and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area ( p < 0.05). 

However, MARs reconstructed images resulted in lower clinical image quality. Of all 

investigated techniques, Veo shows to be most promising, with a significant improvement of 

both the clinical and physical-technical image quality without adversely affecting contrast 

detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic 

artifacts appeared not to be sufficient, and may even adversely influence the image quality. 

Both physical-technical and clinical image quality parameters are very important tools to 

assess the image quality. However, it is important to understand the strengths and 

weaknesses of both methods. Physical technical measurements are fairly easy to conduct in 



iii 

 

 

quality assurance programs. They are essential for evaluating equipment performance and 

acceptance and constancy testing. However, for information about the actual clinical 

performance related to pathological anatomy like lesion detection, clinical assessment studies 

based on ROC studies still need to be performed. Clinical image quality assessment is rather 

difficult to perform in routine practice. However, they are the only reliable option for 

optimization purposes.  

For some specific conditions like chest radiography, an excellent correlation was found 

between the results of a contrast-detail study and the assessment of the normal anatomy. This 

was not the case for chest CT imaging. The data of the PhD study indicate that efforts should 

be made for construction of more sophisticated contrast-detail phantoms for CT imaging to 

improve the correlation for these imaging modalities. 

 



 

 

 



 

Samenvatting 

De analyse van beeldkwaliteit is een cruciale component bij het optimaliseren van de 

stralingsdosis in de medische beeldvorming. Fysisch-technische beeldkwaliteitsparameters 

focussen zich meer op de eigenschappen van het toestel maar houden geen rekening met de 

klinische kwaliteit van de beeldvormingsmodaliteit. Klinische beeldkwaliteit beschrijft de 

efficiëntie waarmee een beeld voor zijn doel kan gebruikt worden. De link tussen klinische en 

fysische beeldkwaliteit is echter nog steeds een onbeantwoorde vraag. Het doel van deze PhD-

thesis is het beoordelen van de beeldkwaliteit voor verschillende klinische X-

stralentoepassingen, gebruikmakende van zowel klinische als fysisch-technische 

beeldkwaliteitsparameters. Bovendien wordt ook de correlatie tussen fysisch-technische en 

klinische beeldkwaliteitsparameters onderzocht.  

Thoraxradiografie is één van de meest frequent uitgevoerde diagnostische X-

stralenonderzoeken. Het frequent gebruik en de diagnostische waarde van thoraxradiografie 

maken het een interessant onderwerp voor optimalisatie van zowel beeldkwaliteit als 

patiëntdosis. Daarom werd de correlatie tussen klinische en fysisch-technische beeldkwaliteit 

geanalyseerd bij thoraxradiografie. De klinische beeldkwaliteit van thoraxradiografieën werd 

beoordeeld met behulp van drie humane kadavers die gebalsemd werden volgens de methode 

van Thiel. Het CDRAD 2.0-fantoom werd gebruikt voor de beoordeling van de fysisch-

technische beeldkwaliteit. Vier ervaren radiologen beoordeelden de klinische beeldkwaliteit 

op basis van een Visual Grading Analysis (VGA) gebaseerd op de Europese kwaliteitscriteria 

voor thoraxradiografie. Het CDRAD-fantoom werd zowel manueel als automatisch uitgelezen 

waardoor in beide gevallen een inverse Image Quality Figure-waarde (IQFinv) wordt bekomen. 

Voor zowel de manuele als de automatische bekomen IQF inv-waardes wordt een significante 

correlatie gevonden met de VGA-score (respectievelijk r = 0.80, P < 0.01 en r = 0.92, P < 0.001). 
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Dit ondersteunt de waarde van contrastdetailanalyse voor de evaluatie van klinische 

beeldkwaliteit in thoraxradiografie. 

Aangezien in de eerste studie een uitstekende correlatie werd aangetoond tussen klinische en 

fysisch-technische beeldkwaliteit in digitale thoraxradiografie, werd deze correlatie in een 

tweede studie onderzocht voor thorax CT-onderzoeken. Hiervoor werd de potentiële 

dosisreductie bij gebruik van iteratieve reconstructie (IR) in vergelijking met filtered back 

projection onderzocht aan de hand van verschillende klinische en fysisch-technische 

beeldkwaliteitsparameters. Drie Thiel-gebalsemde humane kadavers werden gebruikt voor de 

beoordeling van de klinische beeldkwaliteit. Vier ervaren radiologen beoordeelden de 

beeldkwaliteit gebruik makende van een VGA-techniek gebaseerd op de Europese 

kwaliteitscriteria voor thorax-CT. Het Catphan fantoom werd gebruikt voor de beoordeling van 

fysisch-technische beeldkwaliteitsparameters zoals ruis, contrastdetail en contrast-to-noise 

ratio (CNR). De correlatiecoëfficiënten tussen de klinische en fysisch-technische beeldkwaliteit 

varieerden van 0.88 tot 0.92, afhankelijk van de geselecteerde fysisch-technische parameter. 

Afhankelijk van de sterkte van SAFIRE varieerde de potentiële dosisreductie gebaseerd op ruis, 

CNR en IQFinv respectievelijk van 14.0% tot 67.8%, 16.0% tot 71.5% en 22.7% tot 50.6%. De 

potentiële dosisreductie gebaseerd op de klinische beeldkwaliteit varieerde van 27% tot 37.4% 

afhankelijk van de sterkte van SAFIRE. Onze resultaten tonen aan dat ruisbeoordeling in een 

uniform fantoom de potentiële dosisreductie voor het SAFIRE-IR-algoritme overschat. 

Voor het reduceren van dentale metaalartefacten in hoofd en nek CT-beeldvorming bestaan er 

verschillende technieken. Tot nu toe is er echter nog geen vergelijking van het effect van de 

verschillende technieken gemaakt. Daarom werd de reducerende invloed op metaalartefacten 

van aanpassing van de kVp, de toepassing van modelgebaseerde iterative reconstructie (Veo), 

het gebruik van virtueel monochromatische beelden en metaal artefact reductie software 

(MARs) onderzocht. Een Thiel-gebalsemd humaan kadaver werd gebruikt voor de analyse van 

de klinische beeldkwaliteit. Hiervoor beoordeelden vier ervaren radiologen de beeldkwaliteit 

aan de hand van een VGA techniek. Fysisch-technische beeldkwaliteit werd beoordeeld in een 

uniform cilindrisch polymethylmethacrylaat-fantoom (PMMA) en een Catphan-fantoom. 

Stijging in kVp en het gebruik van Veo resulteerden in een significante invloed op de klinische 

beeldkwaliteit (respectievelijk p = 0.007 en p = 0.014). Toepassing van MARs resulteerde in 

een kleinere artefactenregio (p < 0.05). Er werd echter een lagere klinische beeldkwaliteit 

bekomen bij MARs gereconstrueerde beelden. Van alle onderzochte technieken blijkt Veo de 
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meest belovende met een significante verbetering van zowel de klinische als de fysisch-

technische beeldkwaliteit zonder dat contrastdetail nadelig wordt beïnvloed. Het gebruik van 

MARs gereconstrueerde CT-beelden van de mondholte blijkt de dentale metaalartefacten 

onvoldoende te reduceren en kan leiden tot een negatieve beïnvloeding van de beeldkwaliteit. 

Zowel fysisch-technische als klinische beeldkwaliteitsparameters zijn zeer belangrijke tools in 

de beoordeling van beeldkwaliteit. Het is echter belangrijk om de sterktes en zwaktes van de 

beide methodes te verstaan. Fysisch-technische metingen zijn redelijk gemakkelijk om uit te 

voeren in kwaliteitborgingsprogramma’s. Ze zijn essentieel voor de evaluatie van 

toesteleigenschappen en acceptatie- en stabiliteitstesten. Voor informatie omtrent de 

klinische prestatie gerelateerd met de pathologische anatomie zoals lesiedetectie moeten nog 

klinische beoordelingen zoals ROC-studies uitgevoerd worden. 

Voor enkele specifieke onderzoeken zoals thoraxradiografie werd een uitstekende correlatie 

gevonden tussen de resultaten van een contrastdetailstudie en de beoordeling van de 

normale anatomie. Deze correlatie werd niet gevonden voor thorax CT-beeldvorming. De data 

van deze PhD-thesis tonen aan dat er nood is aan de constructie van een meer geavanceerd 

contrastdetailfantoom voor CT-beeldvorming om de correlatie voor deze modaliteiten te 

verbeteren.
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1  
The need for optimization in diagnostic radiology 

Diagnostic radiology generally refers to the analysis of images obtained using X-rays, 

ultrasound and magnetic resonance imaging (MRI). X-ray diagnostic radiology includes plain 

radiography, dental radiology, fluoroscopy, interventional radiology, computed tomography 

(CT) and Cone Beam Computed Tomography (CBCT) [1].  

With improved health care, increasing availability of medical equipment and the aging of the 

population, the number of radiological medical procedures is increasing considerably. 

According to the UNSCEAR 2008 Report [1] the annual frequency of diagnostic medical 

examinations (excluding dental radiology) in developed countries (health-care level I) is 

estimated to have increased from 820 per 1 000 population in 1970-1979 to 1 332 per 1 000 

population in 1997-2007 (Figure 1-1). Worldwide, the use of diagnostic medical radiological 

examinations increased from 330 per 1 000 populations in 1991-1996 to 488 per 1 000 in 

1997-2007. Correspondingly, worldwide, the estimated annual per caput dose from diagnostic 

medical examinations has increased from 0.40 mSv to 0.62 mSv [1]. More recent data (2011) 

from the European Dose Datamed 2 project report a mean European per caput effective dose 

of 0.98 mSv and a mean Belgian per caput effective dose of 1.96 mSv [2] (Figure 1-2). 

The contribution of CT examinations to the population dose has increased rapidly since this 

medical imaging modality was introduced in the 1970s. As a consequence, the increasing trend 

in annual CT examination frequency and the significant dose per examination have an 

important impact on the overall population dose due to medical exposures. 
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Figure 1-1: Overall total frequencies per 1000 of population for different European countries. The relative 

contributions of the four main groups (plain radiography including dental, fluoroscopy, computed 

tomography and interventional radiology) are also shown [2]. 

In the UNSCEAR 2000 Report [3], it was noted that worldwide, for the period 1991 to 1996, 

34% of the collective dose due to medical exposures was related to CT examinations. For the 

period 1997-2007, worldwide, CT already accounts for 43% of the total effective dose [1]. For 

the same period, CT scanning accounts for 7.9% of the total number of diagnostic medical 

examinations in developed countries. However, the contribution of CT scanning to the total 

collective effective dose due to diagnostic medical examinations in developed countries is 

approximately 47% [1]. 

 

Figure 1-2: Per caput effective doses for different European countries. The relative contributions of the 

four main groups (plain radiography, fluoroscopy, computed tomography and interventional radiology) 

are also shown. [2] 

According to the European Dose Datamed 2 report, the relative frequency of CT as a 

percentage of the overall frequency of all X-ray examinations is 8.7% while the relative 
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contribution to the overall collective effective dose is 55% [2] (Figure 1-3). In Belgium, the use 

of CT increased from 1.4 million in 1994 to 2.1 million in 2013 [4]. 

 
Figure 1-3: Contribution of the four main groups to the overall collective effective dose [2]. 

The increasing trend in both annual frequency and annual per caput effective dose of 

diagnostic medical radiological examinations combined with the on-going technological 

developments of radiological equipment, emphasize the need for dose evaluation and 

optimization. Both the International Commission on Radiological Protection (ICRP) [5] and the 

European medical exposure directive [6] recommend the optimization of patient dose in 

diagnostic radiology. 

A part of the optimization process is the establishment of diagnostic reference levels (DRL). 

DRL’s were first mentioned by the ICRP in 1990 [7] and subsequently recommended in greater 

detail in 1996 [5]. Reference levels are typically set at the 75
th

 percentile of the dose 

distribution from a survey conducted in different national or international hospitals and are 

helpful in identifying potentially unusual practice (the highest 25% of typical doses). The 25
th

 

percentile of the dose distribution can be regarded as the reference level of good practice.  

DRL’s are a practical tool to promote the assessment of existing protocols and enable the 

development of new and improved protocols at each center by highlighting the substantial 

variations in practice between different hospitals for similar types of examinations and similar 

patient groups. They are intended to promote awareness, dose audit and comparison as the 

base for improving patient radiation protection. Each center should determine its typical mean 

dose levels and compare these with the relevant DRL. Mean values above the DRL should be 

investigated and either justified as being clinically necessary or reduced through appropriate 

changes in practice to improve patient protection. 
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Dose surveys should be repeated periodically to establish new reference levels. Data of the 

Federal Agency of Nuclear Control (FANC) show a decrease over time of the DRL’s of most 

examinations [8]. However, the image quality is not assessed during the process of 

determining the DRL’s. Though, the radiation dose is inextricably related to the image quality. 

Therefore, unrestricted reduction of the radiation dose is impossible without compromising 

the image quality. Consequently, image quality analysis represents a crucial component in the 

radiation dose optimization process.  

  



 

2  
Image quality assessment 

2.1 Basic quality parameters in X-ray imaging 

Different physical parameters can be used to describe the image quality. In basic medical 

physics, image quality is determined by noise, spatial resolution and contrast. 

In radiographic imaging, noise refers to unwanted image details that interfere with the 

visualization of an abnormality of interest and with the interpretation of an image. There are 

usually two major sources of noise: anatomic noise and radiographic noise [9]. The former 

refers to normal unwanted anatomic variations within an image (e.g., the rib projection 

pattern in a chest radiograph confounding the detection of a lung nodule). As such, the 

characterization of anatomic noise is task-dependent and is not directly related to the intrinsic 

performance of a detector. The second type of noise, radiographic noise, refers to unwanted 

variations within an image that do not originate within the image subject. Generally speaking, 

radiographic noise is composed of two types: quantum noise and system noise [10]. Quantum 

noise is caused by the limited number of photons forming the image. When an average 

number of X-rays in a pixel is N, the noise σ in the pixel, defined as the standard deviation of N, 

will be: 

σ =  √N  [11] 
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System noise is added by the additional statistically random and systematic processes in the 

detector during image formation. Radiographic noise measurements can easily be performed 

by imaging a uniform phantom and determining the standard deviation of the pixel values. 

Technically, the resolution of a system is the minimum distance between two objects 

necessary to still be distinguished as distinct objects in the image. This is frequently described 

in visually discernible line pairs per mm (lp/mm).  

Contrast is the difference in image grayscale between closely adjacent regions on the image. 

Contrast is generated by the differential attenuation of X-rays in tissues and is affected by the 

applied X-ray energy spectrum and the contrast resolution capabilities of both detector and 

display system [11].  

2.2 Physical-technical image quality analysis 

To describe the above mentioned fundamental physical characteristics, different quantities 

can be analyzed. 

Radiographic noise is best characterized by its Noise Power Spectrum (NPS). The NPS is the 

variance of noise within an image divided among various spatial frequency components of the 

image [12]. It indicates how an imaging system passes noise from the input to the output. 

Because radiographic noise does not include anatomic variations, the appropriate image for a 

NPS analysis is a uniform flat exposure with no object in the field of view.  

Relative noise, represented by the Signal to Noise Ratio (SNR), refers to the magnitude of 

image fluctuations relative to the signal present in the image. For a given number of detected 

photons, N, and a radiographic noise, σ, the maximum available SNR is: 

𝑆𝑁𝑅 =  
S

σ
=  

N

√N
=  √N  [12] 

In an ideal imaging device, the only source of noise is associated with the finite number of X-

ray photons forming the image, i.e., quantum noise. Quantum noise is related to the Poisson 

statistics thus the SNR² of an ideal imaging system is proportional to the number of individual 

X-ray quanta forming the image. 
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𝑆𝑁𝑅𝑖𝑑𝑒𝑎𝑙 =  √𝑁  [12] 

However, devices used in radiography are not ideal, they contain sources of noise not related 

to the Poisson-distributed X-ray flux. Thus, the SNR measured in such a non-ideal device 

(𝑆𝑁𝑅𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙) contains noise properties worse than noise due to X-ray quantum statistics 

alone. Because of detector inefficiencies, the 𝑆𝑁𝑅𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙  is always smaller than the 

𝑆𝑁𝑅𝑖𝑑𝑒𝑎𝑙 . The ratio of the 𝑆𝑁𝑅𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙  to the 𝑆𝑁𝑅𝑖𝑑𝑒𝑎𝑙  can be used to define the efficiency 

of the system. This ratio is called the detective quantum efficiency (DQE). 

DQE = 
𝑆𝑁𝑅𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙

2

𝑆𝑁𝑅𝑖𝑑𝑒𝑎𝑙
2  = 

𝑆𝑁𝑅𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
2

𝑁
   [12] 

The DQE describes how efficiently a system translates incident X-ray photons into useful signal 

within an image. 

A thorough description of the system’s spatial resolution is given by the point spread function 

(PSF). The PSF describes the response of an imaging system to a point stimulus or bead in the 

spatial domain (Figure 2-1). The PSF is also an attractive method for characterizing the CT 

scanner because the PSF from the bead can be used to describe the spreading in the 

conventional axial (x,y) plane of the CT scanner and the spreading of the point in the slice 

thickness or Z domain [13]. This combination of information from x, y and z axes, essentially 

describes the 3D PSF. 

 

Figure 2-1: Display of a point stimulus input to an imaging system and the response of an imaging system 

to that point stimulus, PSF [11] 

Another useful way to express the resolution of an imaging system is to make use of the 

frequency domain. The Modulation Transfer Function (MTF) of an image system, is a very 

complete description of the resolution properties of an imaging system. The MTF is a plot of 

the imaging system’s modulation versus spatial frequency [11]. The MTF illustrates the 
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fraction (or percentage) of an object’s contrast that is recorded by the imaging system, as a  

function of the size (i.e. spatial frequency) of the object (Figure 2-2). Many imaging systems 

are really imaging chains, where the image passes through many different intermediate steps 

from the input to the output of the system. To understand the role of each component in the 

imaging chain, the MTF is measured separately for each component. The total system MTF at 

any frequency is the product of all the subcomponent MTF curves.  

 
Figure 2-2: Formation of the Modulation Transfer Function [14] 

In digital imaging, contrast is mostly described as the Contrast to Noise Ratio (CNR). The CNR is 

an object size independent measure of the signal level in the investigated tissue in the 

presence of noise [11]. The contrast is the difference between the average grayscale between 

a region of interest (ROI) in the investigated tissue (𝑆𝑡) and the average grayscale in a ROI in 

the background (𝑆𝑏). The noise is also calculated in that background ROI (𝜎𝑏).  

𝐶𝑁𝑅 =  
𝑆𝑡− 𝑆𝑏

𝜎𝑏
 [11] 

All above mentioned image quality parameters are physical measurements to characterize 

device performance. However, the last stage in the imaging chain is the observer. It is 

important to include some characterization of the observer’s performance in the overall 

scheme of assessing image quality [12]. This psychophysical approach includes contrast-detail 

studies, a well-known technique for assessing observer performance of a system. It is a good 

qualitative way to combine information about the spatial and the contrast resolution. With the 
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use of a contrast-detail phantom, a test of the observer’s perception is possible on a semi 

objective basis, as the difference between interpretation of the reader and the true 

distribution of test object can be calculated. After image acquisition of the phantom, the 

observer(s) must indicate the borderline visibility, resulting in a contrast-detail curve. In the 

contrast-detail score, a combined effect of image noise, contrast and resolution is included, 

thereby providing a straightforward measure for the overall performance [15]. 

In the field of digital radiology and especially digital mammography, the commercially 

available CDRAD phantom [16] and CDMAM phantom [17] (Artinis Medical Systems BV, 

Netherlands) are often used to evaluate image quality (Figure 2-3). The method originally 

proposed by the manufacturers for the evaluation of CDRAD/CDMAM images is based on 

human perception and decision criteria. It involves several observers individually identifying 

the just visible details (threshold contrast). Human perception makes the evaluation of 

contrast-detail images a subjective and time consuming task that could be associated with 

significant inter- and intra-observer errors. Computerized evaluation of the contrast-detail 

images has the potential to overcome the above limitations [16, 18, 19]. 

  

Figure 2-3: Digital acquisition of the CDRAD 2.0 [16] and the CDMAM 3.4 phantom [17]. 

To evaluate contrast-detail in CT images, a physical-technical image quality phantom can be 

used like the Catphan@504 phantom (The Phantom laboratory, Salem, New York, USA) (Figure 

2-4).  
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Figure 2-4: Low contrast module of the Catphan 504 phantom [20]. 

2.3 Patient models 

The parameters defined above (NPS, SNR, DQE, PSF, MTF, CNR and contrast-detail) describe 

mainly the physical-technical image quality as assessed by medical physicists. Clinical image 

quality, describes the effectiveness with which an image can be used for its intended 

diagnostic purpose, namely the ability of the image to demonstrate disease and to delineate 

anatomical structures which are relevant to detection, differential diagnosis and localization 

[21]. Therefore, image quality should optimally be measured by methods that address clinical 

performance [22]. For a good approximation of the clinical reality with respect to human 

anatomy, different study objects can be used. Obviously, patient images are the most realistic 

to assess clinical image quality. However, due to the variability in anatomy among patients, 

large numbers of patients should be included for statistical reasons. Consequently, these 

patient studies are rather difficult to implement since large numbers of patient images must 

be available. As an alternative, clinical image quality can be assessed in different types of 

phantoms. 

2.3.1 Anthropomorphic phantoms 

Anthropomorphic phantoms simulate shape, size and tissue composition of the human body. 

They have been widely used to provide a representation of the body’s anatomy and 

attenuation characteristics and for radiation dosimetry studies. For dosimetric purposes, 
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thermoluminescent dosimeters (TLD’s) can be inserted in the phantom to register organ doses 

[23, 24]. Anthropomorphic phantoms are also used to evaluate image quality. Different 

structures can be superimposed over the phantom on well-defined positions, simulating 

different pathologies [25-27]. 

