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Abstract 

 

Cone-beam computed tomography (CBCT) represents a rapidly developing imaging 

modality that provides three-dimensional (3D) volumetric images with sub-millimeter spatial 

resolution and soft-tissue visibility from a single gantry rotation. CBCT tends to have small 

footprint, mechanical simplicity, open geometry, and low cost compared to conventional diagnostic 

CT. Because of these features, CBCT has been used in a variety of specialty diagnostic applications, 

image-guided radiation therapy (on-board CBCT), and surgical guidance (e.g., C-arm based 

CBCT). However, the current generation of CBCT systems face major challenges in low-contrast, 

soft-tissue image quality – for example, in the detection of acute intracranial hemorrhage (ICH), 

which requires a fairly high level of image uniformity, spatial resolution, and contrast resolution. 

Moreover, conventional approaches in both diagnostic and image-guided interventions that involve 

a series of imaging studies fail to leverage the wealth of patient-specific anatomical information 

available from previous scans. Leveraging the knowledge gained from prior images holds the 

potential for major gains in image quality and dose reduction. 

Model-based iterative reconstruction (MBIR) attempts to make more efficient use of the 

measurement data by incorporating a forward model of physical detection processes. Moreover, 

MBIR allows incorporation of various forms of prior information into image reconstruction, 

ranging from image smoothness and sharpness to patient-specific anatomical information. By 

leveraging such advantages, MBIR has demonstrated improved tradeoffs between image quality 

and radiation dose in multi-detector CT in the past decade and has recently shown similar promise 

in CBCT. However, the full potential of MBIR in CBCT is yet to be realized. 

This dissertation explores the capabilities of MBIR in improving image quality (especially 

low-contrast, soft-tissue image quality) and reducing radiation dose in CBCT. The presented work 
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encompasses new MBIR methods that: i) modify the noise model in MBIR to compensate for noise 

amplification from artifact correction; ii) design regularization by explicitly incorporating task-

based imaging performance as the objective; iii) mitigate truncation effects in a computationally 

efficient manner; iv) leverage a wealth of patient-specific anatomical information from a previously 

acquired image; and v) prospectively estimate the optimal amount of prior image information for 

accurate admission of specific anatomical changes. Specific clinical challenges are investigated in 

the detection of acute ICH and surveillance of lung nodules. The results show that MBIR can 

substantially improve low-contrast, soft-tissue image quality in CBCT and enable dose reduction 

techniques in sequential imaging studies. The thesis demonstrates that novel MBIR methods hold 

strong potential to overcome conventional barriers to CBCT image quality and open new clinical 

applications that would benefit from high-quality 3D imaging.  
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voxel size of 0.5 mm). (e-f) Multi-resolution PWLS reconstruction using 
the same extended RFOV. The symbols ε and t denote RMSD and 
computation time, respectively, quantifying the reduction in artifact using 
an extended RFOV and the benefit to computation time using the multi-
resolution method. 
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Chapter 1 

1. Introduction 

1.1 Medical imaging: importance, challenges, and opportunities 

Medical imaging involves the interaction of some form of energy with tissues in the body to form 

a spatially distributed measurement of a particular quantity – in x-ray imaging and computed 

tomography (CT), for example, the spatial distribution of electron density, which is in turn related 

to attenuation coefficient and physical density. Applications include both the diagnosis of disease 

and the guidance of therapeutic intervention. The particular forms of energy applied in such 

imaging procedures cover a wide range of the electromagnetic spectrum (and mechanical / acoustic 

energy), including radiofrequency waves in magnetic resonance imaging (MRI), visible light in 

endoscopy and microscopy, x-rays in mammography, fluoroscopy, and CT, gamma rays in nuclear 

medicine, and sound waves in ultrasound imaging. 

Noninvasive medical imaging is among the primary advances in 20th and 21st century 

medicine – for example, largely replacing exploratory surgery. In fact, x-rays were being used for 

diagnosis and image guidance within a month of their serendipitous discovery by Wilhelm Röntgen 

in 1895.1 The following century saw vast technological advances in medical im333aging, including 

the introduction of new imaging modalities and substantially improved imaging capabilities. Such 

technological advances have greatly shaped the evolution of medical practice and have established 

an imperative role of medical imaging in many aspects of today’s medical practice. The following 

sections discuss a few rising challenges and opportunities in medical imaging in the century ahead. 
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1.1.1 Radiation dose reduction 

The human body receives background ionizing radiation constantly from sources such as cosmic 

radiation and naturally occurring radioactive materials (e.g., radon). Some medical imaging 

modalities also cause ionizing radiation to the human body. For example, the radiation dose 

associated with a typical CT scan (1-14 mSv) is comparable to that from annual background 

radiation (1-10 mSv depending on geographic locale).2 The advances in CT imaging capabilities 

since ~2001 have provided faster and more accurate diagnosis and interventional guidance, but 

they have also led to greatly increased CT usage. For example, the number of CT scans increased 

from ~13 million in 1990 to ~64 million in 2006.3 Although the health risks associated with low-

level radiation (<100 mSv) such as radiation from a CT scan is small (with the degree of risk 

representing a prominent area of debate),4 it is nonetheless desirable to keep the radiation dose in a 

CT scan as low as reasonably achievable (ALARA) such that a particular diagnostic task can still 

be reliably accomplished.  

To reduce radiation dose in CT, the radiology community has worked to implement the 

principles of ALARA in CT imaging, which guides clinicians to select the proper amount of scan 

dose by taking the specific patient attenuation (e.g., patient size) and specific imaging task into 

consideration.5–7 In addition, a number of dose reduction techniques have been developed and now 

available on commercial CT scanners.7,8 One such technique is tube current modulation (TCM),9 

which modulates the x-ray tube current in a CT scan in the longitudinal (z) direction and/or angular 

(e.g., anterior-posterior versus lateral) direction to adapt to changes in patient attenuation. 

Automatic exposure control (AEC)10 is a more comprehensive technique, which automatically 

determines and delivers an amount of dose to the patient using preprogramming and/or a near real-

time feedback of detector signal. A new category of dose reduction technique is given by model-

based iterative reconstruction (MBIR), which has demonstrated strong potential to improve image 
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quality and reduce radiation dose in CT.11–13 This dissertation develops and evaluates a number of 

new MBIR methods that can potentially reduce radiation dose in CT. 

1.1.2 Dedicated imaging systems 

An exciting new area in medical imaging is the development of dedicated imaging systems for 

specialty applications. While conventional whole-body imaging systems [e.g., multi-detector CT 

(MDCT), MRI, positron emission tomography (PET), and single photon emission CT (SPECT)] 

also have scan protocols optimized for different applications (e.g., head, heart, lung, and abdomen), 

the development of dedicated imaging systems provides more flexibility in the design and 

optimization of the system for specific applications. Dedicated imaging systems tend to have 

smaller footprint, higher portability, and lower cost compared to whole-body imaging systems. 

Moreover, because such systems are designed to accomplish a relatively narrow range of diagnostic 

tasks, they have the potential to outperform conventional, general-purpose imaging systems. 

An example of a dedicated imaging system is x-ray mammography, which has many 

unique attributes compared to a general radiography system, including relatively low x-ray tube 

voltage for maximizing soft-tissue contrast in the breast, high spatial resolution of the detector for 

improving microcalcification detection, and the use of a compression paddle for reducing scatter, 

dose, and detector dynamic range requirements.4 Another type of dedicated system for breast 

imaging is digital breast tomosynthesis (DBT), which attempts to reduce the “superposition” 

problem in x-ray mammography by acquiring multiple projections of the breast at several angular 

positions and synthesizing images at a few in-focus planes. DBT has demonstrated improved 

diagnostic accuracy for breast cancer when combined with x-ray mammography.14 Moreover, since 

the introduction of flat-panel detectors (FPDs) in the late 1990s, dedicated CBCT systems with a 

FPD have been developed for specialty applications in a variety of specialty applications, including 

dental, maxillofacial, otologic,15–18 breast,19–24 and musculoskeletal imaging.25–29 Such CBCT 
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systems are discussed in greater detail in Sec. 1.2. Even in MRI, dedicated systems have been of 

great interest due to the high installation and management costs, large footprint, and patient 

discomfort associated with current whole-body MRI systems. Among such developments are 

dedicated low-field and intermediate-field MRI systems for musculoskeletal imaging that have 

demonstrated diagnostic accuracy similar to high-field whole-body MRI while bringing higher 

cost-effectiveness and patient comfort.30–32 

1.1.3 Imaging for guided interventions 

Another exciting trend in medical imaging is the increasing role of imaging to guide high-precision 

radiation therapy and surgery. Radiation therapy uses high-energy radiation (e.g., x-rays, gamma 

rays, and charged particles) to kill cancer cells while sparing nearby healthy tissue. Image-guided 

radiation therapy (IGRT) is often regarded as another major advance in radiation therapy following: 

1) the introduction of 3D conformal radiotherapy (CRT) with multi-leaf collimators (MLC) in the 

1980s that enabled delivery of radiation to precisely defined target areas; 2) and the introduction of 

intensity-modulated radiation therapy (IMRT) in the 1990s that enabled sophisticated treatment 

planning.33 A major challenge in radiation therapy is that geometric uncertainties caused by changes 

in patient setup between each treatment fraction and/or by patient motion during the treatment can 

hinder accurate delivery of the treatment plan. Early development in IGRT involved adding 

radiographic systems to existing radiation treatment machines and using oblique radiographic 

images generated by the radiographic systems to correct for geometric uncertainties.33 This was 

followed by the integration of electronic portal imaging devices (EPIDs)34 into the treatment system, 

which could generate images of the anatomy and field shape simultaneously using the megavoltage 

treatment beam, although the contrast of the anatomy in the megavoltage image was relatively poor. 

On-board kilovoltage CBCT was introduced in the early 2000s,35–37 providing 3D volumetric 

imaging of the anatomy with improved soft-tissue contrast and has grown to become the modern 



5 

 

standard of care. The use of CBCT for radiation therapy guidance will be further discussed in Sec. 

1.2. Moreover, other imaging modalities such as MDCT, MRI, and PET can potentially be 

integrated into radiation therapy. Such systems are currently under technical development and/or 

early clinical evaluation.38–41 

Image-guided surgery (IGS) usually involves the use of imaging, tracking, registration, and 

visualization techniques to provide the surgeon with real-time images of the patient or real-time 

location information of surgical tools with respect to the patient. IGS has been evolving in the past 

three decades along with the improvement of medical imaging and computing power. Nowadays, 

IGS systems for many clinical areas have been developed.42 For example, image-guided 

neurosurgery has been practiced for over 25 years and has become the standard of care in many 

surgical centers.43 Because of image-guided neurosurgery, a number of procedures now do not 

require craniotomy. Because significant brain shift may occur in some neurosurgeries,44 the use of 

intra-operative imaging such as ultrasound, C-arm CBCT, or MRI can provide up-to-date 

anatomical information for surgical navigation compared to only using pre-operative images.44,45 

Orthopedics is another clinical field in which IGS has been used extensively, including the use of 

intra-operative imaging (usually radiographs or CT) to guide pedicle-screw insertion, hip 

replacement, knee replacement, and fracture alignment.46–48 Another clinical field that can 

potentially benefit from IGS is image-guided cardiac interventions, including systems that use 

intra-operative real-time MRI, combine intra-operative x-ray angiography and MRI, or register 

intra-operative ultrasound to pre-operative MRI.49–51  

1.1.4 Prior information in sequential studies 

There are many clinical scenarios in which sequential imaging studies are conducted. For example, 

in diagnostic radiology, patients with suspicious lung nodules or cancer often undergo a series of 

longitudinal chest CT scans to assess the tumor growth rate52 and/or monitor the therapy response.53 
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In image-guided interventions, pre-operative CT or MRI studies are often acquired, and multiple 

intra-operative imaging studies (e.g., using a C-arm CBCT) may be acquired for up-to-date tracking, 

registration, and visualization.42,54–57 Traditionally, such sequential studies are conducted through a 

series of complete acquisitions, and the cumulative radiation dose in such studies raises concerns 

for both the patient and the surgical staff.  

To address this problem, many dose reduction methods have been developed (in addition 

to typical dose reduction methods used in complete acquisitions such as TCM and AEC). Two 

straightforward methods are illustrated in Fig. 1.1, including: 1) reduction in the amount of data 

acquired (i.e. sparse sampling), and 2) reduction of the x-ray technique (e.g., reduced tube current). 

However, such dose reduction techniques in the absence of countermeasures to mitigate noise 

and/or artifacts tend to experience a reduction in overall image quality of the reconstructed image. 

For example, sparse sampling makes the image reconstruction problem more ill-conditioned and 

leads to streak artifacts in the reconstructed image, while lowering fluence increases quantum noise 

in the projection data and the reconstructed image. 

 

Figure 1.1: Two potential methods for dose reduction in sequential imaging studies: sparse 
sampling (fewer projections acquired in the scan) and reduced fluence (lower dose per projection). 
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Patient-specific prior information, such as a prior image of the same patient acquired in a 

previous imaging study, is often available in sequential imaging studies. Such information contains 

a tremendous amount of patient-specific anatomical information that could potentially be leveraged 

in image reconstruction, presenting increased opportunities for dose reduction. While conventional 

analytical reconstruction methods such as filtered-backprojection (FBP) are usually derived using 

data only from the current scan, MBIR allows the incorporation of prior information into image 

reconstruction through regularization and thereby represents a promising approach to leverage 

patient-specific prior information. However, the use of patient-specific prior images in image 

reconstruction also introduces new challenges. For example, possible patient motion between 

imaging studies needs to be compensated to ensure accurate use of patient-specific prior 

information. Moreover, a proper balance between information from a prior image and from the 

current scan is needed to ensure accurate admission of anatomical changes from the prior image. 

New MBIR methods will be introduced in Chapter 5 and 6 to leverage patient-specific prior 

information and address these new challenges. 

1.2 Cone-beam computed tomography 

1.2.1 Principles and technology 

In a broad sense, a CT system whose scan geometry has a fairly large cone angle may be referred 

to as cone-beam CT (CBCT). A major advantage of using a large cone angle in CT compared to a 

small cone angle or a fan-beam geometry is the increased coverage of the object by x-ray in each 

projection. Such a configuration allows imaging of a full volume from a single orbit about the 

patient. 

Arguably, modern MDCT with a detector comprising a large number of detector rows 

amounts to a “cone-beam” imaging system. The number of detector rows in MDCT has 
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dramatically increased in the past two decades. For example, a modern MDCT scanner may have 

as many as 128, 320, or even 640 detector rows, providing longitudinal coverage of 8-16 cm of 

coverage. 

This section focuses on CBCT systems based on a large-area detector, usually a large-area 

FPD. Large-area FPDs were initially developed for radiographic / fluoroscopic imaging in the 

1990s.58–61 FPDs include two general varieties of detection mechanism – indirect FPDs and direct 

FPDs.4 The former type converts incident x-ray photons into light photons in the scintillator 

(usually gadolinium oxysulfide, Gd2O2S:Tb, or cesium iodide, CsI:Tl) and then converts light 

photons into electronic charge using an array of amorphous silicon (a-Si:H) photodiodes and thin-

film transistors (TFTs). The latter type directly converts incident x-ray photons into electron-hole 

pairs (typically in amorphous selenium, a-Se, or another photoconductor) and then detects electrons 

using arrays of high-voltage bias electrodes together with TFTs.  

FPD-based CBCT systems have a number of distinct features compared to MDCT. First, 

FPD-based CBCT systems have a (nearly) full cone-beam geometry (i.e., the cone angle is 

comparable to the fan angle) and provide volumetric image reconstruction from a circular orbit. 

This is because a modern FPD has a large number of detector “rows”. For example, an indirect 

FPD used in studies below has 3072 pixels in the vertical direction (detector “rows”) and 3072 

pixels in the horizontal direction. Second, the pixel size in FPDs is usually small and isotropic (e.g., 

a pixel pitch of 139 µm for the indirect FPD mentioned above), so FPD-based CBCT systems are 

capable of providing images with isotropic, sub-mm spatial resolution. Third, FPD-based CBCT 

usually allows more flexibility in the design and optimization of the system for specialty 

applications compared to MDCT. Some design processes leverage the understanding of 3D imaging 

performance provided by cascaded systems modeling,62–65 which are extensions from previous 

work in 2D.66–72 Fourth, FPD-based CBCT systems tend to have mechanical simplicity, open 

geometry, small footprint, portability, and low cost compared to MDCT systems. These features 
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allow them to be deployed outside radiology suites such as in doctors’ offices, surgical rooms, and 

intensive care units. 

1.2.2 Imaging applications 

FPD-based CBCT systems (simply referred to as CBCT below) have been developed since the 

2000s and since then have found application in many areas in diagnostic imaging and image-guided 

interventions. 

One important area of applications of CBCT is dental, maxillofacial, and otologic imaging. 

Dedicated CBCT systems for these applications have been commercially available and widely used 

in the clinical environment. These systems provide spatial and contrast resolution suitable to 

visualization of high-contrast anatomical structures in these applications (e.g., for dental implant 

placement planning or for determining osseous lesion in head and neck) at doses comparable to or 

less than those for MDCT.15–18  

Dedicated CBCT systems have also been developed for imaging of upper and lower 

extremities. For example, one system has been designed and optimized using cascaded systems 

analysis without costly repeated experimentation,73 and a prototype has been developed through a 

combined process of design specification, image quality assessment, clinical feedback, and 

revision.25 As demonstrated by this system and other systems,26–29 dedicated extremity CBCT can 

provide excellent visualization of bone detail and good visibility of soft-tissue suitable to a broad 

spectrum of musculoskeletal applications. In addition, dedicated extremity CBCT allows for 

imaging of the lower extremities during weight-bearing, which opens new possibilities to study 

degenerative joint diseases in the lower extremities. 

Dedicated CBCT for breast imaging is another promising area of application. The 

development of dedicated breast CBCT began in the early 2000s.19,20,74 Current systems provide 
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spatial and contrast resolution suitable to soft tissue delineation and calcification detection in the 

breast.22,23 These systems typically involve dose levels comparable to digital mammography but 

provide 3D volumetric images of the breast as opposed to 2D projection images in mammography. 

More recent developments leveraging complementary metal-oxide semiconductor (CMOS) 

detectors75 and photon-counting detectors24 in breast CBCT have shown improved visualization of 

microcalcifications and reduced dose, which promises clinical translation of low-dose breast CBCT. 

CBCT has also played an important role in the advance of IGRT. CBCT began to be 

integrated with radiation treatment systems in the early 2000s.35–37 The system integration usually 

involves incorporation of a kilovoltage x-ray source and a FPD mounted onto the treatment gantry 

that supports the megavoltage treatment source. Such CBCT systems provide 3D volumetric 

images of the patient compared to 2D projection images in earlier radiographic systems and 

improved soft-tissue contrast resolution compared to portal imaging. CBCT is widely used in IGRT 

mainly to guide patient setup before the treatment. This also allows the use of a smaller safety 

margin between the planning target volume (PTV) and clinical target volume (CTV) and the use of 

dose escalation during the treatment.33,76–78  

CBCT also represents a promising imaging modality for image-guided surgery. 

Conventional surgical guidance systems rely on pre-operative images of the patient (e.g., CT or 

MRI) for inter-operative guidance.42 One problem associated with this workflow is that changes in 

the patient anatomy during surgery due to resection (e.g., resection of bones in the sinuses to access 

pituitary tumor in skull base surgery) or patient deformation (e.g., brain midline shift during surgery) 

are not reflected in the pre-operative images used in surgical guidance. CBCT – for example, 

implemented on a mobile surgical C-arm – provides the ability to acquire high-quality 3D 

volumetric images of the up-to-date anatomy during surgical intervention. Integration of such 

systems with tracking (optical and electromagnetic), registration (rigid and deformable), and 

visualization (3D rendering and virtual reality) in conventional surgical guidance systems offers 



11 

 

potential benefits in a variety of interventions, including head and neck, spine, orthopaedic, thoracic, 

and abdominal surgeries.35,55,56,79 

1.2.3 Challenges and opportunities 

A major challenge in CBCT is that the image quality of the current generation of CBCT systems 

tends to be insufficient for low-contrast, soft-tissue visualization.18 CBCT has shown great promise 

for a number of applications, particularly for imaging of bony structures, but low-contrast, soft-

tissue visualization requires a fairly high level of uniformity and a low level of noise in the image. 

Image uniformity in CBCT is often impaired by artifacts that arise from non-idealities in FPDs, x-

ray scatter (which is increased in cone-beam geometry compared to fan-beam geometry), beam 

hardening, cone-beam sampling (resulting in so-called “cone-beam” artifacts), data truncation, and 

patient motion. Moreover, image noise in CBCT is affected by a number of factors, including scan 

dose, artifact correction, and the selection of image reconstruction methods. Further improvement 

in low-contrast, soft-tissue visualization in CBCT is necessary for certain applications in diagnostic 

imaging (e.g., detecting hemorrhage in the brain) and image-guided interventions (e.g., using 

CBCT images acquired during radiation treatment for adaptive treatment planning such as tumor 

delineation and dose calculation). 

Closely related to the challenge of low-contrast, soft-tissue visualization in CBCT is the 

challenge of accumulated radiation dose when using CBCT in sequential imaging studies. Although 

CBCT systems equipped with the state-of-the-art FPDs tend to involve lower dose than 

MDCT,17,22,26,77,79 the accumulated radiation dose in sequential imaging studies is a concern to the 

patient and potentially a limiting factor for more extensive use of CBCT in sequential studies. For 

example, if the dose associated with each CBCT scan could be reduced, then the clinician will be 

better able to acquire repeated CBCT scans in the interest of increased precision in patient setup 

and re-planning. 
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Along with the aforementioned challenges in current CBCT systems, opportunities for 

improving image quality and reducing dose in CBCT arise together with ongoing advances in 

detector technology, artifact correction, and MBIR. For example, new FPDs using CMOS image 

sensors have exhibited a number of desirable characteristics, including lower electronic noise and 

higher frame rate compared to conventional FPDs, presenting a potential for reducing noise and 

motion artifacts in CBCT images.80 Another example is the use of a graphics processing unit (GPU) 

for accelerated Monte Carlo based scatter correction, allowing accurate scatter correction with a 

reasonably fast computation time.81,82 Further opportunities related MBIR will be discussed in Sec. 

1.4. 

1.3 Filtered backprojection 

Filtered backprojection (FBP) is an analytical tomographic reconstruction method. The basic FBP 

method for parallel-beam geometry was used to reconstruct images in the first-generation CT 

scanners in the 1970s.83 As the evolution of CT technology, modified FBP methods have been 

developed and become commercially available for fan-beam geometry (third-generation CT 

scanners) and cone-beam geometry (multi-detector CT scanners). FBP has come to represent the 

most prevalent method for 3D image reconstruction and often presents the standard of comparison 

for newly developed reconstruction methods such as MBIR. This section briefly reviews FBP, 

including basic principles, extension for practical systems, and drawbacks.  

1.3.1 Idealized continuous model 

In CT, x-rays are transmitted through the object and measured on a detector array. An idealized 

continuous model assumes both the object and detector array to be continuous. Although this model 

differs from the real world in which the detector array is discrete and comprised of individual 
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detector elements each with a finite width, the continuous assumption is convenient for 

mathematical derivation of the FBP reconstruction method. 

 

Figure 1.2: Illustration of a projection along a certain angle in a continuous model assuming a 
continuous object and a continuous detector system. 

 

An illustration of the continuous model is shown in Fig. 1.2. In this example, a 2D object 

in parallel-beam geometry is considered. Let 𝑓𝑓(𝑥𝑥,𝑦𝑦) denote an object containing attenuation values 

in the coordinate system (𝑥𝑥,𝑦𝑦), which can also be represented by 𝑓𝑓′(𝑡𝑡, 𝑠𝑠) in the rotated coordinate 

system (𝑡𝑡, 𝑠𝑠). The two coordinate systems can be related by: 

cos sin
sin cos

t x y
s x y

θ θ
θ θ

= +
 = − +

                                                     (1.1) 

Assuming a continuous detector system is oriented at the angle θ, a projection of the object in the 

rotated coordinate system (𝑡𝑡, 𝑠𝑠) can be written: 

( ) ( )', ,p t f t s dsθ
∞

−∞
= ∫                                                     (1.2) 

The resulting projection 𝑝𝑝(𝑡𝑡,𝜃𝜃) is the line integral of the object 𝑓𝑓′(𝑡𝑡, 𝑠𝑠) along a specific line 

determined by t, which models the physical process in CT in which a projection measures the total 

x

y

t

s

p(t, θ)

θ

f(x, y)=f'(t, s)



14 

 

amount of attenuation by the object along a specific radiographic ray. The Eq. (1.2) is also known 

as the 2D Radon transform. 

1.3.2 Filtering and backprojection 

Given a set of measured projections, a straightforward approach to reconstruct the image is to 

project the measured values from the projection domain back to the image domain. This process is 

called backprojection, which paints the entire ray path with the same value as in the measured 

projection. However, simple backprojection of all the projections yields a blurred version of the 

true object – specifically, a convolution of the true object with a 1/r low-pass filter in spatial domain. 

On the contrary, FBP removes such 1/r blur by multiplying with a ramp function (a high-pass filter) 

in the frequency domain. 

The basic principles of FBP are illustrated in the 2D, parallel-beam example in Fig. 1.2. 

Let 𝑃𝑃(𝜔𝜔,𝜃𝜃) denote 1D Fourier transform of a projection at angle θ: 

( ) ( ){ }, ,P FT p tω θ θ=                                                     (1.3) 

FBP filters the projection by multiplying with a ramp function |𝜔𝜔| in the Fourier domain and 

yields a filtered projection 𝑔𝑔(𝑡𝑡,𝜃𝜃) in the spatial domain after inverse Fourier transform: 

( ) ( ) 2, , j tg t P e dπωθ ω θ ω ω
∞

−∞
= ∫                                            (1.4) 

An image is then computed by backprojecting the filtered projection 𝑔𝑔(𝑡𝑡,𝜃𝜃) at all angles: 

 ( ) ( ) 2

0
, , j tf x y d P e d

π πωθ ω θ ω ω
∞

−∞
= ∫ ∫                                        (1.5) 

Derivation of the FBP result in Eq. (1.5) has been described in many textbooks83,84 and is 

not further detailed here. However, it is worth mentioning that a number of extensions from Eq. 