The Alderson Rando phantom is constructed with a natural human skeleton which is cast 

inside soft tissue simulating material (Figure 2-5). Lungs are constructed from lung simulating 

material and  the air space of the head, neck and stem bronchi are duplicated. The phantom is 

sliced at 2.5 cm intervals. Hole grid patterns are drilled into the sliced sections to enable the 

insertion of TLD’s. It is used to perform radiation dose studies but also for the evaluation of 

image quality. Since the Rando phantom only contains bone, tissue equivalent material and 

lung equivalent material, lesions have to be superimposed on the phantom. Another 

possibility is to digitally superimpose lesions on the image [28, 29]. 

 
Figure 2-5: Alderson Rando phantom [30] 

The Alderson Lung/Chest Phantom extends from the neck to below the diaphragm (Figure 

2-6). It is molded about a male skeleton, corresponding to the external body size of a patient 

of 175 cm and 73.5 kg. Materials are equivalent to natural bone and soft tissues. Animal lungs 

are selected to match the size of an adult male. Lungs are fixed in the inflated state and are 

molded to conform to the pleural cavities of the phantom. The pulmonary arteries are injected 

with a blood equivalent plastic. Custom pathologies are available as wrap around sheets on 

either or both lungs. All models are available with blood-equivalent pulmonary arteries, or 

with low or high contrast media added. 
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Figure 2-6: Alderson Lung/Chest phantom [31]. 

The CIRS Model 600 Anthropomorphic Torso Phantom is designed to provide an accurate 

simulation of an average torso (22 cm posterior-anterior thickness) for medical imaging and 

dosimetry applications (Figure 2-7). The epoxy materials used to fabricate the phantom 

provide optimal tissue simulation between the diagnostic and therapy X-ray energy range (40 

keV to 20 MeV). The Model 600 includes internal organ structures such as the lungs, heart, 

liver, kidneys, spleen and pancreas. The removable organs enable flexibility in the placement 

of TLD’s, contrast agents, etc. All simulated organs match the tissue density of actual organs 

and can be clearly visualized. 

 

Figure 2-7:  CIRS Model 600 anthropomorphic torso phantom [32]. 
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The Kyoto Kagaku chest phantom N1 Lungman is a multipurpose phantom which is applicable 

for both plain radiography and CT scanning (Figure 2-8). The phantom is an accurate life-size 

anatomical model of a human torso. The inner components consisting of mediastinum, 

pulmonary vasculature and an abdomen block are easily detachable, allowing insertion of 

mimic tumors or other lesions.  

 

Figure 2-8: The Kyoto Kagaku chest phantom [33]. 

2.3.2 Thiel embalmed cadaver 

As an alternative to anthropomorphic phantoms, cadavers can be used (Figure 2-9). Cadavers 

fixed with conventional procedures, by using formalin for conservation, suffer from profound 

changes of color, strength, fragility and density of organs and tissues. A new embalming 

technique was established by Prof. Em. Walther Thiel, Anatomisches Institut Karl-Franzens-

Universität, Graz, Austria [34]. Hereby, 4-chloro-3-methylenphenol as well as various salts are 

used for fixation and boric acid is added for disinfection. Furthermore, ethylene glycol is used 

for preservation of tissue plasticity, while the concentration of formalin is kept to the strict 

minimum (0.8%) [35]. The first step of the process is perfusion, which takes place shortly after 

arrival of the body in the anatomy department. The embalming fluids are infused arterially, 

normally through the femoral or brachial artery. After this, the bodies are submerged in a tank 

with embalming fluids. The bodies can then be stored in a sealed plastic bag until use, without 

need for refrigeration. In contrast to standard formalin-embalmed human cadavers, this low-

odor technique results in well preserved organs and tissues concerning color, consistency, 

natural flexibility, density and natural plasticity.  

http://www.supertechx-ray.com/Anthropomorphic/X-RayRadiography/KyotoLUNGMAN.php
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Figure 2-9: Example of a Thiel embalmed cadaver 

Solution A: Boric acid 3% 1,9 kg 

(mono-)Ethylenglycol 30% 19 l 

Ammonium nitrate 20% 12,6 kg 

Potassium nitrate 5% 3,2 kg 

Water 

Total: 

63,3 l 

100 l 

Solution B: (mono-)Ethylenglycol 10% 18,2 l 

4-Chlor-3-Methylphenol 

Total: 

1,8 kg 

20 l 

Embalming fluids: Solution A 14,3 l 

Solution B 0,5 l 

Formalin 0,3 l 

Sodium sulphate 

Total: 

0,7 kg 

15,8 l 

Immersion fluids: (mono-)ethylenglycol 10% 71,9 l 

 Formalin 2% 14,4 l 

 Solution B 2% 14,4 l 

 Boric acid 3% 21,6 kg 

 Ammonium nitrate 10% 71,9 kg 

 Potassium nitrate 5% 36 kg 

 Sodium sulphate 7% 50 kg 

 Water 720 l 

 Total: 1000,2 l 

Table 2-1: Composition of Thiel embalming and immersion fluids as used in our faculty 
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Thiel embalmed cadavers have shown to be suitable as training material for a wide range of 

surgical procedures such as thyroid surgery [36], laparoscopy [37, 38] and oral surgery [39]. 

Furthermore, because of the natural flexibility and plasticity of Thiel embalmed cadavers, lung 

tissue is preserved completely which makes it possible to ventilate the lungs by performing a 

tracheotomy in combination with balloon ventilation to approximate as nearly as possible the 

normal patient anatomy [40] (Figure 2-10). Consequently, these Thiel embalmed cadavers are 

an excellent model to investigate the link between clinical and physical-technical image 

quality. 

 

Figure 2-10: Planar chest radiography of a Thiel embalmed cadaver. 

2.4 Clinical image quality analysis 

To assess the clinical image quality, different study set-ups are possible. The focus of the 

analysis is either on the normal anatomy of the patient or on the pathological structures 

present in an image. 

2.4.1 Receiver Operator Characteristics (ROC) 

The task for the observers in a ROC study is to decide whether a given patient image contains 

a pathological structure or not. A grading is given according to a scale stating the decision of 

the observer and also the level of confidence of his or her decision [29]. ROC analysis is based 

on the fact that the radiologist can adapt to different “critical confidence levels” for calling an 

image normal or abnormal [41]. Therefore, simple measurement of the sensitivity (the 
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probability that a patient with an actual disease is determined as having a disease by the 

observer) and specificity (the probability that a healthy patient is determined as being healthy 

by the observer) of the diagnosis is not sufficient, but the sensitivity and specificity pairs need 

to be evaluated for various critical confidence levels. These sensitivity and specificity pairs 

then define the ROC graph. Although knowledge of the entire ROC curve is required in order to 

describe the performance of a diagnostic test completely, it would be interesting to 

summarize the curve by a single number, particularly to draw a conclusion concerning which 

of two ROC curves is “better”. The most commonly employed univariate summary of a 

conventional ROC curve is the area under the curve (AUC). It provides a meaningful basis for 

ranking ROC curves if the curves in question do not cross (Figure 2-11). 

Real patient images can be used for ROC analysis. However, a large number of patient images 

and a large number of pathological lesions are required to reach a sufficient statistical power. 

Furthermore, the true state of the patient from which each image is made must be known to 

classify an image as normal or abnormal [42]. Unfortunately, the establishment of diagnostic 

truth in clinical images is sometimes difficult. Furthermore, the lesions need to be subtle so 

that false positives occur during the image interpretation [29]. To overcome these problems, 

lesions can be simulated on real patient images [43, 44] Then, knowing the actual truth state 

in any image is not a problem. However, this still requires a large number of patient images. 

Though, ROC studies are not necessarily based on actual patient images. Instead, images of a 

suitable phantom in which a relevant (simulated) signal is added, can be used [22].  

The ROC method is not applicable when the decision task involves more than a simple 

determination of whether the patient shows a disease symptom or not. In addition to 

detecting an abnormal condition, the radiologist often needs to locate specific image regions 

that are suspicious for disease. The additional location information cannot be used by ROC 

analysis and this neglect of location information may lead to a loss of statistical power, so that 

actual differences between modalities may be overlooked [45]. For example, if an observer 

misses the single true lesion in an image but erroneously identifies another location as 

containing a lesion, the observer makes two mistakes: a false negative and a false positive. 

However, the two mistakes effectively cancel out each other, and on the case level the 

observer is scored with a true positive. 

Another disadvantage of ROC and ROC related methods, is that the results are only valid for 

the type of pathological structure that is used in the study [42]. The results cannot be 
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extrapolated to hold for other types of lesions. To study the performance of a radiographic 

system in a clinical environment where the variation of the lesions is large, ROC studies with 

images containing the whole spectrum of disease-indicating symptoms that are present in the 

actual patient population have to be set up [29]. This can easily lead to unrealistically large 

number of images that have to be observed in the trial to achieve the desired statistical 

precision. 

To overcome the limitations of ROC analysis, several other methods have been developed. 

Bunch et al. [46] proposed the free response ROC, FROC, in which location information is 

considered. In a FROC experiment, several lesions may be used in each image, localization of 

each lesion must be performed, and a rating reflecting the observer’s certainty of the lesion 

and its location must be given. The FROC curve gives the fraction of true positive localized 

lesions as a function of the mean number of false-positive answers per image. 

Alternative FROC (AFROC) analysis is an alternative way of analyzing FROC data. Instead of 

using the mean number of false positives per image, Chakraborty and Winter [47] suggested to 

use the probability that an image produces one or more false positive responses. The AFROC 

curve is constructed by plotting the true positive fraction (TPF) of detected and localized 

lesions as a function of the probability of at least one false positive per image. 

With the Free-response forced error (FFE) method, the observer is asked to rank the test 

structures in decreasing order of confidence until an error is made [47]. The average fraction 

of correct findings over a number of images before a false positive location is indicated, is 

equal to the area under the AFROC curve.  

 
Figure 2-11: Examples of curves resulting from ROC, FROC and AFROC [48]. 



20  Image quality assessment 

 

2.4.2 Visual Grading Analysis (VGA) 

In visual grading analysis, contrary to the ROC related methods, it is the normal anatomy, 

present in almost every patient image, which is used for the evaluation of image quality. The 

task for the observer is to decide whether the criteria related to the normal anatomy are 

fulfilled or not in an image. The evaluated structures can be selected so that they represent 

different characteristics that can be found for typical pathological structures [29], or can be 

selected from the criteria defined by the Commission of the European Communities (CEC). The 

CEC has presented a list of image criteria in the European guidelines on Quality Criteria for 

Diagnostic Radiographic Images [49] and in the European guidelines on Quality Criteria for 

Computed Tomography [50]. The validity of such studies can assumed to be high if the 

anatomical structures are selected based on their clinical relevance. VGA can be performed in 

two major ways: with relative grading (using one or several images as references) or with 

absolute grading (using no references) [51].  

A VGA score (VGAS) can be calculated as [52]: 

IS

G

VGAS

S

s

I

i

is

*

1 1

,
   

were G,s,i is the rating for a particular structure (s) and image (i). S and I are the number of 

structures and images, respectively. 

The results of a VGA study are more general than those from a ROC or ROC related study in 

the sense that anatomical structures of different size, shapes and textures are used for the 

evaluation. An important disadvantage of VGA is that is does not include the clinical task, i.e. 

to differentiate between normal and pathological cases. 

2.5 Observer Models 

An observer can be either a human or an algorithm (model observer). The use of human 

observers is labor intensive. Humans are also subject to effects like fatigue or reader learning 

that introduce bias [53]. Computer-model observers are algorithms that attempt to predict 

human visual performance in noisy images and might represent the desired metric of image 



Image quality assessment  21 

 

 

quality [54]. Development of models to predict human visual signal detection in noise goes 

back to work by Rose [55, 56] who studied the detectability of a flat-topped disk embedded in 

white noise. In the last years, many studies have concentrated on finding a model observer 

that can predict human performance across many types of synthetic backgrounds and real 

medical-image backgrounds [53, 57-63]. The hope is that model observers will become 

common metrics of task-based image quality for evaluation of medical image quality as well as 

optimization of imaging systems. In order to use model observers, a number of key 

components must be defined.  

Firstly, the investigator needs to choose the visual task which the model observer has to 

evaluate or optimize. Medical imaging tasks can be categorized as either classification or 

estimation tasks [63, 64]. A commonly used classification task is the multiple alternative forced 

choice task (MAFC), where the lesion might appear in one of M specified locations. The task of 

the observer is to indicate which of the M locations contains the target [53, 65, 66]. Other 

tasks, such as a yes/no task with no location uncertainty, can also easily be used for the model 

observer [66]. An estimation task involves the quantification of one or more parameters that 

describe the object. The parameter might be e.g. the amount of flow in a vessel or the size, 

location, or activity of a tumor [54].  

Secondly, to set up a model observer study, decisions have to be made about the type of 

backgrounds and signals that will be used to evaluate a particular imaging modality and 

imaged anatomy. One approach is to use computer simulated backgrounds that visually 

appear similar to the real image backgrounds for the particular imaging modality, with the 

hope that the model observer results with the synthetic backgrounds can be generalized to 

the real background [65]. A different approach is to use real anatomic backgrounds from 

patient data rather than computer simulated backgrounds [57, 58, 65]. This latter method 

requires a large database of patient images so that the model observer results can be 

generalized to the population of patient images. The advantage of the computer simulated 

backgrounds is that the statistical properties of the backgrounds are known and satisfy many 

statistical properties that make calculation of model performance simpler [62]. The advantage 

of real anatomic backgrounds is clearly their clinical realism. The disadvantage is that often 

real anatomic backgrounds do not satisfy certain statistical properties and therefore some of 

the standard techniques for calculating model performance do not always generalize to these 

real background images [62].  
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The next step is to select a signal to be detected in the visual task. Signals almost always are 

computer generated and often are designed to mimic a realistic feature of interest in the 

medical images [57, 58]. 

Thirdly, a model observer or a set of model observers to perform the visual task must be 

chosen from the large variety of available models. Early efforts on model observers 

concentrated on the ideal Bayesian observer [67, 68]. The Bayesian ideal observer provides a 

quantitative measure of the diagnostic performance of an imaging system. This observer is 

optimal among all observers, either human or model, and sets an absolute upper bound for 

observer performance in classification tasks [69]. However, the Bayesian ideal observer 

requires the full description of the statistical properties of the data to optimally perform a 

classification task, but such information is often unknown for complex, realistic backgrounds 

found in clinical applications [70].  

Most of the model observers currently used for visual detection in noisy images are linear 

models. Models can be classified based on the prior knowledge they use. For example, some 

models use information about the signal; others use information about the signal and the 

background statistics. Given that these models are attempting to predict human performance, 

many of them include information-processing constraints intended to reflect properties of the 

human visual system derived from psychophysical or physiological findings [54].  

Fourth, a method to calculate model observer performance in the selected visual task must be 

determined. This figure of merit quantifies the ability of the observer to use the image data to 

perform the relevant task and is an objective measure of image quality [63]. 

And finally, if human performance in the same task has been measured then a method for 

comparing model and human performance is required [54]. Multiple model observers have 

been proposed to objectively evaluate image quality and optimize system design. For any 

model observer, studies are required to demonstrate its correlation with human observer 

performance before it can be used clinically [70]. Given the substantial difference between 

imaging modalities concerning signal and noise properties, dedicated studies need to be 

performed for each particular modality [71]. A typical problem is that performance of the 

model observers is typically better than that of human performance [57]. A commonly used 

method to compare model and human performance is to add additional sources of 

degradation to the model observer so that the model observer performs at human levels [54]. 
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This can be achieved by including internal noise in the model. Internal noise is a known 

component of human inefficiency in perceptual tasks and arises from fluctuations in neural 

firing, intrinsic stimulus variability, receptor sampling errors and loss of information during 

neural transmission [72]. Internal noise can explain the fact that human observers make 

different decisions on the same set of images. 
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3  
Aim of the thesis 

Image quality analysis represents a crucial component in the radiation dose optimization 

process. Physical-technical image quality parameters focus more on the performance of the 

detector and do not address the clinical performance of the imaging modality. Clinical image 

quality describes the effectiveness at which an image can be used for its intended purpose. 

However, the link between clinical and physical-technical image quality is still an open 

question. The lack of knowledge on this correlation has a significant impact on the use of 

physical-technical image quality parameters in quality assurance protocols, since the impact of 

changes in physical-technical quality on the clinical image quality can’t be quantified. Up till 

now, only the European protocol for quality assurance of screening mammography 

equipment, describes the use of MTF, DQE, NPS, noise evaluation and contrast-detail analysis 

[1]. Therefore, the first aim of this thesis was to investigate the correlation between clinical 

and physical-technical image quality in digital radiography, more specifically, chest 

radiography. 

The number of CT examinations has increased rapidly over the last few years, resulting in a 

substantial increase in radiation dose of the population in the Western world [2]. It has been 

estimated that these CT examinations may be responsible for approximately 2% of all incident 

cancer cases in the United States [3]. Consequently, a lot of efforts have been made over the 

last decade to reduce the radiation dose for the patient by introducing new techniques such as 

automatic tube current modulation and adaptive collimation [4-6]. Over the past few years, 

iterative reconstruction techniques are increasingly gaining acceptance [7-13]. If dose 
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reduction techniques are implemented, the impact on the image quality has to be 

investigated. 

Similar to digital radiology, the link between clinical and physical-technical image quality is not 

worked out in CT. Particularly for noise, this can be problematic, since noise measurements in 

a uniform phantom don’t account for the complex relationship between anatomical variability 

and image quality [14].  

The second aim of this thesis was to evaluate the correlation between clinical and physical-

technical image quality applied to different strengths of iterative reconstruction in chest CT 

images and to determine the potential dose reduction of iterative reconstruction compared to 

conventional filtered back projection based on different clinical and physical-technical image 

quality parameters. 

CT plays a very important role in both diagnosis and treatment of head and neck cancers. It 

has become the standard method for identifying cancerous masses, lymph node metastases 

and inflammatory processes in head and neck imaging [15-17]. The image quality and 

associated suitability for accurate diagnoses can be significantly reduced by dental artifacts. 

The factors that may contribute to or diminish the artefacts include metallic hardware 

composition and orientation [18-20], peak voltage [21, 22], slice thickness [21], reconstruction 

algorithm [18, 23], extended CT scale [24]. Alternatively, artifacts can be suppressed during 

reconstruction. Metal artefact reduction algorithms have been developed for this purpose. 

The third aim was to investigate the efficiency of different metal artefact reduction tools such 

as kVp, iterative reconstruction, virtual monochromatic imaging (keV) and metal artefact 

reduction software (MARs). 

 



 

4  
Outline of the thesis 

Chest radiography is one of the most frequently performed diagnostic X-ray examinations [25]. 

The frequent use and diagnostic importance of chest X-ray makes it an interesting topic for 

optimization of image quality and patient dose. Therefore, the correlation between clinical 

and physical-technical image quality was assessed for digital chest radiography. Clinical image 

quality of chest radiographs was assessed by means of three human cadavers, conserved using 

the Thiel embalming technique [26]. Physical-technical image quality was assessed using the 

CDRAD 2.0 contrast-detail phantom. Four experienced radiologists assessed the image quality, 

using a visual grading analysis (VGA) technique based on the European Quality Criteria for 

Chest Radiology [27]. The CDRAD images were scored manually and automatically using 

dedicated software (CDRAD analyser 2.1) [28], both resulting in an Image Quality Figure 

inverse (IQFinv) value. The results of this first study are presented in a first paper (see chapter 

5) entitled CORRELATION OF CONTRAST-DETAIL ANALYSIS AND CLINICAL IMAGE QUALITY ASSESSMENT IN CHEST 

RADIOGRAPHY WITH A HUMAN CADAVER STUDY.  

As the first study showed an excellent correlation between clinical and physical-technical 

image quality in digital chest radiography, the correlation in chest CT was investigated in the 

second study. Therefore the potential dose reduction of iterative reconstruction compared to 

conventional filtered back projection based on different clinical and physical-technical image 

quality parameters was assessed. Clinical image quality was assessed using three Thiel 

embalmed human cadavers. Four experienced radiologists assessed the image quality, using a 

visual grading analysis (VGA) technique based on the European Quality Criteria for Chest 
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Tomography [29]. A Catphan phantom was used to assess physical-technical image quality 

parameters such as noise, contrast-detail and contrast-to-noise ratio (CNR). The results from 

this study are presented in the second paper (see chapter 6) entitled CORRELATION OF CLINICAL 

AND PHYSICAL-TECHNICAL IMAGE QUALITY IN CHEST CT: A HUMAN CADAVER STUDY APPLIED ON ITERATIVE 

RECONSTRUCTION.  

A variety of tools is available to diminish dental metallic artifacts in head and neck CT imaging. 

However, up till now, no comparison of the effect of different tools was made. Therefore, the 

diminishing effect on artifacts of the following techniques was studied: altering kVp, 

application of model based iterative reconstruction (Veo), use of virtual monochromatic 

images and metal artifact reduction software (MARs). Clinical image quality was assessed 

using a Thiel embalmed cadaver. Four experienced radiologists assessed the image quality, 

using a visual grading analysis (VGA) technique. Physical-technical image quality was assessed 

in a uniform polymethylmethacrylate (PMMA) cylindrical phantom and in the Catphan 

phantom. The results from this study are presented in the third paper (see chapter 7) entitled: 

ANALYSIS OF METAL ARTIFACT REDUCTION TOOLS FOR DENTAL HARDWARE IN CT SCANS OF THE ORAL CAVITY: KVP, 

ITERATIVE RECONSTRUCTION, DUAL ENERGY CT, METAL ARTIFACT REDUCTION SOFTWARE: DOES IT MAKE A 

DIFFERENCE? 
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5  
Paper I 

Correlation of Contrast-Detail Analysis and Clinical Image Quality 

Assessment in Chest Radiography with a Human Cadaver Study 

5.1 Background 

5.1.1 Digital radiography 

Projection radiography has evolved in many radiology departments from a technique 

dominated by screen-film combinations to a digital technique based on flat panel detectors 

(Direct Radiography, DR) or imaging plates containing a phosphor layer (Computed 

Radiography, CR). Workflow has been improved and simplified because of the instant image 

display, eradicating the time-consuming development of films, storage and archiving of 

images.  

The dynamic range of a detector describes the range over which suitable imaging performance 

may be obtained (Figure 5-1). This is defined basically by the ratio of the maximum to 

minimum detector entrance doses [1]. This response is referred to as the characteristic curve 

of the device, and in the case of photographic film, has the well-known sigmoid shape of the 

Hurter-Drillfield (HD) curve. Because of this, underexposed films appear light, and 

overexposed films appear dark. Digital systems, on the other hand, have a linear characteristic 
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curve [2]. Consequently, DR and CR detectors have the benefits of wide dose latitude and 

improved information recording across different tissue densities.  

 

Figure 5-1: Dynamic range of screen-film and digital (CR and DR) detectors 

Digital radiography separates acquisition, processing and display, which enables a 

radiographer to produce an image that has acceptable diagnostic quality, but could be 

underexposed or overexposed [3]. Adjustments to compensate for exposure technique errors 

can be made at the time of display. The ability to correct over- or underexposed images in CR 

and DR radiographic systems by simply changing the window and/or level, has led to the 

tendency to be less concerned about the exposure technique and creates the opportunity to 

use more radiation than necessary. Moreover, in digital radiography, the computer 

automatically adjusts an image that is overexposed to ensure that the image is of diagnostic 

quality. This automatic adjustment combined with the separation of image acquisition and 

display can contribute to increased patient exposure [3]. An excessive exposure to a patient 

during a digital radiography examination does not affect image quality, except at extremely 

high levels of exposure. In fact, the decreased image noise that results from additional 

exposure can lead to a corresponding decrease in complaints from radiologists regarding 

image quality.  

Overall, digital radiography may have the tendency to lead to increased radiation dose, 

therefore, optimization in digital radiography is of critical importance. 
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5.1.2 Thorax radiography 

Chest radiography is one of the most frequently performed diagnostic radiographic 

examinations. In 2011, the frequency of chest radiography in Belgium was 230 per 1000 of 

population [4]. In the same period, the average amount of chest radiographs over 36 

European countries was 194 per 1000 of population [4] (Figure 5-2). In 2012 and 2013, 31% of 

all radiography examinations in Belgium were chest radiographs [5].  

 
Figure 5-2: Average frequencies per 1000 of population for plain radiography examinations [4] 

Although the frequency of chest radiography is high, the contribution to the collective dose is 

rather low. The mean effective dose estimated in European countries for plain chest 

radiography is 0.10 mSv, in Belgium this is 0.09 mSv [4] (Figure 5-3).  

 
Figure 5-3:  Typical effective doses (mSv) for chest radiography in different European countries [4] 

The frequent use and diagnostic importance of chest X-ray makes it an interesting topic for 

optimization of image quality and patient dose. Therefore, the correlation between clinical 

and physical-technical image quality was assessed for digital chest radiography.  
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5.2 Paper I 

Correlation of Contrast-Detail Analysis and Clinical Image Quality Assessment in Chest 

Radiography with a Human Cadaver Study 
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Advance in Knowledge: A statistically significant correlation ( r = 0.92, P < .001) was observed 

between the visual grading analysis scores and the inverse image quality figures; results 

support the value of contrast-detail phantom analysis in the evaluation of clinical image 

quality in chest radiography. 

Implication for Patient Care: The correlation between contrast-detail phantom analysis and 

clinical image quality assessment can be used to determine a contrast-detail reference curve, 

making it possible to optimize the quality of images obtained with digital chest radiography 

units. 

ABSTRACT  

Purpose: To determine the correlation between the clinical and physical image quality of chest 

images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. 

Materials and Methods: The use of human cadavers fulfilled the requirements of the 

institutional ethics committee. Clinical image quality was assessed by using three human 

cadavers embalmed with the Thiel technique, which results in excellent preservation of the 

flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image 

acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-

detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an 
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amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper 

filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) 

were altered to simulate different quality levels. Four experienced radiologists assessed the 

image quality by using a visual grading analysis (VGA) technique based on European Quality 

Criteria for Chest Radiology. The phantom images were scored manually and automatically 

with use of dedicated software, both resulting in an inverse image quality figure (IQF). 

Spearman rank correlations between inverse IQFs and VGA scores were calculated.  

Results: A statistically significant correlation (r = 0.80, P< .01) was observed between the VGA 

scores and the manually obtained inverse IQFs. Comparison of the VGA scores and the 

automated evaluated phantom images showed an even better correlation (r = 0.92, P< .001). 

Conclusion: The results support the value of contrast-detail phantom analysis for evaluating 

clinical image quality in chest radiography. 

INTRODUCTION 

In digital radiography, patient radiation doses should be kept as low as possible while 

maintaining an appropriate image quality and accurate diagnostic value (1). Evaluation of 

image quality can be based on detector characteristics such as detective quantum efficiency, 

modulation transfer function, and contrast-to-noise ratio (2,3). These physical measurements 

describe the technical performance of the detector but are difficult to link directly to clinical 

performance (4). Contrast-detail phantom studies are well established in medical physics and 

can be used to compare the image quality of different radiography systems or different 

acquisition techniques (5–8). An advantage of the contrast-detail phantom technique is that it 

includes the complete imaging chain, including the human observer (9). However, because 

these phantom models are not related to patient anatomy, it is unclear whether this method is 

appropriate for simulating clinical image quality. Clinical image quality can be assessed by 

applying visual grading analysis (VGA) (10,11) or receiver operating characteristic (ROC) 

analysis (12–14) in a patient population. However, it is difficult to recruit patients for these 

studies because either large numbers of patient images must be available or one patient must 

be irradiated with different dose settings, which is ethically not allowed. As an alternative, 

clinical images of an anthropomorphic phantom can be acquired. Compared with contrast-

detail phantoms, anthropomorphic phantoms enable a better approximation of the clinical 

reality with respect to anatomic background (9). In the present study, the image quality of 
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chest radiographs was assessed with use of human cadavers embalmed by using the Thiel 

technique (15). In contrast to the classic formol embalming technique, the Thiel embalming 

method results in excellent preservation of the flexibility and plasticity of organs and tissues 

(15,16). As a result, lungs can be inflated during image acquisition to simulate the anatomy on 

a chest radiograph. Because chest radiography involves many anatomic structures with 

different x-ray absorption, a wide range of gray values is observed on the clinical images. The 

dynamic range observed on radiographs of a contrast-detail phantom is typically much lower 

and, as a result, does not reflect the clinical reality. Therefore, the aim of the present study 

was to evaluate the correlation between the clinical and physical image quality of chest 

images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom, 

respectively. 

MATERIALS AND METHODS 

Thiel embalmed Cadavers 

The use of human cadavers fulfilled the requirements of our institutional ethics committee. 

Three human cadavers (one male, two female) were embalmed by using the Thiel method 

(16). In this technique, 4-chloro-3-methylenphenol, in addition to various salts, is used for 

fixation and boric acid is added for disinfection. Furthermore, ethylene glycol is used for 

preservation of tissue plasticity; the concentration of formalin is kept to the strict minimum 

(0.8%) (15). In contrast to the standard formalin embalming technique, this technique results 

in well-preserved organs and tissues with regard to color, consistency, natural flexibility, 

natural plasticity, and transparency. As a result, lung tissue is preserved completely, making it 

possible to ventilate the lungs by performing a tracheotomy in combination with balloon 

ventilation. After ventilating the lungs, chest radiographs can be acquired for subjective image 

quality analysis. An example of a chest radiograph obtained in a Thiel-embalmed cadaver is 

shown in Figure 1 . 

Contrast-Detail phantom 

The contrast-detail phantom (CDRAD 2.0; Artinis Medical Systems, Zetten, the Netherlands) 

consists of a Plexiglas plate (265 X 265 X 10 mm
3
) with a grid of 15 X 15 cells. The cells contain 

circular holes with depths and diameters varying logarithmically from 0.3 to 8.0 mm, 

simulating variations in contrast and resolution, respectively. For objects measuring 4 mm and 

smaller, two identical holes are present—one in the center and one placed at random in one 
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of the four cell corners. The presence of these additional objects enabled us to perform a four-

alternative forced-choice experiment in which the observers must identify the locations of the 

corner objects if considered visible. In this way, these additional objects help minimize 

potential biases due to a priori knowledge of the presence of objects in every square region 

(7). This phantom was used to assess the minimum contrast required to visualize objects of 

different sizes above the noise threshold: the contrast-detail curve. The phantom was placed 

between two slabs of 5-cm-thick polymethylmethacrylate to simulate patient attenuation and 

scatter (17). 

 

Figure 1: Example of a chest radiograph in a Thiel-embalmed cadaver 

Image acquisition 

For this study, the radiographic system (Siemens, Erlangen, Germany) consisted of an 

amorphous silicon flat-panel detector (Trixell, Moirans, France), x-ray tube (Optilix 150/30/50 

HC-100, Siemens; focal spot size, 0.6 mm), and high-voltage generator (Polydoros LX 30 or 50 

Lite, Siemens). The amorphous silicon image detector is equipped with a 43 X 43-cm² x-ray 

sensing surface with a 3000 X 3000 matrix and 143- µm pixel size. Chest radiographs of the 

Thiel embalmed cadavers were acquired at a focus-to-detector distance of 150 cm by using 

automatic exposure control. Different settings of tube voltage (70, 81, 90, 100, 113, and 125 

kVp), copper filtration (0.1, 0.2, and 0.3 mm Cu), and sensitivity (speed class of 200, 280, 400, 

560, and 800) were applied. After lung ventilation, four radiographs of the Thiel-embalmed 

cadavers were obtained at each setting. Then, a series of radiographs of the contrast-detail 

phantom was acquired by using the same exposure settings as for the Thiel embalmed 
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cadavers. For the contrast-detail phantom experiment, 16 images were obtained per exposure 

setting. 

Image analysis 

After image acquisition, all data were sent to a picture archiving and communication system 

workstation (Centricity, version 2.0 CRS5 SP2; GE Healthcare, Barrington, Ill ) for image quality 

assessment. Images were displayed on a 20-inch, 3-megapixel high-contrast grayscale monitor 

(model MFGD 3420; Barco, Kortrijk, Belgium). The monitor was calibrated to comply with the 

Digital Imaging and Communications in Medicine Part 3.14 Gray-Scale Standard Display 

Function, using calibration software provided by the manufacturer (MediCal Pro, Barco) (18). 

The readers were allowed to adjust image brightness and contrast and to magnify the images 

to full resolution. Images were presented in random order and interpreted independently. 

Scoring of Cadaver Images 

Four experienced radiologists (P.V.S., with 25 years of experience; K.V., with 24 years of 

experience; and B.S.S. and M.V., both with 6 years of experience) assessed the soft-copy chest 

radiographs and scored the image quality by using criteria adopted from the European 

Guidelines on Quality Criteria for Diagnostic Radiographic Images (19). The criteria are listed in 

Table 1. For all three cadavers, each image was viewed individually and each structure rated 

on a scale from 1 to 4 according to the criteria listed in Table 2. An absolute VGA score for 

each reader was calculated as follows :  

TS

G

VGAS

S

s

O

t

tsabs

*

1 1

,,
   

where Gabs,s,t is the rating for a particular structure (s) and Thiel-embalmed body (t) (20). S and 

T are the number of structures and cadavers, respectively. The latter scoring reflected the 

image quality of the individual images without the use of a reference image (21). Before 

starting the study, readers underwent a training session to familiarize themselves with the 

scoring method. 
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Table 1: Image quality criteria for chest radiography 

Criterion number Description 

1 Medial border of the scapulae outside the lung fields 

2 Reproduction of the whole rib cage above the diaphragm 

3 Visually sharp reproduction of the vascular pattern in the whole lung, 
particularly the peripheral vessels 

4 Visually sharp reproduction of the trachea and proximal bronchi 

5 Visually sharp reproduction of the borders of the heart and aorta 

6 Visually sharp reproduction of the diaphragm and lateral costo-phrenic 
angles 

7 Visualization of the retrocardiac lung and the mediastinum 

8 Visualization of the spine through the heart shadow 

9 Small round details in the whole lung, including the retrocardiac areas: 
high contrast: 0.7 mm diameter 

10 Small round details in the whole lung, including the retrocardiac areas: 
low contrast: 2 mm diameter 

11 Linear and reticular details out to the lung periphery: high contrast: 0.3 
mm in width 

12 Linear and reticular details out to the lung periphery: low contrast: 2 
mm in width 

 

Table 2: Rating used to evaluate the clinical images 

Rating The structure in the image is: 

1 Not visible 

2 Poorly reproduced 

3 Adequately reproduced 

4 Very well reproduced 

Scoring of Contrast-Detail Phantom Images 

Four medical physicists identified the location of the corner holes in every square cell. The 

results were entered on a score sheet for each image reviewed. After the indicated positions 

of the corner holes were compared with the true hole positions in the phantom, a correction 

scheme was used, taking into account the nearest neighbors to get more accurate results. 

After the correction, the threshold contrast value (Ci,h) was determined for each different row 

(detail Di) as the smallest visible depth in regions of valid detection (7). The inverse image 
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quality figure (IQF) was introduced for quantitative comparison of the contrast-detail images 

(22). The inverse IQF is defined as follows:  

 


n

i thii DC
IQFinv

1 ,

100
 

where Di,th denotes the threshold diameter in contrast column i and Ci the correctly identified 

contrast values. The higher the inverse IQF, the better the low-contrast visibility. The inverse 

IQF was calculated for all analyzed images and averaged over the four readers. In addition to 

human reading, automated contrast-detail phantom analysis was performed with software 

(CDRAD Analyzer, version 2.1; Artinis Medical Systems). The CDRAD Analyzer analyzes the 

images and applies a statistical method to determine whether a certain contrast-detail 

combination is detected or not. This statistical method uses the average pixel signal value and 

standard deviation of both the image of the contrast-detail combination under evaluation and 

its background pixels. The program uses the Welch Satterthwhaite method (Student t test with 

Welch correction) to determine if the average signal level in a certain square is greater than 

the average background level plus an “a priori difference of means” (23). If the difference 

between the two signals is statistically significant, at a specified significance level, the detail is 

detected. After evaluation of the image, a contrast-detail diagram is displayed and an inverse 

IQF calculated. 

Statistical Analysis 

Correlation between VGA scores and inverse IQFs was determined by means of the Spearman 

rank correlation coefficient with use of an ordinary leastsquare algorithm. Interobserver 

agreement for VGA scores and inverse IQFs was determined by calculating the intraclass 

correlation coefficient. An intraclass correlation coefficient of less than 0.8 was considered 

indicative of poor interobserver agreement. A 95% confidence interval was used for all 

statistical measures. All calculations were performed with software (PASW Statistics, version 

18.0.3; SPSS, Chicago, Ill). 

RESULTS 

Figure 2 presents the automatically scored inverse IQFs versus the manually obtained inverse 

IQFs. The error bars in the x direction represent the standard deviation between the scores of 

the four independent readers. In the y direction, the error bars represent the standard 

deviation between the automatically obtained inverse IQFs of 16 images, taken at the same 
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exposure settings. A linear regression curve was plotted, and a Spearman rank correlation 

coefficient of 0.895 (P< .001) was obtained. The slope of the linear regression line showed a 

mean increase of 19% in the measurement of the automatically obtained inverse IQF 

compared with the value derived by the human observers. Therefore, the software tool was 

more sensitive than the human observers in the correct detection of objects in the contrast-

detail phantom. There was good interobserver agreement, with intraclass correlation 

coefficients of 0.916 (P< .001) and 0.904 (P< .001) for VGA score and inverse IQF, respectively. 

As a result, mean scores were used for further analysis.  

 

Figure 2: Graph shows automatically scored versus manually scored inverse IQF’s. Error bars in x and y 

directions represent standard deviation between scores of four independent readers and between 

automatically obtained scores, respectively. Linear regression curve was plotted, and Spearman rank 

correlation coefficient was 0.895 (P< .001). 

Table 3 gives an overview of all applied exposure parameters and the corresponding mean 

inverse IQF and VGA scores. For both inverse IQF and VGA score, an increase in image quality 

was noticed when lowering the kilovolt peak or sensitivity. Figure 3 shows the correlation 

between the mean VGA score of the four independent readers obtained with different 

exposure settings as a function of the automatically obtained inverse IQF from the contrast-

detail images acquired with corresponding settings. The error bars represent the standard 

deviation between the scores of the different readers. A linear regression curve was plotted, 

and a Spearman correlation coefficient of 0.916 (P< .001) was found. For the manually 
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obtained inverse IQF, the correlation coefficient with the VGA score was 0.796 (P= .001). 

Further analysis showed that automatically obtained inverse IQFs had good correlation with 

different kilovolt peak and sensitivity settings. Spearman correlation coefficients of 0.999 (P= 

.009) and 0.900 (P= .037) were obtained for different kilovolt peak and sensitivity settings, 

respectively. For copper filtration, no significant correlation was found (P= .051). Analysis of 

the inverse IQF and VGA score data as a function of additional copper filtration revealed that 

the amount of copper filtration used (range, 0.1–0.3 mm Cu ) did not have a significant 

influence on those parameters (P= .443 and P= .509, respectively). 

 
Figure 3: Graph shows mean VGA scores versus automatically obtained inverse IQF’s. Error bars represent 

standard deviation between scores of different readers. Linear regression curve was plotted, and 

Spearman correlation coefficient was 0.916 (P< .001). 
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Table 3: Summary of the exposure parameters, IQFinv  and VGAS 

kVp Cu filtration Sensitivity IQFinv±SD VGAS±SD 

125 0.1 400 2.68 ±0.20 2.90 ±0.25 

125 0.2 400 2.66 ±0.17 2.82 ±0.32 

125 0.3 400 2.66 ±0.13 2.71 ±0.24 

70 0.0 400 4.17 ±0.30 3.58 ±0.24 

81 0.0 400 3.95 ±0.34 3.31 ±0.11 

90 0.0 400 3.80 ±0.26 3.25 ±0.21 

100 0.0 400 3.56 ±0.20 3.09 ±0.50 

113 0.0 400 2.96 ±0.18 2.84 ±0.36 

125 0.0 400 3.01 ±0.15 2.98 ±0.36 

125 0.0 200 3.42 ±0.23 3.00 ±0.30 

125 0.0 280 3.13 ±0.23 2.82 ±0.37 

125 0.0 560 2.71 ±0.14 2.72 ±0.39 

125 0.0 800 2.56 ±0.17 2.67 ±0.33 

DISCUSSION 

The diagnostic information provided with digital detectors is equal or superior to that 

obtained with conventional screen-film systems (7). Because digital systems have a lot of 

practical and technical advantages, they are currently regarded as the gold standard in 

radiography. In contrast to screen-film systems, digital radiography units can still provide 

excellent image quality with patient overexposure (1). Therefore, appropriate optimization of 

digital radiography exposure is needed to avoid unnecessarily high patient doses (1). The latter 

optimization is an important task for the medical physics expert, as stated by the European 

Medical Exposure Directive (24). The main goal of optimizing digital radiography procedures is 

to determine the patient dose level required to provide sufficient image quality for making a 

correct diagnosis. Fortunately, because of their large dynamic range, digital radiography 

systems offer many possibilities for optimization. Methods of patient dose evaluation are 

easily available; however, techniques for image quality optimization are far more complicated. 

VGA and ROC studies are commonly used to assess clinical image quality. In VGA studies, 

relative or absolute scoring is performed on the basis of the visibility of normal anatomic 

structures (10,11,25). The task for observers in an ROC study is to detect whether a patient 
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contains a pathologic structure or not (12–14). However, these studies are difficult to 

implement in routine practice because they imply a substantial additional workload for the 

radiologists and large patient data groups must be available. Therefore, the latter methods are 

not feasible within a routine quality assurance program. A more practical approach to 

assessing image quality is the use of psychophysical measurements, where an observer has to 

recognize visual stimuli such as bar patterns or circular objects with different diameters and 

contrasts. These contrast-detail studies have been widely used for the objective analysis of the 

image quality performance of digital radiography systems (6,7,17,26). In contrast to VGA and 

ROC studies, contrast-detail studies are easily implemented in a quality assurance program 

because no patient data are required and images can be analyzed by the medical physics 

expert (27). However, the relationship between these contrast-detail studies and clinical 

image quality is not clearly defined. In fact, to be useful, these phantom measurements should 

be able to help predict changes in clinical image quality. The latter is not obvious because 

these phantoms do not simulate patient anatomy. As a result, the variations in gray values 

observed on images of contrast-detail phantoms are typically much lower than those of 

patients. In the current study, a VGA and contrast-detail study was set up to assess the 

relationship between contrast-detail analysis and clinical image quality assessment with use of 

Thiel-embalmed cadavers and a contrast-detail phantom. Cadavers fixed with conventional 

procedures, by using formalin for conservation, suffer from profound changes of color, 

strength, and fragility of organs and tissues. With use of the Thiel embalming method, the 

formalin content of the fixation solution is drastically reduced. With the low-odor embalming 

technique, the color, consistency, and transparency of organs and tissues are well preserved 

(15,16). Because this new technique also results in very good preservation of the lung 

structures, lungs can be inflated. To approximate as nearly as possible the normal patient 

anatomy, Thiel-embalmed bodies were ventilated during image acquisition. After the 

assessment of different thoracic regions by experienced radiologists, equivalency of thorax 

images of patients and Thiel embalmed cadavers was confirmed. This implies that instead of 

large patient groups, Thiel-embalmed bodies can be applied to assess clinical image quality by 

using VGA and ROC studies. Our study showed excellent correlation between contrast-detail 

parameters (inverse IQF) and clinically observed quality as scored by radiologists (VGA score). 

The correlation was even more pronounced when using automated computer analysis of the 

contrast-detail images. The latter can be attributed to the fact that there was no interobserver 

variability in the reading of the phantom images. The significant correlation between physical 
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and clinical image quality with use of a contrast-detail phantom and Thiel-embalmed cadavers 

confirms that differences in image quality seen in contrast-detail studies can actually help 

predict changes in the clinical image quality, thereby emphasizing the relevance of the 

contrast-detail method for optimization purposes. Only limited data describing the link 

between contrast-detail studies and clinical image quality are available in the literature. Geijer 

and Persliden (28) evaluated the image quality at different tube potential settings with use of 

anteroposterior lumbar spine radiography as a model. Image quality was assessed with VGA of 

an Alderson phantom and with CDRAD phantom contrast-detail analysis. They showed good 

consistency between results of the VGA and the computer reading of the contrast-detail 

analysis. However, the correlation between VGA and contrast-detail analysis was not further 

investigated. Bacher et al (17) performed a VGA and contrast-detail study with use of digital 

chest images to compare an amorphous silicon and amorphous selenium flat-panel detector. 