(1.5) need to be made for practical systems, including: 1) application of a window function to obtain 
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a band-limited ramp filter and thereby reduce amplification of high-frequency noise; 2) adjusting 

the shape and cutoff of the window function to achieve a particular, desired noise-resolution 

tradeoff; and 3) padding each projection with a sufficient number of zeros prior to Fourier transform 

and filtering operation to avoid “wrap-around” effects. Another necessary extension is the 

discretization of the object and the detector (which are assumed continuous in this section) and the 

implementation of a discrete backprojector, which will be discussed in Sec. 1.4.3. 

The FBP results above consider parallel-beam geometry, whereas modified FBP methods 

have also been developed for fan-beam geometry and cone-beam geometry. An image of the object 

scanned in fan-beam geometry can be reconstructed either using fan-beam FBP methods (which 

contain additional weights associated with the fan angle compared to parallel-beam FBP methods) 

or by first rebinning the fan-beam projections into parallel-beam projections and then using 

parallel-beam FBP methods.83,84 For cone-beam geometry, one of the most popular direct 

reconstruction algorithm is the Feldkamp-Davis-Kress (FDK) algorithm,85 which is similar to fan-

beam FBP methods in that it also contains additional weights associated with the cone angle. The 

FDK algorithm will be used to perform FBP reconstruction of cone-beam CT data in this 

dissertation. Similar to fan-beam geometry, cone-beam projections can also be reconstructed by 

first rebinning into tilted fan- or parallel-beam projections and then using fan- or parallel-beam 

FBP methods.86,87 The development of analytical cone-beam reconstruction methods for improved 

accuracy, computational efficiency, and/or nonconventional trajectories is an ongoing research 

area.88–90 

FBP also has a number of drawbacks. Although it has been widely used in the past four 

decades, it may not ultimately be the best choice for CT reconstruction, especially when taking into 

account the challenges / opportunities described in Sec. 1.1 and 1.2. For example, FBP does not 

consider the statistical distribution (i.e., the “noise”) associated with the measurements and instead 

treats all the measurements equally. This makes the image quality in FBP susceptible to increased 
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noise in the measurements and impedes the use of dose reduction techniques. Moreover, a number 

of physical effects are not considered or modeled in FBP, such as the x-ray focal spot size, detector 

footprint, and voxel size, which can lead to reduced image quality in some scenarios. Furthermore, 

the derivation of FBP assumes sufficient angular sampling of the object in a circular orbit. As a 

result, it is difficult to adopt new sampling schemes such as noncircular orbits and/or angular 

undersampling in FBP, which would otherwise introduce artifacts such as streaks and shading in 

the image. These and other drawbacks of FBP have motivated the development of MBIR, which is 

introduced in greater detail in the next section. 

1.4 Model-based iterative reconstruction 

Whereas FBP offers a closed-form analytical solution to reconstruction of an object from its 

projections, MBIR usually involves formulating an objective function based on a forward model 

and solving it using iterative algorithms. Iterative algorithms are needed because either MBIR does 

not have a closed-form solution or the closed-form solution is computationally impractical. Use of 

MBIR for transmission and emission tomography dates to the origin of these modalities in the 

1970s. For example, it appears that the first paper on the maximum likelihood method for 

transmission tomography was published by Rockmore and Macovski in 1977.91 MBIR began to be 

used in a clinical setting in emission tomography in the 1990s because of the relatively high level 

of noise in the measurements, advances in computationally efficient algorithms and computing 

power, and the small image matrix sizes in emission tomography compared to transmission 

tomography.4,92 MBIR has become an increasingly active research area for transmission 

tomography since the 2000s. Since 2010, MBIR algorithms have become commonly available 

(even if as an optional feature) on commercial MDCT systems in the clinical setting4,13 and have 

shown great promise in improving image quality and/or reducing radiation dose for CBCT 

systems.93  
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This section first discusses the advantages of MBIR in comparison to FBP, then introduces 

some basic models in MBIR including the discrete forward model and noise model, and finally 

introduces a few widely used MBIR methods. The basic concepts described below also provide 

background material for the development of new MBIR methods in subsequent chapters. 

1.4.1 Advantages of MBIR 

MBIR has a number of advantages over conventional analytical reconstruction methods such as 

FBP. First, MBIR attempts to make more efficient use of the measurements by incorporating a 

forward model of the physical detection processes, including noise in the measurements,94,95 

extended source and detector footprints / blur,96–99 spectral effects,11,12,100–102 scatter,101,103 and 

complex geometries.104,105 Second, MBIR allows incorporation of additional sources of information 

in the form of regularization terms, including general image properties such as smoothness and 

edge-preservation106–109 and patient-specific anatomical information from previous imaging 

studies.110,111  

The advantages of MBIR have made it better suited than FBP to many of the challenges / 

opportunities mentioned in Sec. 1.1 and 1.2. For example, MBIR has demonstrated significantly 

improved tradeoffs between image quality and radiation dose compared to FBP in MDCT12,13 and 

the potential for similar improvements in CBCT.93 Moreover, for dedicated imaging systems and 

systems for image-guided interventions, MBIR allows accurate modeling of many non-ideal effects 

that would otherwise adversely affect image quality. For example, MBIR with explicit modeling 

of focal spot blur, detector blur, and correlated noise has yielded improved noise-resolution tradeoff 

in dedicated extremity CBCT.99 To take another example, MBIR has allowed the use of 

nonconventional scan orbits to improve the imaging performance compared to a circular orbit on a 

robotic C-arm.105 Furthermore, MBIR provides a useful means in sequential imaging studies to 
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incorporate patient-specific prior image information into the reconstruction of a subsequent 

image.110,111  

1.4.2 Models in CT reconstruction 

Two points regarding modeling in CT reconstruction deserve mention. First, MBIR as defined in 

this dissertation is not alone among image reconstruction methods in requiring a model of some 

physical process or aspect of the system in image formation. For example, even FBP involves at 

least a model of the detector array, object, and the backprojection process. One advantage of MBIR 

over FBP is more efficient use of the available data through incorporation of more sophisticated 

models of the physical detection processes. Second, while a more sophisticated model is likely to 

capture more aspects of the real image formation process, that alone does not guarantee a preferable 

image reconstruction method. For example, a more sophisticated model may also require greater 

effort to construct (e.g., measurement of physical parameters in the model), compute, and analyze. 

Instead, considerable effort is given to identify the most useful approximation of reality based on 

the specific problem being solved. As Dr. George Box said in the book Statistics for 

Experimenters112: 

"The most that can be expected from any model is that it can supply a useful approximation 

to reality: All models are wrong; some models are useful." 

1.4.3 Discrete forward model 

Although the continuous model introduced in Sec. 1.3.1 is convenient for derivation of the FBP 

process, its assumption on continuous measurements deviates from the real situation in which only 

discrete measurements are collected. A more realistic model includes discrete measurements on a 

pixelated detector array. Moreover, it is often common to adopt a discrete model of the object in 
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image reconstruction using a linear combination of basis functions, considering that the 

reconstructed image will ultimately be viewed on a digital display with discrete pixels. The 

discretization of the object most commonly takes the form of voxels, while other basis functions 

such as natural pixels113 and spherically symmetric elements (“blobs”)114 can be used. 

A discrete forward model based on discrete measurements and discrete voxels in the image 

is introduced as follows. Let μ denote a discrete image of attenuation values that has been ordered 

into a Nμ × 1 vector (Nμ is the total number of voxels in the image), and let l denote discrete line 

integrals that have been similarly ordered into a Ny × 1 vector (Ny is the total number of 

measurements). The forward projection operation is represented by a Nμ × Ny system matrix A, 

whose element Aij denotes the line segment along the ith ray through the jth voxel. The 

backprojection operation is denoted as AT. The forward projection expressed in the continuous 

model in Eq. (1.3) can be re-written in a discrete form: 

1

N

i ij j
j

l
µ

µ
=

= ∑A                                                           (1.6) 

Now consider 𝑦𝑦� denoting a Ny × 1 vector representing the mean measurements, which can be 

related to the line integrals l via the Beer-Lambert Law: 

( )expi i i iy g l r= − +                                                       (1.7) 

where g denotes a Ny × 1 vector representing measurement-dependent gains, and r denotes a Ny × 

1 vector representing other detected signals (e.g., x-ray scatter). Equations (1.6) and (1.7) can also 

be written in vector form: 

l µ= A                                                                (1.8) 

{ } ( )expy g l r= − +D                                                    (1.9) 
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where D is an operator that converts a vector into a diagonal matrix. Equations (1.8) and (1.9) (or 

Equations (1.6) and (1.7)) together are referred to as the forward model in MBIR, which relates the 

image estimate µ to the mean measurements 𝑦𝑦�. Note that this particular forward model assumes 

mono-energetic x-rays and independent measurements. One may formulate a more sophisticated 

forward model that considers more physical effects in image formation such as poly-energetic x-

rays.100,101 

Many methods have been developed to implement the forward projection (denoted A) and 

backprojection (denoted AT) operations. One such method is the “voxel-driven” approach, which, 

for example in backprojection, computes the intersection of the ray passing through the voxel of 

interest and the detector array, then interpolates the projection value at the intersection using 

neighboring projection samples, and then copies the interpolated value back to the voxel of interest. 

Methods of accelerating the voxel-driven approach have been developed, such as pre-upsampling 

the projection samples before 1D interpolation.115,116 Another method is the “ray-driven” approach, 

which, for example in forward projection, traces each ray through the image and approximates the 

line integrals as a weighted sum of the values of all the voxels close to the ray. One weighting 

mechanism weights each voxel value by the intersection length within the voxel, which can be 

efficiently computed using methods such as that developed by Siddon.116,117 More recently 

developed approaches make more extensive modeling of the footprints of the image voxel and 

detector pixel than the “voxel-driven” and “ray-driven” approaches. For example, the “distance-

driven” approach by De Man and Basu97,118 maps the boundaries of the image voxel and detector 

pixel to a common axis, and projects the data from one set of boundaries to another via a 1D kernel 

operation. The “separable footprints” approach by Long et al.98 maps the image voxel onto the 

detector array and approximates the voxel footprint functions as 2D separable functions (trapezoid 

or rectangular function), which greatly simplifies the calculation of integration over a detector pixel. 

In addition to computational efficiency, the “separable footprints” approach has also shown 



21 

 

improved accuracy over more conventional approaches especially for cone-beam geometry.98 It is 

therefore used for forward projection and backprojection operations in MBIR in this dissertation. 

1.4.4 Noise model 

One of the main advantages of MBIR is the ability to incorporate a noise model in image 

reconstruction. Noise in CT can come from a variety of sources, such as quantum noise associated 

with the detection of x-ray photons, electronic noise (e.g., thermal noise and shot noise) in the 

electronic detector systems, and structure noise associated with detector readout in parallel 

channels.4 The proper selection of a noise model often depends on the specific type of systems and 

applications. Under the assumption of independent measurements, a simple and commonly used 

noise model assumes quantum noise as the dominating noise source, which leads to Poisson-

distributed measurements: 

{ }Poissoni iy y                                                       (1.10) 

where y and 𝑦𝑦� denote the actual measurements and mean measurements respectively. If one also 

considers additive electronic noise in the measurements and models it as independent Gaussian 

noise, a Poisson-Gaussian mixture model119 can be written: 

{ } { }2Poisson N 0,i i ey y σ+                                            (1.11) 

where 𝜎𝜎𝑒𝑒2 denotes the variance of the Gaussian noise. This model is expected to be especially useful 

when the level of detected photons is low and the effects of electronic noise need to be considered. 

Moreover, a Gaussian noise model with nonuniform variances may be used to account for multiple 

noise sources: 

{ }2N ,i i iy y σ                                                         (1.12) 
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where 𝜎𝜎𝑖𝑖2 denotes the variance associated with the ith measurement. 

In addition to modeling noise in the measurements, in some cases, modeling the noise in 

the data in the form of line integrals is needed in MBIR. One method to obtain a noise model in the 

line integrals is to propagate the noise characteristics from the measurements to the line integrals 

through a data transformation. Such data transformation can be simply a log transformation or a 

log transformation plus other data processing steps, such as artifact correction and/or sinogram de-

noising. The former case will be discussed in Sec. 1.4.9, and the latter case will be covered in 

Chapter 2. 

1.4.5 Algebraic reconstruction technique 

The algebraic reconstruction technique (ART) is a generic tomographic reconstruction method that 

formulates the image reconstruction problem as a system of linear equations. In the context of CT 

image reconstruction, ART attempts to solve the system of linear equations: 

l µ= A                                                                (1.13) 

where l here denotes measured line integrals computed from the measurements y, as opposed to 

estimated line integrals computed by forward projecting the image estimate µ in Eq. (1.8). While 

the original ART algorithm120,121 solves Eq. (1.13) sequentially by updating the image volume on a 

ray-by-ray basis, a variant of the ART algorithm named simultaneous ART (SART)122 updates the 

image volume simultaneously using all the rays, showing a computational advantage over the 

original ART algorithm. The simultaneous update equation of SART for CT image reconstruction 

can be written: 
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which involves computing the mismatch between the measured and estimated line integrals and 

backprojecting the mismatch to the image estimate after some normalization.  

Neither ART nor SART assumes uniformly distributed angular sampling in a circular orbit 

as assumed in FBP. Therefore, ART can be useful for CT systems that acquire projections only at 

several angular positions, such as digital tomosynthesis systems.4 However, a drawback of ART is 

that it does not consider noise in the measurements (which is also the case for FBP) and attempts 

to estimate an image volume that directly matches the noisy measurements in CT. As a result, ART 

often produces images with a fairly high level of noise when the scan dose is low.123 In addition, 

ART assumes that data consistency can be enforced through a linear model (as in Eq. (1.13)), which 

makes it difficult to include nonlinear effects such as polyenergetic x-ray into image reconstruction. 

1.4.6 Total variation minimization 

Total variation (TV) minimization was first introduced by Rudin et al.124 to remove noise in images. 

One advantage of using TV minimization in image denoising is that it can smooth the noise while 

preserving sharp edges and not cause over/under shooting and ripples.108,124 Because of this, TV 

minimization has also been used to suppress noise in image reconstruction for a variety of systems, 

including tomosynthesis, MDCT, CBCT, micro-CT, and nuclear medicine.109,125–127  

The TV term is computed based on the gradient information in the image, which can be 

expressed: 
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TV x y z x y z x y z x y z x y z x y z
x y z

f f f f f f f+ + += − + − + −∑              (1.15) 

where f denotes a 3D image whose voxels are indexed by the subscripts x, y, and z. One way to use 

TV minimization in CT image reconstruction is to treat TV minimization as the objective function 

and treat data consistency as an equality or inequality constraint,109,127 resulting in a constrained 

optimization problem. One example is an algorithm developed by Sidky and Pan for CBCT,109 

whose objective function can be written: 

( )arg min TV subject to l
µ

µ µ µ ε= − ≤A                                (1.16) 

where TV(µ) denotes the TV term defined in Eq. (1.15) and computed for the image estimate µ, 

and ε is a small positive number. The TV term is minimized by steepest descent with an adaptive 

step-size, and the constraints (including a non-negativity constraint not explicitly shown in Eq. 

(1.16)) are enforced using a method named projection onto convex sets. Although this algorithm 

still uses a linear model as in ART, it appears to handle the data inconsistency problem (discussed 

in Sec. 1.4.5) better than ART for two reasons. First, an inequality constraint is used in this 

algorithm intended to accommodate sources of data inconsistency such as noise. Second, the TV 

minimization can help choose a unique solution from all the solutions that satisfy the inequality 

constraint.109 This algorithm has shown reduced cone-beam artifacts and improved image quality 

under angular undersampling in CBCT.109 However, similar to ART, this algorithm and many other 

TV-based reconstruction methods125–127 still do not use a noise model when enforcing data 

consistency and instead attempt to suppress noise in the reconstructed image by minimizing TV. 

Previous work has shown that images reconstructed by TV minimization tend to exhibit unphysical 

patchy appearance when the scan dose is low and a large amount of TV minimization is applied to 

suppress noise in the image.128 
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1.4.7 Maximum-likelihood estimation 

This section and the following two sections (Sec. 1.4.8 and Sec. 1.4.9) introduce MBIR methods 

that consider the statistical distribution (i.e., the noise) in the measurements. When a statistical 

noise model is used, maximum likelihood (ML) estimation is a natural approach to estimate an 

image from a particular measurement realization. The objective function of ML estimation can be 

written: 

( )ˆ arg max log ;L y
µ

µ µ=                                                (1.17) 

where L(y; µ) denotes the likelihood of observing the particular measurements y given an image 

estimate µ. The ML method seeks an image µ that maximizes the likelihood of having observed 

the particular measurements y. Assuming independent measurements, the likelihood term can be 

computed by multiplying the conditional probability density function p(yi|µ) for each measurement 

yi: 

( ) ( ) ( )
1

; | |
yN

i
i

L y p y p yµ µ µ
=

= = ∏                                           (1.18) 

If one assumes Poisson noise in the measurements, a Poisson conditional probability can be written: 

( ) ( )
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y
µ

µ µ
   = −                                          (1.19) 

by substituting the Poisson conditional probability in Eq. (1.19) and the forward model in Eq. (1.7) 

(assuming other signals r = 0) into the likelihood in Eq. (1.18), the Poisson log-likelihood can be 

expressed after dropping constant terms: 

( ) [ ]( ) [ ]( ) [ ]( )
1 1

log ; log exp exp
y yN N

i i i ii i i
i i

L y h y g gµ µ µ µ
= =

 ≅ = − − − ∑ ∑A A A             (1.20) 
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where hi represents a marginal log-likelihood for each measurement yi and [·]i denotes an operator 

that selects the ith element of a vector. 

Because image reconstruction in CT is usually an ill-conditioned problem, direct 

maximization of the log-likelihood in Eq. (1.20) often leads to overly noisy images. Although it is 

possible to obtain a less noisy image using methods such as stopping the iterative algorithm before 

convergence129 or post-smoothing the image,130 another approach is to include a penalty term in the 

objective function. This approach is called regularization. Using regularization not only improves 

the conditioning of the image reconstruction problem but also allows one to enforce desired 

properties in the reconstructed image. Applying regularization to an objective with a likelihood-

based data consistency term is often referred to as penalized-likelihood estimation, which will be 

discussed in the next section. 

1.4.8 Penalized-likelihood estimation 

Penalized-likelihood (PL) estimation considers the statistical distribution (i.e., the noise) in the 

measurements and enforces desired properties in the reconstructed image through regularization. 

The objective function of PL estimation can be written: 

( ) ( )ˆ arg max log ;L y R
µ

µ µ µ= −                                         (1.21) 

where R(µ) denotes a penalty term. The PL estimation can also be interpreted from the perspective 

of Bayesian statistics. That is, the PL objective function above can be derived by assuming a prior 

distribution of the image µ proportional to 𝑒𝑒−𝑅𝑅(𝜇𝜇)  and computing the maximum a posteriori 

estimation of the image µ following Bayes’ rule. This derivation is straightforward and can be 

found in textbooks,123 so it will not be repeated here. 
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The penalty term can take a variety of forms. One commonly used penalty term123 that 

penalizes discrepancies between neighboring voxel values is: 

 ( ) ( )1
2

j

jk j k
j N k N

R
µ

µ β ω ϕ µ µ
∈ ∈

= −∑ ∑                                        (1.23) 

where the difference between voxel μj and its neighboring voxel μk is penalized by a potential 

function (sometimes referred to as the penalty function) 𝜑𝜑 and weighted by a directional weight 

ωjk. The weighted function value is summed over all neighboring voxels in a neighborhood 

(denoted Nj) and then summed over all the voxels (denoted Nµ) in the image. The scalar β is called 

the regularization parameter, which controls the balance between the log-likelihood term and the 

penalty term. 

The penalty formulation in Eq. (1.23) is fairly flexible in allowing one to enforce different 

desired properties in the image. First, one could use different β values to control the amount of 

smoothing applied to the image. Second, by changing the directional weight ωjk, one can choose 

different neighborhood systems and weight neighboring voxels accordingly. For example, in a 2D 

image, one may follow a 4-neighborhood system and set ωjk = 1 for horizontal and vertical 

neighboring voxels and 0 for other voxels. Or, one may pursuit an 8-neighborhood system by also 

setting ωjk = 1 √2⁄  for diagonal neighboring voxels. Third, the selection of a potential function 𝜑𝜑 

is vital in controlling the noise-resolution properties in the image. One of the simplest choices is a 

quadratic potential function written as: 

( ) 21
2

x xϕ =                                                           (1.24) 

where x is a scalar input. A quadratic potential function penalizes more for larger neighborhood 

differences including edges in the image and thereby tends to discourage edges (sometimes 

interpreted as oversmoothing of the image). In comparison, many potential functions such as those 

developed by Huber131 and Lange106 become linear after some point to penalize less heavily than 
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the quadratic function and thereby suppress noise while preserving edges. The Huber penalty 

function is: 

( )
( )

21
2

sgn
2

x x
x

x x x

δ
δϕ

δ δ

 <= 
 − ≥


                                          (1.25) 

where 𝑠𝑠𝑠𝑠𝑠𝑠(∙) denotes the sign function and δ denotes the range of the quadratic neighborhood near 

the origin. 

Regularization design in MBIR has been an active research area.132–138 Chapter 3 discusses 

in depth a method for regularization design for improving imaging performance with respect to 

specific tasks in CT image reconstruction. Chapters 5 and 6 introduce a new type of regularization 

that incorporates patient-specific prior images acquired from previous imaging studies into image 

reconstruction. 

1.4.9 Penalized weighted least-squares estimation 

The Poisson log-likelihood in the ML estimation and PL estimation is a complex function and can 

become more complex if a more sophisticated noise model is used. It is therefore natural to ask if 

there is a simpler data fit method that requires simpler optimization algorithms but still yields 

adequate images. One such method is penalized weighted least-squares (PWLS) estimation, whose 

objective function is: 

( )21ˆ arg min
2

l R
µ

µ µ µ= − +
W

A                                          (1.26) 

where l denotes the measured line integrals and W is the diagonal weighting matrix with the ith 

diagonal element Wi representing the statistical weight for the ith measured line integral. The 

statistical weights in PWLS estimation are usually chosen as the inverse of the variance of the line 
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integrals, so PWLS estimation assigns higher weights to rays that have lower variance (i.e., less 

noisy and of higher fidelity) and assigns lower weights to rays that have higher variance (i.e., more 

noisy and of lower fidelity). This weighting mechanism makes more efficient use of the 

measurements than FBP, which does not consider noise in the measurements and treats all 

measurements equally. 

A common choice of statistical weights in PWLS estimation is the measurements (y),13,139 

written as: 

{ }y=W D                                                           (1.27) 

The weighted least-squares approach using the statistical weights above are referred to as the data-

weighted least-squares.123 Interestingly, the data-weighted least-squares may be interpreted from 

different perspectives. First, if one assumes the measured line integral (li) is computed from the 

measurement (yi) through a log transformation, it is easy to show that the inverse of the variance is 

approximately the mean measurement (𝑦𝑦�𝑖𝑖), which can be approximated by the measurement (yi) 

(as derived in Chapter 2). Therefore, the data-weighted least-squares can be interpreted as a 

weighting strategy when the data transformation from the measurements to line integrals is a log 

transformation. In situations where measurements undergo additional data-processing steps such 

as artifact correction and de-noising in addition to a log transformation, the variance may differ 

from that in the data-weighted least-squares case and a new weighting strategy may be preferred. 

A method is introduced in Chapter 2 to design statistical weights given a general data 

transformation. 

Second, the data-weighted least-squares can also be interpreted as a quadratic 

approximation to the Poisson log-likelihood. This is because the data-weighted least-squares can 

also be derived from the Poisson log-likelihood in Eq. (1.20) using second-order Taylor expansion. 
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The derivation has been previously reported139 and is illustrated here for reader’s convenience. First, 

Eq. (1.20) becomes as follows after dropping a constant term: 

( ) [ ] [ ]

1
log ;

y

i

N

i ii
i

L y y g e µµ µ −

=

≅ − +∑ AA                                       (1.28) 

Taking the second-order Taylor expansion of 𝑒𝑒−[𝐀𝐀𝜇𝜇]𝑖𝑖 about the measured line integral [𝐀𝐀𝜇𝜇]𝑖𝑖 = 𝑙𝑙𝑖𝑖 

yields: 

( ) [ ] [ ]( )( ) [ ]( )2

1

1log ; 1
2

y
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N
l l l

i i i ii i i
i

L y y g e l e l eµ µ µ µ− − −

=

 ≈ − + + − − + − 
 

∑ A A A          (1.29) 

Rearranging the definition of the measured line integral 𝑙𝑙𝑖𝑖 = −𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖 𝑔𝑔𝑖𝑖⁄ ) into 𝑒𝑒−𝑙𝑙𝑖𝑖 = 𝑦𝑦𝑖𝑖 𝑔𝑔𝑖𝑖⁄  and 

substituting into the equation above yields: 

( ) ( ) [ ]( )2

1

1log ; 1
2

yN

i i i ii
i

L y l y l yµ µ
=

≈ − + + −∑ A                                  (1.30) 

Finally, dropping the first term (not a function of the image estimate) in the summation yields the 

data-weighted LS: 

( ) [ ]( )
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                                (1.31) 

Therefore, the data-weighted least-squares can be regarded as a quadratic approximation to Poisson 

log-likelihood. Previous work has shown that such quadratic approximation to Poisson log-

likelihood generally holds well for the x-ray fluence range in diagnostic CT.139 

Interestingly, a data-weighted least-squares approach can also be interpreted as maximum 

likelihood estimation of the image assuming Gaussian noise in the measured line integrals – more 

specifically, assuming a Gaussian distribution of the measured line integral (li) with variance equal 
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to the inverse of the measurement data (yi). The proof for this result is straightforward. First, the 

assumption on a Gaussian distribution of the measured line integral can be expressed: 

[ ]( )1,i ii
l N yµ −A                                                       (1.32) 

where 𝑁𝑁(, ) denotes a Gaussian distribution with the first and second operands corresponding to its 

mean and variance. Then, the likelihood of having observed a particular measured line integral li 

given an image µ can be expressed: 

( ) ( ) ( )
1

; | |
yN

i
i

L l p l p lµ µ µ
=

= = ∏                                            (1.33) 

Note that this is the same as Eq. (1.18) except that the observed variables are now line integrals l 

instead of measurements y. Substituting the probability density function defined in Eq. (1.32) into 

Eq. (1.33) yields: 
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Finally, rearranging the right-hand side of the equation above and dropping constant terms yield 

the data-weighted LS: 
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1.5 Model-based iterative reconstruction in cone-beam CT 

CBCT represents a rapidly developing imaging modality finding application in a broad 

range of diagnostic imaging procedures (e.g., dental, maxillofacial, otologic, extremities, and breast) 
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and image-guided interventions (e.g., CBCT for IGRT and image-guided surgery). CBCT systems 

equipped with a FPD typically provide 3D volumetric image reconstruction with sub-mm spatial 

resolution and soft-tissue visibility in a circular orbit. Moreover, CBCT systems tend to have small 

footprint, mechanical simplicity, open geometry, portability, and low cost compared to MDCT.  