To obtain a contrast-detail performance equal to that of an amorphous silicon detector, they 

found it necessary to have a threefold increase in the entrance dose value used with the 

amorphous selenium detector system. The latter difference in entrance dose values was also 

observed in the clinical VGA study. However, no further correlation analysis was performed 

between VGA and the contrast-detail analysis. Image quality studies always have some 

limitations. In the current study, clinical image quality was assessed by means of a subjective 

overall quality score and not by means of detection of an abnormality. Detection of lesions by 

means of ROC analysis could give a more precise assessment of image quality for a specific 

clinical application. Tingberg et al (29) found that noise levels (and hence dose settings) had a 

significant effect on the VGA score, whereas the detection of abnormalities was not altered. As 

a result, doses could be further reduced on the basis of the pathology detection study, 

compared with the results of the VGA data. However, the required image quality may be 

considerably different depending on the anatomic region under investigation. Moreover, 

within a specific anatomic region, the quality will depend on the types of lesions to be 

detected (eg, chest tumors, interstitial nodular disease, interstitial linear disease). Further 

studies should reveal the influence of these factors. On the basis of our findings, further 

research can be performed to establish a reference contrast-detail curve for thorax 

radiography. The latter curve will simulate the minimum contrast-detail performance needed 

to obtain sufficient clinical quality in chest radiography. A similar reference curve already 

exists in the framework of digital mammography, as described in the European Reference 

Organization for Quality Assured Breast Screening and Diagnostic Services protocol for the 
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quality control of digital mammography systems (30). However, the latter curve was not 

determined on the basis of the link between clinical and physical findings. The availability of 

such reference curves is very useful within a quality assurance program to confirm if the local 

image quality fulfills the requirements. On the basis of the obtained results, settings can be 

changed to realize a sufficient level of image quality. The use of a reference contrast-detail 

curve is not limited to radiography of the thorax. Similar studies can be set up to determine a 

reference curve for other radiographic examinations (eg, abdominal or skeletal radiography).  
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6  
Paper II 

Correlation of Clinical and Physical-Technical Image Quality in Chest 

CT: A Human Cadaver Study Applied on Iterative Reconstruction 

6.1 Background 

6.1.1 CT 

Computed tomography (CT) was first introduced in the early 1970s by G.N. Hounsfield. The 

main application of CT is transversal slices or 3D imaging instead of 2D projection imaging. It 

has important advantages compared to conventional radiography: X-ray attenuation 

differences of less than 1% can be detected and superimposition of structures is eliminated. 

While in conventional imaging, the attenuation difference needs to be more than 2% to 

become visible and organs are superimposed to on other.  

CT is an imaging technique based on the reconstruction of the linear X-ray attenuation 

coefficient as a function of spatial coordinates in the transversal imaging plane. To perform 

this task, the attenuation of an X-ray beam crossing the object or patient has to be measured 

from a large number of different angles [6]. Afterwards, a reconstruction filter or 

reconstruction kernel is applied. These are typically divided in bone or sharp kernels and soft 

tissue or smooth kernels. Sharp kernels accentuate higher frequencies in the image at the 
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expense of increased noise while smooth kernels produce images with reduced noise but 

lower spatial resolution [7]. CT scanning results usually in transversal slices, although sagittal 

and coronal sections can also be constructed by digital processing of the transversal images 

[8]. Combinations of the different orientation leads to 3D imaging, used in radiotherapy 

planning. 

Since their development in the early 70s, CT devices have constantly been improved. Modern 

CT scanners facilitate faster gantry rotation cycle times, helical scanning technique, thinner 

detector widths, increased numbers of detector rows, improved image quality due to 

increased spatial resolution and decreased motion artifacts and finally faster data acquisition 

with wider volume coverage [9]. All these advantages have greatly extended the role of CT 

imaging in medical X-ray diagnostics. 

The radiation dose in CT examinations is typically expressed in the Computed Tomography 

Dose Index (CTDI). The CTDI represents the average absorbed dose, along the z-axis from one 

axial CT scan. The CTDI is calculated by dividing the integrated absorbed dose by the nominal 

total beam collimation [10]. To represent dose for a specific scan protocol, which almost 

always involves a series of scans, it is essential to take into account any gaps or overlaps 

between the x-ray beams from consecutive rotations of the x-ray source as expressed in the 

pitch factor. This is accomplished with use of a dose descriptor known as the Volume CTDI 

(CTDIvol). The CTDIvol provides a single CT dose parameter, based on a directly and easily 

measured quantity, which represents the average dose within the scan volume for a 

standardized CTDI phantom[10].  

6.1.2 Iterative reconstruction 

CT images are reconstructed from projection data, which represent the total integrated 

attenuation of the X-ray. The image reconstruction technique uses these projection data to 

generate a CT image such that each pixel value ideally represents the attenuation of the 

patient at that pixel location [8]. Since the introduction of CT, filtered back projection (FBP) 

has been the primary image reconstruction technique. The standard FBP algorithm is a 

compromise between reconstruction speed and image noise. Fast reconstruction times comes 

at the expense of ignoring scanner hardware-specific and photon noise statistic information, 

which introduces higher image noise and artifacts in CT images [11]. Although FBP is a 

standard image reconstruction method in CT, there is a trade-off between spatial resolution 
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and image noise. Hence, the amount of radiation dose reduction is limited by the diagnostic 

quality of images [12].  

With the goal of reducing patient dose and at the same time maintaining the diagnostic image 

quality, iterative reconstruction (IR) algorithms were implemented in the last generation of CT 

equipment. Unlike analytical reconstruction algorithms such as FBP, IR generates a set of 

synthesized projections by accurately simulating and modeling the data collection process in 

CT. The model incorporates a physical model of the CT system that includes scanner geometric 

information (including size of each detector cell, dimensions of the focal spot and the shape 

and size of each image voxel) and system statistical information (including photon statistics 

and electronic noise in the data acquisition system) [13]. While FBP is based on only a single 

reconstruction, IR algorithms use multiple repetitions. As a consequence, the computational 

demands are much higher. Due to the exponential growth of computer power, the use of IR 

methods has become a realistic option with reconstruction times acceptable for clinical 

workflow. 

Essentially, iterative reconstruction introduces a correction loop in the image generation 

process that cleans up artifacts and noise. After the initial reconstruction, artificial raw data 

are calculated from the reconstructed image, as if the image had been the measurement 

object in a CT scan. These new data are compared to the actually measured raw data, and a 

correction image is calculated (Figure 6-1). The iteration process can be initiated using prior 

information, for example, a standard FBP reconstruction [14]. In general, the better the prior 

images match the final images, the faster the process leads towards a stable solution. The 

iterative process is finished when either a fixed number of iterations is reached, or the update 

for the current image estimate is considered close enough to the previous one or when a 

predefined quality criterion in the image estimate is fulfilled.  
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Figure 6-1: Schematic view of the iterative reconstruction process [14] 

Most IR techniques work in the raw data domain. However, it is also possible to incorporate a 

correction loop in the image domain [11]. The only real advantage of the raw data loop is 

correction for artifacts caused by the inexact nature of FBP reconstructions. However, the 

forward projection is the most complex and the most computationally expensive step of the IR 

process. Therefore, it makes sense to use only the loop in the raw data domain when artifact 

correction is necessary [15]. Otherwise, the use of the raw data loop would only result in 

increased reconstruction time but not improve image quality compared to the use of the 

image based correction loop. 

In 2008 General Electric (Milwaukee, WI, USA) introduced the first CT iterative reconstruction 

method commercially available for clinical applications, under the name of adaptive statistical 

iterative reconstruction (ASIR). ASIR uses a blend of filtered back projection images with 

iteratively reconstructed images in the raw data domain to reduce the image noise [16]. Two 

years later, Siemens (Erlangen, Germany) released an iterative reconstruction in image space 

(IRIS). Contrary to ASIR, IRIS is based on an iterative reconstruction loop in the image domain 

to speed up the reconstruction process [17]. Sinogram affirmed iterative reconstruction 

(SAFIRE, Siemens Healthcare) takes information from raw data and processes in the image 

domain to compensate for longer reconstruction time [15]. In 2011, Philips commercialized 

the fourth version of its iterative method which was called iDose. After noise removal in the 

raw data domain, an optimal anatomical model is used in the image domain to iteratively 
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eliminate the quantum image noise and to maintain the appearance of a full dose image [18]. 

Toshiba has also developed an iterative method, adaptive iterative dose reduction (AIDR), 

which works both in the image and in the raw data domain and automatically calculates the 

optimized number of iterations [19]. GE introduced a full iterative reconstruction or model-

based iterative reconstruction (MBIR- under the commercial name of Veo). Unlike ASIR, Veo is 

a fully iterative method working in the raw data domain, which takes not only the data 

statistics into account but also the geometry of the CT equipment itself [20].  

6.1.3 Thorax CT 

Compared with chest radiography, CT has greater diagnostic accuracy in a range of clinical 

situations. In 2011, the frequency of chest CT examinations in Belgium was 30 per 1000 of 

population [4]. In the same period, the average amount of chest CT examinations over 36 

European countries was 13 per 1000 of population [4] (Figure 6-2). In 2012 and 2013, about 

260 000 chest CT examinations, i.e. 12% of all CT examinations, were performed in Belgium 

[5]. 

 

Figure 6-2: Average frequencies per 1000 of population for different CT examinations [4] 

The mean effective dose per patient estimated in European countries for chest CT 

examinations is 6.6 mSv, in Belgium this is 4.2 mSv [4] (Figure 6-3).  
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Figure 6-3: Typical effective doses (mSv) for chest CT in different European countries [4] 

The mean effective dose associated with CT is remarkably higher than the mean effective dose 

associated with plain radiography. Especially in chest imaging, where the effective dose of CT 

is 50 times higher than for a chest radiography. Therefore, the main challenge of CT is to keep 

radiation dose to a minimum, while still obtaining diagnostic image quality. For this reason, 

several new image acquisition and reconstruction techniques have been developed aiming to 

reduce radiation exposure. 
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6.2 Paper II 

Correlation of clinical and physical-technical image quality in chest CT: a human cadaver 

study applied on iterative reconstruction.  
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ABSTRACT  

Background: The first aim of this study was to evaluate the correlation between clinical and 

physical-technical image quality applied to different strengths of iterative reconstruction in 

chest CT images using Thiel cadaver acquisitions and Catphan images. The second aim was to 

determine the potential dose reduction of iterative reconstruction compared to conventional 

filtered back projection based on different clinical and physical-technical image quality 

parameters.  

Methods: Clinical image quality was assessed using three Thiel embalmed human cadavers. A 

Catphan phantom was used to assess physical-technical image quality parameters such as 

noise, contrast-detail and contrast-to-noise ratio (CNR). 

Both Catphan and chest Thiel CT images were acquired on a multislice CT scanner at 120kVp 

and 0.9 pitch. Six different refmAs settings were applied (12, 30, 60, 90, 120 and 150refmAs) 

and each scan was reconstructed using filtered back projection (FBP) and iterative 

reconstruction (SAFIRE) algorithms (1,3 and 5 strengths) using a sharp kernel, resulting in 24 

image series. Four radiologists assessed the clinical image quality, using a visual grading 

analysis (VGA) technique based on the European Quality Criteria for Chest CT.  

Results: Correlation coefficients between clinical and physical-technical image quality varied 

from 0.88 to 0.92, depending on the selected physical-technical parameter. Depending on the 
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strength of SAFIRE, the potential dose reduction based on noise and CNR and the inverse 

image quality figure (IQFinv) varied from 14.0% to 67.8%, 16.0 to 71.5% and 22.7% to 50.6% 

respectively. Potential dose reduction based on clinical image quality varied from 27% to 

37.4%, depending on the strength of SAFIRE. 

Conclusion: Our results demonstrate that noise assessments in a uniform phantom 

overestimate the potential dose reduction for the SAFIRE IR algorithm. Since the IQF inv based 

dose reduction is quite consistent with the clinical based dose reduction, an optimized 

contrast-detail phantom could improve the use of contrast-detail analysis for image quality 

assessment in chest CT imaging. In conclusion, one should be cautious to evaluate the 

performance of CT equipment taking into account only physical-technical parameters as noise 

and CNR, as this might give an incomplete representation of the actual clinical image quality 

performance. 

BACKGROUND  

The number of CT examinations has increased rapidly over the last few years, resulting in a 

substantial increase in radiation dose of the population in the Western world [1]. It has been 

estimated that these CT examinations may be responsible for approximately 2% of all incident 

cancer cases in the United States [2]. Consequently, a lot of efforts have been made over the 

last decade to reduce the radiation dose for the patient by introducing new techniques such as 

automatic tube current modulation, adaptive collimation and iterative reconstruction [3-6]. If 

new dose reduction techniques are implemented, the impact on the image quality has to be 

investigated.  

Medical physicists assess the image quality in CT using technical phantoms, evaluating 

parameters as noise, modulation transfer function (MTF), contrast-to-noise ratio (CNR) and/or 

contrast-detail. However, as these phantom models are not related to patient anatomy, it is 

unclear whether this methodology is appropriate to evaluate the clinical image quality. 

Particularly for noise, this can be problematic, since noise measurements in a uniform 

phantom don’t account for the complex relationship between anatomical variability and image 

quality [7]. To be able to compare the performance of different CT scanners or to evaluate 

dose optimization tools, it is of critical importance that physical-technical image quality based 

dose optimization performance is related to the clinical image quality based dose optimization 

performance.  
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Clinical image quality is typically assessed by applying a visual grading analysis (VGA) [8] or a 

receiver operating characteristics (ROC) [9] study setup in a patient population. However, 

these patient studies are rather difficult to implement since either large numbers of patient 

images must be available or one patient has to be exposed to different dose settings, which 

should be avoided from ethical point of view. As an alternative, clinical images of an 

anthropomorphic phantom can be acquired. Compared to physical-technical phantoms, these 

phantoms approximate better the clinical reality with respect to anatomical features [10].  

In present study, patient image quality of chest CT was assessed by means of human cadavers, 

conserved using the Thiel embalming technique [11]. In contrast to the classical formol 

embalming technique, the Thiel embalming method results in excellent preservation of the 

flexibility and plasticity of organs and tissues [11, 12]. As a result, lungs can be inflated during 

image acquisition to simulate the anatomy of a chest CT [13]. Consequently, these Thiel 

embalmed cadavers are an excellent model to investigate the link between clinical and 

physical-technical image quality. This link was already established in conventional chest 

radiography [13]. However, with respect to CT imaging, the correlation between clinical and 

physical-technical image quality was not yet examined. 

The first aim of this study was to evaluate the correlation between clinical and physical-

technical image quality applied to different strengths of iterative reconstruction in chest CT 

images using Thiel cadaver acquisitions and Catphan images. The second aim was to 

determine the potential dose reduction of iterative reconstruction compared to conventional 

filtered back projection based on different clinical and physical-technical image quality 

parameters.  

MATERIALS AND METHODS 

Thiel embalmed cadavers 

The use of human cadavers is in compliance with the Helsinki Declaration and fulfilled the 

requirements of the ethical committee of our institution (Ghent University, B67020095736). 

The cadavers were obtained from body donations to the department of Anatomy of Ghent 

University. Three human cadavers (2 male, 1 female) were embalmed using the methodology 

of Prof. Em. Walther Thiel, Anatomisches Institut Karl-Franzens-Universität, Graz, Austria [12]. 

Hereby, 4-chloro-3-methylenphenol as well as various salts are used for fixation and boric acid 

is added for disinfection. Furthermore, ethylene glycol is used for preservation of tissue 

plasticity, while the concentration of formalin is kept to the strict minimum (0.8%) [11]. In 
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contrast to standard formalin-embalmed human cadavers, this technique results in well 

preserved organs and tissues concerning color, consistency, natural flexibility and natural 

plasticity. As a result, lung tissue is preserved completely which makes it possible to ventilate 

the lungs by performing a tracheotomy in combination with balloon ventilation. After 

ventilating the lungs, chest CT acquisitions can be acquired for subjective image quality 

analysis. In the cadavers used in this study, the lungs showed signs of pulmonary oedema and 

pulmonary parenchymal consolidation. Equivalency of patient and Thiel thoracic CT images is 

displayed in Figure 1.  

  
Figure1 : Patient versus Thiel cadaver chest CT image. Normal lung parenchyma illustrating nodular 

hypodense structures in a low density area, nodular hyperdense structures in a low density area, inter- or 

intralobular septa and the visceral pleura in both a patient (a) and a Thiel cadaver (b) chest CT image.  

Catphan phantom 

To evaluate the physical-technical image quality the Catphan@504 phantom (The Phantom 

laboratory, Salem, New York, USA) was used. The phantom consists of several modules to 

evaluate high and low contrast resolution, CNR and noise (Figure 2). In the low contrast 

module there are three areas with different contrast levels: 1%, 0.5% and 0.3%. Each contrast 

level contains targets with decreasing diameters (15, 9, 8, 7, 6, 5, 4, 3 and 2 mm). The CT 

number linearity and CT number accuracy module contains targets made from teflon, delrin, 

acrylic, polystyrene, low density polyethylene (LDPE), polymethylpentene (PMP) and air. The 

image uniformity module is made from a uniform material. The material’s CT number is 

designed to be within 2% (20HU) of water’s density at standard scanning protocols. 
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Figure 2: Catphan@504 phantom. The figure represents a CT image of the Catphan phantom. On the left, 

the CT number linearity and CT number accuracy module, which includes samples of teflon and acrylic 

used to calculate the CNR. In the middle, the low contrast module containing targets with different 

contrast levels:1%, 0.5% and 0.3%. Each contrast level has 9 targets with different diameters: 15, 9, 8, 7, 

6, 5, 4, 3, 2 mm. On the right the image uniformity module used to evaluate the noise using a circular ROI. 

Image acquisition 

All images in this study were acquired with a Somatom Definition Flash CT scanner (Siemens 

Healthcare, Erlangen, Germany). The CT scanner is equipped with the dual source technology, 

CARE Dose4D, CARE kV, and Sinogram Affirmed Iterative Reconstruction (SAFIRE). 

Chest CT scans of the lung ventilated Thiel embalmed cadavers were acquired using CARE 

Dose4D at different reference mAs values (12, 30, 60, 90, 120 and 150 refmAs), resulting in a 

mean CTDIvol of 0.84, 2.05, 4.08, 6.18, 8.35 and 11.59 mGy respectively. The 90 refmAs setting 

is clinically applied in our institution. Other scan parameters were 120kVp and pitch 0.9. Each 

data set was reconstructed at 3 mm using filtered back projection (FBP) with a sharp kernel 

(B70). To compare the FBP and the SAFIRE technique, all six data sets were also reconstructed 

using different strengths of IR (1,3 and 5 iteration steps). Similarly to the FBP reconstructed 

images, IR images were reconstructed using a sharp kernel (I70-1, I70-3, I70-5), resulting in a 

total of 24 image series (6 refmAs settings with each 4 reconstruction settings). 

Afterwards Catphan images were acquired without CARE Dose4D at a mAs value 

corresponding to the mean mAs value over the different slices in the Thiel cadaver acquired at 

the six different refmAs settings, resulting in a CTDIvol of 0.84, 2.11, 4.19, 6.37, 8.82 and 12.23 

mGy respectively. The same reconstruction settings as for the Thiel embalmed cadavers were 

used. All scanning and reconstruction parameters and the investigated phantoms and image 

quality parameters are listed in Table 1. 
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Table 1: Scanning and reconstruction parameters, investigated phantoms and image quality parameters 

used in this study 

Fixed scan 
parameters 

CTDI(vol) 
Thiel / Catphan 

Reconstruction 
parameters for 
each CTDI(vol) 

Scanned 
objects 

Investigated image quality 
parameters 

Thiel Catphan 

120kVp 0.84 / 0.84 B70 
Thiel cadavers 

(3) 
VGAS Noise 

0.9 pitch 2.11 / 2.05 I70/1 
Catphan 
phantom 

 IQFinv 

3 mm 
reconstruction 

thickness 
4.19 / 4.08 I70/3   CNR 

 6.37 / 6.18 I70/5 
 

  

 8.82 / 8.35     

 12.23 / 11.59  
 

  

Image quality analysis 

After acquisition, all data were sent to a PACS Workstation (GE Centricity PACS version 2.0 

CRS5 SP2) for image quality assessment. Images were displayed on a 30-inch, 3-megapixel 

high-contrast color monitor (Barco MDCC 6130DL, Kortrijk, Belgium). The monitor was 

calibrated to comply with the DICOM Part 3.14 Greyscale Standard Display Function, using 

calibration software provided by the manufacturer (MediCal Pro, BARCO, Kortrijk, Belgium) 

[14]. Maximum luminance of all monitors was adjusted to 400cd/m² and ambient lighting 

levels were below 50 lux as recommended by AAPM TG 18 [15]. 

 Scoring of Thiel images 

Four experienced radiologists (PS: 25 years of experience; TDW, MVB and MV: 6 years of 

experience) assessed the chest CT scans and scored the image quality using criteria based on 

the European Guidelines on Quality Criteria for Computed Tomography [16]. The criteria are 

listed in Table 2.  
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Table 2: Image quality criteria for chest CT 

Criterion 
No. 

Description: 

1 Visually sharp reproduction of a nodular hypodense structure in a high density area 
such as an alveolus in consolidated lung parenchyma 

2 Visually sharp reproduction of a nodular hypodense structure in a low density area 
such as normal lung parenchyma 

3 Visually sharp reproduction of a nodular hyperdense structure in a low density area 
such as a vessel in aerated lung parenchyma 

4 Visually sharp reproduction of an inter- or intralobular septum 

5 Visually sharp reproduction of the bronchial wall 

6 Visually sharp reproduction of the lung fissure 

7 Visually sharp reproduction of a peripheral pulmonary artery branch 

8 Visually sharp reproduction of fibrous strands 

9 Visually sharp reproduction of the parietal and or visceral pleura 

All criteria were evaluated in a predefined image area and a predefined image slice. For all 

three Thiel bodies, each stack was viewed individually and each structure was rated on a scale 

from 1 to 4 according to Table 3. An absolute VGA score (VGAS) for each reader was calculated 

as: 

TS

G

VGAS

S

s

T

t

tsabs

*

1 1

,,
     [17] 

were Gabs,s,t is the rating for a particular structure (s) and Thiel body (t). S and T are the number 

of structures and Thiel body’s, respectively 9 and 3. The latter scoring reflected the image 

quality of the individual images without using a reference image [18].  

All series were evaluated by the radiologists using Viewdex [19], a Java-based DICOM-

compatible software tool for presentation and evaluation of images, without influencing the 

image quality. All images were blinded for acquisition and reconstruction parameters. The 

readers were allowed to adjust the image brightness and contrast and to magnify the images 

to full resolution. Viewdex defines a random order for each individual reader and all stacks 

were interpreted independently. 
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Before starting the study, a training session was organized to familiarize the readers with the 

scoring methodology. 

Table 3: Rating used to evaluate the clinical images 

Rating The structure in the image 
is: 

1 Not visible 

2 Poorly reproduced 

3 Adequately reproduced 

4 Very well reproduced 

 Scoring of the Catphan phantom 

Six medical physicists identified the minimally visible target diameter at three different 

contrast levels. The inverse image quality figure (IQFinv) was introduced for quantitative 

comparison of the contrast-detail images [20]. The inverse image quality figure is defined as 

 


n

i thii DC
IQFinv

1 ,

100
 

where Di,th denotes the threshold diameter for contrast i in mm, and Ci denotes the contrast 

value. The higher the IQFinv, the better the low-contrast visibility. The IQFinv was calculated for 

all analyzed images and averaged over the six readers. 

The contrast to noise ratio relative to acrylic (soft tissue equivalent material) for teflon (bone 

equivalent material) was defined as: 

𝐶𝑁𝑅 =
(𝑅𝑂𝐼𝑡 − 𝑅𝑂𝐼𝑎)

𝑆𝐷𝑎
 

where 𝑅𝑂𝐼𝑡 is the mean attenuation for teflon, 𝑅𝑂𝐼𝑎 the mean attenuation for acrylic and 

𝑆𝐷𝑎 the mean noise for acrylic. CT attenuation values and mean noise (in Hounsfield units) for 

teflon and acrylic were obtained by manually placing a circular region of interest (ROI) of 200 

pixels in the target materials. CNR’s were calculated in four consecutive slices of the Catphan 

CT number linearity and CT number accuracy module. 

The image noise was evaluated using a circular ROI of 230 x 230 pixels in 11 following slices in 

the Catphan uniformity module.  
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Statistical analysis 

To determine the influence of different exposure and reconstruction settings, data were 

analyzed using the Friedman test, a signed rank, non-parametric test used when comparing 

more than two related samples.  

Inter-observer agreement for VGAS and IQFinv values was determined by calculating the 

intraclass correlation coefficient. An intraclass correlation coefficient greater than 0.9 was 

considered to suggest an excellent inter-observer agreement [21].  

After analysis of different fitting curves, a power function was selected as the best possible fit. 

Power functions are plotted for VGAS, noise, IQFinv and CNR as a function of the mAs value. 

These curves are used to calculate the potential dose reduction when changing from a filtered 

back projection kernel (B70) at the clinically applied 90 refmAs to an iterative reconstruction 

kernel while maintaining the same value for noise, contrast-detail or CNR. To obtain a 

significant dose reduction, the two curves that are used, should differ significantly. This was 

examined by means of a Wilcoxon test, a signed rank, non-parametric test used when 

comparing two related samples. For this, all different readings (4, 11, 6, and 4 for VGAS, noise, 

IQFinv and CNR) for the six different mAs settings are considered which result in 24, 66, 36 and 

24 data points for VGAS, noise, IQFinv and CNR respectively.  

A 95% confidence interval was used for all statistical measures. All calculations were 

performed using the SPSS software tool (IBM SPSS statistics 22, IBM corp., NY, USA).  

RESULTS  

Excellent inter-observer agreement among the participating radiologists and among medical 

physicists was found by means of an intraclass correlation coefficient of 0.919 (p<0.001) and 

0.951 (p<0.001) for the VGAS and IQFinv parameters respectively. As a result, in the further 

analysis, scores averaged over the readers were used.  

To evaluate the correlation between clinical and physical-technical image quality, regression 

curves were plotted for noise, CNR and IQFinv as a function of VGA scores for the different 

refmAs settings (Fig 3). Good correlation was found between noise and VGAS, 0.90, p < 0.001. 

A correlation coefficient of 0.88, p < 0.001 was obtained for CNR and VGAS. Contrast-detail 

(IQFinv) and VGAS resulted in a correlation coefficient of 0.92, p < 0.001.  

To examine the influence of the iterative reconstruction strengths, the reconstruction settings 

mentioned in the materials and methods were applied to the Thiel images at 90 ref mAs. 
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Catphan images acquired at mAs settings corresponding to 90 ref mAs were selected. A 

significant effect of the IR strengths was found for both the physical-technical and clinical 

image quality parameters (p < 0.05) except for IQFinv (p = 0.706). 

For both clinical and physical-technical image quality parameters as a function of the mAs 

value, a power function fit was applied for all types of kernels (noise and CNR r²>0.9, VGAS and 

IQFinv  r² >0.8, p < 0.05). As expected, for all 4 different types of reconstruction kernel , a 

significant effect of mAs settings was confirmed by means of a Friedman test for noise and 

contrast detail (p < 0.001) and for CNR (p < 0.05). Correspondingly, this influence was also 

found for VGAS (p < 0.05). 

A significant difference was found between the curve of the B70 kernel and the curve of each 

strength of iterative reconstruction for all clinical and physical-technical image quality 

parameters, except for VGAS B70-I70/1. 

The power function for VGAS, noise, CNR and IQFinv as a function of refmAs settings is shown 

in Figure 4, 5, 6 and 7. These curves were used to calculate the potential dose reduction when 

changing from a filtered back projection kernel at the clinically applied 90 refmAs to an 

iterative reconstruction kernel while maintaining the same value for noise, CNR or contrast-

detail. In general, higher strengths of SAFIRE result in higher potential dose reduction. The 

potential dose reduction based on noise and CNR and IQF inv varied from 14.0% to 37.8%,16.0 

to 71.5% and 22.7% to 50.6% respectively, depending on the strength of iterative 

reconstruction. Potential dose reduction based on clinical image quality varied from 27% to 

37.4% depending on the strength of iterative reconstruction. Consequently, the potential dose 

reduction is strongly dependent on the selected clinical or physical-technical parameter. From 

the physical-technical image quality parameters, dose reductions based on IQFinv correspond 

best with dose reductions based on VGAS The results are summarized in Table 4.  
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Figure 3: Mean noise, CNR and IQFinv versus mean VGAS. The error bars in the x direction represent the 

standard deviation between the scores of the different radiologists. For noise, the error bars in the y 

direction represent the standard deviation between noise measurements in 11 following slices in the 

Catphan uniformity module. For CNR, the error bars in the y direction represent the standard deviation 

between CNR measurements in four consecutive slices of the Catphan CT number linearity and CT number 

accuracy module. For IQFinv, the error bars in the y direction represent the standard deviation between 

the six readers of the contrast-detail module in the Catphan phantom. Regression lines were plotted 

resulting in an r² of 0.90, 0.88 and 0.92, p < 0.001, for noise, CNR and IQFinv respectively. 
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Figure 4: Mean VGAS versus refmAs for B70, I70/1, I30/3 and I70/5. The error bars in the y direction 

represent the standard deviation between the scores of the different readers. Power functions were 

plotted and for all kernels an r² > 0.8 was obtained, p < 0.05 

 

Figure 5: Mean noise versus mAs for B70, I70/1, I70/3 and I70/5. The error bars in the y direction 

represent the standard deviation between noise measurements in 11 following slices in the Catphan 

uniformity module. a/√mAs  regression curves were added. 
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Figure 6: Mean CNR versus mAs for B70, I70/1, I70/3 and I70/5. The error bars in the y direction represent 

the standard deviation between CNR measurements in four consecutive slices of the Catphan CT number 

linearity and CT number accuracy module. Power functions were plotted and for all kernels an r² > 0.9 

was obtained, p < 0.05. 

 

Figure 7: Mean IQFinv versus mAs for B70, I70/1, I70/3 and I70/5. The error bars in the y direction 

represent the standard deviation between the scores of the different readers. Power functions were 

plotted and for all kernels an r² > 0.8 was obtained, p < 0.05. 
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Table 4: Potential dose reduction for different clinical and physical image quality parameters and 

different iterations steps 

 Potential dose reduction (p-value) 

Reconstruction 
kernel 

VGAS Noise IQFinv CNRteflon 

I70/1 0% (0.887) 14.0% (< 0.001) 22.7% (0.034) 16.0% (< 0.001) 

I70/3 27.0% (0.021) 31.4% (< 0.001) 23.0% (0.031) 35.8% (< 0.001) 

I70/5 37.4% (0.001) 67.8% (< 0.001) 50.6% (< 0.001) 71.5% (< 0.001) 

 

DISCUSSION  

Methods for patient dose evaluation are easily available but techniques for objective clinical 

image quality optimization are far more complicated. VGA and ROC studies are commonly 

used to assess clinical image quality [22]. In VGA studies, a relative or absolute scoring is 

performed based on the visibility of normal anatomical structures [8]. The task for observers in 

a ROC study is to detect whether a patient’s image contains a pathological structure or not [9]. 

However, these studies are difficult to implement in routine practice since they imply a 

significant additional workload for the radiologists and large patient data groups must be 

available. Therefore, the latter methods are not feasible within a routine quality assurance 

program.  

A more practical approach to assess the image quality is the use of physical-technical 

phantoms, such as the Catphan phantom, where physical-technical parameters such as noise, 

CNR, MTF and contrast-detail can be analyzed. Such physical-technical phantoms have been 

widely used for the objective analysis of the image quality performance of CT systems [23]. 

Catphan studies are easily implemented in a quality assurance program since no patient data 

are required and images can be analyzed by the medical physics expert. However, the 

disadvantage of the Catphan phantom is the uniform background. Actual patient images are 

clearly not uniform and contain detailed anatomical features and textures. These background 

anatomical textures can influence image quality, both because the presence of anatomical 

texture affects observer performance and quantum noise [7].  

In present study, a VGA and Catphan study was set up to assess the relationship between 

physical-technical and clinical image quality in chest CT examinations, using Thiel embalmed 

cadavers and the Catphan@504 phantom. In contrast to conventional embalming procedures 
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using formalin for conservation, this new technique results in a very well preservation of the 

lung structures [11, 12]. To approximate as good as possible the normal patient anatomy, Thiel 

bodies were ventilated during image acquisition [13]. After assessment of different thoracic 

regions by experienced radiologists, it was confirmed that Thiel bodies can be applied to 

assess clinical image quality using VGA and ROC studies. 

Recently, there is growing interest in developing and utilizing model observers to accurately 

predict human observer performance for image system optimization and comparison. A model 

observer is a mathematical model that can be used to predict human detection performance 

for some specific imaging tasks [24]. A variety of models, which differ in how much 

information about signal and noise are used and whether certain properties of the human 

visual system responses are incorporated, have been proposed and applied to medical image 

research [24, 25]. However, up till now, phantom images and simulated lesions are used to 

assess these models. How much real lesions and anatomical backgrounds affect model 

observer performance remains under investigation [26]. Possibly, the concept of Thiel 

embalmed cadavers could be used to help validate model observer applications. 

Although good correlation was found between physical-technical image quality parameters 

(noise, CNR and contrast-detail) and clinically observed quality as scored by radiologists 

(VGAS), the potential dose reduction based on the physical-technical image quality parameters 

noise and CNR, is much higher compared to the potential dose reduction based on the clinical 

image quality. This overestimate of the dose reduction can be explained because the uniform 

phantom does not account for the complex relationship between anatomical variability and 

image quality. On the contrary, the potential dose reduction based on IQF inv is more consistent 

with the potential dose reduction based on VGAS. However the measurements are very crude 

using the Catphan phantom as only three contrast levels are present. Optimization of a 

contrast-detail phantom for CT is necessary and could give added value to the concept of 

contrast-detail analysis in CT image quality studies similar to the use of contrast-detail 

phantoms in mammography and conventional radiology [27, 28]. 

While this study illustrates that noise measurements in uniform backgrounds are not ideal to 

assess the effect of iterative reconstruction, a large part of the literature is still based on this 

technique. Mieville et al. [29] used the Catphan phantom to assess noise, CT number accuracy, 

noise power spectrum and MTF at varying CTDI values for both FBP images and IR images. 

Milim Kim et al. [30] used the phantom of the American College of Radiology, a solid water 

phantom with 5 imbedded test objects to evaluate image noise, SNR and CNR. No 
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comparisons were made between the possible dose reduction based on the different 

parameters. Ghetti et al [31, 32] assessed image noise in a uniform water phantom. Since 

noise reduction in these studies are based on uniform phantoms, it is questionable if these 

results are applicable in clinical practice. The nonlinear nature of IR methods has also 

introduced significant challenges to the characterization of spatial resolution performance. In 

this framework, Li et al introduced a concept of task specific measurements of the spatial 

resolution by locally measuring the point spread function for a given feature of interest at a 

given radiation dose level in an anthropomorphic phantom [33]. 

Other studies performed clinical image quality assessment on patient data, which 

automatically limits the amount of dose settings that can be used. Exact calculation of the 

potential dose reduction without loss of image quality is thereby impossible. Prakash et al. 

[34] scanned 54 patients at a mean effective dose of 12.2 mSv reconstructed with FBP and 98 

patients at a mean effective dose of 8.9 mSv reconstructed with an iterative reconstruction 

technique (30% ASIR, GE) resulting in a mean dose reduction of 27.6%. All chest CT 

examinations were scored diagnostically acceptable. Pontana et al. [35] scanned 80 patients 

two times with constant CT parameters except for the refmAs which was decreased by 30%. 

High dose chest CT images were reconstructed with FBP, low dose chest CT images were 

reconstructed with an iterative reconstruction technique (IRIS algorithm, Siemens). There was 

no significant difference in objective noise, CNR, SNR and overall subjective image quality 

between the two groups. In both studies, physical-technical as well as clinical image quality 

was assessed. However, no further correlation analysis was made between the physical-

technical and clinical image quality. Since only two dose settings were examined, the dose 

reduction based on clinical and physical-technical image quality was identical. Consequently, 

the maximum potential dose reduction without loss of image quality, could not be assessed 

and no conclusions can be made about the discrepancy in potential dose reduction when using 

physical-technical parameters rather than clinical image quality assessment. 

There are several limitations of our study. Firstly, the available Thiel cadavers all had a BMI 

between 20 and 25. It is possible that the correlation between clinical and physical-technical 

image quality and the effect of iterative reconstruction can be influenced by patient size. 

Secondly, clinical image quality was assessed on unenhanced CT images. Possibly the 

correlation and potential dose reduction can be affected when contrast agents are used. 

Thirdly, clinical image quality was assessed by a subjective overall quality score and not by 

means of detection of pathology. Detection of lesions by means of a receiver operating 
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characteristic (ROC) analysis could give a more precise assessment of image quality for a 

specific clinical application. 

CONCLUSIONS 

In summary, our results demonstrate that noise assessments in a uniform phantom 

overestimate the potential dose reduction for the SAFIRE IR algorithm. Since the IQF inv based 

dose reduction is quite consistent with the clinical based dose reduction, an optimized 

contrast-detail phantom could improve the use of contrast-detail analysis for image quality 

assessment in chest CT imaging. In conclusion, one should be cautious to evaluate the 

performance of CT equipment taking into account only physical-technical parameters as noise 

and CNR, as this might give an incomplete representation of the actual clinical image quality 

performance. 
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7  
Paper III 

Analysis of metal artifact reduction tools for dental hardware in CT 

scans of the oral cavity: kVp, Iterative Reconstruction, Dual Energy 

CT, Metal Artifact Reduction Software: Does it make a difference? 

7.1 Background 

7.1.1 Dual energy CT 

The term dual-energy CT or DECT refers to CT that uses two photon spectra; therefore, DECT is 

sometimes also referred to as spectral CT. In clinical practice today, two different spectra are 

generated either by switching the voltage of one X-ray tube or by running two tubes at 

different voltages. The dual source system consists of 2 X-ray tubes that acquire the data with 

different energies in a DE acquisition. One of the advantages of this technique is the 

availability of tube current modulations for optimizing radiation dose. However, one of the 

limitations of this system is the slight difference in the acquisition time of the 2 data sets, 

resulting in a limited temporal registration [21]. The single source dual energy system uses a 

single X-ray tube, which can alternate tube energy in less than 0.5 ms, in the same gantry 

rotation. It also relies on a detector with much faster response that is able to register 

information from both acquisitions. It has a better temporal resolutions as both data sets are 
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acquired near simultaneously. Nevertheless, the use of tube current modulations is not 

supported in this system, which can result in some increased radiation dose [22].  

Although the term dual-energy CT suggests that two distinct photon energies are used, it 

rather are two X-ray spectra. The settings of 80 and 140kVp are commonly used because they 

provide the maximum difference and least overlap between the spectra with standard tubes 

[22].  

The 2 different energy settings allow for the differentiation of materials based on their energy 

related attenuation characteristics. In general, the attenuation of material represented by its 

CT number is caused by a combination of photo-electric and Compton effects. These two main 

mechanisms contributing to CT attenuation are both energy- and material dependent. The 

probability of an X-ray undergoing photoelectric effect increases in substances with higher 

atomic number and is heavily energy dependent with an increase at lower energy levels. 

Compton scattering occurs almost independently of the photon energy at energies exceeding 

30keV and is predominantly related to the density of the material. Because the photo-electric 

effect is energy dependent and linked to the atomic number, it is possible to derive 

information about a given element from the attenuation at different energy levels. If there is a 

difference in the photo-electric behavior of two elements, their attenuation at two distinct 

energies is different, thus allowing for separation of the elements from each other. This 

concept is used in dual energy CT [21, 22]. 

Various clinically relevant applications have been established for dual energy CT based on 

either differentiation or quantification of materials. By differentiating calcium and iodine, 

bone removal can be performed automatically which can be an interesting solution in complex 

anatomic areas with a close proximity of vascular and bony structures such as the skull [23, 

24]. The detection of iodine in CT datasets allows for assessment of tissue enhancement which 

gives information about lesion vascularity [25]. Dual energy derived iodine distribution maps 

also allows accurate assessment of cardiac perfusion defects [26]. 

The detection and characterization of iodine in CT datasets not only allows for its 

quantification but also for its subtraction. By subtracting iodinated contrast material from 

contrast enhanced images, a virtual non-enhanced image is generated. This application lowers 

the radiation dose since non-enhanced acquisitions can be omitted. Virtual non-enhanced 

images were shown to be an acceptable substitute for standard non-enhanced acquisition for 

different clinical indications such as the detection of urinary stone disease [27], liver imaging 

[28] and intracranial hemorrhage [29]. 
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Another application of dual-energy CT is to generate virtual monochromatic images from the 

dual energy CT scans. In clinical practice, all X-ray beams generated by single energy CT are 

polychromatic. Virtual monochromatic images depict objects as if they were theoretically 

images with a monochromatic beam. The X-ray energy is than reported as keV instead of 

kilopeak voltage (kVp). These monochromatic images have the potential to reduce beam-

hardening artifacts [30-32] and improve image quality in a different range of energies (from 

40-140keV) that can be generated. The selection of the virtual monochromatic energy should 

be tuned to a diagnostic task.  

The radiation exposure required for DECT depends on the technology used. Generally, the aim 

is to use the same dose as would be used for an single energy examination. Only then, it is 

easily possible to replace standard protocols with dual energy examinations because an 

additional diagnostic value is offered without additional dose. The current second generations 

dual source DECT system is almost dose neutral to single energy scanning [33]. This 

technological improvement has been attributed to the use of a tin filter on the 140 kV source, 

which also enables better material differentiation and tissue contrast [21]. Moreover, the 

ability to apply iterative reconstruction to dual-energy raw data enables further image quality 

refinement [34, 35]. The single source DECT system with rapid kVp switching has also been 

recently upgraded to a second generation scanner with a concurrent iterative reconstruction 

capability and has the potential to achieve dose neutral scans [21].  

7.1.2 Metal artifacts 

In CT, the term artifact is applied to any systematic discrepancy between the CT numbers in 

the reconstructed image and the true attenuation coefficients of the object. The presence of 

metal in an object can be the cause of such artifacts, in this case called: metal artifacts. These 

artifacts can be seen as light or dark bands or streaks in the reconstructed image.  

Metal artifacts originate from two main processes: beam hardening and photon starvation. 

Beam hardening artifacts originate from the polychromaticity of an X-ray beam. When an X-

ray beam passes through an object, the lower energy photons are absorbed more rapidly than 

the higher energy photons resulting in a mean energy increase [36]. Photon starvation occurs 

when an X-ray beam is completely absorbed by an object and the number of photons reaching 

the X-ray detector is insufficient for correct image reconstruction [30, 36]. These processes can 
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seriously deteriorate the image quality of a CT scan, thereby interfering with the diagnostic 

interpretability.  

Patients are normally asked to take off removable metal objects such as jewelry before 

scanning commences. However, when  non removable items such as prosthetic devices, 

surgical clips and dental fillings are present, corrective actions might be needed to 

compensate for the induced metal artifacts.  

7.1.3 Head and neck CT 

In 2011, the frequency of head and neck CT examinations in Belgium was 50 and 1 per 1000 of 

population respectively [4]. In the same period, the average amount of head and neck CT 

examinations over 36 European countries was 27 and 4 per 1000 of population respectively 

[4]. In 2013, about 68 000 neck CT examinations, i.e. 3.3% of all CT examinations, were 

performed in Belgium [5]. 

The mean effective dose per patient estimated in European countries for head and neck CT 

examinations is 1.9 and 2.5 mSv respectively, in Belgium this is 1.3 and 2.9 mSv respectively [4] 

(Figure 7-1, Figure 7-2).  