However, the current generation of CBCT systems face challenges in low-contrast, soft-

tissue visualization. One example clinical application – detection of acute intracranial hemorrhage 

at the point-of-care – may greatly benefit from the use of a dedicated head CBCT system. However, 

such an imaging task requires a fairly high level of contrast resolution (40-80 HU), spatial 

resolution (0.5-10 mm), and image uniformity, which poses major challenges to the current 

generation of CBCT systems. Moreover, the use of CBCT in sequential imaging studies is 

somewhat limited by the accumulated radiation dose in sequential studies. For example, if the dose 

associated with each CBCT scan can be reduced, then CBCT can be acquired with greater 

frequency in support of high-precision treatment. 

MBIR represents a promising approach to improving image quality and reducing radiation 

dose in CT and CBCT. MBIR attempts to make more efficient use of the measured data by 

incorporating a forward model of the physical detection process. Moreover, MBIR allows 

incorporation of various forms of prior information into the image reconstruction process, typically 

through regularization. Such prior information ranges from general, desirable image properties such 

as image smoothness and edge preservation to patient-specific information such as prior images 

from previous imaging studies. The capability of MBIR to improve image quality and reduce 

radiation dose has been demonstrated in MDCT and holds similar – or potentially greater – promise 

in CBCT.  
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1.5.1 Thesis statement 

Recognizing the potential of MBIR in CBCT leads us to the following thesis statement and research 

objective: 

 

The thesis develops a body of work that develops and investigates novel MBIR methods 

and the associated advantages in improving image quality and reducing radiation dose in CBCT. 

Specific techniques adopted in this work include: 1) more efficient use of the data by incorporating 

models of imaging physics; 2) development of advanced regularization techniques to optimize 

imaging performance with respect to a specific task; and 3) incorporation of patient-specific prior 

image information that is often available in sequential imaging studies but not leveraged by 

conventional image reconstruction methods. Specific clinical applications are considered, and 

novel MBIR methods for CBCT are developed and investigated with respect to image quality and 

computational efficiency. 

1.5.2 Thesis outline 

The thesis is broadly divided into two parts: first, Chapters 2-4 involve MBIR algorithms that 

incorporate modeling of imaging physics and advanced regularization; and second, Chapters 5-6 

involve MBIR algorithms that incorporate patient-specific prior image information. Specifically: 

Model-based iterative reconstruction (MBIR) methods can improve image quality and/or 

reduce radiation dose in cone-beam computed tomography (CBCT) through modeling of 

imaging physics, development of advanced regularization methods, and incorporation of 

patient-specific prior image information. 
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Chapter 2 introduces the clinical need for point-of-care detection of acute intracranial hemorrhage 

(ICH), which is associated with a number of neurological pathologies. Although dedicated 

CBCT systems are potentially well suited for point-of-care imaging, ICH detection poses major 

challenges in image quality to the current generation of CBCT systems. A recently developed 

artifact correction framework overcomes major sources of image non-uniformity and streaks, 

but also causes an amplification of image noise reconstructed by FBP. This chapter first 

proposes a general framework for modeling the effects of data corrections on the noise model 

and then applies the framework to the two dominant artifact correction steps (scatter and beam 

hardening corrections) required for high-quality CBCT of the head. A MBIR method is then 

developed that integrates the underlying variations in measurements into a PWLS framework 

and accounts for noise characteristics following artifact correction by modified statistical 

weights. The proposed PWLS method is compared to FBP as well as PWLS using conventional 

statistical weights, and the image quality is evaluated in CBCT images of an anthropomorphic 

head phantom emulating acute ICH. 

Chapter 3 investigates a novel MBIR approach based on the simple premise that a medical image 

is always produced to accomplish a particular clinical task (or tasks). Task-based assessment 

of medical imaging performance has provided a basis for the design and optimization of a 

variety of medical imaging systems, but comparatively less effort has been made to incorporate 

task-based modeling of imaging performance into the process of CT image reconstruction. 

Regularization in conventional MBIR methods is often formulated in generic terms to 

encourage smoothness and/or sharpness without explicit formulation of the task. This chapter 

develops a MBIR method that incorporates a model for task-based imaging performance 

directly and explicitly in the selection of regularization parameters to maximize task-based 

image quality. Moreover, a framework is introduced that designs a spatially varying penalty to 

maximize local task-based image quality at every location in the image. The proposed task-
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based image reconstruction is evaluated in the context of CBCT of the head introduced in 

Chapter 2. The imaging tasks considered in Chapter 3 include a mid-frequency task emulating 

detection of a low-contrast ICH as well as tasks emphasizing other frequency content (low- and 

high- frequency). 

Chapter 4 addresses a common practical challenge that can confound imaging performance in 

CBCT – namely, lateral truncation of the projection data by anatomy and/or patient support 

mechanisms outside the field of view (FOV) of the detector. Such effects present a challenge 

for FBP and are particularly problematic for MBIR, because MBIR attempts to solve for an 

image estimate that best matches all of the measurements. For the specific application of head 

imaging treated in the previous two chapters, a head holder is typically used to support the head 

and minimize motion during the scan but can be partially truncated in the lateral direction, 

introducing artifacts that could hinder ICH detection. Increasing the reconstruction FOV 

beyond the scan FOV can mitigate truncation effects but also increase the computational cost, 

especially when the truncated object is relatively far from the scan FOV. This chapter 

introduces a multi-resolution reconstruction approach to mitigate truncation effects by 

extending the reconstruction FOV without major increase in computational burden. This multi-

resolution approach is incorporated into the PWLS reconstruction framework developed in 

Chapter 2. The method is evaluated in CBCT scans of a head phantom with varying degrees of 

realistic data truncation by a carbon-fiber head support, focusing on a particular form of data 

truncation encountered in CBCT of the head but offering a potentially general solution for other 

scenarios in CT or CBCT as well. 

Chapter 5 considers MBIR in clinical scenarios involving a sequence of imaging studies. 

Conventionally, each scan is treated in isolation, and the accumulated radiation dose can be a 

concern to both the patient and surgical staff. Knowledge of patient-specific anatomy gained 

from an image previously acquired in sequential studies (referred to herein as the "prior image") 
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can be leveraged in MBIR, thereby improving image quality and/or reducing dose. This chapter 

introduces a MBIR method that incorporates a Poisson noise model and a high-quality patient-

specific prior image to reconstruct images from sparse and/or noisy measurements. Patient 

motion between the prior image and the current anatomy is estimated jointly through an 

alternating maximization strategy. Experiments are performed on a cadaver specimen 

emulating a lung nodule surveillance scenario. A number of aspects of the proposed algorithm 

are evaluated, including convergence properties, registration accuracy, and the scheduling of 

registration / reconstruction updates. The performance of the proposed algorithm is compared 

to alternatives under various conditions of data sparsity and dose.  

Chapter 6 extends the MBIR method of Chapter 5 in relation to a key question regarding to what 

extent prior image information should be used (via the regularization term associated with 

incorporation of prior image information) to achieve accurate image reconstruction. For 

example, using too little prior image information fails to yield a significant benefit with low 

fidelity data, while using too much prior image information can obscure anatomical changes 

and produce false structures in the resulting image. This chapter introduces a novel method that 

prospectively estimates the optimal prior image strength for PIBR without heuristics or 

exhaustive search. In addition, a spatially varying map of prior image strength is proposed to 

optimally admit changes everywhere in the image and thereby ensure accurate reconstructions 

without a priori knowledge of the change location. The proposed methodology is evaluated in 

an ellipse phantom and in a realistic thorax phantom emulating a lung nodule surveillance 

scenario. The dependence of optimal prior image regularization strength on various properties 

of the changes (i.e., attenuation, shape, and/or size of features changing between the prior and 

current image) is also investigated. The proposed method provides a means for prospective 

patient-, change-, and data-specific customization of the prior image strength to ensure reliable 

reconstruction of specific anatomical changes. 
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Chapter 7 summarizes conclusions, interprets the findings of this dissertation within the broader 

context of MBIR research and clinical application, and identifies potential avenues of future 

investigation. 
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Chapter 2 

2. Statistical Reconstruction with a Post-Artifact-

Correction Noise Model 

2.1 Introduction 

2.1.1 Clinical motivation and challenges 

Intracranial hemorrhage (ICH) can impart devastating disability with poor prognosis and a high 

rate of mortality.140 ICH is associated with many neurological pathologies, including traumatic 

brain injury, hemorrhagic stroke, postsurgical hemorrhage, and aneurysm. Non-contrast-enhanced 

multi-detector CT (NC-MDCT) is the most prevalent front-line imaging modality for diagnosis and 

monitoring of acute ICH, which provides high sensitivity to the presence of fresh blood in the brain. 

ICH typically presents in NC-MDCT as hyperdense during the hyperacute and acute stages (~40-

80 HU contrast within ~3 days) and becomes hypodense during the subacute and chronic stages (-

5 to 20 HU contrast in ~10-20 days or longer).141,142 MRI is the gold standard for diagnosis of 

chronic-stage ICH and has recently been shown to be potentially suited to the diagnosis of acute 

ICH as well, although barriers still exist in cost, time, and access.143,144 Transport of patients in the 

intensive care unit or neurological critical care unit to either a NC-MDCT or MRI suite requires 

time and dedicated personnel and brings potential risk to the patient. For instance, such transport 

has been reported to lead to an average transport time of 50-80 min outside the critical care 

environment and a 71% incidence of adverse events.145–147 The importance of diagnosis and 



39 

 

monitoring of acute ICH combined with the risk associated with patient transport motivates the 

development of point-of-care imaging of acute ICH. 

CBCT with a flat-panel detector (FPD) has emerged in the past decade as an invaluable 

tool for a variety of specialty diagnostic applications, including imaging of the breast,19,148 

musculoskeletal extremities,25,29 and head and neck.17,18 While CBCT systems can be well suited to 

point-of-care applications (offering a small footprint, open adaptable geometry, and relatively low 

cost), current CBCT systems face significant challenges with respect to image quality in low-

contrast, soft tissue imaging tasks such as ICH. Among factors limiting soft-tissue image quality 

are increased levels of image artifacts and noise when compared to MDCT. 

Recent work by Sisniega et al.149 has demonstrated a promising framework for artifact 

correction in CBCT of the head and brain, including correction of x-ray scatter, beam hardening, 

image lag, and low-frequency glare/off-focal radiation. The artifact correction framework 

overcomes major sources of image non-uniformity and streaks and provides a level of image quality 

potentially suitable to detection of ICH; however, such corrections also cause an amplification of 

noise in images reconstructed by conventional 3D FBP. As shown in Fig. 2.1(a-b), although the 

artifact correction framework removes >300 HU of deterministic bias (cupping and streaks 

primarily associated with scatter and beam hardening) in a head phantom emulating intra-

parenchymal hemorrhage, the image noise increases by more than a factor of two.149 Potential 

solutions for noise reduction include sinogram denoising by adaptive filtering techniques150 and 

estimation of the ideal sinogram by minimizing a cost function.151 Alternatively, the problem can 

be approached with a MBIR framework, which has demonstrated major improvements in CBCT 

image quality over conventional FBP for low-contrast, soft tissue imaging tasks.93 
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Figure 2.1: Artifact corrections in CBCT of the head. (a) CBCT image reconstructed using FBP 
without artifact corrections. (b) CBCT image with artifact corrections (scatter and beam 
hardening, denoted by the superscript SB) showing a strong improvement in image uniformity 
but an amplification of noise by more than a factor of 2. (c) Flowchart of the artifact correction 
process and image reconstruction methods (FBP and PWLS) investigated in this work. 

 

In this chapter, an MBIR approach is developed that includes the effects of artifact 

corrections on the underlying noise model, thereby maintaining the benefit of artifact corrections 

while overcoming the associated noise penalty. The underlying variations in measurements are 

integrated into a PWLS reconstruction approach, and the noise characteristics following each data 

correction are accounted by modified weights. Regularization with a Huber penalty on image 

roughness was used to further improve noise-resolution tradeoffs. Previous analogous work152 

investigated a PWLS objective that included the variations in measurement noise characteristics 

with scatter correction and quadratic regularization, showing improved image quality in chest CT. 

First, a general framework for modeling the effect of data corrections on the noise model 

is proposed. The framework is then applied to the two dominant correction factors required for 

high-quality CBCT of the head – scatter and beam hardening (using bone and water segmentation). 
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Image quality is evaluated in CBCT images of a head phantom emulating intra-parenchymal 

hemorrhage. The proposed PWLS method using modified weights is compared to FBP as well as 

PWLS using conventional weights, and the improvements to image noise and/or spatial resolution 

are quantified. 
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2.2 Theoretical methods 

2.2.1 PWLS image reconstruction with a noise model for generalized 

data transformation 

The PWLS method139 weighs the residual error for each measurement by the fidelity of that 

measurement – specifically an estimate of the inverse of the variance of each measurement, thereby 

reducing the contributions of low-fidelity measurements and consequently reducing noise in the 

reconstructed image. The PWLS objective function has been described in Sec. 1.4.3 and is given 

here again for reader’s convenience: 

( )21ˆ arg min
2

l R
µ

µ µ µ= − +
W

A                                             (2.1) 

Recall that W is the diagonal weighting matrix with the ith diagonal element Wi representing the 

fidelity of the ith measurement. In this chapter, a regularization term 𝑅𝑅(𝜇𝜇) was chosen that penalizes 

first-order neighborhood differences in the image μ using the Huber penalty function,131 which is 

quadratic within a neighborhood ([-δ, δ]) and linear for larger differences. The strength of 

regularization is controlled by the scalar β inside 𝑅𝑅(𝜇𝜇). 

The line integrals in Eq. (2.1) are typically derived from the raw measurements through a 

number of steps. Such steps include a log transformation to convert from the raw measurement 



43 

 

domain to the line integral domain. In many situations, the measured data are also processed to 

correct for effects such as x-ray scatter82,153–156 and beam hardening157,158 and/or to reduce noise in 

the measurements (e.g., sinogram smoothing159). Such processes lead to potential changes in the 

noise characteristics of the measurements, which need to be accommodated in the PWLS weighting 

terms. The processing of the measured data (including log transformation and processes associated 

with artifact correction) is first modeled as a general function f, giving processed line integrals 

expressed as: 

( )i il f y=                                                               (2.2) 

under the common assumption of independent measurements yi. The variance of the line integrals 

can be derived using first-order Taylor expansion assuming the function f is differentiable at mean 

measurements160 and the second and higher order terms in the Taylor expansion are negligible: 

( ) ( ) ( ) ( )( ) ( )2var var vari i i i i i il f y f y f y y y O y = = + − +    
                   (2.3a) 

where 𝑓𝑓̇  is the derivative of the function f and 𝑦𝑦�  is a vector of the mean measurements. The 

approximation in Eq. (2.3a) can be simplified by removing the terms that have zero variance: 

 ( ) ( )var vari i il f y y ≈  
                                                 (2.3b) 

Since the term 𝑓𝑓̇(𝑦𝑦�𝑖𝑖) is a constant, it can be taken out of the variance to yield the final expression 

of the variance: 

( ) ( ) ( )
2

var vari i il f y y ≈  
                                              (2.3c) 

Equation (2.3c) shows that applying a number of operations (modeled as the function f) on the raw 

measurements results in a scaling of the variance by a factor �𝑓𝑓̇(𝑦𝑦�𝑖𝑖)�
2
. The PWLS weights can be 

computed as the inverse of the variance given in Eq. (2.3c): 

( ) ( ) ( )2
1 1 1

var vari
i ii

l yf y
= ≈

  
W



                                         (2.4) 

which includes the changes in variance associated with the processing operations, f. 
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2.2.2 Effect of log transformation on variance 

First, consider a scenario in which no artifact correction is applied. Assuming Poisson noise in the 

raw measurements, the forward model in this scenario is written as: 

( ) [ ]( )~ , expi i i i i
y Poisson y y g µ= − A                                      (2.5) 

where gi represents measurement-dependent gains. In this scenario, the line integrals in Eq. (2.1) 

can be computed from the raw measurements simply by log transformation. This process can be 

simply modeled as: 

 ( ) log i
l i

i

gf y
y

 
=  

 
                                                      (2.6a) 

( ) ( )i i l il f y f y= =                                                     (2.6b) 

where the log transformation is modeled as function 𝑓𝑓𝑙𝑙(𝑦𝑦𝑖𝑖) and the general form for f in Eq. (2.2) 

is taken in this section to refer specifically to log transformation. Using Eq. (2.3c), and since 

𝑓𝑓̇(𝑦𝑦�𝑖𝑖) = −1 𝑦𝑦�𝑖𝑖⁄ , the variance of the line integrals is: 

( ) ( ) ( )

( )

2

2

var var

1 var

i i i

i
i

l f y y

y
y

 ≈  

=



                                                (2.7) 

where variations associated with g have been ignored and accurate measurement-dependent 

gains161 have been assumed. Thus, log transformation simply scales the variance by a factor 1 𝑦𝑦�𝑖𝑖2⁄ , 

giving: 

( ) ( )
21

var var
i

i i i
i i

y y y
l y

= ≈ = ≈W                                            (2.8) 

which are the conventional PWLS weights equal to the mean measurements under the usual 

Gaussian approximation of a Poisson noise model.13,139 In practice, actual measurement values are 

typically used in place of the mean measurement values. With additional processing of the 
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measurements, however, the above assumption may no longer hold, as shown in the following 

sections that apply the general form of Eq. (2.3c) to the specific cases of scatter correction and 

beam hardening correction. 

2.2.3 Effect of scatter correction on variance 

Scatter correction typically involves subtraction of a scatter fluence estimate from the 

measurements, where the scatter fluence may be estimated from the measurements,154–156 by 

analytical models,153 and/or by Monte Carlo calculation.82,149 Assuming Poisson noise in the raw 

measurements and including mean scatter fluence as part of the mean measurements, the forward 

model in this scenario is written as: 

( ) [ ]( )~ , expi i i i ii
y Poisson y y g Sµ= − +A                                  (2.9) 

where 𝑆𝑆𝑖̅𝑖 represents the mean scatter fluence. In this scenario, the line integrals in Eq. (2.1) can be 

computed by subtracting a scatter fluence estimate from the raw measurements followed by log 

transformation. Assuming ideal scatter estimation in which the scatter estimate equals the mean 

scatter fluence, the process can be modeled as: 

( ) ( ) logS i
i i l i i

i i

gl f y f y S
y S

 
= = − =  − 

                                  (2.10) 

where the superscript S denotes scatter-corrected line integrals, and the function f from the general 

form of Eq. (2.2) refers in this section specifically to scatter correction followed by log 

transformation. As in the previous section, negligible variation associated with g is assumed, and 

the error in the scatter fluence is assumed to be negligible compared to the quantum noise (i.e., a 

high-fidelity scatter fluence estimate as obtained by accurate Monte Carlo calculation). 

The variance of the scatter-corrected line integrals can therefore be computed from Eq. 

(2.3c), and since 𝑓𝑓̇(𝑦𝑦�𝑖𝑖) = −1 (𝑦𝑦�𝑖𝑖 − 𝑆𝑆𝑖̅𝑖)⁄ , the variance is: 
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( ) ( ) ( )

( )
( )

2

2

var var

1 var

S
i i i

i

i i

l f y y

y
y S

 ≈  

=
−



                                              (2.11)                 

This form shows that the noise is scaled as a result of scatter correction, but the scale factor is 

different from that in Eq. (2.7). The ratio of the post-correction variance to the pre-correction 

variance is: 

( )
( ) ( )

( ) ( )
2

2
2

2 2

var
1 SPR

var

S
i i ii

i
i ii i

l P Sy
l Py S

+
≈ = = +

−
                            (2.12) 

where 𝑃𝑃�𝑖𝑖 is mean primary fluence and scatter-to-primary ratio (SPR) is the scatter-to-primary ratio. 

This analytical result is consistent with previous work152 but is derived as a special case of the 

general form in Sec. 2.2.1. In CBCT systems, where the SPR is often greater than unity162 and can 

be as high as ~5-10 in highly attenuated regions of the projection (e.g., the skull base, as shown 

below), this implies a substantial modification from the conventional PWLS weights – e.g., a 9-

fold increase in variance for a SPR of 2.  

2.2.4 Effect of beam hardening correction on variance 

Beam hardening correction typically includes a so-called water correction that compensates for the 

beam hardening error (e.g., cupping) introduced by soft tissue. When many bony structures are 

present in addition to soft tissue in a scanned object, a so-called bone correction is often used after 

water correction to compensate for bone-induced artifacts such as blooming or shading between 

bones.157,158 Since ICH can present anywhere throughout the intracranial space (both deep in the 

parenchyma and immediately adjacent to the cranium), both corrections are needed for high-quality 

CBCT of the head. The beam hardening correction is modeled as a two-step process of water 

correction followed by bone correction157: 
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( )B Bw Bb
i i i il f y l l= = +                                                (2.13a) 

where the superscript B denotes beam hardening correction, and the superscripts Bw and Bb more 

specifically denote water and bone correction, respectively. The function f from the general form 

in Eq. (2.2) refers in this section specifically to log transformation followed by the two-step beam 

hardening correction. The water-corrected line integrals can be regarded as a 1-dimensional 

remapping of measured line integrals based on the calibration of the beam hardening response in 

water (e.g., from a measured calibration or an analytical model). This 1-dimensional remapping is 

denoted as fw and approximated using polynomial functions of the log transformed data: 

( )( ) ( )
0 0

log
u

U UuBw i
i w l i u l i u

u u i

gl f f y f y
y

α α
= =

  
 = ≈ =        

∑ ∑                     (2.13b) 

where U and αu are the order and coefficients of the water correction polynomial function, 

respectively. The bone correction can be regarded as a 2-dimensional remapping of water-corrected 

line integrals and the line integrals of bony structures, which can also be approximated using 

polynomial functions. This 2-dimensional remapping is denoted as fb and the bone correction is 

modeled based on Eq. (16) in the paper from Joseph and Spital157 (polynomials not written out for 

simplicity): 

( )( )( )0 ,Bb bone bone
i i b w l i il l f f f y lλ = −                                    (2.13c) 

where lbone denotes the line integrals of the bony structures, and λ0 represents the ratio of the bone 

mass attenuation coefficient to the water mass attenuation coefficient. The error associated with the 

calibration of the remapping functions, segmentation of the bony structures, and computation of 

the measurement-dependent gains are assumed to be small. 

The variance of the beam-hardening-corrected line integrals can be derived from Eq. 

(2.3c): 
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( ) ( ) ( )

( )( ) ( )
( )( )( )

( )( ) ( )( ) ( ) ( )
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 = −

∂  



   

(2.14a) 

where 𝑓𝑓𝑤̇𝑤�𝑓𝑓𝑙𝑙(𝑦𝑦�𝑖𝑖)� represents the derivative of the function fw with respect to 𝑓𝑓𝑙𝑙(𝑦𝑦𝑖𝑖) evaluated at 

𝑓𝑓𝑙𝑙(𝑦𝑦�𝑖𝑖), 𝑓𝑓𝑙̇𝑙(𝑦𝑦�𝑖𝑖) represents the derivative of the function fl evaluated at mean measurement 𝑦𝑦�𝑖𝑖, and 

𝜕𝜕𝑓𝑓𝑏𝑏�𝑓𝑓𝑤𝑤�𝑓𝑓𝑙𝑙(𝑦𝑦�𝑖𝑖)�, ∙ � 𝜕𝜕𝑓𝑓𝑤𝑤�𝑓𝑓𝑙𝑙(𝑦𝑦𝑖𝑖)��  represents the partial derivative of the function fb with respect to 

the first operand 𝑓𝑓𝑤𝑤�𝑓𝑓𝑙𝑙(𝑦𝑦𝑖𝑖)� evaluated at 𝑓𝑓𝑤𝑤�𝑓𝑓𝑙𝑙(𝑦𝑦�𝑖𝑖)�. Rearranging the terms and replacing 𝑓𝑓𝑙̇𝑙(𝑦𝑦�𝑖𝑖) 

with 1 𝑦𝑦�𝑖𝑖2⁄  in Eq. (2.14a) yields: 

( ) ( )( )
( )( )( )

( )( ) ( )
2

2
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, 1var 1 var
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b w l i iB bone
i w l i i i

iw l i

f f f y l
l f f y l y

yf f y

 ∂
  ≈ −  ∂  

           (2.14b) 

showing that the variance is scaled by two terms corresponding to the variance change in water and 

bone corrections, respectively. For simplicity, these two terms are denoted as: 

( ) ( )( )
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( )( )( )
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b w l i ibone
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w l i
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 =  

 ∂
 = −

∂  



                                 (2.14c) 

where the functional argument 𝑦𝑦�𝑖𝑖 in 𝜂𝜂𝑤𝑤(𝑦𝑦�𝑖𝑖) and 𝜂𝜂𝑏𝑏(𝑦𝑦�𝑖𝑖) denotes that the derivative of the function 

fw is taken at 𝑓𝑓𝑙𝑙(𝑦𝑦�𝑖𝑖) and the partial derivative of the function fb is taken at 𝑓𝑓𝑤𝑤�𝑓𝑓𝑙𝑙(𝑦𝑦�𝑖𝑖)�, respectively. 

The ratio of the variance after and before beam hardening correction is therefore: 

( )
( ) ( ) ( )

var

var

B
i

w i b i
i

l
y y

l
η η≈                                                 (2.15) 

These analytical results of the variance following water and bone beam hardening 

correction were derived as a special case of the general form in Sec. 2.2.1. However, the results can 
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also be applied to other scenarios of beam hardening correction in which only the water correction 

is applied simply by removing the 𝜂𝜂𝑏𝑏(𝑦𝑦�𝑖𝑖) term in Eq. (2.14) and (2.15). 

2.2.5 Effect of both scatter and beam hardening corrections: Modified 

PWLS weights 

A PWLS image reconstruction method is proposed that accounts for the changes in variance 

resulting from artifact correction. Modified weights associated with the post-correction variance 

are derived to account for both scatter and beam hardening corrections as illustrated in Fig. 2.1. 

The post-correction variance is derived from the analysis of scatter and beam hardening in the 

previous two sections, yielding: 

( )
( )

( ) ( ) ( )2
1var varSB

i w i i b i i i

i i

l y S y S y
y S

η η≈ − −
−

                          (2.16a) 

where the superscript SB denotes both scatter and beam hardening corrections and 
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 − = −
 ∂ −  



                          (2.16b) 

The ratio of the variance after and before both corrections is therefore: 

( )
( ) ( ) ( ) ( )2var

1 SPR
var

SB
i

i w i i b i i
i

l
y S y S

l
η η≈ + − −                                (2.17) 

showing the change in variance as a result of scatter correction (by a factor (1+SPRi)2), water 

correction (by a factor 𝜂𝜂𝑤𝑤(𝑦𝑦�𝑖𝑖 − 𝑆𝑆𝑖̅𝑖)), and bone correction (by a factor 𝜂𝜂𝑏𝑏(𝑦𝑦�𝑖𝑖 − 𝑆𝑆𝑖̅𝑖)). 

The modified PWLS weights can therefore be written as the inverse of the post-correction 

variance, replacing mean measurements 𝑦𝑦�𝑖𝑖 with actual measurement values 𝑦𝑦𝑖𝑖: 
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W    (2.18)  

In the methods and results below, PWLS image reconstruction with conventional weights 

is denoted simply as PWLS, and PWLS image reconstruction with modified weights is denoted as 

PWLS*. 

2.2.6 Optimization approach 

Because the objective function for PWLS* is equivalent to the conventional PWLS formulation 

(with modification to the diagonal weights), PWLS* can employ well established PWLS 

optimization algorithms. In this chapter, the separable quadratic surrogate with ordered subsets 

(OS-SQS) method163 was used for solving PWLS*, due in part to its suitability for parallelizable 

image updates (i.e., using parallel computation on GPU), with OS selected to further speed 

convergence. The OS-SQS algorithm used in this chapter for solving PWLS* differs from the OS-

SQS algorithm for solving penalized-likelihood reconstruction163 on the following two points. First, 

instead of the log-likelihood data fit term for which the optimal curvatures change over the course 

of iterations, the optimal curvatures of the data fit term in PWLS* are constants that can therefore 

be precomputed. Furthermore, the term corresponding to the optimal curvature of the data fit term 

(dj in Table 2.1) in the update equation can also be precomputed; however, because this term is 

subset-dependent (and carries a large computation time to calculate for every subset), an 

approximation using all projections is precomputed (found to be a good approximation in the data 

reported below). 

Table 2.1 presents pseudocode for solving PWLS* using OS-SQS. The notation [∙]+ 

denotes the nonnegativity constraint, Ny and Nμ are the size of the measurements and the image, 

respectively, γi is the ith projection of an image of all ones, aij is the (i, j) element of the matrix A, 

niter is the maximum number of iterations, M is the number of subsets, 𝑙𝑙𝑖𝑖 is the projection of the 
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current image estimate 𝜇̂𝜇, and Sm denotes all the projections in the mth subset. In the regularization 

part, Ψ computes the first-order neighborhood difference, K is the number of neighboring voxels, 

and 𝐻̇𝐻 and 𝜔𝜔𝐻𝐻 are the gradients and curvatures of the Huber penalty function 𝐻𝐻, respectively. The 

exact form for H is given in Sec. 1.4.8. The gradients 𝐻̇𝐻 are straightforward to compute and the 

curvatures 𝜔𝜔𝐻𝐻 are defined as 𝜔𝜔𝐻𝐻(𝑥𝑥) = 𝐻̇𝐻(𝑥𝑥) 𝑥𝑥⁄ . 

The computational complexity of PWLS* (solved by OS-SQS) can be characterized by the 

number of projection operations needed (forward projections and backprojections), which is the 

dominant factor in computation time. Execution of PWLS* as expressed in Table 2.1 requires 2 × 

niter projection operations on all the projections. The PWLS* method was implemented in Matlab 

(The Mathworks, Natick MA), with the major part of the computation (i.e., projection and 

arithmetic operations) executed on GPU using CUDA-based libraries. 

 

Table 2.1: Pseudocode for solving PWLS* using OS-SQS. 
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Table 2.2: Summary of major parameters in the OS-SQS algorithm for PWLS*. 

Symbol Description Nominal Values or Range 

Ψ Sparsifying operator in image roughness penalty term First-order neighborhood 
difference 

β Parameter controlling strength of image roughness 
penalty term 101 ~ 103 

δ Size of quadratic region in Huber penalty function 5 HU 

niter Number of iterations 100 

M Number of subsets 20 

Ny Number of measurements 668 × 668 × 720 

Nμ Number of voxels in reconstructed image 412 × 512 × 512 

 

2.3 Experimental methods 

2.3.1 Experiments on a CBCT test-bench and head phantom 

Experiments were performed on a CBCT test-bench with a FPD (PaxScan 4343R, Varian, 

Palo Alto CA) as shown in Fig. 2.2(a). A custom anthropomorphic head phantom was scanned at 

100 kVp, 0.4 mAs per projection with 720 projections (0.5o angular steps), and a 

0.556 × 0.556 mm2 pixel size (after 2 × 2 binning). The system used a 580 mm source-to-axis 

distance (SAD) and a 800 mm source-to-detector distance (SDD), resembling a typical 

configuration for compact head CBCT system.164 As shown in Fig. 2.2(b-c), the head phantom was 

filled with a gelatin mixture carefully prepared to provide contrast equivalent to brain. The phantom 

was equipped with ventricle models prepared from wax with contrast equivalent to cerebrospinal 

fluid, and rows of plastic spheres with diameters ranging from 1.5 mm to 12 mm that were included 

to encompass a pertinent range of imaging tasks for the detection of intra-parenchymal 

hemorrhages. The resulting gelatin-plastic contrast closely simulated that of brain to fresh blood 

(~50 HU).142,165 
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The performance of the PWLS* method was evaluated using a variety of CBCT scan 

conditions and correction methods. First, a narrow-beam scan was performed with longitudinal 

collimation reduced to a ~10 mm field of view covering only the skull base region. The narrow-

beam scan provided projection data with a low contribution of x-ray scatter. As such, these data 

were only corrected for beam hardening using the Joseph and Spital approach157 mentioned above, 

referred to as the beam-hardening-corrected dataset. Second, a wide collimation scan was 

performed covering the entire cranium and incurring the substantial effects of both scatter and beam 

hardening. The projections were corrected for scatter using a high-fidelity Monte Carlo correction 

method149 to form a scatter-corrected dataset, and then corrected for beam hardening to form a 

fully-corrected dataset. All projection data were offset-corrected and gain-normalized by mean dark 

and flood field calibrations and corrected for detector lag and veiling glare149 prior to scatter and/or 

beam hardening corrections. Since the latter two effects are small in comparison to scatter and beam 

hardening, they were not explicitly considered in the current work. 

For each dataset, images were reconstructed using three methods: FBP, PWLS, and 

PWLS*. The same regularization parameters, number of iterations (100), and subsets (20) were 

used for both PWLS methods. Similarly, both PWLS methods used matched separable footprint 

projectors and backprojectors,98 and FBP used voxel-driven interpolating backprojection. All 

images were reconstructed with 0.5 × 0.5 × 0.5 mm3 voxel size on a workstation equipped with one 

Nvidia GeForce GTX TITAN graphics card. The main parameters in the OS-SQS algorithm for 

PWLS* along with the nominal values or range used in the experiments are summarized in Table 

2.2. The execution of OS-SQS over one subset in one iteration took about 10 seconds, and the total 

execution time over all 20 subsets and 100 iterations was about 5.5 hours. Since the current work 

mainly focused on evaluation of image quality for the proposed method (rather than computation 

speed), acceleration of the algorithm was not fully investigated in the current implementation and 

will be the subject of future work. For example, the projection/backprojection step was 

implemented using the separable footprint method. Replacing that with faster methods (such as a 
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combination of ray-driven Siddon117 and voxel-driven interpolating method115) is expected to 

reduce time by a factor of ~5 while achieving similar image quality, according to previous work by 

Wang et al.166 Major reduction in execution time may also be achieved (beyond the scope of this 

chapter) by methods including acceleration techniques compatible with OS-SQS such as spatially 

non-uniform updates167 and Nesterov’s method.168 For example, previous work166 showed that 

Nesterov-accelerated penalized-likelihood reconstruction by OS-SQS with simplified forms of 

projection/backprojection reduced reconstruction time of C-arm CBCT data from ~100 min to as 

little as ~2 min. 

 

Figure 2.2: Experimental methods. (a) Benchtop CBCT system with the x-ray source and FPD in a 
geometry emulating a compact head scanner. (b) Anthropomorphic head phantom incorporating 
simulated intracranial hemorrhage. The occipital portion can be removed to access inside the 
interior of the cranium. (c) A photograph inside the head phantom during assembly, showing the 
gelatin mixture (brain), wax (ventricles), and plastic spheres (hemorrhage). 
 

2.3.2 Evaluation of image quality 

Both FBP and PWLS permit control of the tradeoffs between spatial resolution and noise through 

adjustment of algorithm parameters: for FBP, via the cutoff frequency of the apodization 

(smoothing) kernel; for PWLS, via the regularization parameter, β, and the Huber distance, δ. For 

fair comparison, images reconstructed by different methods were matched in terms of either the 

spatial resolution or the image noise by adjusting the apodization kernel in FBP and the 

regularization parameter β in PWLS and PWLS*. The Huber distance δ was fixed and chosen to be 

the same between PWLS and PWLS*, and the selection of its value is discussed in Sec. 2.4.2. 
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Spatial resolution was assessed using the method detailed in the paper by Wang et al.93 in terms of 

the edge spread function (ESF) of a sphere of contrast equal to the structure of interest (i.e., fresh 

blood). The ESF was fit to a sigmoid parameterized by width, ε, as shown in Fig. 2.3(b). The ESF 

width was computed using all voxels within 60o fans centered on the sphere, and spatial resolution 

was characterized as the average ε computed over all the fans. The contrast of the sphere was given 

by a second fit parameter c (mm-1) and was also averaged over all the fans. Image noise was 

calculated as the standard deviation of voxel values in a region-of-interest (ROI) (19 × 19 voxels) 

in a homogeneous region of gelatin (brain) immediately adjacent to the sphere. Contrast-to-noise 

ratio (CNR) was computed using the contrast of the sphere and image noise mentioned above. 

 

Figure 2.3: Illustration of image quality metrology. (a) Two axial slices in which the spatial 
resolution, noise, and contrast-to-noise ratio (CNR) were computed. The spatial resolution and 
contrast were computed by fitting an edge spread function (ESF) to voxel values in 60o fans 
centered on a sphere of contrast equivalent to blood. Noise was computed as the standard deviation 
of voxel values in a homogeneous ROI immediately adjacent to the sphere. (b) Example sigmoid 
fit to the measured ESF, from which spatial resolution was characterized in terms of the ESF width, 
ε, and contrast was given by the parameter c. 
 

Figure 2.3(a) shows two axial slices (Z1 and Z2) in which the image quality metrics were 

evaluated. For the beam-hardening-corrected dataset, the metrics were computed in axial slices 

about the Z2 region near the skull base. For the scatter-corrected dataset and fully-corrected dataset, 
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the metrics were computed in axial slices about the Z1 region of central brain parenchyma. Note 

that for fair comparison, the spatial resolution in the longitudinal (z) direction in FBP 

reconstructions was also matched to that in PWLS reconstructions by additional apodization in the 

z direction in the FBP smoothing kernel as in the paper by Wang et al.93 Conversion of voxel values 

to HU assumed a constant value of water attenuation (0.0219 mm-1). 

2.4 Results 

2.4.1 Effect of artifact corrections on variance 

The change in variance associated with each step of the artifact correction was computed using the 

test-bench data as shown in Fig. 2.4. An increase in variance throughout the head was observed in 

every step of the artifact correction. For the beam hardening correction, such changes are seen to 

vary spatially throughout the head for the water (ηw) correction (Fig. 2.4(a)) and was more highly 

concentrated in the bony regions in bone (ηb) correction (Fig. 2.4(b)), consistent with the particular 

correction applied in each case. The combined beam hardening correction (ηw ηb) gives a maximum 

change in variance by ~30% (Fig. 2.4(c)). For scatter correction, the change in variance also 

depended strongly on location (Fig. 2.4(d)) with a maximum change as high as two orders of 

magnitude in dense bone regions, where scatter fractions are highest. The total variance change 

after applying all corrections (Fig. 2.4(e)) was dominated mainly by the scatter correction part, 

indicating scatter correction to be the dominant factor affecting the variance in this case. The 

substantial changes in variance throughout the head suggests the importance of the proposed 

modified weighting terms to compensate for such variations.   
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Figure 2.4: Example illustration (in a lateral projection view) of the change in variance associated 
with each step of artifact correction. The change in variance is shown for corrections associated 
with: (a) beam hardening correction for water (ηw); (b) beam hardening correction for bone (ηb); 
(c) total beam hardening correction (ηw ηb); (d) scatter correction (1+SPR)2; and (e) all scatter and 
beam hardening corrections. 
 

2.4.2 Selection of image regularization parameters 

Fair comparison of image quality for different reconstruction methods requires a justification of 

parameter settings suitable to the imaging task as well as evaluation of noise and spatial resolution 

on equal footing. The PWLS* and PWLS methods used a Huber penalty function to reduce noise 

in a manner governed by the range of the quadratic neighborhood δ. Previous work showed that a 

small value of δ (relative to the contrast of structures of interest) should be selected to provide edge 

preservation and noise reduction,93,111 but selection of δ too small tends to over-regularize the image 

and lead to unrealistic, piecewise-constant images. To find a reasonable value of δ, the PWLS* 

images were reconstructed using a fully-corrected dataset over a range of δ values (1, 3, 5, and 10 

HU). A region-of-interest from images resulting from PWLS* reconstructions at various values of 

δ are shown in Fig. 2.5(a) with spatial resolution matched at a level of ε = 0.65 mm. The image 

with δ = 10 HU exhibits a high degree of noise with little benefit from the linear region of the Huber 

penalty, and noise reduces for smaller values of δ. However, reduction of δ to 1 HU leads to an 

                
            
             
             

           
        

1.2

1.1

1

1.06

1.03

1
1.26

1.13

1

𝜂𝜂𝐿𝐿 𝜂𝜂𝑏𝑏

𝜂𝜂𝐿𝐿𝜂𝜂𝑏𝑏 100

10

1

1 + 𝑆𝑆𝑃𝑃𝑅𝑅 2

1 + 𝑆𝑆𝑃𝑃𝑅𝑅 2𝜂𝜂𝐿𝐿𝜂𝜂𝑏𝑏
100

10

1

(a) (b)

(c) (d)

(e)



58 

 

unrealistic patchy texture and decreased contrast, suggesting over-regularization. Figures 2.5(b-c) 

summarize the performance in terms of the noise and CNR over a broad range of spatial resolution 

for different δ values. Consistent with the images in Fig. 2.5(a), the quantitative analysis shows that 

reducing δ from 10 HU to 3 HU reduces the noise and increases the CNR at any level of spatial 

resolution, whereas at δ = 1 HU the CNR exhibits a ‘kink’ in the noise-resolution tradeoff, 

suggesting over-regularization and contrast degradation. Together, these results suggest a 

reasonable value of δ in the range ~3-5 HU. Considering the narrow range of suitable values (3~5 

HU) for δ, its value was fixed for both PWLS and PWLS* at a level that avoided under-

regularization or over-regularization. In the results reported below, δ = 5 HU was selected as a 

conservative choice balancing noise reduction and edge preservation for both the PWLS* and 

PWLS methods and all three datasets. 

 

Figure 2.5: Selection of regularization parameters with respect to noise-resolution tradeoffs. (a) 
PWLS* images in a ROI in the Z1 axial slice using different δ values. Images were reconstructed 
using the fully-corrected dataset with spatial resolution matched at ε = 0.65 mm. (b-c) Noise-
resolution tradeoff and CNR-resolution tradeoff for PWLS* using different δ values. The error bars 
are based on the standard deviation of the noise in 6 neighboring axial slices. The solid curves are 
second-order polynomial fits intended merely as a guide to trends evident in the underlying data 
points. A value of δ = 5 HU was selected as a conservative choice giving a reasonable level of noise 
reduction and edge preservation without introducing an unnatural appearance of patchy over-
regularization. 
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2.4.3 Image reconstruction with beam hardening correction 

The narrow-beam collimation case strongly reduced x-ray scatter effects (SPR less than ~10%) and 

provided data that largely isolated beam hardening effects. FBP, PWLS, and PWLS* 

reconstructions were performed following water and bone beam hardening correction to quantify 

and visualize the effects of the correction algorithm on image variance and the potential 

improvements in image quality with modified PWLS weights. Figure 2.6 shows reconstructions for 

each case within a ROI in the axial slice Z2, where beam hardening effects were severe due to the 

presence of thick, dense bone in the skull base. FBP reconstruction without beam hardening 

correction (Fig. 2.6(a)) exhibits fairly severe artifacts and a nominal level of quantum noise σ = 

9.3 HU, whereas the same data with beam hardening correction (denoted FBP𝐵𝐵  in Fig. 2.6(b)) 

shows a substantial reduction in artifacts but a ~13% increase in noise. PWLS reconstruction with 

conventional weights provides a strong (~43%) reduction in noise (at matched spatial resolution) 

as shown in Fig. 2.6(c). A further (~12%) reduction in noise is obtained using modified weights as 

shown in Fig. 2.6(d), demonstrating the benefits of the proposed method in preserving the fidelity 

of artifact corrections and reducing noise by nearly a factor of 2 compared to FBP𝐵𝐵. 

 

Figure 2.6: Reconstructions with beam-hardening correction. (a) FBP reconstruction with no 
corrections. (b) FBP reconstruction of beam-hardening-corrected data. (c) PWLS reconstruction of 
beam-hardening-corrected data with conventional weights. (d) PWLS* reconstruction of beam-
hardening-corrected data with modified weights. The proposed method (PWLS∗𝐵𝐵) maintains the 
quality of artifact correction and gives a factor of ~2 improvement in noise compared to FBP𝐵𝐵. 
(Resolution was matched at ε = 0.70 mm for fair comparison.) 
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2.4.4 Image reconstruction with scatter correction 

Full field-of-view (wide-collimation) projection data were reconstructed using FBP, PWLS, and 

PWLS* following scatter correction by a Monte Carlo method.149 Figure 2.7 shows reconstructions 

for each case in a ROI in the Z1 axial slice at matched spatial resolution (ε = 0.50 mm, top row) and 

at matched contrast-to-noise ratio (CNR = 13, bottom row). In Fig. 2.7(a) (matched spatial 

resolution images), FBP reconstruction without scatter correction exhibits severe cupping artifacts, 

reduced contrast, and inaccurate HU (but relatively low noise). FBP reconstruction of the scatter-

corrected data (denoted FBP𝑆𝑆) shows a strong reduction in artifacts but an increase in noise by 

~72%. This dramatic increase in noise is consistent with the large change in variance associated 

with scatter correction shown in Fig. 2.4. PWLS reconstruction of the scatter-corrected data (using 

conventional weights, denoted PWLS𝑆𝑆 ) reduced the noise by ~41%, and use of the modified 

weights further reduced noise by an additional ~26%, denoted PWLS∗𝑆𝑆. In Fig. 2.7(b) (matched 

CNR images), complementary improvement in spatial resolution is seen for the proposed method, 

with the ESF width improving from ε = 1.44 mm for FBP𝑆𝑆  to 1.25 mm for PWLS𝑆𝑆  with 

conventional weights to and to 0.85 mm for PWLS∗𝑆𝑆 with modified weights.  
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Figure 2.7: Reconstructions with scatter correction - top row at matched spatial resolution and 
bottom row at matched CNR. From left to right: FBP reconstruction of uncorrected and scatter-
corrected projection data; PWLS of scatter-corrected data with conventional weights; and PWLS* 
reconstructions of scatter-corrected data with modified weights. 
 

Figure 2.8 quantifies the noise-resolution tradeoffs among the three reconstruction methods 

with scatter correction. As expected, both the PWLS and PWLS* methods show improved noise 

(and CNR) compared to FBP at any level of spatial resolution. The proposed PWLS* method shows 

a further improvement in noise and CNR compared to PWLS with conventional weights - for 

example, a 34% improvement in CNR at a spatial resolution of ε = 0.50 mm. 
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Figure 2.8: Noise-resolution tradeoffs for the FBP, PWLS, and PWLS* reconstruction methods 
operating on scatter-corrected projection data. The levels of matched spatial resolution and CNR 
used in Fig. 2.7 are marked by the dashed lines in (b). 
 

2.4.5 Image reconstruction with scatter and beam hardening corrections 

Finally, the combined effects of scatter and beam hardening corrections were evaluated in FBP, 

PWLS, and PWLS* reconstructions. Similar to Fig. 2.7, the results in Fig. 2.9 show images from 

full field (wide collimation) scans in a ROI in the Z1 axial slice. Reconstruction of the fully 

corrected (scatter and beam hardening) projection data are denoted by the superscript SB. 

Considering the top row of Fig. 2.9 (images at matched spatial resolution), a progressive reduction 

in noise is seen for the FBP𝑆𝑆𝑆𝑆, PWLS𝑆𝑆𝑆𝑆, and PWLS∗𝑆𝑆𝑆𝑆 reconstructions, with the last providing a 

~40% reduction in noise compared to the first. Considering the bottom row of Fig. 2.9 (images at 

matched CNR), the PWLS* method also exhibits the highest spatial resolution (ε = 0.50 mm). 

Moreover, the PWLS* images show reliable detection of simulated intracranial hemorrhages as 

small as 3 mm diameter. The corresponding noise-resolution tradeoffs among the three methods 

are quantified in Fig. 2.10, with PWLS* demonstrating an improvement in each respect. Note also 

the increased CNR of all three methods in Fig. 2.10 compared to Fig. 2.8, owing to the additional 

correction (beam hardening). 
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Figure 2.9: Reconstructions with scatter and beam hardening corrections - top row at matched 
spatial resolution and bottom row at matched CNR. As in Fig. 2.7, from left to right: FBP, PWLS, 
and PWLS* reconstructions of fully corrected projection data. 
 

 

Figure 2.10: Noise-resolution tradeoffs for the FBP, PWLS, and PWLS* reconstruction methods 
operating on fully-corrected (scatter and beam hardening) projection data. The levels of matched 
spatial resolution and CNR used in Fig. 2.9 are marked by the dashed lines in (b). 

 

Visual assessment is further illustrated in Fig. 2.11, showing FBP, PWLS, and PWLS* 

reconstructions of the fully-corrected data in regions about the skull base, where scatter and beam 

hardening effects are strongest. Axial, coronal, and sagittal slices are shown with spatial resolution 
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matched at ε = 0.40 mm. Uncorrected images (not shown) are severely degraded by artifact and are 

not suitable for detection of ICH in this region. The fully corrected FBP𝑆𝑆𝑆𝑆 reconstruction yields 

strong reduction of artifact but exhibits a high level of noise, particularly in the region between the 

temporal bones. Interestingly, the PWLS𝑆𝑆𝑆𝑆  reconstruction with conventional weights does not 

provide a reduction in noise due to gross mismatch between the presumed noise model with the 

fully corrected data. The proposed PWLS* reconstruction with modified weights substantially 

reduced the noise at a fixed level of spatial resolution, which may improve detection of low contrast 

intracranial hemorrhage. These results in a challenging region demonstrated the importance of 

incorporating an accurate noise model in MBIR. The bias in the PWLS∗𝑆𝑆𝑆𝑆  reconstruction 

surrounding the spheres was most likely caused by under or over correction of image artifacts in 

this challenging region. Such bias may be reduced by methods including more accurate bone 

segmentation in beam hardening correction and performing the “two-step” beam hardening 

correction multiple times. 

 

Figure 2.11: Axial (top row), coronal (middle row), and sagittal (bottom row) CBCT images of the 
head phantom with scatter and beam hardening corrections, reconstructed by FBP, PWLS, and 
PWLS*. The skull base presents a challenging region for which proper account of scatter and beam 
hardening corrections is essential to high-quality reconstruction. The spatial resolution in each case 
was matched (ε = 0.40 mm) at the largest sphere in the axial slice Z1. 
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2.5. Conclusions and discussion 

The chapter has reported a novel PWLS image reconstruction method that incorporates a general 

framework for accurately accommodating modified noise models for artifact-corrected CBCT data. 

A specific scenario was considered where the two dominant artifact correction methods essential 

to high-quality CBCT - scatter and beam hardening corrections – are applied. The resulting 

reconstruction method (denoted PWLS*) utilizes modified weights to compensate for noise 

amplification imparted by each step of the artifact correction. Experiments included physical data 

acquired on a FPD-CBCT test-bench using an anthropomorphic head phantom emulating intra-

parenchymal hemorrhage. A conservative level of regularization in the Huber penalty was selected 

to improve the conspicuity of simulated hemorrhages while not resulting in an unnaturally patchy, 

over-regularized image. The proposed PWLS* method demonstrated superior noise-resolution 

tradeoffs in comparison to traditional methods, including FBP and PWLS with conventional 

statistical weights (and noise models). 