 

 
Figure 7-1: Typical effective doses (mSv) for head CT in different European countries [4] 
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Figure 7-2: Typical effective doses (mSv) for neck CT in different European countries [4] 
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ABSTRACT 

Introduction: Metal artifacts may negatively affect radiologic assessment in the oral cavity. The 

aim of this study was to evaluate different metal artifact reduction techniques for metal 

artifacts induced by dental hardware in CT scans of the oral cavity. 

Methods: Clinical image quality was assessed using a Thiel embalmed cadaver. A Catphan 

phantom and a PMMA phantom were used to evaluate physical-technical image quality 
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parameters such as artifact area, artifact index (AI) and contrast detail (IQFinv). Metal cylinders 

were inserted in each phantom to create metal artifacts. CT images of both phantoms and the 

Thiel embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120 and 140 

kVp; model-based iterative reconstruction (Veo) and synthesized monochromatic keV images 

with and without metal artifact reduction software (MARs). Four radiologists assessed the 

clinical image quality, using an image criteria score (ICS). 

Results: Significant influence of increasing kVp and the use of Veo was found on clinical image 

quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller 

artifact area ( p < 0.05). However, MARs reconstructed images resulted in lower ICS. 

Conclusion: Of all investigated techniques, Veo shows to be most promising, with a significant 

improvement of both the clinical and physical-technical image quality without adversely 

affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental 

hardware metallic artifacts is not sufficient, and may even adversely influence the image 

quality. 

INTRODUCTION 

CT plays a very important role in both diagnosis and treatment of head and neck cancers. It is a 

standard method for identifying cancerous masses, lymph node metastases and inflammatory 

processes in the head and neck region [1]. For both the radiologist and the surgeon, the 

information provided by the images enables accurate tumor staging and treatment planning 

prior to surgery. The image quality and therefore suitability for accurate diagnoses can be 

significantly reduced by dental artifacts. CT also plays an important role in radiotherapy 

planning. Radiotherapy critically relies on the ability to precisely delineate target volumes. As 

soft tissue contrast is limited, the image quality of the planning CT is often a limiting factor in 

the exact determination of boundaries. The visual reduction of metal artifacts therefore 

becomes very important. 

The main fundamental causes of metal artifacts are beam hardening and photon starvation 

[2]. Beam hardening is the absorption of low-energy photons in a polychromatic X-ray beam 

when passing through metal, which leads to an increase in the average energy of the beam, 

resulting in dark streaks on the image. Photon starvation occurs as the metal absorbs a large 

proportion of photons which also creates streaks in the image.  
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The factors that may contribute to or diminish the artifacts include metallic hardware 

composition and orientation [3-5], peak voltage[6-8], slice thickness [6], reconstruction 

algorithm [3, 9] and extended CT scale [10]. Over the years, many metal artifact reduction 

algorithms have been proposed for the suppression of streak artifacts [8, 11]. Another 

possibility is the use of iterative reconstruction algorithms [8]. Essentially, iterative 

reconstruction introduces a correction loop in the image generation process that cleans up 

artifacts and noise. GE (GE Medical Systems) introduced a full iterative reconstruction or 

model-based iterative reconstruction (MBIR- under the commercial name of VEO). VEO is a 

fully iterative method working in the raw data domain, which takes not only the data statistics 

into account but also the geometry of the CT equipment itself. Since beam hardening artifacts 

originate from the polychromaticity of the X-ray beam, monochromatic images could reduce 

metal artifacts. Recent development in dual-energy CT (DECT) provided the ability to generate 

monochromatic images [12]. Consequently, DECT combined with monochromatic image 

reconstruction has been investigated to reduce metal artifacts [13-15].  

The aim of this study was to evaluate different metal artifact reduction techniques for metal 

artifacts induced by dental hardware in CT scans of the oral cavity. Moreover, the best of each 

technique were compared in relations to standard 120 kVp filtered back projection (FBP) 

imaging to define the optimal metal artifact reduction technique for this particular CT 

examination.  

MATERIALS AND METHODS 

Phantoms and inserted metals 

Three different materials were used to examine the amount of induced metal artifacts: Cobalt-

Chromium (CoCr), Titanium (Ti) and Zirconium (Zr). Ti is commonly used for dental implants 

because of its excellent biocompatibility with bone tissue. The implant is usually cylindrical 

with a diameter varying from 3 to 8 mm and a length of 6 to 18 mm. Ti, CoCr and Zr are used 

as the core of prosthetic suprastructures, the geometry of these structures is adapted to the 

individual needs of the patient. The metals were fabricated in 4mm cylinders with a length of 

10mm (Proscan, Zonhoven, Belgium). For the technical evaluation of the image quality, these 

cylinders were inserted in a 16 cm homogenous cylindrical polymethylmethacrylate (PMMA) 

phantom. Two 4mm holes (one on the left and one on the right) were drilled at the periphery 

of the phantom for the insertion of the metal cylinders. To avoid the influence of air around 
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the metal cylinders, PMMA was placed at the front and the back of the metal cylinder, 

allowing the insertion to be completely filled with metal and PMMA. 

To evaluate contrast detail, the Catphan@504 phantom (The Phantom laboratory, Salem, New 

York, USA) was used. The phantom consists of several modules to evaluate high and low 

contrast resolution, CNR and noise. In the low contrast module there are three areas with 

different contrast levels: 1%, 0.5% and 0.3%. Each contrast level contains targets with 

decreasing diameters (15, 9, 8, 7, 6, 5, 4, 3 and 2 mm). A CoCr cylinder was placed at the level 

of the 0.3% contrast level on the outside of the phantom to create metal artifacts (Fig 1). 

 

Fig 1: Low contrast module of the Catphan@504 phantom. Three areas with different contrast levels (1%, 

0.5% and 0.3%) are present. Each contrast level contains targets with decreasing diameters (15, 9, 8, 7, 6, 

5, 4, 3 and 2 mm). A CoCr cylinder was placed at the level of the 0.3% contrast level on the outside of the 

phantom to create metal artifacts 

A Thiel embalmed cadaver was used for the clinical evaluation of the image quality. The use of 

a human cadaver fulfilled the requirements of the ethical committee of our institution. One 

human cadaver was embalmed using the methodology of Prof. Em. Walther Thiel, 

Anatomisches Institut Karl-Franzens-Universität, Graz, Austria [16]. 

Hereby, 4-chloro-3-methylenphenol as well as various salts are used for fixation and boric acid 

is added for disinfection. Furthermore, ethylene glycol is used for preservation of tissue 

plasticity, while the concentration of formalin is kept to the strict minimum (0.8%) [17]. In 

contrast to standard formalin-embalmed human cadavers, this technique results in well 

preserved organs and tissues concerning color, consistency, natural flexibility and natural 

plasticity. Two 4 mm holes were drilled in the maxilla to obtain the same configuration as in 
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the physical-technical measurements in the PMMA phantom, i.e. 2 inserts placed towards the 

molars on the left and right side of the maxilla. 

Image acquisition 

All examinations were performed using a clinical 64 slice CT system (GE Discovery CT 750 HD, 

GE Medical Systems) with fast tube voltage switching between two energies (80 kVp and 140 

kVp) within 0.5 ms. Two different scan protocols were used. 

First, all phantoms were scanned in helical acquisition mode, beam collimation 20 mm, 

scanning field of view 32 cm, reconstruction field of view 25 cm, pitch 0.963:1, slice thickness 

2.5 mm, slice increment 2 mm, rotation speed 1 s. To study the effect of kVp on the amount of 

metal artifacts, scans were acquired using 80, 100, 120 and 140 kVp with 580, 320, 210 and 

150 mAs, respectively, keeping the CT dose index (CTDI) constant at 40 mGy. To investigate 

the influence of iterative reconstruction (IR), the 120 kVp acquisitions were reconstructed with 

FBP and with model based iterative reconstruction (Veo). To examine the effect of kVp and IR, 

all scans were performed using CoCr insertions. However, to examine the amount of artifacts 

caused by different materials, two 120 kVp, FBP scan using Zr and Ti insertions were acquired. 

Second, the GSI-MARs protocol 20 was selected, beam collimation 20 mm, scanning field of 

view 32 cm, reconstruction field of view 25 cm, pitch 0.936:1, slices thickness 2.5 mm, slices 

increment 2 mm, rotation speed 0.5 s, current less than 630 mA with a CTDI of 44.61 mGy. All 

images were reconstructed both with and without metal artifact reduction software (MARs). 

Post-processing was applied to generate synthesized monochromatic 40-140 keV images with 

10 keV interval of each image series by using dedicated GSI viewer software (GSI viewer 2.00 

and GE VolumeShare4 AW 4.4, GE Healthcare). CoCr insertions were used to examine the 

effect of keV and MARs. 

For both scan protocols, reference scans were made of the PMMA phantom in the absence of 

any metal cylinder using identical reconstruction settings as in the scans with metal insertions. 

Image quality analysis 

- PMMA phantom 

A doughnut shaped region of interest (ROI) with a band size of 5 mm was defined around the 

left metal insertion. According to Lin et al [18] and Wang et al [14], the artifact index (AI) to 

quantify the severity of metal artifacts is defined as √𝑆𝐷𝑜 − 𝑆𝐷𝑏 , where SDo is the noise of the 

doughnut shaped ROI in the investigated series and SDb the noise of the same ROI in the 

corresponding reference scan. 
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Based on van der Schaaf et al [19], artifact areas are quantitatively analyzed by establishing 

threshold attenuation values for black and white artifacts. To examine the influence of the 

selected kVp, threshold values are calculated by taking the attenuation value in the 

corresponding reference scan and adding or subtracting three times the standard deviation of 

the reference scan with the lowest theoretical exposure parameters (80 kVp) as this dataset 

was judged to have the maximum amount of noise. To analyze the influence of the selected 

keV and degree of iterative reconstruction, threshold values are calculated similar as before, 

using the standard deviation of the 40 keV reference scan and the 120 kVp, FBP reference scan 

respectively. The artifact areas in the ROI covering the entire phantom were quantified in 

millimeters squared. The total area was calculated as the sum of the black and white areas. 

Two areas, representing the area of the metal insertion itself, were subtracted in each image. 

- Catphan phantom 

Four medical physicists identified the minimally visible target diameter at three different 

contrast levels. The inverse image quality figure (IQFinv) was introduced for quantitative 

comparison of the contrast-detail images [20]. The inverse image quality figure is defined as 

 


n

i thii

inv

DC
IQF

1 ,

100
 

where Di,th denotes the threshold diameter for contrast i, and Ci denotes the contrast value. 

The higher the IQFinv, the better the low-contrast visibility. The IQFinv was calculated for all 

analyzed images and averaged over the four readers. Moreover, for all images, the threshold 

diameter for the 0.3% contrast level was analyzed. 

- Thiel embalmed cadaver 

After acquisition, all data were displayed on a 20-inch, 2-megapixel gray-scale monitor (Barco 

MFGD 2320, Kortrijk, Belgium). The monitor was calibrated to comply with the DICOM Part 

3.14 Greyscale Standard Display Function, using calibration software provided by the 

manufacturer (MediCal Pro, BARCO, Kortrijk, Belgium) [21]. Maximum luminance of all 

monitors was adjusted to 320cd/m² and ambient lighting levels were below 50 lux as 

recommended by AAPM TG 18 [22]. 

Four experienced radiologists (JC: 31 years of experience; EV and NB: 2 years of experience 

and JP: 6 years of experience) assessed the head CT scans and scored the image quality using 

the criteria listed in Table 1. Each stack was compared with the reference stack, the 120 kVp 
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FBP scan, as this is the clinically used setting. Each structure was rated on a scale from -3 to +3 

according to Table 2. An image criteria score (ICS) for each reader was calculated as: 

𝐼𝐶𝑆 =  ∑ 𝑆𝑐

𝐶

𝑐=1

 

were 𝑆𝑐  is the rating for a particular criteria and C is the number of criteria. 

Table 1: Image quality criteria for CT scan of the oral cavity 

Criterion No. Description: 

1 Left masseter 

2 Right masseter 

3 Platysma 

4 Cervical spinal cord 

5 Tail of the parotid gland 

6 Attachment of the medial pterygoid muscle 

7 Attachment of the buccinator muscle on the alveolar 
ridge 

8 Tongue base 

 

All series were evaluated by the radiologists using Viewdex, a Java-based DICOM-compatible 

software tool for presentation and evaluation of images without influencing the image quality. 

The readers were allowed to adjust the image brightness and contrast and to magnify the 

images to full resolution. The image stacks were presented in random order. Before starting 

the study, a training session was organized to familiarize the readers with the scoring 

methodology. 

Table 2: Rating used to evaluate the clinical images 

Rating The structure in the image is: 

-3 Far inferior  

-2 Noticeable worse 

-1 Little worse  

0 Equal  

+1 Little superior 

+2 Noticeable superior 

+3 Far superior  
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Statistical analysis 

Inter-observer agreement for ICS, IQFinv and low contrast diameter values was determined by 

calculating the intraclass correlation coefficient (ICC). An intraclass correlation coefficient 

greater than 0.9 was considered to suggest an excellent inter-observer agreement [23, 24]. To 

determine the influence of different exposure and reconstruction settings, data were analyzed 

using the Kruskal Wallis test, a signed rank, non-parametric test used when comparing more 

than two independent samples. When only two independent samples needed to be compared, 

the Mann Whitney U test, a signed rank, non-parametric test, was used. 

A 95% confidence interval was used for all statistical measures. All calculations were 

performed in the SPSS software tool (IBM SPSS statistics 22, IBM corp., NY, USA).  

RESULTS 

Excellent inter-observer agreement among the participating radiologists and among medical 

physicists was found by means of an intraclass correlation coefficient of 0.957 (p < 0.001), 

0.932 (p < 0.001) and 0.925 (p < 0.001) for VGAS, IQF inv and threshold low contrast diameter 

respectively. 

The influence of the inserted material was investigated for 120 kVp FBP scans by analyzing ICS, 

artifact area and AI. For all parameters, a significant influence of the inserted material could be 

found (p < 0.05) (Table 3). 

Table 3: Clinical and physical-technical image quality for different metal insertions 

Material ICS (± SD) Artifact area (± SD) AI (± SD) 

CoCr 0.0 ± 0.0 2413.6 ± 531.8 5.7 ± 1.4 

Ti 13.7 ± 3.3 606.7 ± 168.4 2.3 ± 0.2 

Zr -5.2 ± 4.3 3716.5 ± 416.3 7.0 ± 0.8 

Note: SD = standard deviation; ICS = image criteria score; AI = artifact index; CoCr = Cobalt-Chromium;  

Ti = Titanium ; Zr = Zirconium. 

An increase in kVp, while keeping the CTDIvol constant, resulted in an improvement of the 

clinical image quality (p = 0.007) (Fig 2). Analysis of the physical-technical image quality 

parameters resulted in a significant improvement for artifact area and AI (p < 0.05). Though a 

significant increase of threshold low contrast diameter could be seen when increasing the kVp 

(p < 0.05). No significant influence could be found for IQFinv (p = 0.154).  
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Fig 2: ICS as a function of kVp. The error bars represent the standard deviation between the scores of the 

different radiologists. A significant influence of the kVp was found (p = 0.007). ICS = image criteria score 

Application of Veo resulted in a significant improvement for ICS (Table 4, Figure 3), artifact 

area, IQFinv and threshold low contrast diameter (p < 0.05). A clear decrease of the AI could be 

observed when using Veo (Table 4), though this was not significant (p = 0.248). 

1
 

Fig 3: Thiel head CT scan reconstructed with Veo. Veo decreases the induced metal artifacts resulting in 

an increased ICS. ICS = image criteria score 

  

                                                                 
1
 Comparison between a 120kVp FBP reconstruction and a Veo reconstruction is displayed in the addendum on page 

107 
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Table 4: Clinical and physical-technical image quality for the comparison of different metal artifact 

reduction tools with the clinically applied 120kVp FBP protocol 

 120kVp FBP 140kVp FBP 120kVp Veo 
140keV without 

MARs 

ICS (± SD) 0.0±0.0 
1.5 ± 3.0 

(p = 0.316) 
5.2 ± 2.7 

(p = 0.014) 
5.5 ± 3.8 

(p = 0.046) 

Artifact area  
(± SD) 

2413.6 ±531.8 
4504.3 ± 636.7 

(p = 0.043) 
1880.9 ± 162.8 

(p = 0.021) 
731.6 ± 101.4 

(p = 0.021) 

AI (± SD) 5.7 ± 1.4 
6.9 ± 1.1 

(p = 0.248) 
4.7 ± 0.4 

(p = 0.248) 
3.2 ± 0.5 

(p = 0.043) 

IQFinv (± SD) 0.12 ± 0.01 
0.12 ± 0.02 
(p = 0.877) 

0.17 ± 0.03 
(p = 0.058) 

0.06 ± 0.01 
(p = 0.019) 

Threshold low  
contrast diameter 
(± SD) 

9.5 ± 3.7 
7.2 ± 1.2 

(p = 0.234) 
5.7 ± 0.5 

(p = 0.017) 
16 ± 5.2 

( p = 0.056) 

Note: SD = standard deviation; ICS = image criteria score; AI = artifact index; IQFinv = inverse image quality 

figure; FBP = filtered back projection; MARs =  metal artifact reduction software.  

A significant influence of keV was seen for the clinical image quality when images were 

reconstructed without MARs (p < 0.001). For MARs reconstructed images, a significant 

influence of keV could not be confirmed (p = 0.099), however, an increasing trend of ICS could 

be seen when increasing the keV (Fig 4). For all physical-technical image quality parameters, a 

significant influence of keV could be confirmed for both MARs and standard reconstructed 

images (p < 0.05), except for the AI in MARs reconstructed images (p = 0.058). 

The use of MARs did not give the expected results, as overall, MARs reconstructed images 

resulted in a lower ICS than images reconstructed without MARs (Fig 4). This negative effect is 

most pronounced for higher keV values, though no significant difference was found for 90 and 

110 keV (p > 0.05). For lower keV values (40-60 keV), MARs seems not to have any significant 

effect (p > 0.05). These clinical results are partly supported by the results of the contrast detail 

analysis. For low keV values, MARs reconstructed images result in a higher IQFinv value or a 

lower threshold low contrast diameter, while for higher keV values, MARs reconstructed 

images result in lower IQFinv values or a higher threshold low contrast diameter compared to 

images reconstructed without MARs (Fig 5 and 6).  
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Fig 4: ICS as a function of keV for both MARs and standard synthesized monochromatic images. The error 

bars represent the standard deviation among the scores of the different radiologists. Significant influence 

of keV for standard monochromatic images was found (p < 0.001). An increasing trend of ICS in MARs 

reconstructed images could be seen when increasing the keV, though, no significance could be 

demonstrated (p = 0.099). Overall, MARs reconstructed images resulted in a lower ICS than images 

reconstructed without MARs, though this negative effect was more pronounced for higher keV values. ICS 

= image criteria score; MARs = metal artifact reduction software 
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Fig 5: IQFinv as a function of keV for both MARs and standard synthesized monochromatic images. The 

error bars represent the standard deviation among the scores of the different readers. Significant 

influence of keV on IQFinv for images reconstructed with and without MARs was found (p < 0.001). For low 

keV values, MARs reconstructed images resulted in a higher IQFinv value, while for higher keV values, 

MARs reconstructed images resulted in lower IQFinv values, however no significance could be 

demonstrated (p > 0.05). IQFinv = inverse image quality figure; MARs = metal artifact reduction software 

However, large variations of IQFinv and threshold low contrast diameter were observed, so 

overall, no significant influence of MARs could be demonstrated. For all keV values, the noise 

based physical-technical image quality parameters (artifact area (Fig 7) and AI (Fig 8)) did show 

a significant improvement when applying MARs (p = 0.021).  

 



Paper III  99 

 

 

 
Fig 6: Threshold low contrast diameter as a function of keV for both MARs and standard synthesized 

monochromatic images. The error bars represent the standard deviation among the scores of the 

different readers. Significant influence of keV on the threshold low contrast diameter for images 

reconstructed with and without MARs was found (p < 0.001 and p = 0.012 respectively). For low keV 

values, MARs reconstructed images resulted in a lower threshold diameter, while for the highest keV 

values, MARs reconstructed images resulted in higher low contrast diameters. However no significance 

could be demonstrated (p > 0.05). MARs = metal artifact reduction software 

To compare the effect of the different analyzed metal artifact reduction techniques, the series 

with the optimal clinical and physical-technical image quality within each investigated 

technique were selected. Subsequently, comparison was made between these selected series 

and the clinically applied 120 kVp FBP protocol to select the most appropriate 

scanning/reconstruction technique to reduce metal artifacts from dental hardware in CT 

images of the oral cavity (Table 4).  
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Fig 7: Artifact area as a function of keV for both MARs and standard synthesized monochromatic images 

The error bars represent the standard deviation among area measurements in four consecutive slices in 

the PMMA phantom. A clear decrease of the area is observed when increasing the keV for both images 

reconstructed with and without MARs (p < 0.001). For all keV values, the area showed a significant 

improvement when applying MARs (p = 0.021). MARs = metal artifact reduction software 
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Fig 8: AI as a function of keV for both MARs and standard synthesized monochromatic images. The error 

bars represent the standard deviation among AI measurements in four consecutive slices in the PMMA 

phantom. A clear decrease of the AI is observed when increasing the keV for images reconstructed 

without MARs (p < 0.001). For MARs reconstructed images, no significant influence of the keV was found 

(p = 0.058). For all keV values, the area showed a significant improvement when applying MARs (p = 

0.021). AI = artifact index; MARs = metal artifact reduction software; PMMA = polymethylmethacrylate 

DISCUSSION 

In the diagnosis of oral cancer, multi-detector CT is a first-line diagnostic device because of its 

broad availability, the ability to perform whole-body tumor staging, and an overall good 

sensitivity and specificity for the detection of oral cancer [1]. Consequently, excellent image 

quality is essential. However, due to the complex anatomy in the oral cavity, the presence of 

tissues and materials with a wide range of CT numbers and the metal artifacts caused by 

dental hardware, imaging of the oral cavity is challenging [25]. Metal artifacts induced by high 

attenuation objects consist of hypodense or hyperdense streaks or radially emerging dark and 

bright bands on CT images [2]. Such streak artifacts are a common finding on standard oral 

cavity CT images and may negatively affect the radiologic assessment.  