The work suggests a number of interesting points meriting future investigation. The first is 

that the current model of variance change focuses on Poisson noise propagated through each 

correction. While this is a valid starting point, assuming accurate scatter and beam hardening 

estimates and gain normalization, the model could be extended to consider other sources of noise, 

including error in the Monte Carlo scatter estimate, uncertainties in the segmentation of bony 

structures in the beam hardening correction, and incomplete correction of detector gain variations. 

For example, in the Monte Carlo estimation of the scatter fluence, noise could be introduced in 

steps that require random sampling from a known distribution (e.g., photon energy, direction, path 

length before interaction, etc.), and the effects could be exaggerated when only a small number of 

photons are simulated.82 Incorporating such additional sources of variation is the subject of future 

work. 
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A second area for future study is to account for other sources of image artifacts in FPD-

CBCT, such as the effects of image lag and low-frequency glare / off-focal radiation. These effects 

are included within the comprehensive artifact correction framework of Sisniega et al.,149 but such 

effects were not included in the current work. Since lag and veiling glare corrections also introduce 

variance changes (although measurably small compared to scatter and beam hardening effects), the 

noise changes associated with these corrections could also be included in further modification of 

the PWLS weights - for example, derived from the known relationship between noise and image 

lag68,169 and low-frequency blur. Note that the assumption of independent measurements no longer 

holds in the case of lag and veiling glare corrections, due to the existence of temporal (lag) or spatial 

(veiling glare) correlations between measurements. Therefore, Eq. (2.2) and (2.3) need to be re-

written for consideration of correlations when dealing with these corrections, and a generalized 

reconstruction model as in the work by Stayman et al.170 and by Tilley et al.171 may be required. 

A third topic for additional investigation is the recognition and challenge associated with 

spatially varying spatial resolution effects in MBIR132 including the PWLS* method detailed in this 

chapter, which could potentially degrade detectability of ICH. For example, in a PWLS* image 

with a fixed regularization parameter, β, and for a given size and contrast of sphere (simulated 

hemorrhage), lower spatial resolution characteristics were observed in the central region of the 

head, while higher spatial resolution was evident adjacent to the cranium. This problem could be 

at least partly addressed by methods that encourage space-invariant spatial resolution, such as the 

certainty-based method.132 Preliminary results showed that the use of certainty-based method 

achieved a more uniform spatial resolution across the image, thereby enabling similar noise-

resolution tradeoffs between the simulated hemorrhages in different regions of the head. Moreover, 

intentional use of spatially varying regularization may be beneficial to the imaging task(s) - for 

example, sharper resolution (via reduced penalty strength) in regions of the cranium for detection 

of fracture, simultaneous with stronger noise reduction (via higher penalty strength) within the 

brain parenchyma for detection of intracranial hemorrhage. Among the possible methods for 



67 

 

achieving such a spatially varying noise-resolution characteristic is a spatially varying β map136 

optimized for CBCT imaging of the head. This topic is pursued in depth in Chapter 3, involving a 

spatially varying penalty designed to maximize task-based imaging performance. 

Another point worth further investigation is the assessment of image quality with respect 

to specific clinical tasks. In this chapter, simple imaging performance metrics were used to quantify 

spatial resolution, contrast, noise, and CNR. These metrics provide useful preliminary insight on 

the improvements obtained with the proposed reconstruction method, and future work will include 

assessment with respect to task-based measures such as detectability index, various observer 

models, and human observer studies. For example, detection of a low-contrast, low-frequency 

lesion (analogous to the clinical task of intracranial hemorrhage detection) and/or a higher-contrast, 

high-frequency abnormality (analogous to the clinical task of fracture detection) can be analyzed 

via statistical decision theory hypothesis testing in terms of task-based detectability index and 

various model observers.62,136,172–175 Application of such methods in a manner that accounts for the 

complexities of nonlinear reconstruction methods is an area of active research, and such work will 

necessarily account not only for the clinical task but also complexities associated with nonlinear, 

nonstationary characteristics of the 3D image reconstruction. The results reported in this chapter 

suggest imaging performance consistent with the clinical task of visualizing a 3 mm intracranial 

hemorrhage (e.g., CNR = 11.9 in images with ESF width = 0.50 mm, also evident in Fig. 2.9). This 

may be sufficient for detection of a broad spectrum of acute injuries (subject to validation in future 

clinical studies) and suggest the possibility for further improvement allowing detection of mm-

scale micro-hemorrhage in diffuse axonal injury after concussion.176 

Finally, certain application scenarios present an opportunity to leverage a patient-specific 

head image from a previous scan to improve image quality and/or reduce dose in a subsequent scan. 

Examples include longitudinal monitoring of brain hemorrhage in the intensive care unit (ICU) 

(where acquisition of multiple head CT scans over the course of ICU monitoring is common) and 

populations at high risk of head injury in sports and military theatres. Such patient-specific prior 
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images can be incorporated into the PWLS* reconstruction in the form of prior image 

regularization111,177 to maximize the conspicuity of low-contrast hemorrhages and increase the 

sensitivity to subtle anatomical changes. The methods111,177 also jointly register the patient-specific 

prior image to the current anatomy in the course of image reconstruction so that the corresponding 

anatomical structures are well aligned for correct prior image regularization. The joint registration 

might be performed in a rigid fashion (which is often a good approximation of the motion of the 

head) or in a deformable fashion177 if soft tissue deformation is present in the head (e.g., midline 

shift, ventricular compression). This topic is pursued in depth in Chapters 5-6, where novel 

registration and regularization methods are incorporated in the Prior Image Registration, Penalized 

Likelihood Estimation (PIRPLE) method. 
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Chapter 3 

3. Task-Based Image Reconstruction 

3.1 Introduction 

3.1.1 Motivation 

A medical image is always produced to accomplish a particular clinical task (or tasks), which may 

be generally or specifically defined. For example, x-ray screening mammography images are 

obtained to detect suspicious lesions (e.g., masses or microcalcifications) that may be indicative of 

breast cancer. Similarly, CT angiography of the head is performed to help detect and diagnose 

disruptions of the neurovasculature, as in ischemic or hemorrhagic stroke. In image-guided 

interventions, fluoroscopy or intraoperative CBCT are acquired often with the purpose to localize 

the position of the surgical target and/or adjacent healthy tissue with respect to interventional tools. 

Thus, the performance of the imaging system is most meaningfully described with respect to the 

intended task, as noted by Barrett in 1990178: 

 “…A scientific or medical image is always produced for some specific purpose or task, 

and the only meaningful measure of its quality is how well it fulfills that purpose. An 

objective approach to assessment of image quality must therefore start with a specification 

of the task and then determine quantitatively how well the task is performed.” 

Task-based assessment of medical imaging performance has provided a basis for the design and 

optimization of a variety of medical imaging systems, including mammography,74 

tomosynthesis,179 multi-detector CT,180,181 CBCT in breast, musculoskeletal, and head,73,182–184 and 

image-guided interventions.185 However, less efforts have been made on the incorporation of task-
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based assessment of imaging performance into the process of CT image reconstruction. Statistical 

image reconstruction in CT often involves the use of regularization techniques to enforce desired 

image quality properties in the reconstructed image. However, regularization is often formulated 

in general terms to encourage smoothness and/or sharpness (e.g., a linear, quadratic, or Huber 

penalty) without explicit formulation of the task. This chapter proposes a statistical reconstruction 

method that incorporates a model for task-based imaging performance into the selection of 

regularization parameters to maximize task-based image quality. Performance is tested and 

evaluated in the context of CBCT of the head. 

As described in Chapter 2, point-of-care imaging of acute ICH can improve the diagnosis 

and monitoring of acute ICH and reduce the risk associated with patient transport from the critical 

care unit to the CT scanner suite. CBCT is potentially well suited to point-of-care imaging, but its 

imaging performance tends to be challenged for low-contrast, soft-tissue visualization, as in the 

detection of acute ICH. A prototype head CBCT scanner was recently developed, using a model 

for task-based imaging performance as a guide to system design.183,184 An artifact correction 

framework was also developed to mitigate artifacts arising from x-ray scatter, beam hardening, 

detector lag, and veiling glare in CBCT of the head.149 The previous chapter described a PWLS 

reconstruction algorithm with statistical weights modified to account for the change in variance 

following artifact corrections in CBCT of the head. The results suggest the possibility for point-of-

care imaging of acute ICH using CBCT, but also introduce new image quality challenges and 

opportunities.  

First, task-based assessment of imaging performance was not explicitly formulated in the 

PWLS reconstruction method described in the previous chapter but can be potentially incorporated 

into and benefit the image reconstruction process. The primary task in the diagnosis and monitoring 

of acute ICH is to discriminate a low-contrast lesion (acute ICH) from a relatively uniform 

background (brain). Early development of the CBCT prototype mentioned above used such task-

based analysis to optimize the imaging configuration and technique factors with respect to the 



71 

 

detectability index (𝑑𝑑′).186 As shown below, such analysis can similarly benefit the process of 3D 

image reconstruction, taking task-based imaging performance as the objective function for 

optimization in statistical MBIR. Specifically, the flexibility of statistical reconstruction can be 

leveraged to derive a penalty that maximizes ICH detectability. 

A second consideration is that images reconstructed by statistical reconstruction typically 

exhibit nonuniform spatial resolution and noise characteristics. For example, Fig. 3.1 shows an 

image of an anthropomorphic head phantom reconstructed using a basic PWLS method with a 

simple (constant, spatially uniform) quadratic penalty function. The local spatial resolution (e.g., 

the width of the edge spread function, ESF, denoted ε in Fig. 3.1) and noise (e.g., the standard 

deviation in voxel values, denoted σ in Fig. 3.1) and the conspicuity of the simulated ICH vary in 

different regions of the head. Such non-uniformity carries a variety of implications. First, analysis 

of noise, resolution, etc. must recognize assumptions and limitations of a local approximation – 

e.g., as in the work by Tward and Siewerdsen62 and by Pineda et al.,187 and the effect of such non-

uniformity on human observer performance is an area of ongoing investigation. Furthermore, and 

most pertinent to the work reported below, a penalty designed to maximize task-based detectability 

at one location in the head will not necessarily maximize detectability at another location.  

 

Figure 3.1: Illustration of nonuniform spatial resolution (ESF width, ε) and noise (standard 
deviation, σ) at three regions in an anthropomorphic head phantom (1 - near the cranium, 2 - at the 
center of the cranial vault, and 3 - near the skull base) in an image reconstructed by PWLS with a 
quadratic penalty. The phantom was scanned on a CBCT test-bench at a dose of 24 mGy. Grayscale 
window for axial images 1-3 is [-60 160] HU. 

 

Such considerations motivated the work detailed below to derive a spatially varying 

penalty that enforces constant 𝑑𝑑′ throughout the image – or more importantly, to maximize local 

2 3

 9 mm

  
ε = 0.86 mm

σ = 7.6 HU ε = 1.07 mm

σ = 6.9 HU
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𝑑𝑑′ at every point in the image. A number of previous reports also investigate the potential benefit 

of a spatially varying penalty. Fessler and Rogers132 proposed a penalty containing a spatially 

varying “certainty” term to achieve uniform spatial resolution – specifically, uniform point spread 

function (PSF) in PL reconstruction. Yang et al.135 optimized directional weights in the penalty for 

PL reconstruction to maximize task-based detectability for the detection of breast lesion in 3D PET. 

Gang et al.136 optimized a parameter that weights the regularization term in PL reconstruction to 

maximize detectability for a variety of detection tasks in axial CT. 

The work in this chapter extends task-based regularization design to CBCT and focuses on 

improving task-based imaging performance for the detection of acute ICH in CBCT of the head. 

This chapter is structured as follows. First, the theoretical prediction framework for spatial 

resolution (local PSF and modulation transfer function, MTF) and noise (local covariance and 

noise-power spectrum, NPS) in PWLS reconstruction is described and validated in simulation 

studies involving a realistic 3D digital head phantom. Second, a task-based regularization design 

framework is introduced along with techniques to accelerate the design process in 3D CBCT. 

Finally, the imaging performance of the proposed task-based penalty is evaluated in both simulation 

studies and test-bench experiments in comparison to a conventional (constant, space-invariant) 

penalty and a spatially-varying “certainty-based” penalty encouraging uniform spatial resolution. 

The proposed regularization was investigated for both a mid-frequency task emulating detection of 

a low-contrast ICH as well as tasks emphasizing other frequency content (low- and high- 

frequency). 

3.1.2 Acknowledgements and unique contributions 

The methods and results reported in this chapter were reported in conference proceedings and 

journal articles as follows: 
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3.2 Methods 

3.2.1 Statistical reconstruction for head imaging 

This chapter considers the same forward model and PWLS objective function as in Chapter 2. The 

PWLS objective function is:  

( )21ˆ arg min
2

l R
µ

µ µ µ= − +
W

A                                             (3.1) 

as defined previously. Recall that W is a diagonal weighting matrix whose diagonal elements are 

statistical weights computed as the inverse of the variance of the measurements propagated through 

data transformation. In CBCT of the head, the statistical weights are modified as described in the 

previous chapter to account for the changes in variance associated with x-ray scatter and beam-

hardening corrections. 

The regularization term R(μ) in the PWLS objective penalizes intensity differences 

between neighboring voxels and enforces local smoothness in the reconstructed image. A 

commonly used form for the regularization was described in Chapter 1 as: 

( ) ( )1
2

j

C jk j k
j k N

R wµ β ϕ µ µ
∈

= −∑ ∑                                           (3.2) 

where the difference between voxel μj and its neighboring voxel μk is penalized by a function 𝜓𝜓 

and weighted by a directional weight wjk. Conventionally, the penalty function and directional 

weights are chosen to be the same for all the voxels in the image, and a scalar (constant, spatially 

uniform) regularization parameter β is used to control the overall strength of regularization. This 

regularization method is referred to as the “conventional penalty” (denoted by subscript C) in this 

chapter. Such regularization typically results in nonuniform spatial resolution and noise 

characteristics in the reconstructed image. 



75 

 

An alternative regularization method proposed by Fessler and Rogers132 seeks to achieve 

uniform spatial resolution (specifically, uniform PSF) throughout the image. This method 

introduces a spatially varying quantity κj representing the certainty (or fidelity) of all the rays that 

intersect the jth voxel in the image. The “certainty” quantity κj can be computed as: 

2 2
j ij i ij

i i
a aκ = ∑ ∑W                                                      (3.3) 

where aij denotes the (i, j)th element of the matrix A. The regularization term can then be written 

as: 

( ) ( )1
2

j

R j k jk j k
j k N

R wµ β κ κ ϕ µ µ
∈

= −∑ ∑                                        (3.4) 

where the penalty between each pair of neighboring voxels is further weighted by the “certainty” 

quantity. This regularization method is referred to as the “certainty-based” or “uniform resolution” 

penalty (denoted by subscript R). In this chapter, the certainty-based penalty is considered not as a 

competing method to the task-based approach proposed below – after all, each seeks to optimize 

with respect to a particular objective – but rather as a point of reference with respect to an alternative 

form of spatially varying penalty.  

To design the regularization term in such a way as to maximize task-based detectability at 

any location within the object, one can optimize the penalty function (φ), directional weight (wjk), 

and/or regularization parameter (β) with respect to a specific location. The work in this chapter 

focuses on determination of a spatially varying regularization parameter (βj) to maximize local 

task-based detectability at every location within the object while keeping the penalty function and 

directional weights the same for all locations. The design of the directional weights and penalty 

function to further improve task-based detectability are the subject of possible future work. This 

regularization method is referred to as a “task-based penalty” (denoted by subscript T), written as: 

( ) ( )1
2

j

T j jk j k
j k N

R wµ β ϕ µ µ
∈

= −∑ ∑                                         (3.5) 
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Note that the regularization parameter βj is now inside the outer summation and dependent on the 

location j, unlike the conventional penalty.  

For all three regularization methods in the current work, a quadratic penalty function was 

selected, and the directional weights were set to 1 for first-order neighbors (e.g., 6 first-order 

neighbors for a voxel in a 3D image) and 0 for higher-order neighbors. Future work could consider 

a non-quadratic (e.g., Huber) penalty, recognizing the need for modified performance prediction 

(described in Sec. 3.2.2 for the quadratic penalty). Similarly, directional weights could be modified 

to increase / decrease smoothing in certain directions to potentially improve detectability. 

3.2.2 Task-based performance prediction 

To derive a task-based penalty, one needs to estimate the local detectability index (d’j), which in 

turn requires prediction of local spatial resolution (MTFj) and noise (NPSj) characteristics. Previous 

work132 shows that the effects of a spatially varying regularization term (βj) on image quality can 

be considered local if the spatially varying term is spatially smooth. Thus, although βj will be 

spatially varying in the resulting penalty, one can assume that βj is constant in the design stage. In 

other words, one may assume a conventional (constant) penalty when estimating local spatial 

resolution, noise, and task-based detectability in a PWLS image. 

Fessler et al.132 derived the PSF estimate of PL reconstruction with a conventional 

(constant) quadratic penalty using the Implicit Function Theorem and first-order Taylor expansion. 

We apply the same prediction model to PWLS reconstruction as a simplified case of the PL 

estimate. The PSF estimate at the jth voxel can be written as: 

( ) ( ) ( ) ( )1ˆ true
j jPSF eµ µ β µ µ

−
=   F + R F                                       (3.6) 

( ) ( )T yµ µ=   F A D A                                                    (3.7) 



77 

 

where 𝜇𝜇� denotes PWLS reconstruction from noiseless measurements, µtrue is the truth image, 𝑦𝑦�(𝜇𝜇) 

is the forward projection of the image estimate µ, and ej is a unit vector (Kronecker delta) equal to 

1 at the jth element (and 0 elsewhere). The Fisher information matrix F(µ) usually has nonuniform 

diagonal elements, resulting in nonuniform noise-resolution characteristics in the image 

reconstruction. The term 𝐑𝐑(𝜇𝜇�) denotes the Hessian of the regularization term, which is independent 

of the input µ when a quadratic penalty function is used. When 𝜇𝜇� and µtrue are not available (e.g., 

estimating the PSF from real data), one can substitute 𝑦𝑦�(𝜇𝜇�) and 𝑦𝑦�(𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) with measured projection 

data. This is typically a good approximation for x-ray fluence in the diagnostic range, because the 

measured projection data are sandwiched between forward projection and backprojection [Eq. 

(3.7)], which greatly reduces the effect of noise on the estimation.132 

Because the PSF is estimated in a relatively uniform region (i.e., the brain parenchyma), 

one can assume it to be locally invariant within a small neighborhood N of the location of interest. 

The matrix representation of the local PSF (i.e., the “system matrix”) can then be approximated as 

circulant with shifted copies of the PSF as its column entries.188 Thus, the MTF can be computed 

as the magnitude of the discrete Fourier transform (DFT) of the PSF normalized at zero frequency136: 

( ) ( ){ }, ˆj j NH f FT PSF µ=                                                  (3.8) 

( ) ( ) ( )/ 0j j jMTF f H f H=                                               (3.9) 

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗,𝑁𝑁(𝜇̂𝜇) denotes the PSF estimate for the jth voxel in a small neighborhood N, and 𝐻𝐻𝑗𝑗(𝑓𝑓) 

denotes the DFT of the PSF. 

The covariance estimate for PWLS reconstruction with a conventional penalty (constant β) 

can be derived in a similar manner as the PSF estimate for a quadratic penalty. According to the 

definition of covariance matrix, the covariance of the jth voxel with all other voxels in the image is 

a column in the covariance matrix, written as: 

( ) ( ) ( ) ( ) ( ) ( )1 1ˆ true
j jCov eµ µ β µ µ µ β µ

− −
=       F + R F F + R                      (3.10) 
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Similar to the PSF, one can assume that the covariance of a given voxel (with other voxels) in a 

small, relatively uniform neighborhood N is the same as the covariance of any other voxel (with 

other voxels) in the neighborhood, resulting in an approximately circulant covariance matrix. Thus, 

the local NPS is described by the magnitude of the DFT of a column of the covariance matrix, 

which is far more tractable than the DFT of the entire covariance matrix. The local NPS about voxel 

j is then136: 

( ) ( ){ }, ˆj j NNPS f FT Cov µ=                                             (3.11) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝑗𝑗,𝑁𝑁(𝜇̂𝜇)  denotes the covariance of the jth voxel with all other voxels within a small 

neighborhood N. 

The formulations in Eqs. (3.6) – (3.11) reveal the dependence of spatial resolution and 

noise on the object (𝜇̂𝜇) and location in the object (j). It is important to note that the dependence on 

the object is realized only through its projections; therefore, estimation of the MTFj and NPSj does 

not require knowledge of the true object nor a reconstruction of the object - estimated instead 

directly from the projection data. In the studies below, the PSF and covariance [Eqs. (3.6) and 

(3.10)] were estimated using a linear conjugate gradient (CG) algorithm. Specifically, the CG 

algorithm was applied once to invert the matrix [𝐹𝐹(𝜇𝜇�) + 𝛽𝛽𝛽𝛽(𝜇𝜇�)] in Eq. (3.6) and was applied twice 

to invert the two matrices [𝐹𝐹(𝜇𝜇�) + 𝛽𝛽𝛽𝛽(𝜇𝜇�)] in Eq. (3.10). 

Based on predictions of the local MTF and NPS, one may compute the local task-based 

detectability index (𝑑𝑑′𝑗𝑗) for PWLS reconstruction. The detectability index relates the MTF and NPS 

to a spatial-frequency-dependent task function via an observer model, such as the Fisher-Hotelling 

(prewhitening) or non-prewhitening (NPW) models.186 While many observer models can be 

formulated, a NPW matched filter observer model is used in the current work. This model does not 

include “anthropomorphic” parameters relating to a human observer (e.g., a mid-frequency “eye 

filter” and internal noise) and instead encapsulates the intrinsic signal and noise characteristics of 

the image with respect to an observer that cannot decorrelate noise. The NPW model has 
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demonstrated reasonable agreement with human observer performance for simple tasks in 

tomosynthesis and CBCT.64 This observer model was also used in previous work on design of a 

CBCT head scanner using task-based imaging performance.183 The local detectability index for a 

NPW observer is given by: 

( )
( ){ }

( ) ( )

22

2
2

j j Task x y z

j j

j j j j Task x y z

MTF W df df df
d'

NPS MTF W df df df

β
β

β β

 ⋅ 
=

 ⋅ 

∫∫∫

∫∫∫
                           (3.12) 

Note that 𝑑𝑑𝑗𝑗′, MTFj, and NPSj are all defined with respect to the jth voxel and are functions of the 

local regularization parameter βj. The task function, 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (detailed below), may be similarly taken 

to vary in space, but in the current work was held fixed – i.e., the same task function at all locations 

in the image. The MTF, NPS, and 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 are all three-dimensional Fourier-domain functions of 

(𝑓𝑓𝑥𝑥, 𝑓𝑓𝑦𝑦, 𝑓𝑓𝑧𝑧), and the integrals in Eq. (3.12) are over the 3D Fourier domain bounded by the Nyquist 

frequency of the image reconstruction.  

A task function is considered that describes detection of a small, low-contrast lesion 

emulating ICH, with spatial frequency content modeled as a difference of two Gaussians to 

emphasize mid-frequency content. This can be interpreted as discrimination of two Gaussian 

structures or detection of the stimulus edge in the spatial domain.183 The task function can be 

expressed as: 

2 2

Task 2 2
1 2

exp exp
2 2
f f

W C
σ σ

    
 =  −  −  − 

        
                                       (3.13) 

where C denotes the contrast of ICH with respect to the brain (50 HU), and σ1 and σ2 are the widths 

of the two Gaussians. Figure 3.2(b) shows the mid-frequency task function WMid used primarily in 

this work, with contrast C = 50 HU, σ1 = 0.35 mm-1, and σ2 = 0.25 mm-1. This task function peaks 

at approximately 0.5 mm-1, corresponding to a characteristic feature size of ~1 mm. Two additional 

task functions are considered to further evaluate the sensitivity of the proposed method to 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 
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including: a low-frequency task described by a single Gaussian with σ = 0.2 mm-1 [denoted 𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿 

and shown in Fig. 3.2(a)]; and a high-frequency task described by Eq. (3.13) with σ1 = 0.70 mm-1 

and σ2 = 0.65 mm-1 [denoted 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻ℎ in Fig. 3.2(c)]. To better allow inter-comparison among the 

three tasks, the magnitude of each task function was scaled (via C) such that the signal power – i.e., 

the integral of (𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇)2 over the Nyquist region was the same. 

 

Figure 3.2: Three task functions investigated in the current work: (a) low-frequency, (b) mid-
frequency, and (c) high-frequency. The mid-frequency task was modeled as a difference of two 
Gaussians with 50 HU contrast, corresponding to a low-contrast feature (acute ICH) with 
characteristic length of ~1 mm. 
 

3.2.3 Task-based regularization 

An objective function can be formulated based on the local task-based detectability index to solve 

for the local regularization parameter βj that maximizes 𝑑𝑑𝑗𝑗′2: 

( )2ˆ argmax
j

j j jd'
β

β β=                                                     (3.14) 

The optimal βj is solved by evaluating 𝑑𝑑𝑗𝑗′ for different βj values with regular spacing and choosing 

the βj that yields maximum 𝑑𝑑𝑗𝑗′ . Future work could consider a direct analytical solution of the 

maximization (setting the gradient of the objective function to zero); however, in the current work, 

Eq. (3.14) was solved numerically. 

Directly repeating the maximization at every spatial location yields a spatially varying βj map 

that maximizes 𝑑𝑑′everywhere in the image. Considering the large number of voxels typically in a 
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CBCT image (e.g., Nμ = 5003) and positing that the βj map will be slowly varying throughout the 

fairly uniform region of the brain, a more computationally efficient approximation was used to 

accelerate the design process, as follows: 

1) First, the optimal β was computed on a downsampled grid internal to the cranium and 

interpolated at intermediate voxels using radial basis functions. This step reduced the number 

of β computations from the number of voxels in the image (e.g., 𝑁𝑁𝜇𝜇 = 5003) to the number of 

voxels on the downsampled grid (e.g., 𝑁𝑁𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑁𝑁𝜇𝜇 (𝐷𝐷𝐷𝐷1)3⁄ = 203 assuming a downsampling 

factor of 𝐷𝐷𝐷𝐷1 = 25 in each dimension). 