The ultimate solution is to avoid the metal artifacts by using low-level attenuating materials. 

Many studies have shown that titanium prostheses cause fewer artifacts on CT than CoCr [4, 5, 

26]. In this study, analysis of the clinical and physical-technical image quality confirmed that Ti 

causes the least amount of metal artifacts or the highest ICS. CoCr clearly results in more 
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metal artifacts and a lower ICS although it is the recently more frequently applied material Zr 

that causes the most artifacts or the lowest ICS (Table 3). 

This study demonstrated that for the same dose level, higher tube voltage was associated with 

higher clinical image quality (Fig 2) and smaller artifacts, which is in accordance with previous 

studies [6, 8, 26]. This is because increasing the tube voltage increases the effective X-ray 

energy, which can improve the beam penetration and thus reduce the missing projection data, 

in turn reducing the artifact areas.  

Many groups investigated the usefulness of iterative reconstruction for metal artifact 

reduction in CT images [27-29]. However, none of the described algorithms was commercially 

available. In this study, the effect of the commercially available Veo algorithm was 

investigated. The use of this model based iterative reconstruction algorithm results in 

significantly improved clinical and physical-technical image quality without compromising low 

contrast detail (Table 4, Figure 3). The influence of Veo on metal artifacts should be further 

investigated for other materials and other body regions. 

Many studies evaluated the potential of monochromatic CT to reduce image artifacts. Lin et al. 

[18] found less beam hardening artifacts in monochromatic images compared to the 

polychromatic images for cranial CT. The study of Zhou et al. [30] indicated the ability of 

simulated monochromatic images to reduce metal artifact of CT images in patients with 

implanted metal orthopedic devices after fractures and indicated 130 keV to be the optimal 

photon energy setting. This positive influence of monochromatic images was also seen by 

Bamberg et al. [31], which selected 105 keV to be the optimal photon energy setting. 

These findings are in general agreement with our findings, where higher keV levels resulted in 

a better image quality and a reduction of the metal artifacts (Fig 4,7,8). High keV imaging 

however decreases the low contrast resolution (Fig 5,6).  

Another possibility to reduce metal artifacts is the use of dedicated metal artifact reduction 

software. Wang et al [33] evaluated the dual energy metal artifact reduction tool MARs (GE, 

Medical Systems) for CT scans of total hip prostheses. The combination of monochromatic 

reconstruction and MARs diminished the metal artifacts and improved the quality of the CT. 

However, it was noted that in some circumstances, MARs images were not always superior to 

monochromatic images without MARs. The results of Brook et al. [34] showed that MARs 

reconstruction was better than standard reconstruction in nearly 60% of the scanned patients 

with fiducial seeds implanted for radiation therapy. MARs effectively eliminated blooming of 
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the fiducial seed, but in some patients introduced far-field artifacts. Wang et al. [14] 

investigated the use of monochromatic images combined with MARs for the evaluation of 

pedicle screws in patients with scoliosis and showed that MARs reconstructed images led to 

suboptimal image quality of pedicle screws.  

Overall, the literature supports the value of MARs, though encourages to use MARs with care 

and suggests MARs reconstructed images to be used as complementary to those with 

standard reconstruction. In this study, MARs showed to reduce the amount of metal artifacts. 

However, clinical image quality was clearly negatively affected by the use of MARs resulting in 

lower ICS values (Fig 4). Clinical images showed an over smoothening of the image resulting in 

loss of essential image information although less streaking artifacts are visible around the 

metal insertions in the MARs reconstructed image (Fig 9). Especially in the tongue base and in 

the proximity of the metal inserts, secondary artifacts were induced. Contrast detail analysis 

also showed a deterioration of both IQFinv and low contrast visibility in MARs reconstructed 

images compared to standard reconstructed images (Fig 5,6). Consequently, MARs 

reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is 

not sufficient, and may even adversely influence the image quality. 

  

Fig 9: Thiel head CT scan reconstructed with (a) and without (b) MARs. The loss of information around the 

metal insertions and the deteriorated resolution in MARs reconstructed images is demonstrated although 

less streaking artifacts are visible around the metal insertions in the MARs reconstructed image. MARs = 

metal artifact reduction software 

When comparing the different investigated techniques, 140 kVp FBP, 120 kVp veo and 140 keV 

DECT without MARs seems to be promising techniques to reduce metal artifacts caused by 

dental hardware. In order to determine advantages and disadvantages for all approaches, 
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several issues must be considered. The radiation dose in the present study was kept constant 

for all protocols, resulting in no argument for one or the other approach. At a lower energy 

level, monochromatic images are more suitable for soft tissue detail (Fig 5,6). However, low 

energy monochromatic images are less efficient in reducing beam hardening artifacts [37]. 

Limited access to DECT scanners is a limiting factor regarding a widespread application of 

monochromatic CT image reconstruction. Both, mono-energetic reconstructions and iterative 

algorithms are easy-to-apply post-processing steps. Nevertheless, both approaches require 

additional time and software packages. Especially model-based iterative reconstruction results 

in elevated reconstruction times. Increasing the kVp is possible on every CT device, however, 

altering the kVp from 120 kVp to 140 kVp hardly has any significant influence (Table 4).  

There were some limitations to the present study. Firstly, only cylindrical inserts of 4 mm were 

studied. Other diameters could result in other efficiency of the investigated metal artifact 

reduction tools although similar overall trends can be expected. Secondly, only the three most 

commonly applied materials used as dental implants were investigated, it would be interesting 

to investigate the influence of different dental restoration materials such as amalgam and gold 

fillings, which have a higher density compared to the materials used in this study. Fourthly, 

only a limited amount of artifacts were present in the images since only two metal inserts 

were used. However, in clinical situations, more severe artifacts can be present. Fifthly, for the 

clinical assessment of the image quality, only one Thiel embalmed cadaver was used. Sixthly, 

the results are only valid for the GE Discovery CT 750 HD, since the amount of metal artifacts is 

dependent on the implemented CT reconstruction algorithms and the use of a single source 

dual energy scanner.  

In conclusion, of all investigated techniques, Veo shows to be most promising, with a 

significant improvement of both the clinical and physical-technical image quality without 

adversely affecting contrast detail. High level monochromatic images in dual energy CT do 

improve the image quality. However, MARs reconstruction in CT images of the oral cavity to 

reduce dental hardware metallic artifacts is not sufficient, and may even adversely influence 

the image quality. 
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Addendum: 

  

Thiel head CT scan at 120 kVp reconstructed with (a) FBP and (b) Veo. Veo decreases the induced metal 

artifacts resulting in an improvement of all investigated parameters. 
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8  
Strength and weakness of different image quality 

parameters 

There is a large variety in parameters describing the image quality of medical X-ray images. 

However, depending on the intended purpose, the correct image quality parameter has to be 

selected, taking into account their different strengths and weaknesses. 

8.1 Physical-technical image quality parameters 

8.1.1 Noise 

Noise and noise related properties of a radiological image are of great importance to 

diagnostic performance. Noise is based on the standard deviation of pixel values in an image, 

while NPS is a metric of image quality used to measure the noise characteristics and patterns 

in all frequencies of the image. In this way NPS provides us with a more complete description 

of noise in an image. Noise and noise related parameters are used for many applications, such 

as benchmarking image quality across systems, optimizing acquisition and reconstruction 

parameters to improve dose efficiency, and predicting observer performance. The question is 

of course if the properties of noise and NPS are suitable to draw such type of conclusions. The 

detection of lesions or abnormalities in medical images is impaired greatly by the presence of 

image noise. One component of medical image noise is quantum noise, the variability in the 

image’s intensity distribution due to the statistical fluctuations in the number of photons 
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reaching the image receptor [1]. A second component of medical image noise is anatomical 

noise, which originates from anatomic structures in the image that are irrelevant to the 

detection task [1, 2]. Noise and noise related properties are quantified on structure-free 

images which implies that the radiological task of detection of lesions or abnormalities is 

quantum noise limited rather than limited by the projected anatomy. This assumption is 

obviously not true for many common tasks in diagnostic radiology [1, 3-5]. Furthermore, when 

the anatomical noise dominates, the image quality depends less on the dose than expected 

from quantum noise considerations [5].  

Another drawback of using noise as an image quality parameter is that noise is commonly 

estimated over a ROI in a single image, employing assumptions of linearity and stationarity [6]. 

However, in newly developed reconstruction methods as iterative reconstruction (IR), the 

system is potentially nonlinear which implicates that noise is highly spatially dependent and 

that image resolution depends on contrast [7, 8]. So the evaluation of noise and resolution 

depends on the properties of the imaging task. As a result, task-independent metrics such as 

noise or NPS are no longer adequate for evaluations of IR image quality [9, 10].  

These findings are supported by our research. In chapter 6, the results of an optimization 

study for IR, based on different image quality parameters is presented. Potential dose 

reduction based on noise, is explicitly higher than the potential dose reduction based on 

clinical image quality assessment. Since noise was evaluated in homogeneous phantom 

images, the assumption was made that the radiological task of scoring normal anatomical 

structures in a chest CT is limited by the quantum noise. Moreover, using noise to evaluate the 

iterative reconstruction method SAFIRE assumes a linearity of the algorithm which is not the 

case [9, 11, 12]. Our results demonstrate that for IR algorithms, noise obtained in uniform 

phantom images, clearly is not appropriate to quantify the potential dose reduction.  

In literature, IR is mostly assessed with task independent metrics, such as voxel noise and 

contrast-to-noise ratio [10, 13, 14]. As a result, usually a single dose reduction potential 

independent of tasks is prescribed to IR. Pickhardt et al. [15] investigated the use of model 

based iterative reconstruction (MBIR) for abdominal CT based on noise measurements and 

lesion detection. MBIR resulted in lower image noise but depicted fewer lesions than FBP 

images. Chen et al. [9] demonstrated that tasks with lower contrast and smaller size have 

higher absolute dose reduction potential. Both articles highlight that noise based 

measurements are not sufficient to optimize nonlinear IR based algorithms. This stresses the 
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importance of evaluating image quality in IR with respect to the task. To accommodate IR’s 

nonlinearity, Chen et al. [12] extended the conventional concepts of NPS to magnitude-

dependent NPStask, which characterizes the noise properties at a specific noise magnitude. The 

measurement of NPStask enables the comparison of IR performance in terms of noise. 

Therefore, noise measurements in a structure-free image or for nonlinear systems are not 

valid for clinical image optimization processes. However, for comparison between different 

reconstruction techniques, noise measurements can be used as an objective image quality 

parameter [16]. Similarly, noise related factors such as NPS can be of interest for describing 

the physical-technical performance of radiological imaging equipment for acceptance and 

consistency testing. 

8.1.2 Resolution 

The evaluation of spatial resolution of imaging systems plays a central role in imaging 

performance evaluation [17]. One of the most comprehensive metrics used to measure and 

report spatial resolution of imaging systems is the MTF. The MTF provides a measure of how 

well the system transfers contrast across spatial-frequencies. The MTF is also essential to 

evaluating other key imaging performance metrics such as the DQE. The MTF is a useful 

quantity for linear systems, where the imaging system’s response to an arbitrary object can be 

determined by convolving the true object and the point spread function [6]. This is not true for 

nonlinear IR algorithms. As the MTF is not well defined for images reconstructed by IR, it is of 

limited utility in assessing the quality of these images. The introduction of iterative 

reconstruction systems has posed a challenge in our ability to assess spatial resolution.  

Current MTF assessment methods only focus on linear systems with a single contrast and 

noise level. As a result, Richard et al. [7] presented a method for measuring the MTFtask for CT 

systems for different reconstruction algorithms and across a range of noise and contrast 

levels. The MTF was applied not as a generic reflection of system resolution but rather as an 

object specific quantity. This was done so to accommodate the nonlinearity of iterative 

reconstruction methods. 



116   Strength and weakness of different image quality parameters 

 

8.1.3 Contrast 

The CNR is a useful metric for describing the signal amplitude relative to the ambient noise for 

simple and largely homogeneous objects. However, the CNR depends only on contrast and 

noise. Actual signal detectability also depends on factors including signal size, shape and 

density distribution; background level, variability and correlation; the variance and covariance 

of measurement noise; spatial resolutions; and the observer and detection strategy used. The 

CNR can be useful in some simple situations, e.g. determining thresholds of contrast agents at 

which signals on a test phantom become visible. However, the CNR is in general not a 

complete description of an observer’s ability to detect lesions, and this is even more true for IR 

images which are more likely to be nonlinear and nonstationary [6]. 

The results of the study described in chapter 6 also demonstrate the limited value of CNR to 

describe the entire image quality assessment. Potential dose reductions based on CNR are 

explicitly higher than the potential dose reduction based on clinical image quality assessment.  

The inability of CNR to give a complete description of an observer’s ability to detect lesions is 

also shown by Schindera et al. [18]. In this study, low contrast detectability was assessed by 

means of simulated lesions in a liver phantom. Moreover, objective image quality was 

assessed by calculating CNR values. The results of the phantom study indicated that use of IR 

does not improve the low contrast detectability of simulated liver lesions. However, CNR 

values were the same in 100% dose FBP images and in 20% IR images. They concluded that IR 

substantially improves the quantitative image quality based on CNR measurements, but does 

not improve the diagnostic effectiveness. Consequently, optimization procedures based solely 

on CNR is inappropriate since changes in IR are not necessarily reflected in clinical low contrast 

detectability. Moreover, the image quality may still deteriorate in terms of spatial resolution 

and artifacts [10].  

8.1.4 Contrast-detail 

Previous mentioned image quality parameters e.g. noise, resolution and contrast, are 

objective physical parameters for assessment of IQ based solely on measurements of image 

data sets. However, since these parameters do not include the effect of a human observer, 

they cannot be used to describe the entire imaging chain. Due to its crucial role in the medical 

diagnosis process, human decision criteria are a fundamental element necessary to include in 
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the imaging chain when assessing IQ. An alternative for the assessment of physical-technical 

image quality is the use of contrast-detail phantoms. Evaluation of these phantoms includes a 

human observer and provides a quantitative measure in terms of two fundamental 

parameters: low contrast and small detail detectability. The utilization of CD phantoms is 

heavily reliant on ‘the Rose model’, as put forward by Albert Rose in 1948 [19]. Rose stated 

that there is an inverse relationship between the linear size of an object and the minimum 

threshold contrast required for its detection. The use of the Rose model in radiology implies 

that the tasks are quantum-noise limited rather than limited by the anatomical noise. As 

described in paragraph 8.1.1, this assumption is obviously not true for many common tasks in 

diagnostic radiology. Contrast detail phantoms do not contain any anatomical structures 

(either normal anatomical background nor pathology) and thus do not resemble the clinical 

task of the observer. Consequently, contrast detail studies cannot by applied for optimization 

purposes. However, various authors reported its extended use in optimization studies [20, 21]. 

Nevertheless, contrast detail studies provide useful information on equipment performance 

[22]. The use of contrast-detail images is a practical approach primarily implemented for 

routine quality control and constancy checks. The current fourth edition of the European 

Guidelines for Quality Assurance in Mammography Screening [23] specifies minimum 

performance in terms of image quality and radiation dose. The CDMAM contrast detail 

phantom is routinely used in European quality control programs. However, the use of contrast 

detail phantoms suffers from several disadvantages. Subjective image quality evaluation 

methods based on visual interpretation depend on the variable and subjective nature of 

human observer decisions. Previous studies have revealed inter- and intra-observer variability 

in scoring of contrast-detail images [24, 25]. This variability may affect the result of the 

threshold visibility test and thus limits the ability of accurately assessing system performance. 

These limitations can be partially overcome if several observers are used. Nevertheless, the 

interpretation by multiple observers is impractical for routine quality assurance. Moreover, 

scoring of contrast-detail images is very time consuming. Therefore, software tools which 

automatically evaluate contrast-detail images have been developed to suppress inter-observer 

errors [26, 27]. 

Pascoal et al. [28] investigated the CDRAD analyzer for automated quality assessment of 

contrast detail images compared with subjective visual assessment. The software proved to be 

more sensitive than the average observer in the detection of the lower contrast details. 

Furthermore, in this study, the use of a single image quality figure such as the IQFinv, is 
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discouraged for absolute comparison of image quality, because important variations in 

detection performance with varying detail diameter and hole depths cannot be perceived. 

They may however be considered as useful indicators of overall image quality for relative 

comparisons as they provide a quick method of exploring trends of image quality 

performance. 

The results of the study described in chapter 5 demonstrate the correlation between 

automated and manual readings of the CDRAD phantom. A mean increase of 19% was seen in 

the measurements of the automatically obtained IQFinv values compared with the value 

derived by the human observers. Therefore, the software tool was more sensitive than the 

human observers in the correct detection of objects in the contrast-detail phantom. However, 

as reported by Pascoal et al. [28], changes in the significance level of the software tool, 

defined by the user prior to analysis can result in higher or lower IQFinv values. 

Contrast detail analysis was used in all studies described in Part III. In chapter 5, an excellent 

correlation was found between IQFinv values and clinical imaging quality by means of an VGA 

score. This study supports the value of contrast detail phantom analysis for evaluating clinical 

quality in chest radiography. In chapter 6, a contrast detail study was performed to assess the 

performance of iterative reconstruction techniques in CT. Among different physical 

parameters, contrast detail seems the best indicator for clinical performance. In chapter 7, 

metal artifact reduction tools were investigated by means of noise related parameters, 

contrast-detail and clinical image quality. Contrast detail results appeared to indicate the 

clinical effect of the different scanning and reconstruction settings better compared to the 

noise related image quality parameters.  

8.2 ROC and VGAS 

An alternative to the previous described parameters is task-based image quality assessment. 

Both VGA and ROC or ROC related studies are based on the evaluation of certain tasks. ROC 

and ROC related studies are currently considered one of the best methods to quantify and 

report diagnostic performance. They measure the ability of an observer to detect and correctly 

interpret pathological structures. However, there are several important disadvantages to ROC 

studies [29]. Firstly, large number of patient images and pathological lesions are required to 

obtain a sufficient statistical power. Secondly, the true health state of the patient must be 
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known to classify an image as normal or abnormal. Thirdly, the result of a ROC study only 

applies to a certain kind of lesion which had to be detected. To be representative for clinical 

scenarios, task-based assessments should be performed for a variety of tasks, resulting in a 

large number of images and image evaluations. Fourthly, the time consumption for the 

readers, but also for the preparation of sets of images with subtle lesions is extensive [30]. 

These requirements make the measurement of clinical performance by means of ROC studies 

difficult in practice and very time consuming. 

A simpler method has been published by the European Commission [31] and is based upon the 

scoring of image quality by inspecting normal anatomical structures. Good visibility of these 

normal structures is considered to define appropriate image quality and accurate diagnosis. 

The set of anatomical criteria is specific for the given type of examination and VGA is typically 

applied to evaluate them. An advantage of VGA methods is that contrary to the ROC related 

methods, it is the normal anatomy present in almost every patient image which is used for the 

evaluation of image quality. This property of VGA can also be considered as a disadvantage, 

since the diagnostic task is missing [29]. However, it seems clear that the visibility of normal 

anatomy is of great diagnostic significance to radiologists. VGA experiments provide an overall 

assessment of visibility of normal structures in terms of contrast, noise and sharpness. 

Demonstration of expected structures and patterns is reassuring to the interpreting physician 

and allows pathology to be excluded more reliably [32]. For example, a processing algorithm 

with a high noise perception by the radiologists will most likely not be widely adopted in 

clinical practice, even if good diagnostic accuracy had been proved [30]. VGA studies are 

relatively easy to conduct, especially in comparison with ROC studies, and the time 

consumption is moderate, at least for the observers. It is realistic to believe that this method 

can be implemented at almost any hospital [33]. 

Correlation between VGA experiments and ROC studies has previously been investigated, but 

the results are contradictory [29, 34]. In 2000, Tingberg et al. [34] investigated the diagnostic 

quality of radiographs of the lumbar spine with both VGA and FFE methods. Lumbar spine 

images were manipulated by adding artificial lesions, and image processing was applied to 

simulate image appearance from three different screen film combinations. The ranking of the 

images was the same when using ROC or VGA. A linear correlation was found between the 

results of the two methods. The uncertainties in the VGAS values were lower than the 

uncertainties in the FFE values, indicating VGA to be a robust method for evaluation of the 

image quality. In 2005, the same group performed a second study on the same subject [29]. In 
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this paper the authors reported that images with greater contrast than the original had 

significantly improved image quality in the VGA study although this did not affect detectability 

in the FFE experiment. From this, it is doubtful that the fulfillment of the investigated quality 

criteria for the visualization of normal structures in a VGA experiment is sufficient for accurate 

detection of pathology. The use of VGA is motivated by the assumption that the level of 

visibility of anatomical and pathological structures are connected, so that if the visibility of the 

normal anatomy is increased, the visibility of pathological structures is also increased. In the 

described study, increased noise in the images was easily detected by the radiologists in the 

VGA study, but did not affect the detection of the lesions in the FFE study. Good visibility of 

normal anatomy seems to be a needed, but not a sufficient, requirement for lesion detection. 

Basically the essential difference between both methods can be found in the following 

attitudes: or the radiologist feels confident with the global appearance of an image or it should 

be tested whether a new exposure or reconstruction setting also guarantees better lesion 

detection [30]. Both aspects are very relevant for the daily use of an imaging system and 

therefore both testing methods, VGA and ROC are useful. Correlations between FFE and VGA 

can probably only be found in a few special cases where the pathological structures for 

investigation in the FFE study are of the same size, shape, texture and contrast as the normal 

anatomy used in the VGA study. If the pathological structures that are searched for in the ROC 

study are different with respect to size, shape texture and/or contrast, to the anatomical 

structures used in the VGA study it cannot be taken for granted that correlation would exist. 

Since the methodology and the results of the two methods are quite different it is necessary 

to understand their advantages and disadvantages to be able to select the method that is 

most appropriate in a given situation.  

8.3 Model observers 

The evaluation of a new reconstruction algorithm or processing algorithms is frequently 

assessed with task-independent metrics such as noise, CNR, MTF and contrast-detail. As a 

result, a single dose reduction potential independent of tasks is obtained. However, a method 

of validating dose reduction claims must take into account clinical tasks. To be representative 

of clinical scenarios, task-based assessments should be performed under a variety of 

conditions and for a variety of lesions. As a result, these studies can result in a very large 

number of images and image evaluations, making model observers a valuable tool for image 
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quality assessment. While human observers are certainly a possibility, in addition to being 

more cost-effective, model observers are immune to effects like reader learning, fatigue, and 

inter- and intra-observer variability that can be issues for humans [6]. Model observers can 

also contribute to an increased reliability of physical-technical measurements such as contrast-

detail images. There is a long history in the development of models to predict human 

performance for visual detection of signal embedded in white noise backgrounds [35]. More 

recent work has been concentrating on applying a variety of model observers to more complex 

computer-generated backgrounds including lumpy backgrounds [36, 37]. However, it is 

important to predict human performance detecting signals in real backgrounds such as 

detection of a tumor in medical images. Accomplishing this goal requires extending the 

application of model observers from synthetic backgrounds to real anatomic backgrounds [38, 

39]. One of the difficulties in extending model observers to real backgrounds is the lack of 

statistical information of the images. Different models are developed which differ in the 

amount of information they use. For example, some models use information about the signal; 

others use information about the signal and the background statistics (Figure 8-1). Models also 

differ in the components they include to reflect constraints imposed by the human visual 

system. A fundamental component that distinguishes two groups of noise models is processing 

by a set of channels that are spatial-frequency tuned. These channels are intended to reflect 

the response properties of receptive fields of cells in the visual cortex which selectively 

respond to signals with a given spatial frequency. Therefore, models are divided in two 

categories: non-channelized models like the non-prewhitening matched filter observer with an 

eye-filter (NPWE) [6, 40-43] and the Hotelling observer [40, 44] and channelized models like 

the channelized Hotelling observer [6, 40, 42, 44]. 

It is important to realize, that optimization studies based on dose reduction potential can lead 

to different results for different model observer studies [9]. Results are always dependent on 

the type of investigated lesion and the selected background and observer model. Some studies 

reflect the potential related to clinical performance, while others represent the maximum 

performance that can be achieved in ideal situations. Moreover, for every imaging modality 

and every observer model, the correlation between model observer and human observer has 

to be established [45, 46]. Consequently, model observers are definitely an interesting tool for 

image quality analysis and optimization studies. However it is important to be aware that 

every step (selection of signal, background and observer model) influences the outcome of the 

study. 
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Figure 8-1: A quantitative plot of model observers based on the knowledge they use about the signal and 

background statistics to build the template. Particular signals might favor one model over another. The 

diagram ranks the models on their use of knowledge to derive templates averaged over all possible 

signals. [47] 

 



 

 

9  
The value of Thiel embalmed human cadavers 

To analyze both physical-technical and clinical image quality, a variety of phantoms are 

available. Phantoms to evaluate clinical image quality performance are partly described in 

paragraph 2.3. Phantoms to describe the physical technical image quality are usually made out 

of a uniform material. However, as described before (see paragraph 8.1.1), noise is the set of 

all harmful signals superimposed on a useful signal. The useful signal encodes the diagnostic 

information, whereas the noise represents a disturbance in understanding the information 

transmitted by the useful signal. For a medical imaging system, this definition applies to both 

random fluctuations associated with image detector and display as well as those associated 

with anatomical variations. One of the difficulties encountered with anatomical noise arises 

from the fact that it depends on the diagnostic task [5]. It can only be defined in association 

with the signal of interest. For instance, when examining blood vessels on chest images, the 

ribs can be considered as a form of anatomical noise. When examining small rib fractures, the 

blood vessels become anatomical noise and the ribs contain the signal of interest [48]. This 

stresses the importance of the presence of anatomical structures in the phantom for 

performing optimization studies.  

Since a lot of radiological examinations are limited by the anatomic noise rather than the 

quantum noise, optimization studies need to be performed in images containing realistic 

anatomical features and specific diagnostic tasks. Clinical image quality optimization based on 

ROC or model observer studies currently often make use of anthropomorphic phantoms [49, 

50]. Although these phantoms represent better the human anatomy compared to uniform 

phantoms used for physical-technical measurements, they still have some important 
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drawbacks. Phantoms which are divided into sections cut orthogonal to the cranial–caudal axis 

of the phantom inevitably contain air gaps between the different slices which can significantly 

affect the image quality of CT images, particularly in the areas close to these gaps [51]. 

Furthermore, anthropomorphic phantoms are rather limited in their composition being 

composed of just a small fraction of tissues, organs and densities present in the real patient. 

Another possibility for ROC or model observer studies is the superimposition of lesions on real 

patient images [52]. However, this implies that the actual truth state of the patient has to be 

known. Another possibility is the use of embalmed cadavers. However, formalin embalmed 

cadavers suffer from profound changes of density of organs and tissues. Consequently, X-ray 

images of formalin embalmed cadavers show significant differences with patient images. Thiel 

embalmed human cadavers can offer an interesting alternative. Thiel-fixed specimens have 

outstandingly lifelike visual properties without having the irritating odor associated with 

formalin embalming procedures. These embalmed cadavers have, just like real patients, the 

benefit of a realistic anatomical background. Moreover, Thiel embalmed cadavers have 

important advantages over real patients: knowing the actual truth state of these cadavers is 

not a problem and these cadavers can be exposed to multiple acquisitions without ethical 

problems from radiation protection point of view. 

Thiel embalmed human cadavers were used in all articles described in Part III of this thesis. 

The similarity of both planar radiography images (Figure 9-1) and tomographic images (Figure 

9-2) of Thiel embalmed human cadavers with corresponding images of a real patient was 

assessed by different radiologists. This comparison was made for the chest region and the 

head and neck region. For both acquisition methods and both body regions, Thiel images were 

considered appropriate to assess the clinical image quality. Consequently, Thiel embalmed 

human cadavers can be a valuable tool for optimization studies based on ROC or model 

observers. 

  

Figure 9-1:  Chest radiograph of a patient (left) and a Thiel embalmed cadaver (right). 
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Figure 9-2: Normal lung parenchyma in both a patient (left) and a Thiel cadaver (right) chest CT image. 

Application in medical X-ray imaging is not the only scope for Thiel embalmed cadavers. 

Human cadavers have become an important resource for surgical training. Training on cadaver 

specimens gives the opportunity to perform major laparoscopic operations while respecting 

human ethics. Difficult endoscopic and surgical procedures can be trained step by step under 

real anatomical situations. Therefore, the use of Thiel embalmed cadavers is probably the best 

method for surgical trainees to learn basic laparoscopic surgery and for advanced surgeons to 

improve their performance [53]. Laparoscopic procedures are not the only surgical procedures 

where Thiel embalmed cadavers showed to have a significant value. The significance of Thiel 

embalmed cadavers has been reported in several areas such as oral surgery [54], micro 

vascular exercise [55], ultrasound guided regional anesthesia [56] and several urology based 

procedures [57]. Thiel embalmed cadavers are promising as a model for revascularization 

studies. Chevallier et al. performed total body postmortem circulation using a heart-lung 

machine [58]. For this thesis, revascularization of 2 Thiel embalmed cadavers was performed 

to investigate the possibility of performing abdomen contrast CT scans. First results seemed 

promising, however, further optimization is necessary. Thiel fixed specimens are not suitable 

for histological investigations or biomechanical testing [59].  

Furthermore, the use of Thiel cadavers complies with the new challenges of shorter training, 

limited student exposure to anatomy in medical school curricula, and patient safety [60]. 

Embalming helps to enhance the durability of the cadavers, though at the cost of altering 

certain tissue characteristics. Formalin fixed cadavers are of little importance in teaching 

laparoscopic surgery, as the consistency and texture of tissues are significantly altered [53]. 

Training on Thiel cadavers, compared to animal models, offers an anatomy identical to that 

found in patients. Moreover, a same cadaver can be used for several different procedures. 
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However, the use of Thiel embalmed cadavers also has some disadvantages: the Thiel 

embalming method is expensive and requires an elaborate setup. 



 

 

10  
Clinical versus physical image quality assessment 

There are many tasks in radiology departments which involve assessment of image quality. 

Equipment purchasing is partly based on performance specifications, acceptance testing 

verifies that the system fulfills the specified performance criteria, constancy testing focuses on 

noticing any changes in the imaging system, clinical testing concentrates on the fulfillment of 

clinical needs, and optimization processes attempt to find best ways to use the imaging system 

for clinical purposes [32]. These different tasks are best performed by different assessment 

methods and the outcome is often referred to as physical-technical image quality or clinical 

image quality, according to the method used.  

Although establishing the link between physical-technical image quality measures and clinical 

utility has been pursued for decades, the relationship between the results of physical-technical 

measurements and clinical performance is not yet fully established and understood. The 

relationship between diagnostic performance and physical image quality has been discussed in 

the International Commission on Radiation Units and Measurements (ICRU), were it was 

described by a simplified graph (Figure 10-1) [61]. The graph shows that if the level of physical 

image quality is extremely low, the image can provide no information for the diagnosis. When 

the physical image quality improves, important radiological patterns become recognizable and 

diagnostic performance improves. Beyond a certain level of physical image quality, the 

performance will saturate since al important features are already visible [32]. This figure may 

be representative for a very general approach for the correlation between physical-technical 

and clinical image quality. However it does not contribute to the essential question: can 

optimization studies based on physical-technical image quality parameters contribute to the 
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clinical optimization process? It is therefore important to establish the relation between the 

physical measures of image quality and clinical image quality as evaluated by radiologists.  

 

Figure 10-1: Simplified qualitative relationship between physical image quality and diagnostic 

performance [32] 

Although the importance of correlating physical-technical and clinical image quality is highly 

recognized [32], only a few studies really tried to establish a link between the two. Sandborg 

et al. [62] studied this correlation in chest and lumbar spine screen-film radiography based on 

contrast and SNR of specified details and a VGA. Their results show significant correlation of 

blood vessel contrast and the clinical evaluations in chest imaging. The correlation of the SNR 

of the blood vessel and clinical evaluation was lower. In lumbar spine imaging, both contrast 

and SNR of small soft tissue cavities in bone seemed to be good indicators for the clinical 

image quality. However, as screen-film radiography is no longer applied, these conclusions are 

no longer relevant and this kind of studies should be repeated for digital radiography. 

In a subsequent study of Sandborg et al. [63], the effect of X-ray tube voltage on digital chest 

and pelvis radiography was investigated. Clinical image quality was evaluated on an 

anthropomorphic phantom using the VGA method and physical image quality was described 

by the SNR for a number of small details at various locations in the phantom. Both the clinical 

and the physical evaluation resulted in a monotone decrease of image quality with increasing 

X-ray tube voltage. They found a positive linear relationship between the results of the two 

evaluation methods (chest PA: r² = 0.91, pelvis: r² = 0.94), indicating that the SNR is strongly 

related to the radiologists’ grading of the images. 
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Redlich et al. [64] assessed several chest radiography systems by measuring the DQE and 

performing a VGA and a ROC study. It was noted that the ranking of the image quality of the 

systems was nearly the same with all these assessment systems. However, no real correlation 

was calculated between the different approaches. 

In chapter 5 of this thesis, the correlation between the results of a contrast-detail analysis and 

clinical image quality in chest radiography was investigated. This study showed an excellent 

correlation between IQFinv and VGAS by means of a spearman correlation coefficient of r = 

0.916 (p < 0.001). This highlights the relevance of contrast-detail analysis as an important 

physical-technical image quality assessment tool. Because the correlation between VGAS and 

ROC is questionable, the excellent correlation between contrast-detail and VGAS does not 

automatically mean that contrast-detail analysis is an appropriate tool for lesion detection 

optimization studies. However, it is highly relevant for constancy checks and to indicate 

improvement or deterioration of the normal anatomy which is of great diagnostic significance 

for the radiologist (see paragraph 8.2).  

In chapter 6, a dose optimization study for the use of IR in CT is presented. Potential dose 

reductions were calculated for different physical-technical and clinical image quality 

parameters. However, the actual correlation between physical-technical and clinical image 

quality was not quantified by a correlation coefficient. This study shows clearly that noise and 

noise related parameters are difficult to link with the clinical image quality. Once again, the 

contrast-detail analysis seemed most appropriate to predict the outcome of clinical image 

quality studies based on the normal anatomy. 

Finding a correlation between clinical and physical image quality is extremely difficult. 

Therefore, it is very important to understand the difference between these different 

approaches. In this thesis, an overview has been made of some common methods for 

evaluating imaging systems to discuss the validity and reliability associated with the methods 

and hence their suitability for different practical applications.  

Physical-technical image quality parameters such as noise, resolution and contrast are 

objective methods for assessment of IQ based on measurements of image data sets. They are 

essential for purposes as equipment design, performance specification and acceptance and 

constancy testing [65]. These measurements are not affected by human perception. 

Consequently, they do not suffer from variations associated with human observers and are 
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therefore highly reproducible. This is beneficial for studies which are aimed at detecting drifts 

in equipment performance such as routine quality control [28].  

Correspondingly, the performance of CT scanners is frequently measured using physical 

phantoms. Their performance evaluations are used to perform quality control tests, develop 

clinical protocols, accredit devices, evaluate clinics for inclusion in clinical trials, or assess the 

utility of new scanner designs and algorithms. Currently, a number of useful phantoms exist 

that are targeted to the measurement of image noise, CNR, spatial resolution, Hounsfield Unit 

accuracy and alignment. Even though these measurements are of significant value for FBP 

algorithms, they fail to capture the performance of IR algorithms, which are common dose 

reducing algorithms on modern CT systems. Because these iterative algorithms are nonlinear, 

the reconstructed resolution and noise can depend on the object contrast, making the 

standard contrast and noise metrics of limited utility. Additionally, iterative reconstruction 

algorithms can influence image texture, which these conventional metrics do not capture [66]. 

Therefore, new parameters such as NPStask are developed to enable the comparison of CT 

performance in terms of resolution and noise [12]. 

A very important advantage of physical-technical image quality performance testing is that 

they are fairly easy to implement in routine practice. These measurements can easily be 

performed on a regular basis by an in-house medical physics expert, ensuring a thorough 

evaluation of the obtained image quality of all radiological equipment in a medical imaging 

department.  

The above mentioned physical-technical image quality parameters, while robust and 

quantitative for physical-technical image quality assessment, are not applicable to clinical 

images. A system with excellent noise properties but with a poor resolution will not result in 

an increase of diagnostic performance. Similarly, depending on the diagnostic task, images 

with good resolution but without decent low contrast detectability will not necessarily result 

in a good clinical image quality score.  

In chapter 7, noise related parameters (artifact area and artifact index) are used to assess the 

efficiency of different metal artifact reduction tools. These parameters quantify the amount of 

artifacts present in an image. However, this study shows that the resolution plays a critical role 

to quantify the effect of metal artifact reduction tools. If the efficiency of such reduction tools 

would be solely assessed based on noise related parameters, deterioration of the resolution 

would introduce secondary artifacts compromising diagnostic suitability of the reconstructed 

image.  
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In clinical images, complex and variable anatomical structures complicate any quantitative 

assessment of image quality. Established techniques such as receiver operating characteristic 

(ROC) or model observers are suitable methods for the assessment of clinical image quality in 

terms of diagnostic performance [67, 68]. 

Before a realistic assessment of the clinical image quality can be made, the requirements need 

to be defined. It is that the required clinical information is contained in the images and can be 

interpreted by the observer that is important, rather than whether the appearance of the 

image is pleasing to the eye [69]. The ideal set of parameters describing the clinical image 

quality should give a measure of the effectiveness with which an image can be used for its 

intended purpose, namely answering the clinical questions posed. They should therefore 

relate to the ability of the image to demonstrate disease and to delineate anatomical 

structures which are relevant to detection, differential diagnosis and localization. The image 

quality requirements vary for different types of examinations or even different tasks within 

single examinations [69]. Various imaging tasks require different levels of image quality; an 

image may be of sufficient quality for one task, but inadequate for another task [70]. 

One of the challenges radiologists face when assessing new image reconstruction techniques 

as they are applied to lower dose images, is how to evaluate whether quantitative 

improvements in noise lead to equivalent or even improved image quality. Qualitative 

assessment often depends on reader preference, comfort level with image appearance, 

personality (i.e. the ability to deal with changes in image appearance), and years of 

experience, rather than a true assessment of quality [71]. 

The best methodology for image quality optimization studies is definitely based on clinical 

image quality assessment by means of task specific assessment. However, these studies are 

difficult to implement in routine practice since such studies are expensive and logistically 

challenging [72]. Furthermore, the inherent fluctuations in a human observer imply that all 

methods that involve human observer have limited reliability, meaning that a large number of 

observations are usually needed in order to obtain reliable result [73]. The use of observer 

models could overcome this problem. However, as discussed in paragraph 8.3, the 

implementation of observer models in a medical imaging department requires a profound 

knowledge of the theoretical background of the different signals, backgrounds and observer 

models.  



 

 

 



 

 

11  
Final conclusions 

The objectives of this PhD thesis were to assess the reliability and validity of different image 

quality assessment methods and to investigate a correlation between physical-technical and 

clinical image quality. This assessment was performed for planar chest radiography, chest CT, 

and for the efficiency of different metal artifact reduction tools. 

In chest radiography, a significant correlation r = 0.92 (p < 0.001) was found between physical-

technical and clinical image quality by means of respectively a contrast detail study and a 

visual grading analysis. The results indicate that the assessment of the normal anatomy in a 

chest radiograph is highly correlated with the performance of contrast detail studies. 

However, this does not automatically imply that a contrast detail analysis is a suitable method 

to predict the results from ROC studies, since in such studies, pathological structures instead 

of the normal anatomy have to be assessed. Nevertheless, the excellent correlation between 

the normal anatomy and contrast detail analysis suggests the value of the latter technique, 

which is important as contrast detail analysis is a frequently used image quality optimization 

method.  

Although a very good correlation between physical-technical and clinical image quality was 

found for planar chest radiography, this correlation was less obvious for chest CT images. The 

image quality for chest CT investigations was assessed using physical-technical parameters like 

noise, CNR and IQFinv, while clinical image quality was assessed using a visual grading analysis. 

Based on the different image quality parameters, potential dose reductions were determined 

for different strengths of iterative reconstruction. Comparison of the obtained potential dose 
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reductions showed that IQFinv, derived from the contrast-detail curve, correlated best with the 

clinical image quality. Noise and noise related parameters, i.e. CNR, showed to be not suitable 

for assessing IR algorithms. 

Likewise, the inability of noise and noise related parameters to evaluate image quality was 

supported in the third study in which the efficiency of different metal artifact reduction tools 

was investigated. Deterioration of the resolution, which is not captured by noise related image 

quality parameters, could introduce secondary artifacts compromising diagnostic suitability of 

the reconstructed image. 

Both physical-technical and clinical image quality parameters are very important tools to 

assess the image quality. However, it is important to understand the strengths and 

weaknesses of both methods. Physical technical measurements are fairly easy to conduct in 

quality assurance programs. They are essential for evaluating equipment performance and 

acceptance and constancy testing. However, for information about the actual clinical 

performance related to pathological anatomy like lesion detection, clinical assessment studies 

based on ROC studies still need to be performed. Clinical image quality assessment is rather 

difficult to perform in routine practice. However, they are the only reliable option for 

optimization purposes of radiologic diagnosis of specific pathologies.  

Based on the results obtained in present thesis with respect to the correlation between 

physical-technical and clinical image quality, a contrast-detail study is the physical-technical 

tool closest related to clinical image quality for the assessment of the normal anatomy. 

This thesis has certainly proven that image quality analysis is a very complex but very 

important item. However, in routine quality control and quality assurance programs, the main 

focus is still on technical exposure parameters like dose and CTDI. There is significantly less 

attention for image quality parameters. The physical-technical image quality parameters 

discussed in this thesis can definitely contribute to a thorough analysis necessary for routine 

image quality assurance. The role of a medical physics expert in this context is crucial. Not only 

for the correct interpretation of the obtained data but also for ensuring corrective actions if 

necessary. 

The use of Thiel embalmed cadavers proved to be suitable for the assessment of clinical image 

quality. For both chest RX and chest CT acquisitions and for head CT acquisitions, equivalency 
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of real patient images and Thiel images was confirmed, indicating the value of Thiel embalmed 

cadavers in medical X-ray imaging. 



 

 

 

 



 

 

12  
Future perspectives 

In this PhD thesis, an excellent correlation was found between contrast-detail and VGAS in 

chest radiography. However, this correlation is not yet investigated for mammography. The 

CDMAM phantom is an intensively used phantom for image quality analysis during constancy 

and acceptance testing in mammography. Based on the results of CDMAM analysis, clinical 

exposure parameters are optimized. This optimization process is based on the assumption that 

the results of a contrast-detail analysis are reflected on the clinical image quality. 

Consequently, it is important to establish the correlation between CDMAM analysis and VGAS. 

Physical-technical image quality assessment in CT is challenged by the introduction of new 

reconstruction algorithms. The non-linearity of these algorithms makes it impossible to assess 

physical-technical image quality with the conventional parameters like noise, NPS and MTF. 

Therefore, new phantoms which allow more task specific physical-technical image quality 

assessment need to be developed. 

The phantoms used for contrast-detail analysis in digital radiography and mammography 

contain contrast and detail levels varying over large scales. However, in CT, the current 

commercially available contrast-detail phantoms contain only a limited amount of contrast 

levels. This confines the value of these phantoms for image quality assessment in CT images. 

Since excellent correlation was found between contrast-detail analysis and the normal human 

anatomy for digital chest radiography, it would be interesting to further explore this 

correlation in CT images. For this, construction of more sophisticated contrast-detail phantoms 

is essential. 
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Thiel embalmed cadavers proved to be a great tool for the assessment of clinical image 

quality. In all three studies, equivalency of real patient images and Thiel images was 

confirmed. Thiel embalmed cadavers have the advantage that they can be exposed to multiple 

acquisitions without ethical problems. Therefore, Thiel embalmed cadavers can be used in 

future clinical optimization studies of all medical imaging modalities using X-rays.  
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