2) Second, recognizing that the local PSF and covariance reduce to zero at voxels sufficiently far 

from the voxel of interest, unity impulses are placed at multiple locations (instead of just one 

location) in the input ej in Eqs. (3.6) and (3.10). This allows one to predict local PSF and 

covariance for multiple locations simultaneously. For example, if one places unity impulses on 

a subgrid with a spacing of DS2 voxels, it only takes one simultaneous prediction to compute 

the local PSF and covariance for each voxel on this subgrid. As a result, the downsampled grid 

from the first acceleration step can be divided into 𝐾𝐾 = (𝐷𝐷𝐷𝐷2 𝐷𝐷𝐷𝐷1⁄ )3  subgrids (e.g., 𝐾𝐾 =

(50 25⁄ )3 = 8, assuming 𝐷𝐷𝐷𝐷2 = 50), which requires only K simultaneous predictions.  

The two acceleration steps reduce the number of predictions needed from the number of voxels in 

the image (e.g., 𝑁𝑁𝜇𝜇 = 5003) to the number of subgrids (e.g., K = 8).  A pseudocode outline of the 

accelerated design framework is shown in Table 3.1. 
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Table 3.1: Spatially varying regularization design for maximal task-based performance. 
 

Input precomputed R 
for each subgrid k = 1 to K 
      Place Nk unity impulses in ek with uniform spacing 
      Predict local PSF and covariance for Nk locations simultaneously using Eqs. (3.6) and (3.10) 
      for each voxel j on the kth subgrid 
            Compute local MTFj, NPSj, and 𝑑𝑑𝑗𝑗′ for different βj using Eqs. (3.9), (3.11), and (3.12) 
            Estimate βj that maximizes 𝑑𝑑𝑗𝑗′ 

      end 
end 
for each voxel not on the downsampled grid 
      Interpolate βj based on the optimal βj on the downsampled grid 
end 
return a β map 

 

3.2.4 CBCT simulation studies 

The task-based penalty approach was first evaluated in simulation studies in comparison to both 

the conventional penalty and the uniform resolution penalty. An anthropomorphic head phantom 

was scanned using a MDCT scanner (SOMATOM Definition, Siemens Healthineers, Erlangen, 

Germany) to generate the 3D digital head phantom illustrated in Fig. 3.3(a). A high-dose scan 

protocol (120 kVp, 500 mAs, 0.5×0.5×0.6 mm3 voxels, H30s reconstruction filter) was used to 

reduce noise and provide easy segmentation for producing the digital phantom. Soft-tissue 

structures were segmented and set to a constant value of 40 HU, and bone tissues retained the 

natural reconstructed attenuation values. The system geometry of the CBCT head scanner 

prototype183 was used, including 550 mm SAD, 1000 mm SDD, and 0.556×0.556 mm2 detector 

pixel size. Image simulation involved 720 projections of the phantom over 360° with 2×105 photons 

per detector pixel. Both noiseless and Poisson-distributed x-ray projections were simulated. The 

3D image reconstruction grid contained 390×485×498 voxels with 0.5×0.5×0.5 mm3 voxel size. 

Local PSF was predicted using the CG algorithm in Eq. (3.6) (with 100 iterations to reach 

convergence), and local covariance was predicted similarly for Eq. (3.10). The simultaneous 

prediction was performed K = 8 times, each time on a subgrid with a spacing of DS2 = 50 voxels. 
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The optimal βj was identified for each of the voxels on the 8 subgrids, from which a spatially 

varying β map was interpolated using radial basis functions.189 The neighborhood used in 

computing the DFT of the local PSF and covariance was 21×21×21 voxels. PWLS images were 

reconstructed as described in Sec. 2.2.6 by initializing with a filtered backprojection image and 

applying 100 iterations of separable quadratic surrogate (SQS) updates with 20 ordered subsets163 

to reach convergence.  

The local MTF and NPS were also measured from reconstructed images and were used to 

evaluate the accuracy of the predictions. The local MTF was measured following Eq. (10) in the 

paper by Fessler and Rogers132 by subtracting two PWLS reconstructions of noiseless projection 

data with and without an impulse at the location of interest. The local NPS was measured from a 

large ensemble (n = 200) of PWLS reconstructions with different realizations of Poisson noise – 

specifically, calculated following Eq. (26) in the paper by Gang et al.136 as the sample average of 

squared Fourier transform of a small neighborhood in the difference image between two PWLS 

images with different noise realizations. 

Both the prediction and image reconstruction methods were implemented in Matlab (The 

Mathworks, Natick MA), with projection operations implemented using matched separable 

footprint method98 and executed using CUDA libraries on GPU. The execution of the CG and OS-

SQS algorithms for all 720 projections in one iteration required about the same time (~3.6 min), 

because both algorithms required one forward projection and one backprojection in one iteration 

(which were the dominant factor for computation time). Further reduction in computation time 

(beyond the scope of this chapter) may be achieved using methods such as CG preconditioning190 

to speed the PSF estimation and acceleration techniques such as spatially non-uniform updates167 

and Nesterov’s method168,191 to speed image reconstruction. 
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Figure 3.3: Head phantom and CBCT test-bench. (a) Sagittal, axial, and coronal slices of the 3D 
digital head phantom used in the simulation studies, which contains realistic bone attenuation and 
uniform soft tissue. Five locations of interest are denoted 1-5. (b) Photographs of the CBCT test-
bench and an anthropomorphic head phantom filled with materials emulating brain, ventricles, and 
acute ICH. 

3.2.5 Experiments on a CBCT test-bench  

The proposed task-based reconstruction technique was also evaluated in experiments on a CBCT 

test-bench equipped with a flat-panel detector (PaxScan 4343R, Varian, Palo Alto CA) as shown 

in Fig. 3.3(b). A custom anthropomorphic head phantom containing a natural skull in soft-tissue 

equivalent plastic (RandoTM, The Phantom Laboratory, Greenwich NY) was filled with a gelatin 

mixture, ventricle models prepared from wax, and plastic spheres of different diameters to provide 

x-ray attenuation approximating brain (50 HU), cerebrospinal fluid (-20 HU), and fresh blood (100 

HU). The resulting contrast of brain to fresh blood (~50 HU) was consistent with previous reports 

of acute ICH presentation in CT.142,165 System geometry similar to that in simulation studies and 

the head scanner prototype was employed: SAD = 580 mm, SDD = 800 mm, and detector readout 

with 0.556 mm isotropic pixel size. The phantom was scanned at 100 kVp and 0.4 mAs per 

projection for 720 projections over 360o, yielding a total dose of 24.8 mGy (measured at the center 
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of a 16 cm CTDI phantom placed at isocenter) which was somewhat lower than that from a typical 

adult head CT [~44.2 mGy reported by Huda et al.192]. 

Projection data were corrected for x-ray scatter using a Monte Carlo scatter correction 

method149 and for beam hardening using the Joseph and Spital method.157 The statistical weights in 

PWLS were modified accordingly to account for changes in variance following artifact correction 

following the method described in Sec. 2.2.5. The projections were also corrected for detector lag 

and veiling glare as in the work by Sisniega et al.,149 but these corrections were not explicitly 

considered in the statistical weights. The image grid contained 412×512×512 voxels with 

0.5×0.5×0.5 mm3 voxel size. The task-based regularization design and PWLS reconstructions were 

performed using the same methods and parameter settings as in the simulation studies. In a PWLS 

image, spatial resolution was assessed in terms of the ESF of a simulated ICH sphere in an axial 

slice. A sigmoid function parameterized by width ε was fit to all the voxels within 60o fan-shaped 

sectors centered on the simulated ICH, and spatial resolution was quantified as the average ε 

computed over each sector.93 Image noise was quantified as the standard deviation of voxel values 

within a small region of interest of 19×19 voxels in a uniform region of the brain adjacent to the 

simulated ICH. 

3.3 Results 

3.3.1 Local MTF and NPS 

Previous work by Gang et al.136 studied the shift-variance and anisotropy of 2D local MTF and 

NPS in penalized likelihood reconstruction for fan-beam CT. The 3D local MTF and NPS were 

analyzed similarly in this chapter for CBCT of the head as summarized in Fig. 3.4, which shows 

the local MTF and NPS in the (fx, fy) and (fy, fz) planes at five locations in the head as denoted in 

Fig. 3.3(a). The reconstruction method was PWLS with the conventional (constant) regularization 
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parameter β = 106.4. The local MTF and NPS exhibit shift-variance and anisotropy as expected. In 

particular, the local MTF is narrower (i.e., reduced spatial resolution) and local NPS is elevated 

(especially at low frequencies) near the skull base (location 3) compared to regions adjacent to the 

cranium (locations 1 and 5). In addition to higher MTF, the peripheral locations (1 and 3) exhibit 

more anisotropic local NPS, owing to the strong difference in attenuation for rays traversing, for 

example, in PA views versus the LAT views. Such characteristics result from the interplay between 

the object / attenuation length and data-dependent smoothing applied by PWLS: rays traversing 

location 3 (near the center of the head and surrounded by thick bone structures such as the temporal 

bones) are more attenuated (noisier) than rays traversing peripheral locations 1 and 5; therefore, 

the conventional PWLS algorithm applies greater smoothing to data corresponding to location 3 

than locations 1 and 5. 

Figure 3.4 also compares the measured local MTF and NPS with that predicted by Eqs. 

(3.6-3.9) and (3.10-3.11), respectively. Each case demonstrates reasonably good agreement in 

terms of both spatial dependence and anisotropy. Such agreement is similarly observed when the 

location of interest is far from the central slice (location 4 and 5), where the (fy, fz) domains exhibit 

a “null cone” of unsampled frequencies due to the cone-beam and circular orbit geometry. 

Reasonable agreement between measurement and prediction was also observed for other β 

values (not shown for brevity) over the range of 105.0~108.0, which is the relevant range for 𝑑𝑑′ 

optimization investigated below. 
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Figure 3.4: Local MTF and NPS in 3D images of the head reconstructed using PWLS with a 
conventional penalty (constant β = 106.4). Each exhibits shift-variance and anisotropy at locations 
defined in Fig. 3.3(a). The top two rows show “axial” MTF(fx, fy) and NPS(fx, fy), and the bottom 
two rows show “sagittal” MTF(fY, fZ) and NPS(fY, fZ), the latter demonstrating the null cone of 
unsampled frequencies in regions (e.g., location 5) far from the central slice. 
 

3.3.2 Task-based regularization (mid-frequency detection task) 

Task-based regularization design was performed in simulation studies for the mid-frequency 

detection task WMid defined in Section 3.2.2. Figure 3.5 shows the resulting β map for the task-

based penalty (i.e., that which maximizes 𝑑𝑑′ at each location in the head) in comparison to the 

conventional constant penalty and the certainty-based uniform resolution penalty. For the 

conventional penalty, a scalar β of 106.4 was chosen to yield the highest average 𝑑𝑑′ over all locations 

in the head - in this way, representing the best choice constant value. For the uniform resolution 

penalty, the β map was a product of a scalar β and spatially varying certainty 𝜅𝜅𝑗𝑗2, with the scalar β 
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chosen to provide uniform PSF width of 0.95 mm (measured as the full width at half maximum 

(FWHM) of the local PSF averaged over all radial directions). The task-based design results in a β 

map exhibiting a similar overall structure to the uniform resolution penalty: each exhibits lower β 

near the skull base and higher β near the cranium compared to the conventional penalty; however, 

the β value in the task-based penalty exhibits a broader range (over an order of magnitude) than the 

uniform resolution penalty and – for the mid-frequency task considered here – presents lower β 

(i.e., reduced smoothing) in the interior of the skull.  

 

Figure 3.5: Maps of the regularization parameter β for the three penalty methods. (a-b) The 
conventional penalty employs a constant scalar value β (= 106.4, chosen to yield the highest 𝑑𝑑′ 
averaged over all regions of the brain). (c-d) The certainty-based uniform resolution penalty 
involves the product of a scalar β and a spatially-varying certainty term 𝜅𝜅𝑗𝑗2 (chosen to yield uniform 
PSF width of 0.95 mm). (e-f) The task-based penalty adjusts the β map to maximize 𝑑𝑑′ everywhere 
in the brain (chosen here for a mid-frequency task, WMid). 

 

Figure 3.6 shows the resulting spatial resolution and noise characteristics in the head from 

the three penalty methods in Fig. 3.5. The conventional penalty results in higher spatial resolution 

near the cranium and lower near the skull base, consistent with the results of local PSF in Fig. 3.4. 

The uniform resolution penalty leads to more uniform spatial resolution (PSF width ~0.95 mm) 

than the conventional penalty but results in stronger spatial variation in noise (lower near the 

cranium and higher near the skull base). The task-based penalty results in nonuniform spatial 

resolution and noise, which is not surprising considering that the penalty is designed to maximize 

𝑑𝑑′ at each location, not to improve uniformity in resolution or noise. 
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Figure 3.6: Spatial resolution and noise for the three penalty methods. (a-f) Spatial resolution is 
described by the FWHM of the local PSF, and (g-l) noise is given by the local standard deviation 
in voxel values. The conventional penalty yields (a-b) nonuniform spatial resolution and (g-h) fairly 
uniform noise. The certainty-based penalty yields (c-d) uniform spatial resolution and (i-j) slightly 
stronger nonstationarity in the noise. The task-based penalty yields spatially varying resolution and 
noise characteristics that adjust in a manner to maximize local 𝑑𝑑′  (chosen here for the mid-
frequency task, WMid).  

 

Figure 3.7 shows the resulting 𝑑𝑑′ map for the three penalty methods, all of which exhibit 

strong spatial variation in 𝑑𝑑′ - highest near the cranium and reduced in the interior of the cranial 

vault. Compared to the “best” conventional penalty (i.e., highest average 𝑑𝑑′), the uniform resolution 

penalty increased 𝑑𝑑′ by up to 10% in certain regions of the brain (near the skull base); however, 

the uniform resolution penalty actually reduced 𝑑𝑑′ in other regions (near the periphery). These 

results are somewhat expected, since the uniform resolution penalty is designed not to maximize 

𝑑𝑑′ but to achieve uniform spatial resolution. 
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The task-based penalty exhibits the highest 𝑑𝑑′ value at all locations – equal to or exceeding 

that of the other penalties by up to 12%; moreover, it does not exhibit the slight reduction in 𝑑𝑑′ 

near the periphery.  Given the objective function for each penalty method, this result is somewhat 

expected – i.e., that the task-based penalty exhibits the highest 𝑑𝑑′, since that is what it was designed 

to do. The extent to which this corresponds to an increase in visual image quality depends on the 

extent to which the observer model (in this case, NPW) and task function (in this case, WMid) provide 

a realistic quantification of image quality. This point is investigated further in Sec. 3.3.4, with future 

work to include alternative observer models and more in depth human observer studies. 

 

Figure 3.7: Local detectability for the three penalty methods. The top two rows (a-f) show maps of 
𝑑𝑑′  (mid-frequency detection task) for the (a-b) conventional constant penalty; (c-d) uniform 
resolution penalty); and (e-f) task-based penalty. The bottom two rows (g-j) show the ratio of 
detectability index for the (g-h) uniform resolution penalty and (i-j) task-based penalty to that of 
the conventional penalty. The uniform resolution penalty increases 𝑑𝑑′ near the skull base by ~10% 
but degrades 𝑑𝑑′ near the periphery by ~5%. The task-based penalty improves 𝑑𝑑′ by up to ~12% 
near the skull base and meets or exceeds that of other methods at every location in the head. 
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3.3.3 Task-based regularization (various tasks) 

The task-based regularization method was further investigated for tasks emphasizing different 

frequency content, including a low-frequency task (WLow, Fig. 3.2(a)), a mid-frequency task (WMid, 

Fig. 3.2(b), investigated in the previous section), and a high-frequency task (WHigh, Fig. 3.2(c)). 

Figure 3.8 summarizes 𝑑𝑑′  as a function of β for each task (denoted 𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿′ , 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀′ , and 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻ℎ′ ) at 

locations near the skull base (location 3), in the center of the brain (location 4), and near the cranium 

(location 5). Recall that the three task functions were separately scaled to maintain constant signal 

power and thereby support intercomparison in terms of spatial-frequency response characteristics 

(rather than simply contrast). 

For all tasks and locations considered, the function 𝑑𝑑′(𝛽𝛽) was concave and exhibited a 

clear optimum in β (within the range β = 105.0 ~ 108.0), suggesting the possibility of directly solving 

for the optimal β using optimization algorithms. For all three locations, 𝑑𝑑′ is seen to be higher for 

the low-frequency task and lower for the high-frequency task, consistent with the more challenging 

nature of a high-frequency task for a system with low-mid bandpass characteristics. For WLow, the 

task-based penalty improved 𝑑𝑑′ by 5.8% near the skull base (location 3) and 0.5% near the cranium 

(location 5) compared to the conventional (constant) penalty. Moreover, for WHigh, the task-based 

approach improved 𝑑𝑑′  by 10.4% near the skull base and 1.7% near the cranium. Gains in 

detectability were slightly less for the uniform resolution penalty and, in some cases, slightly worse 

than the conventional penalty (e.g., a 0.9% reduction in 𝑑𝑑′ for WHigh at location 5). 

The optimal β is seen to depend somewhat on the imaging task, which could be problematic 

considering that one may desire to accomplish many tasks within a given image (as opposed to 

reconstructing a separate image for each task - which is possible, but may be impractical for more 

than ~2 tasks). For example, the low-frequency task at location 3 was optimized with βj = 106.8, 

however, this βj value results in 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻ℎ′  that is ~47% lower than its maximum value (realized with 
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βj = 105.2). Conversely, selecting βj to maximize 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻ℎ′  reduces 𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿′  by only 12.6% compared to 

its maximum value. Analogous to common practice in which “sharp” and “smooth” images are 

reconstructed for visualization of “bone” and “soft” tissue features, one could reconstruct images 

with task-based penalties corresponding to WHigh and WLow, respectively. Alternatively, one could 

consider WMid as a nominal choice, optimizing mid-frequency detection with less tradeoff for high- 

and low-frequency tasks. For example, selecting βj to maximize 𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀′  corresponds to 𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻ℎ′  and 

𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿′  values that are reduced by 9.5% and 6.1% from their maximum values, respectively. Previous 

work by Yang et al.135 also found that a penalty designed to maximize 𝑑𝑑′ for small lesions did not 

adversely affect the detection of larger lesions in 3D PET of the breast. 

 

Figure 3.8: Detectability index 𝑑𝑑′ computed as a function of regularization parameter β at locations 
(a) near the skull base, (b) in the center of the brain, and (c) near the cranium. Each plot shows 𝑑𝑑′ 
computed for a low-frequency task (denoted as 𝑑𝑑𝐿𝐿𝐿𝐿𝐿𝐿′ ), a mid-frequency task (𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀′ ), and a high-
frequency task (𝑑𝑑𝐻𝐻𝐻𝐻𝐻𝐻ℎ′ ). 
 

3.3.4 Image reconstructions 

The simulation studies described in Sec. 3.2.4 included a digital anthropomorphic head model in 

which spheres of 2 mm diameter and 50 HU contrast were added to emulate acute ICH. Three such 
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lesions were added to a region in the deep interior of the brain near the skull base (location 3 in Fig. 

3.3) and to a region at the periphery adjacent to the cranium (location 5). Projections were simulated 

with Poisson noise as described in Sec. 3.2.4 and reconstructed by PWLS with each of the three 

penalty methods. Figure 3.9 summarizes the results. As shown in Fig. 3.9(a,b), the conventional 

penalty (again chosen with constant β value to maximize average 𝑑𝑑′) exhibited good visualization 

of ICH near the cranium but strongly smoothed the data near the skull base, resulting in an arguably 

over-smoothed appearance. As shown in Fig. 3.9(c,d), the uniform resolution penalty yielded a 

more uniform overall image appearance (viz., in terms of spatial resolution) and somewhat 

improved the conspicuity of the lesions near the skull base (𝑑𝑑′  improved by 7.2%); however, 

conspicuity near the cranium was slightly reduced (𝑑𝑑′ reduced by 2.3%) – though still conspicuous 

for the lesions shown. As demonstrated in Fig. 3.9(e,f), the task-based penalty improved 

conspicuity of the lesions near the skull base (𝑑𝑑′ increased by 12.3%) without reduction near the 

cranium. 

 

Figure 3.9: Visualization of simulated ICH lesions using three regularization methods. The 
conventional penalty (β=106.4) exhibited a somewhat over-smoothed image near the skull base. The 
uniform resolution penalty yielded a more uniform image appearance (uniform PSF) and improved 
conspicuity near the skull base, with slight tradeoff near the cranium. The task-based penalty further 
improved conspicuity at each location, particularly near the skull base. 

 

The task-based regularization design was finally applied to data acquired on the CBCT 

test-bench. The local PSF and covariance were estimated by substituting 𝑦𝑦�(𝜇𝜇�) and 𝑦𝑦�(𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) with 
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the measured projection data as described in Sec. 3.2.2. The task-based penalty was designed for 

the mid-frequency task in Fig. 3.2(b). Figure 3.10 shows PWLS reconstructions of a simulated ICH 

of 50 HU contrast and 12 mm diameter both near the cranium and near the skull base. The large 

simulated lesion is clearly detectable in all cases, but differences in conspicuity of the lesion extent 

(i.e., detection of its edge) can be appreciated among the three regularization approaches. As shown 

in Fig. 3.10(a,b), the conventional penalty (constant β = 105.6 to maximize average 𝑑𝑑′) exhibited 

strongly varying spatial resolution and noise characteristics in the two regions and over-smoothed 

the image near the skull base. As shown in Fig. 3.10(c,d) and consistent with the simulation studies 

of Fig. 3.9, the uniform resolution penalty yielded qualitatively improved conspicuity of the ICH 

lesion near the skull base (𝑑𝑑′ improved by 16.7%) but slightly reduced conspicuity near the cranium 

(𝑑𝑑′  reduced by 2.9%). Finally, as shown in Fig. 3.10(e,f), the task-based design improved 

conspicuity of the lesion (in particular, identification of the lesion edge) both near the skull base 

and periphery. 

 

Figure 3.10: PWLS reconstructions of a head phantom containing a simulated ICH of 12 mm 
diameter and 50 HU contrast in regions near the cranium (a, c, e) and skull base (b, d, f). (a,b) 
Conventional penalty (β=105.6). (c,d) Uniform resolution penalty. (e,f) Task-based penalty. 
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3.4 Conclusions and discussion 

A regularization approach for MBIR was formulated that explicitly incorporates task-based 

imaging performance as the objective function, yielding a spatially varying penalty that maximizes 

task-based detectability index (𝑑𝑑′) at every location in the image. Theoretical predictions of local 

spatial resolution and noise were shown to agree with measurements in a realistic head phantom. 

The prediction framework for local MTF and NPS was leveraged to compute local detectability 

and adjust regularization strength (β) throughout the image to maximize local detectability. The 

method was applied to imaging of small, low-contrast ICH lesions in CBCT of the head. 

Simulations and test-bench experiments showed that a conventional (constant) penalty 

exhibits a fairly strong degree of variation in 𝑑𝑑′ throughout the interior of the cranial vault, and 

while a certainty-based penalty achieved uniform PSF throughout the image, each exhibited a 

reduction in 𝑑𝑑′ compared to the proposed task-based penalty (up to ~15% for certain tasks and 

locations). The improvement for the task-based penalty was strongest in areas of high attenuation 

(near the skull base) where the other two methods tended to over-smooth the data. The proposed 

method presents a promising means to improve task-based imaging performance in MBIR and 

could support the development of point-of-care CBCT systems for high-quality imaging of acute 

ICH in brain injury. 

The design of regularization techniques in MBIR to improve task-based imaging 

performance represents an active area of research in recent years. Qi193 derived fast computation of 

task-based detectability for lesion detection in PET, which was used in subsequent studies to 

improve lesion detectability compared to a conventional quadratic penalty at a known location in 

2D194 and at all possible locations in 3D.135 Yendiki et al.195,196 studied the degree of improvement 

in lesion detectability using regularization design for both location-known and location-unknown 

tasks and a number of commonly used observer models. Gang et al.136 studied nonuniform spatial 
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resolution and noise characteristics in PL reconstruction and designed spatially varying penalties 

for a number of detection tasks in axial CT. The work in this chapter extended task-based 

regularization design to CBCT and investigated the detection of ICH lesions in CBCT of the head. 

The current work is not without assumptions and limitations. First, the calculation of the 

Fourier metrics (i.e., MTF and NPS) assume that the system is linear and shift-invariant (LSI) and 

the noise is wide-sense stationary within a small neighborhood. The extent to which the “local” LSI 

assumption holds depends on a number of factors, including the degree of heterogeneity within the 

neighborhood and the size of the neighborhood. This work investigates a scenario in which the 

tissue in the region of interest (namely, the brain) is fairly uniform, so the “locality” assumption 

tends to hold well, as supported by the reasonable agreement observed between the prediction and 

measurement in Sec. 3.3.1. However, the extent to which this assumption holds deserves further 

investigation in other scenarios, for example, at the interface of bone and soft tissue and in the 

presence of highly attenuating objects (e.g., shunt, coil, or other surgical tools). 

Furthermore, the current work employed a particular type of observer model (i.e., NPW), 

and other observer models may certainly be considered. The NPW observer model assumes the 

observer cannot decorrelate noise in the image and does not include various “anthropomorphic” 

characteristics of the observer, such as a bandpass eye filter or internal noise. This model has 

demonstrated good agreement with human observer performance for simple tasks in tomosynthesis 

and CBCT.64 The prewhitening (PW) observer model, on the other hand, assumes that the observer 

can decorrelate noise, and previous work136 showed that detectability based on the PW observer 

model exhibited weak dependence on the regularization parameter. In addition, the channelized 

Hotelling observer (CHO)197 is another commonly used observer model that has demonstrated good 

correlation with human performance.198 Human observer studies in future work will help guide the 

selection of observer model and appropriateness of simplifying assumptions. 

Moreover, the current work employs a prediction framework for local MTF and NPS that 

is appropriate to a quadratic penalty function. Alternative penalties (e.g., Huber penalty or total-
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variation penalty) can provide desirable edge preservation characteristics, but require a modified 

performance prediction framework that is beyond the scope of the current work. 

To support translation to practical use, the proposed regularization design needs to be 

completed within a time period consistent with clinical requirements, since it adds to the already 

computationally intense MBIR process. The acceleration methods proposed in this chapter reduced 

the required number of predictions (of PSF and covariance) to as few as the number of subgrids 

(e.g., 23). In the current work, each prediction required ~9 hours to reach a converged solution 

(Matlab and CUDA calls executed on a workstation equipped with one GeForce GTX TITAN 

graphics card (Nvidia, Santa Clara CA)). A large reduction in computation time can be potentially 

achieved by replacing current linear CG algorithm with Fourier approximations.199 

Statistical reconstruction that explicitly incorporates a formulation of the imaging task and 

optimizes the regularization approach with respect to that task presents a promising approach for 

“task-based image reconstruction”. One advantage of this approach involves the extraction of 

information from the projection data itself (rather than from the image reconstruction) to maximize 

imaging performance, as opposed to adjusting regularization generally (often somewhat 

heuristically) to encourage smoothness / sharpness in the image. Another advantage is that the 

approach is essentially a software-based approach (as opposed to hardware-based approaches, such 

as fluence modulation) so it allows one to optimize regularization (post-acquisition) for as many 

tasks as desired. As discussed in Sec. 3.3.3, separate “smooth” and “sharp” images can be 

reconstructed (optimal to WLow and WHigh, respectively) in support of accomplishing multiple tasks, 

or a nominal medium (WMid) could be selected to minimize the tradeoff in all tasks considered. 

The current work focuses on regularization design for detection of low-contrast ICH 

lesions in CBCT of the head. A natural extension of this work involves regularization design for 

other tasks, such as detection of high-contrast bone fractures. Moreover, the design framework can 

potentially be extended to consider more than one task in a single image reconstruction, for 

example, designing a penalty in the interior of the cranial vault for detection of acute ICH 
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(according to a task function "WICH") and a separate penalty in the skull for improved detection of 

bone fracture (according to a different task function, "WFracture") - within the same image. The task-

based image reconstruction approach could also be applied to other anatomical sites and/or imaging 

techniques, such as detection of low-contrast structures in CBCT-guided interventions or the 

detection of suspicious nodules in low-dose CT screening of the lungs. Moreover, this work focuses 

on the optimization of the regularization parameter (βj), and further improvement may be gained 

by optimizing the directional weights and/or penalty function. Such scenarios are subjects of future 

work for which task-based image reconstruction could present a promising means to improve image 

quality in MBIR. 
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Chapter 4 

4. Multi-Resolution Reconstruction to Mitigate Image 

Truncation Effects 

4.1 Introduction 

4.1.1 Motivation 

As detailed in Chapters 2-3, novel reconstruction methods demonstrate strong promise for 

improved image quality in CBCT, supporting translation of the technology to applications beyond 

conventional limitations in contrast, noise, and radiation dose. A common practical challenge that 

can confound imaging performance is lateral truncation of the projection data by anatomy and/or 

patient support mechanisms outside the FOV of the detector. Such effects are common in clinical 

application. For example, in CBCT of adult body sites, such as image-guided interventions 

targeting the thorax, abdomen, or pelvis, the patient anatomy and/or operating table almost always 

exceeds the FOV. Such effects present a challenge for conventional FBP200–203 and are particularly 

problematic for MBIR, because MBIR attempts to solve for an image estimate that best matches 

all of the measurements and is therefore particularly sensitive to data truncation.  

For the specific application of head imaging treated in Chapters 2-3, a head holder is 

typically used to support the head and minimize motion during the scan – typically a U-shaped 

carbon-fiber support as illustrated in Fig. 4.1(a). Such a head support can be partially truncated in 

the projection data (even for the fairly large – 43 × 43 cm2 – detector employed on the prototype 

scanner204), and the amount of truncation varies depending on the separation (e.g., a pillow) 
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between the head and the support. In this respect, the head holder is truncated in the axial plane. In 

the z direction, the head holder may or may not be longitudinally truncated at its superior extent 

(top of the head), though it is certainly truncated at the inferior extent (below the neck); such 

longitudinal truncation is not studied in this chapter. Axial truncation introduces artifacts in the 

reconstructed image as shown in Fig. 4.1, giving rise to nonuniformity that could hinder ICH 

detection.  

 

Figure 4.1: Artifacts caused by lateral truncation of the head support in CBCT of the head. (a) CAD 
drawing of a patient with head supported by a carbon-fiber head holder during a CBCT scan. (b) 
PWLS image of an anthropomorphic head phantom without a head holder. The circular inserts 
within the central region of the cranium span a range of contrast including that of ICH. (c) PWLS 
image of the same, with a U-shaped carbon-fiber head holder in place during the scan (evident 
beneath the posterior of the head). (d) Illustration of RFOV and SFOV for circular orbit CBCT. 

 

A variety of strategies to mitigate truncation effects have been investigated. For example, 

lateral extrapolation of the projection data prior to MBIR has been proposed, including symmetric 

mirroring,200 approximation as a scalable water cylinder,201 elliptical fitting,202 and using scout 

images to constrain anatomical boundaries.203 These methods have demonstrated reduction of 

truncation effects to varying degrees but usually assume the main source of truncation is the patient, 

and the missing projection data are treated as a continuous extension of the projection of the patient 

at the edge of the detector. These assumptions may not hold well when the truncation is primarily 

due to patient support – e.g., the head holder as in Fig. 4.1.  

The axial scan FOV (denoted SFOV) is distinguished from the axial reconstruction FOV 

(denoted RFOV) as illustrated in Fig. 4.1(d). The SFOV is the region of support within which data 
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are fully sampled and a complete reconstruction can be obtained. The diameter of the SFOV is 

defined as the lateral extent of the detector (Lu) divided by the geometric magnification (Mag) for 

a circular isocentric orbit as typical in CBCT. The RFOV is a region that includes the SFOV and 

may be defined with arbitrary extent in the image reconstruction process. Sampling of structures 

outside the SFOV is incomplete and yields a “tomosynthesis-like” reconstruction in the RFOV. 

Alternative to the truncation correction methods mentioned above, truncation effects can 

be mitigated by increasing the RFOV beyond the SFOV, thereby reducing bias within the SFOV. 

One advantage of this method is that it does not require additional processing of the projection data 

(e.g., extrapolation). However, simply increasing the RFOV increases the computational cost of 

MBIR. In cases where the truncated object is relatively far from the patient (e.g., an obese patient, 

a wide operating table, or a thick pillow inserted between the patient and the head holder), a RFOV 

much larger than the SFOV may be needed to mitigate truncation effects, posing a significant 

burden to computation time and memory. 

A multi-resolution reconstruction approach is proposed in this chapter to mitigate 

truncation effects, which extends the RFOV without major increase in computational burden. 

Specifically, an image volume is defined to contain two regions: 1) a fine interior region containing 

the region of interest (i.e., the head) with voxel size appropriate to the diagnostic task; and 2) a 

coarse outer region that can be extended as much as needed to mitigate truncation, with coarser 

voxel size to reduce computational load. Multi-resolution MBIR has been studied previously in a 

2D digital phantom by Hamelin et al.205 and applied to ROI reconstruction of high-resolution bone 

morphology by Cao et al.206 In this chapter, the multi-resolution approach is incorporated into the 

PWLS framework developed for high-quality CBCT of the head in Chapter 2. Accordingly, a 

previously reported scatter correction method149 was also modified to account for the presence of 

the head holder. The method was evaluated in CBCT scans of an anthropomorphic head phantom 

with varying degrees of realistic data truncation by a carbon-fiber head support. The method is also 
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compatible with the task-based reconstruction framework described by Chapter 3 and is important 

to the translation of the head scanner prototype to clinical studies. 
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collaboration with Carestream Health (Rochester NY) and by the National Institute of Health Grant 
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4.2 Methods 

4.2.1 Multi-resolution PWLS for high-quality head imaging 

Conventional PWLS methods139 usually model an image volume μ as a 3D region containing voxels 

with a fixed voxel size. In this chapter, an image volume μ is modeled as a combination of an inner 

3D rectangular region with a fine voxel size (referred to as the “fine region” or 𝜇𝜇𝐹𝐹) and an outer 

3D rectangular shell with a coarser voxel size (referred to as the “coarse region” or 𝜇𝜇𝐶𝐶). Figure 4.2 

illustrates the two regions in the multi-resolution method in imaging of the head. The fine region is 

defined to cover the SFOV of the CBCT system, while the coarse region is defined to cover objects 

that are outside the SFOV and subject to truncation. The combination of both regions defines the 

RFOV. For CBCT of the head, the anatomy is entirely within the SFOV (i.e., the fine region), while 

the head holder spans the fine and/or coarse regions of the RFOV. The resulting boundary between 

the fine and coarse regions is outside the cranium (in air, presumably not of diagnostic interest), so 

downsampling / upsampling voxels in the other region is not considered when calculating 

neighboring voxel differences in the subsequent image reconstruction. In the current work, an 

implementation specifically with two voxel sizes (coarse and fine) is investigated, but the term 

“multi-resolution” (c.f., “dual resolution”) is used for consistency with previous work207,208 and for 

generality in anticipation of future work in which voxel size is more continuously varied from a 

fine value in the SFOV to progressively coarser values outside the SFOV. 
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Figure 4.2: Illustration of fine and coarse regions in multi-resolution reconstruction (only x-y plane 
shown here). The dashed circle denotes the SFOV. The fine region (𝜇𝜇𝐹𝐹) is a 3D rectangle that 
contains the head, and the coarse region (𝜇𝜇𝐶𝐶) is the space outside the fine region that contains the 
head holder (depicted as a black, U-shaped arc posterior to the head). The volume encompassing 
both the fine and coarse regions is the RFOV. 

 

Following Cao et al.,206 one can write the forward model for multi-resolution PWLS 

reconstruction as follows, assuming independent measurements: 
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where the mean measurements are modeled by 𝑦𝑦�  (a Ny × 1 vector), g is a Ny × 1 vector of 

measurement-dependent gains, and 𝐃𝐃(∙) is an operator that places a vector on the main diagonal of 

a matrix. The notation 𝐀𝐀� denotes a system matrix representing the linear projection operation (and 

𝐀𝐀�T denotes the matched backprojection operation), which consists a Ny × 𝑁𝑁𝜇𝜇𝐹𝐹 system matrix AF for 

the fine region 𝜇𝜇𝐹𝐹 and a Ny × 𝑁𝑁𝜇𝜇𝐶𝐶  system matrix AC for the coarse region 𝜇𝜇𝐶𝐶. The resulting line 

integral estimate 𝐀𝐀�𝜇𝜇 is thus a sum of the line integral estimate from the fine region (i.e., 𝐀𝐀𝐹𝐹𝜇𝜇𝐹𝐹) and 

that from the coarse region (i.e., 𝐀𝐀𝐶𝐶𝜇𝜇𝐶𝐶). 

The objective function for multi-resolution PWLS reconstruction can be written: 
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where l denotes a vector of line integrals, and W is a diagonal weighting matrix with the ith diagonal 

element Wi representing the fidelity of the ith measurement. The terms RF (RC) and βF (βC) are the 

regularization term and regularization parameter for the fine region (the coarse region).  

The two regularization terms enforce image smoothness in the fine and coarse regions 

respectively, which can be defined as: 

( ) [ ]( )1
2

F

F F F k
k K

R Hµ µ
∈

= ∑ Ψ                                                (4.3) 

( ) [ ]( )1
2

C

C C C k
k K

R Hµ µ
∈

= ∑ Ψ                                                (4.4) 

where KF (KC) denotes the number of neighboring voxels in the fine region (coarse region), ΨF 

(ΨC) is an operator that computes first-order neighborhood differences in the fine region (coarse 

region), and 𝐻𝐻(∙) is Huber penalty function131 which is quadratic within a neighborhood of [-δ, δ] 

and linear for larger differences as in the work by Wang et al.93 Separate regularization terms for 

the fine and coarse regions allow independent control of the regularization strength. Calculation of 

neighborhood differences for voxels near the boundary between fine and coarse regions 

downsamples (or upsamples) neighboring voxels in the other region. This downsampling / 

upsampling operation is especially important when the boundary contains anatomy of interest (e.g., 

bone morphology in the work by Cao et al.206); however, in the scenario considered here, the 

boundary is outside the cranium (in air), so downsampling / upsampling at the boundary was not 

considered in the current work. 

In the data fidelity term of the multi-resolution PWLS objective, the line integrals in l are 

typically derived from raw measurements y through a number of steps. Such steps include a log 

transformation to convert from the measurement domain to the line integral domain, and in many 

situations, also include correction for artifacts and/or processing to reduce noise in the 

measurements.159 Such steps can potentially lead to changes in the noise characteristics of the 
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measurements, which need to be accommodated into the PWLS weighting terms. The work in 

Chapter 2 has modeled the processing of the measured data as a generic function f as: 

( )i il f y=                                                               (4.5) 

and derived the variance following data processing using first-order Taylor expansion of f: 

( ) ( ) ( )
2

var vari i il f y y ≈  
                                                (4.6) 

where 𝑓𝑓̇ denotes the derivative. In CBCT of the head, scatter and beam hardening corrections 

represent the dominant corrections in the artifact correction framework corrections.149 The 

function f in this case thereby corresponds to scatter correction in the measurement domain, 

followed by log transformation, and then beam hardening correction in the line integral domain. 

The variance following this particular function f using Eq. (4.6) implies modification of the 

statistical weights as in Chapter 2: 
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The term yi corresponds to the weights used in conventional PWLS methods that model data 

processing simply as a log transformation.139 The term ((𝑦𝑦𝑖𝑖 − 𝑆𝑆𝑖̅𝑖) 𝑦𝑦𝑖𝑖⁄ )2 corresponds to the variance 

changes following scatter correction, where 𝑆𝑆𝑖̅𝑖 denotes the mean scatter for the ith measurement. 

For the Joseph-Spital beam-hardening correction method,157 the terms 1 𝜂𝜂𝑤𝑤(𝑦𝑦𝑖𝑖 − 𝑆𝑆𝑖̅𝑖)⁄  and 

1 𝜂𝜂𝑏𝑏(𝑦𝑦𝑖𝑖 − 𝑆𝑆𝑖̅𝑖)⁄  correspond to the variance changes following water correction and bone correction, 

respectively, defined in Eq. (2.16b) in Chapter 2. The statistical weights in Eq. (4.7) were used in 

all PWLS reconstructions in this chapter. 

 

 

 

 

Table 4.1: Pseudocode for solving the multi-resolution PWLS reconstruction using OS-SQS. 
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            end 
      end 
end 

 
 

4.2.2 Optimization approach for multi-resolution PWLS 

The multi-resolution PWLS objective in Eq. (4.2) was solved using the OS-SQS algorithm.163 The 

OS-SQS algorithm facilitates fast convergence not only via ordered subsets (nominally 10 subsets 

from 360 projection data; see below) but also via parallelizable image updates allowing parallel 

implementation on GPU. The work in Chapter 2 adapted OS-SQS to the single-resolution PWLS 

objective with modified statistical weights. For the multi-resolution case, for every subset of 

projections in every iteration, the image update was computed and applied to the fine and coarse 
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regions separately. Moreover, since the optimal curvature ci of the data fidelity term is constant in 

PWLS objective, the term d in the image update can be precomputed (𝑑𝑑𝐹𝐹𝑗𝑗 and 𝑑𝑑𝐶𝐶𝑗𝑗 for the fine and 

coarse regions, respectively). 

Table 4.1 shows pseudocode for the OS-SQS solution of the multi-resolution PWLS 

objective. The pseudocode is similar to that in the work by Cao et al.,208 updated with respect to 

notation and detector pixel model. The notation [∙]+ denotes the nonnegativity constraint, γi is the 

ith projection of an image of all ones, 𝑎𝑎𝐹𝐹𝑖𝑖𝑖𝑖 and 𝑎𝑎𝐶𝐶𝑖𝑖𝑖𝑖 are the (i, j)th element of the matrix AF and AC 

respectively, niter is the maximum number of iterations, M is the number of subsets, 𝑙𝑙𝑖𝑖 is the sum of 

the projection of the current image estimate 𝜇̂𝜇𝐹𝐹 and 𝜇̂𝜇𝐶𝐶, and Sm denotes all the projections in the mth 

subset. In the regularization part, taking the fine region as an example, KF is the number of 

neighboring voxels in the fine region, and 𝐻̇𝐻 and 𝜔𝜔 are the gradients and curvatures of the Huber 

penalty function 𝐻𝐻, respectively. While the pseudocode in the work by Cao et al.208 used a small 

detector pixel size for the projection of a high-resolution region-of-interest and a large detector 

pixel size for the rest of the projection data, the pseudocode here used a single detector pixel size. 

4.2.3 Experimental studies 

The method was tested in phantom experiments performed on the CBCT test-bench shown in Fig. 

4.3(a). The bench includes an x-ray source (RAD13, Dunlee, Aurora IL) and flat-panel detector 

(PaxScan 4343R, Varian, Palo Alto CA) in geometry equivalent to that of the prototype head 

scanner183: 550 mm SAD and 1000 mm SDD. Scans were acquired at 90 kVp, 0.8 mAs per 

projection, with 360 projections (1° angular steps), and a 0.556 × 0.556 mm2 pixel size (after 2 × 2 

binning). The radiation dose was measured using a Farmer chamber in an extended length CTDI 

phantom of 16 mm diameter, weighting the central (Do) and mean peripheral (Dp) dose according 

to Dw = (1/3)Do + (2/3)Dp. The dose measured with no head holder in place was 26.8 mGy. Adding 
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the carbon-fiber head holder reduced the dose slightly to 25.8 mGy, which was independent of 

Locations 1, 2, 3 (Fig. 4.3b) within 1%. This dose is comparable to that for scan protocols used in 

clinical studies using the prototype head scanner, 22.8 mGy.204 The anthropomorphic phantom and 

head holder emulated a typical clinical setup in which the head was fully covered by the (23.7 × 

23.7 × 23.7 cm3) SFOV, but the head holder was truncated to varying extent. The head phantom 

(The Phantom Laboratory, Greenwich NY) included a natural skull and tissue-equivalent plastic 

(RandoTM). The head holder (Siemens AG, Forchheim, Germany) was a carbon fiber (~150 HU) 

unit identical to that used on routine head CT exams. The phantom was scanned with the head 

holder placed at three locations as illustrated in Fig. 4.3, increasing in anterior-posterior distance 

from the head in increments of 2.54 cm in a manner that emulated a broad range of clinically 

realistic setup (e.g., varying amount of padding beneath the head). A scan was also acquired without 

the head holder to provide a truncation-free dataset. 

 

Figure 4.3: Experimental setup. (a) Photograph of the CBCT test-bench, head phantom, and head 
holder. (b) Illustration of three locations at which the head holder was positioned during the 
experiments. (c-e) Axial images superimposed with a representation of the head holder at each 
location. (f) Axial image illustrating structures and ROI used for image quality assessment. The 
central circular insert was used to compute spatial resolution (edge spread function) and contrast, 
and the nearby rectangular ROI was used to compute noise. 
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All projection data were first offset-corrected and gain-normalized by mean dark and flood 

field calibrations. Scatter correction involved a fast Monte Carlo method integrated with beam 

hardening correction using the Joseph and Spital approach. Previous work149 validated the scatter 

and beam hardening correction without a head holder. A head holder model was added to the Monte 

Carlo scatter simulation to estimate the scatter from the head holder in addition to the scatter from 

the head. The head holder model (3D map of attenuation coefficient) was obtained from a separate 

CT scan of the head holder using a diagnostic CT scanner (SOMATOM Definition, Siemens 

Healthineers, Erlangen, Germany) with a SFOV sufficient to cover the entire head holder (i.e., 

without truncation). This separate scan yielded an accurate attenuation map of the head holder. In 

the Monte Carlo scatter simulation, the head holder was added to the system geometry based on its 

position as evident in the projection data. In the current work, the position of the head holder model 

was manually adjusted for each scan, but was subsequently automated by detecting the long edges 

of the holder in the scan data and computing a rigid 3D-2D registration. 

Projection data were reconstructed using both conventional single-resolution PWLS and 

the proposed multi-resolution PWLS method. Both methods used matched separable footprint 

projectors and backprojectors98 and 10 ordered subsets. A total of 50 iterations was found sufficient 

for convergence for both PWLS methods. The voxel size for single-resolution PWLS was 0.5 × 0.5 

× 0.5 mm3. For multi-resolution PWLS, the voxel size for the fine region was also 0.5 × 0.5 × 0.5 

mm3, and the voxel size for the coarse region was varied as described in the next section. A RFOV 

of 400 × 480 × 480 voxels (at isotropic 0.5 mm voxel size) was sufficient to cover the SFOV and 

was defined as the basic RFOV. For multi-resolution PWLS, the fine region was set to the basic 

RFOV, and the coarse region was varied as described in the next section (equivalent to varying the 

relative ratio of areas between the fine and coarse regions). This study investigates how extension 

of the coarse region of reconstruction outside the head (and the head holder) allows more accurate 

reconstruction of attenuation coefficient within the SFOV, essentially distributing bias from axial 
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truncation outside regions of interest. In the current work, the boundary between the fine and coarse 

regions is a fixed value determined by the system geometry (simply equal to the SFOV) and is not 

a parameter that needs to be manually defined. The water attenuation coefficient was 0.0216 mm-

1, and the Huber parameter δ was set to 10-4 mm-1, which enforced a degree of edge-preservation 

for features such as ICH and ventricles without causing an overly patchy appearance to the images, 

as shown in Chapter 2. 

4.2.4 Multi-resolution PWLS: parameter selection 

Key parameters affecting the performance of multi-resolution PWLS were investigated, including 

regularization strength in the fine and coarse regions (𝛽𝛽𝐹𝐹 and 𝛽𝛽𝐶𝐶), the voxel size in fine and coarse 

regions (related by the downsampling factor), and the size of the RFOV. For example, previous 

work206 in extremity orthopaedic imaging showed that using a coarse region voxel size four times 

larger than the fine region voxel size yielded accurate ROI reconstruction. 

(1) Regularization parameter. The parameter 𝛽𝛽𝐹𝐹 controls the noise-resolution tradeoff in 

the fine region in a similar manner to β in single-resolution PWLS.93 The parameter 𝛽𝛽𝐶𝐶, however, 

affects the fine region indirectly, and its effect on image quality was investigated as a function of 

downsampling factor, RFOV, and location of the head holder.  

(2) Downsampling factor (DS). The ratio of the voxel size in the coarse region to that in 

the fine region defined the DS, which is expected to control the amount of speedup in multi-

resolution PWLS. In the studies presented below, multi-resolution PWLS reconstructions were 

performed with the fine voxel size fixed at 0.5 mm, and DS was varied from 1 to 40. 

(3) Reconstruction field-of-view. Extending the RFOV is expected to reduce truncation 

effects but increase reconstruction time. In the work reported below, multi-resolution PWLS 

images were reconstructed for RFOV ranging from the basic SFOV to a much larger RFOV, and 

the impact on image quality and reconstruction time were evaluated. 
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4.2.5 Imaging performance and computational complexity 

The accuracy of image reconstruction was defined as the root mean square difference (RMSD) 

from a “truth” image, restricted to a region of the image within the cranium (i.e., in the brain). The 

“truth” image was defined as a single-resolution PWLS image reconstructed from the “no-holder” 

dataset (i.e., free of truncation effects). Spatial resolution was also assessed as in the work by Wang 

et al.93 in terms of the width ε (mm) of the ESF of a low-contrast sphere within the brain [see Fig. 

4.3(f)]. Contrast and CNR were evaluated with respect to a 50 HU sphere and nearby uniform ROI 

[see Fig. 4.3(f)]. 

The computational complexity of both single-resolution and multi-resolution PWLS 

methods are primarily determined by the total number of projection operations (including forward 

projection and backprojection). For single-resolution PWLS, one iteration of OS-SQS algorithm as 

shown in Table 2.1 in Chapter 2 requires two projection operations (one forward projection and 

one backprojection) for the entire RFOV, which can be written as: 

( )2single RFOVT T M= ⋅                                                       (4.8) 

where 𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 denotes the time for one projection operation (for one forward projection and one 

backprojection) for the entire RFOV, and M is the number of subsets. For multi-resolution PWLS, 

one iteration of the OS-SQS algorithm requires two projection operations for both the fine and 

coarse regions, giving: 

( )2 2multi F CT T T M= + ⋅                                                    (4.9) 

where 𝑇𝑇𝐹𝐹  and 𝑇𝑇𝐶𝐶  denote the time for one projection operation for the fine and coarse region, 

respectively. Assuming the same RFOV, multi-resolution PWLS is expected to require less 

computation time than single-resolution PWLS, since projection operations at the fine voxel size 

are performed only for the fine region (2TF) for multi-resolution PWLS, but are performed for the 

entire RFOV (2TRFOV) for single-resolution PWLS. Although multi-resolution PWLS requires two 
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additional projection operations for the coarse region, the time associated with these two operations 

(2TC) is expected to be small. 

Both PWLS methods were implemented in Matlab (The Mathworks, Natick MA), with 

projection operations executed on GPU using CUDA-based libraries. All image reconstructions 

were performed on a workstation equipped with a GeForce GTX TITAN (Nvidia, Santa Clara CA) 

graphics card. 

4.3 Results 

4.3.1 Scatter correction with a head holder model 

The previously developed Monte Carlo scatter correction method was modified to include a model 

of the head holder, with results summarized in Fig. 4.4. The head holder was truncated in the three 

scans at Location 1 to 3 in Fig. 4.4. The study here focuses on the evaluation of scatter artifacts 

(not truncation artifacts), so the results show FBP reconstructions for simplicity, which appear to 

be somewhat less sensitive to truncation than PWLS reconstructions. As shown in Fig. 4.4(a-c), 

ignoring the head holder in the scatter correction model resulted in residual artifacts – evident 

primarily as shading, streaks, and overall underestimation in HU as shown in Fig. 4.4(d-f). In 

comparison, the results in Fig. 4.4(g-i) show that including the head holder model in scatter 

correction yielded images with improved uniformity for all three locations of the head holder. The 

“truth” image (FBP image with the head holder removed during the scan) is shown in Fig. 4.4(m). 

Including the head holder in the scatter correction method reduced the RMSD from the “truth” 

image from 15.1 × 10-4 mm-1 to 10.2 × 10-4 mm-1 at location 1, 13.5 × 10-4 mm-1 to 9.4 × 10-4 mm-1 

at location 2, and 11.7 × 10-4 mm-1 to 9.1 × 10-4 mm-1 at location 3. In subsequent results reported 

below, the head holder model was always included in the scatter correction. 
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Figure 4.4: Scatter correction (a-f) without and (g-l) with the head holder included in the Monte 
Carlo model. (a-c) FBP reconstructions without a head holder model exhibit shading and streaks in 
the (d-f) difference images from (m) “truth”. Including the head holder in scatter correction reduces 
such residual errors as shown in (g-i) and difference images (j-l). 
 

4.3.2 Single-resolution PWLS  

The influence of truncation on the image quality of single-resolution PWLS reconstructions was 

first investigated. First, the nominal β value suitable for CBCT of the head was selected using the 

“no-holder” dataset. Figure 4.5(a) plots the ESF width and CNR measured as a function of β, 

showing a steep increase in CNR for β > 102, owing to the Huber penalty as shown in previous 

work.93 A nominal value of β = 102.4 was selected as balancing noise reduction and edge 

preservation without overly patchy image appearance, giving CNR = 25.4 and ESF width = 0.77 
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mm for the ROIs shown in Fig. 4.3. The resulting image [Fig. 4.5(b)] was taken as “reference” / 

“truth” in subsequent results.  

 

Figure 4.5: Nominal parameter selection for single-resolution PWLS. (a) ESF and CNR as a 
function of the regularization strength β (in the absence of truncation). (b) Axial slice of a single-
resolution PWLS image using β = 102.4, exhibiting a reasonable balance between ESF and CNR 
and taken as the “truth” image for subsequent PWLS reconstructions. 

 

Next, single-resolution PWLS reconstructions were computed with the head holder at three 

locations as shown in Fig. 4.6. Severe artifacts – including both positive and negative bias – are 

evident throughout the head, attributable to truncation by the head holder (not to x-ray scatter, 

which was corrected with the head holder model as summarized in the previous section and Fig. 

4.4). The magnitude of truncation artifacts is seen to depend on the position of the head holder with 

respect to the head – i.e., somewhat stronger artifacts for location 1, and reduced for location 3. 

These artifacts appear to be associated with the truncated anterior edges of the head holder, giving 

rise to shading and streaks in the anterior part of the head as shown in the difference image of Fig. 

4.6. The streaks are strongest for location 1 (where the edges are closest to the head) and reduced 

as the head holder was positioned toward the posterior of the head (location 3). Because the streaks 

appear to arise from the edges of the holder, they are most severe for location 1, even though 

location 3 involves a greater bulk of material attenuation farther from the SFOV. The RMSD from 

“truth” was 11.0 × 10-4 mm-1 at location 1, 10.2 × 10-4 mm-1 at location 2, and 8.2 × 10-4 mm-1 at 

location 3. 

(a)

 

(b) 200
HU

-3001.5 2 2.5 3

Regularization Strength  (log)

0

0.5

1

1.5

2

2.5

ES
F 

W
id

th
 (m

m
)

0

10

20

30

40

50

60

C
N

R



116 

 

 

Figure 4.6: (a-c) Single-resolution PWLS with a carbon-fiber head holder positioned at three 
locations posterior to the head. RFOV is (400 × 480 × 480 voxels). (d-f) Difference images between 
(a-c) and the “truth” image of Fig. 4.5(b). 
 

4.3.3 Multi-resolution PWLS 

The sections below report a systematic evaluation of the performance of multi-resolution PWLS in 

the presence of truncation. First, a very large RFOV was chosen (1000 × 1000 × 1000 voxels, with 

0.5 mm isotropic voxel size), and the effects of regularization parameter βC (Sec. 4.3.3.1) and 

downsampling factor DS (Sec. 4.3.3.2) were studied. Based on that analysis, nominal values of βC 

and DS were selected, and the dependence of image quality on RFOV (Sec. 4.3.3.3) was 

investigated. 

4.3.3.1 Regularization parameters 

Figure 4.7 plots the RMSD of multi-resolution PWLS as a function of 𝛽𝛽𝐶𝐶 and DS for the three 

locations of the head holder. The value of 𝛽𝛽𝐹𝐹 was fixed at 102.4 for each case. The reconstruction 

accuracy exhibited low dependence on 𝛽𝛽𝐶𝐶 as long as 𝛽𝛽𝐶𝐶 was below an upper limit in regularization 
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strength, but quickly reduced when 𝛽𝛽𝐶𝐶 exceeded this limit. This was observed for all locations of 

the head holder and all DS levels. The rapid degradation in reconstruction accuracy beyond a 

regularization limit was also observed in previous work.206 Note that for any level of DS, the 

regularization limit was the same for different locations of the head holder, suggesting that in 

practice the exact location of the head holder does not affect selection of 𝛽𝛽𝐶𝐶. 

 

Figure 4.7: Accuracy of multi-resolution PWLS reconstructions as a function of coarse region 
regularization strength 𝛽𝛽𝐶𝐶 and downsampling factor (DS) at three locations. 

 

Figure 4.8 shows the fine (a-c) and coarse (d-f) regions of the multi-resolution PWLS 

images for three values of 𝛽𝛽𝐶𝐶. In each figure (a-c), the left half is the PWLS image, and the right 

half is the difference from “truth”. For the cases in Fig. 4.8, the head holder was at location 2, and 

the DS was set to 4. As evident in Fig. 4.8(a) and 4.8(b), PWLS exhibited fairly accurate 

reconstruction for a broad range of 𝛽𝛽𝐶𝐶  below or near the regularization limit (~106.4), but 

performance degraded markedly for 𝛽𝛽𝐶𝐶  above the limit (Fig. 4.8(c)). Figures 4.8(d-f) show the 

amount of smoothing in the coarse region (outside cyan box) for the three 𝛽𝛽𝐶𝐶 values. It can be seen 

that the use of 𝛽𝛽𝐶𝐶 beyond the regularization limit resulted in over-smoothing and low intensity error 

throughout the air region, which was a possible cause of the reduced accuracy in the fine region. 
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Figure 4.8: Multi-resolution PWLS reconstruction for various choices of coarse region 
regularization strength, 𝛽𝛽𝐶𝐶. Images (a-c) show the fine region, with the left half showing the PWLS 
image (grayscale window: [-300, 200] HU) and the right half showing the difference from truth 
(grayscale window: [-1100 -700] HU). Images (d-f) show the coarse region (outside cyan box). The 
head holder was at location 2, the DS was 4, and the RFOV was 10003 voxels with 0.5 mm isotropic 
voxel size. 
 

4.3.3.2 Downsampling factor 

Figure 4.9 shows that the reconstruction accuracy was robust as DS was increased from 4 to 20, 

beyond which moderate degradation (e.g., at DS = 40) was observed. In the cases shown, the head 

holder was at location 3, and the 𝛽𝛽𝐶𝐶 value was selected to achieve the lowest RMSD for each DS 

(fairly insensitive to selection as shown in Fig. 4.7). A small increase in streak artifacts is evident 

with increasing DS. Figures 4.9(e-h) show the coarse regions for various DS levels. Taking DS = 

40 as an example, the coarse region involves a very large voxel size (20 × 20 × 20 mm3), which led 

to coarse reconstruction of the head holder and likely led to the streaks observed in the fine region. 

Despite the small reduction in accuracy as DS increased, the reconstruction accuracy at all four DS 

levels was still much better than the single-resolution PWLS image (Fig. 4.6). 
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Figure 4.9: Multi-resolution PWLS reconstruction for various choices of coarse region voxel size, 
characterized by DS. Images (a-c) show the fine region, with the left / right presentation of the 
PWLS (grayscale window: [-300, 200] HU) and difference image (grayscale window: [-1100 -700] 
HU) as in Figure 4.8. The head holder was at location 3, the RFOV was 10003 voxels (with fine 
region voxel size = 0.5 mm isotropic), and 𝛽𝛽𝐶𝐶 was chosen to minimize RMSD for each DS. 
 

4.3.3.3 Reconstruction field-of-view 

The RFOV of multi-resolution PWLS was varied as summarized in Fig. 4.10, which effectively 

varies the size of the coarse region while keeping the size of the fine region equal to the basic 

RFOV. Specifically, the RFOV was varied from (400 × 480 × 480 voxels) to ~10 times as large 

(10003 voxels). In the cases shown in Fig. 4.10, the head holder was at location 2, the DS was 4, 

and 𝛽𝛽𝐶𝐶 was selected to minimize RMSD for each RFOV. The noise-resolution tradeoff in the fine 

region was found to exhibit small changes for varying the RFOV (which was not observed when 

varying 𝛽𝛽𝐶𝐶 and DS), so the 𝛽𝛽𝐹𝐹 value was selected to give the same noise-resolution performance 

for each RFOV. Images reconstructed using any of the three RFOV in Fig. 4.10 exhibited similarly 

high reconstruction accuracy compared to the basic RFOV (single-resolution PWLS) shown in Fig. 

4.6. This again shows the benefit of increasing RFOV to mitigate truncation effects and suggests 

that one could freely choose a RFOV (> ~600 × 600 × 600 voxels) to mitigate truncation effects. 
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Figure 4.10: Multi-resolution PWLS reconstruction for various choices of RFOV. Images (a-c) 
show the fine region, with the left / right presentation of the PWLS (grayscale window: [-300, 200] 
HU) and difference image (grayscale window: [-1100 -700] HU) as in Fig. 4.8 and 4.9. The head 
holder was at location 2, the DS was set to 4, and  𝛽𝛽𝐹𝐹 was adjusted slightly to maintain constant 
noise-resolution performance: (a) 𝛽𝛽𝐹𝐹 = 102.35, (b) 𝛽𝛽𝐹𝐹 = 102.38, and (c) 𝛽𝛽𝐹𝐹 = 102.40. The parameter 𝛽𝛽𝐶𝐶 
was chosen to minimize RMSD for each RFOV (after selecting 𝛽𝛽𝐹𝐹). 
 

4.3.4 Computation time 

The computation time between single-resolution and multi-resolution PWLS reconstruction is 

summarized in Fig. 4.11 in terms of the measured time per projection operation (averaged over one 

forward projection and one backprojection) and memory usage as a function of RFOV (for isotropic 

voxel size of 0.5 mm). As shown in Fig. 4.11(a), both time and memory usage increase dramatically 

if the RFOV increases from the basic RFOV (denoted by the dashed line), suggesting that simply 

increasing the RFOV in single-resolution PWLS is computationally expensive and likely 

impractical. Figure 4.11(b) plots the measured time per iteration as a function of RFOV for various 

PWLS reconstruction methods. Single-resolution PWLS exhibited a steep increase in time per 

iteration with larger RFOV, consistent with the steep increase in Fig. 4.11(a). By comparison, the 

time per iteration was much reduced for the multi-resolution approach at DS = 2 and was further 
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reduced at DS = 4. The time per iteration was reduced from the single-resolution approach (DS = 

4) by 40.7% for a RFOV of 6003 voxels, 83.0% for a RFOV of 8003 voxels, and over 95% for a 

RFOV of 10003 voxels. Moreover, the time per iteration became almost independent of RFOV 

when DS increased to 4 or larger in the multi-resolution approach. This suggests that one could 

increase the RFOV as much as needed to mitigate truncation effects in the multi-resolution 

approach without corresponding increase in computational complexity. The results clearly 

demonstrate the advantages of multi-resolution reconstruction, especially in situations where a 

large RFOV is needed. Because an increase in DS larger than 4 gradually reduced the reconstruction 

accuracy as shown in Sec. 4.3.3.2 (but does not correspondingly reduce the computation time), DS 

= 4 was selected as the nominal / optimal DS. 

 

Figure 4.11: (a) Measured computation time (averaged over one forward projection and one 
backprojection) and measured memory usage as a function of reconstruction field-of-view (RFOV). 
(b) Time per iteration (i.e., for all subsets) as a function of RFOV for single-resolution and multi-
resolution PWLS reconstruction at different DS levels. Substantial speedup can be seen compared 
to the single-resolution approach at DS = 2 and to multi-resolution approach at DS = 4. 
 

4.3.5 Comparison of reconstruction methods 

Figure 4.12 shows a single-resolution PWLS reconstruction using (a-b) the basic RFOV and (c-d) 

an extended RFOV in comparison to (e-f) multi-resolution PWLS reconstruction (with the same 

extended RFOV). In this case, the head holder was at location 2. The multi-resolution PWLS 
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reconstruction parameters were: (1) 𝛽𝛽𝐶𝐶  = 106.4, which is near the upper range of stable 

regularization identified in Sec. 4.3.3.1; (2) DS = 4, as indicated in Secs. 4.3.3.2 and 4.3.4; and (3) 

an extended RFOV of 6003 voxels (assuming isotropic voxel size of 0.5 mm), which the results of 

Sec. 4.3.3.3 identify as the smallest RFOV providing good mitigation of truncation artifacts. Single-

resolution PWLS using the basic RFOV exhibits severe artifacts due to truncation, whereas single-

resolution PWLS with an extended RFOV substantially reduced such artifacts, but doubled 

computation time. Multi-resolution PWLS using the same extended RFOV exhibited visually and 

quantifiably similar reduction of truncation effects and only increased computation time by 12% 

(109 sec/iter vs. 97 sec/iter) compared to reconstruction with the basic RFOV. 

 

Figure 4.12: Comparison of single-resolution and multi-resolution PWLS reconstruction. (a-b) 
Single-resolution PWLS reconstruction using the basic RFOV (400 × 480 × 480 voxels). (c-d) 
Single-resolution PWLS reconstruction using an extended RFOV (6003 voxels assuming an 
isotropic voxel size of 0.5 mm). (e-f) Multi-resolution PWLS reconstruction using the same 
extended RFOV. The symbols ε and t denote RMSD and computation time, respectively, 
quantifying the reduction in artifact using an extended RFOV and the benefit to computation time 
using the multi-resolution method. 

ε = 3.8 × 10-4 mm-1

t = 184.0 sec / iteration

Single-Resolution PWLS
(Extended RFOV)

 

-300

200
HU

ε = 10.2 × 10-4 mm-1

t = 97.1 sec / iteration

(a)

(b)

Single-Resolution PWLS
(Basic RFOV)

(c)

(d)

ε = 3.8 × 10-4 mm-1

t = 109.1 sec / iteration

Multi-Resolution PWLS
(Extended RFOV)

(e)

(f)

-50



123 

 

4.4 Conclusions and discussion 

This chapter reported a multi-resolution MBIR method to mitigate truncation effects with specific 

application to CBCT of the head, for which the main source of truncation is the patient support / 

head holder. While conventional reconstruction methods employ a fixed voxel size throughout the 

image, the multi-resolution method uses a fine voxel size within the untruncated region (i.e., inside 

the SFOV encompassing the area of interest – in this case, the head) and a coarse voxel size in the 

truncated region outside the SFOV (i.e., outside the area of interest). The approach was 

implemented in a PWLS reconstruction framework and evaluated in experiments involving a head 

phantom imaged on a CBCT test-bench with varying levels of truncation using a commercially 

available carbon-fiber head holder. The multi-resolution method demonstrated substantial 

mitigation of truncation effects and major reduction in computational cost compared to single-

resolution reconstruction with an extended RFOV. 

Investigation of the main algorithm parameters suggest that: (1) reconstruction accuracy in 

the fine region (the head) does not depend strongly on the regularization parameter in the coarse 

region 𝛽𝛽𝐶𝐶 as long as the parameter is below a regularization “limit,” which in turn was found not 

to depend on the location of the head holder and can therefore be held fixed; (2) use of a larger 

voxel size in the coarse region (larger DS) reduces computational complexity but slightly reduces 

reconstruction accuracy, suggesting an optimal DS such that the voxel size in the coarse region was 

~4 times that in the fine region; and (3) reconstruction accuracy improved with a larger RFOV up 

to a certain extent (6003 voxels assuming isotropic voxel size in this work) beyond which accuracy 

was modestly improved. In the current work, truncation was due solely to the head holder (which 

varied in location but not in size or mass), and more severe truncation (i.e., greater mass of 

attenuation outside the SFOV) may require larger RFOV. In summary, the method presents a 

promising means to mitigate truncation effects in CBCT of the head and supports translation of a 

newly developed CBCT head scanner in point-of-care imaging applications. It is also compatible 
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with the method reported in Chapter 2 (modified PWLS weights to account for scatter and beam-

hardening corrections – as demonstrated in the results above) and potentially with the method of 

Chapter 3 (selection of spatially varying regularization strength to maximize task performance), 

although the latter was not investigated in the current work and requires validation of the task-based 

prediction framework and spatially varying βF. 

A variety of alternative methods to managing truncation artifacts have been reported. For 

example, some methods treat missing projection data as a continuous extension of the projection at 

the edge of the detector and extrapolate the missing data before image reconstruction.200–203 These 

methods have demonstrated reduction of truncation effects to various extents but the assumption 

on the continuous extension of the projection may not hold well when the truncation is primarily 

due to patient support. Other methods attempt to directly reconstruct a ROI inside the patient 

anatomy that has not been truncated during the scan.209–215 For example, a widely recognized 

approach in ROI reconstruction is to backproject the derivative of the projection data and apply 

Hilbert filtering along certain lines covering the ROI.209,212 These ROI reconstruction methods have 

demonstrated substantial reduction of truncation artifacts in the ROI, but as analytical methods, 

they usually do not enjoy the noise-resolution benefits exhibited by MBIR. The method proposed 

in this chapter allows more general treatment of the source of truncation than extrapolation-based 

methods and therefore can be used to manage truncation effects that do not arise from the patient 

(e.g., due instead to the patient support). Moreover, the proposed method is formulated within a 

MBIR framework, which allows the use of advanced system models and regularization techniques. 

An alternative method to mitigate truncation effects in CBCT of the head is to include a 

model of the head holder within the image reconstruction process. For example, previous work216 

reported a known-component reconstruction (KCR) approach that could be extended to include the 

known shape of the head holder. This could yield even better agreement with the measured 

projection data and mitigate truncation artifacts in the image. Moreover, the multi-resolution 
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approach proposed above could be combined with the KCR approach to improve computational 

efficiency. 

The multi-resolution method presents a more efficient means to recover attenuation 

information from truncated objects than simple extension of the RFOV. This is a particularly 

important consideration in MBIR, which can be sensitive to truncation effects not only in terms of 

artifacts and accuracy of reconstruction but also in the speed and stability of convergence. MBIR 

also carries a fairly high computational burden, and straightforward extension of the RFOV could 

lead to impractical reconstruction time. The current work focused on a particular form of data 

truncation encountered in CBCT of the head but offers a potential general solution for other 

scenarios in CT or CBCT. In C-arm CBCT for interventional imaging, for example, the patient 

periphery, interventional tools, and operating table are often truncated due to the limited SFOV. 

Moreover, in diagnostic imaging, truncation can occur for obese patients or (purposeful or 

inadvertent) setup of the patient off center. Such scenarios are the subject of future work, where the 

proposed method may offer a means to mitigate truncation effects without major increase in 

computational cost. 
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Chapter 5 

5. Incorporation of Prior Images in Statistical 

Reconstruction 

5.1 Introduction 

5.1.1 Prior-image-based reconstruction 

As discussed in Chapter 1, there are many scenarios in medical imaging - including screening, 

diagnosis, and image-guided intervention - in which the patient undergoes sequential imaging 

studies with repeated scans over a period of time. Conventionally, each scan is treated in isolation 

with a full dose protocol, and the accumulated radiation dose in sequential imaging studies can be 

a concern to both the patient and surgical staff. Knowledge of patient-specific anatomy gained from 

an image previously acquired in sequential studies (referred to below as the "prior image") can 

potentially be leveraged in a model-based image reconstruction process, presenting increased 

opportunities for improved image quality and/or dose reduction. 

The importance of prior images in image reconstruction has been recognized in recent years 

in a number of prior-image-based reconstruction (PIBR) approaches. In Prior Image Constrained 

Compressed Sensing (PICCS),110 Chen et al. formed an objective function that seeks sparse 

differences between the reconstruction of current anatomy and a prior image, using compressed 

sensing concepts whereby a sparse signal can be recovered by L1 minimization under certain 

assumptions.217 The original formulation of PICCS has also been modified with the inclusion of 

statistical weights218 and can be applied in situations where the forward model can be transformed 
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into a linear relationship between the image volume and processed line integrals. In contrast, 

Stayman et al.111 presented a PIBR approached termed Prior Image Registration, Penalized-

Likelihood Estimation (PIRPLE), employing a MBIR framework that integrates: 1) a statistical 

objective function with nonlinear forward model and noise model for the unprocessed 

measurements; and 2) a generalized regularization term based on a prior image. This framework 

permits flexibility in the selection of the forward model and the noise model and does not 

necessitate a linearizable forward model. In addition to direct use of a patient-specific prior image 

in the reconstruction objective function, prior images have also been utilized indirectly.219,220 

Although the use of prior images in PIBR dramatically reduces the data fidelity 

requirements and demonstrates good image quality under conditions of substantial downsampling 

and photon starvation,111,221 a critical aspect of effectively using prior images is the ability to 

compensate for deformation between the prior image and subsequent image acquisitions. Such 

deformation is typically caused by patient motion between the baseline scan (i.e., the scan that 

forms the prior image) and the follow-up scan (i.e., the scan that acquires measurements of current 

anatomy). Potential sources of mismatch between scans include re-positioning of a patient and 

acquisition during differing physiological states (e.g., acquisitions at different phases of respiratory 

or cardiac motion). If these mismatches are not compensated or are incorrectly compensated, 

incorrect information from the misaligned prior image will be injected into the image 

reconstruction. Moreover, PIBR without registration cannot differentiate between true anatomical 

changes (e.g. tumor growth, bone drill-out, tissue ablation, etc.) and changes due to motion. 

Ambiguity between these two types of changes in the PIBR results would make true anatomical 

change difficult to recognize and may introduce false anatomical changes. 

Compensation of deformation was typically not considered in the PICCS implementations 

for cardiac imaging110 and dose reduction,218 because in these applications a prior image was formed 

from a full set of current measurements. Nett et al.222 adopted a staged approach using a 

preregistration of the prior image followed by PICCS reconstruction in the context of C-arm 
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interventional imaging where patient motion is commonly seen between the baseline and follow-

up scans. Specifically, in this work the prior image was registered to a FBP of sparse measurements 

of the current anatomy using a rigid 6 degree-of-freedom (DOF) transformation. However, the 6 

DOF registration may not accurately capture the non-rigid nature of organ motion, and the accuracy 

of the staged registration will be limited by the image quality of initial sparse FBP reconstruction. 

Similarly, the initial PIRPLE implementation111 entailed a rigid registration of the prior, and 

although the registration estimate was joint (not staged) with the PL reconstruction estimate, the 6 

DOF pose estimate does not resolve deformations between the baseline and follow-up scans. Other 

methods have been developed that deformably register a prior image acquired from a planning CT 

with sparse projections from a subsequent CBCT.223–225 However, in these methods, the follow-up 

data were used to estimate patient motion but not to reconstruct new images. Deformable 

registration of a prior image has also been used recently for artifact correction.226 

A joint estimation of both the deformation and image reconstruction may be used to 

overcome the limitations of staged registration. The idea of joint estimation has been widely studied 

in MBIR in many modalities.227–231 For example, in cardiac gated emission computed tomography, 

Gilland et al.227 designed an objective function that jointly estimated cardiac images at two different 

frames and the cardiac motion between the two frames, thereby solving both deformation and 

attenuation together using a conjugate gradient method. In PET, Fessler229 used an objective 

function that jointly estimated a single image (at a specific time point) and a series of deformation 

fields (used to match motions at other time points), achieving a joint solution by alternately 

updating the deformation and attenuation parameters. Despite the varied use of joint estimation in 

MBIR, the joint approach has received less attention in PIBR. 

This chapter introduces a model-based approach that incorporates a Poisson noise model 

and a high-quality patient-specific prior image to reconstruct images from sparse and/or noisy 

measurements. Deformation between the baseline and follow-up scan introduced by patient motion 

is estimated jointly through a cubic B-spline-based free-form deformation (FFD) model. By 
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extension of the PIRPLE framework, this approach is referred to as deformable Prior Image 

Registration, Penalized-Likelihood Estimation (dPIRPLE). First, a detailed description of the 

dPIRPLE algorithm and an alternating maximization strategy for solving dPIRPLE are presented. 

Additionally, the convergence properties and the scheduling of registration / reconstruction updates 

are analyzed. Finally, qualitative and quantitative comparisons of reconstruction results from 

dPIRPLE and other algorithms are performed under various conditions of data sparsity and 

exposure levels. 
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The methods and results reported below were reported in conference proceedings and journal 

articles as follows: 

(1)        H. Dang, A. S. Wang, Z. Zhao, M. S. Sussman, J. H. Siewerdsen, and J. W. Stayman, "Joint 

estimation of deformation and penalized-likelihood CT reconstruction using previously 

acquired images," The 12th International Meeting on Fully 3D Image Reconstruction in 

Radiology and Nuclear Medicine, Lake Tahoe, CA, 424-427 (2013). 

(2)        H. Dang, A. S. Wang, M. S. Sussman, J. H. Siewerdsen, and J. W. Stayman, " dPIRPLE: a 

joint estimation framework for deformable registration and penalized-likelihood CT image 

reconstruction using prior images," Physics in Medicine and Biology, 59 (17), 4799-4826 

(2014). 
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providing valuable input over the course of this project; Dr. Mark S. Sussman for assistance with 

the cadaver specimen; and Ms. Zhe Zhao for assisting with the physical experiments. Valuable 

discussion with Dr. Rick Colbeth, Dr. Sungwon Yoon, Mr. Edward Shapiro at Varian Medical 
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5.2 Methods 

5.2.1 Penalized Likelihood Estimation 

Penalized likelihood estimation (PLE) makes more efficient use of measurement data in CT by 

incorporating a measurement noise model and encourages desired properties in the reconstructed 

image by using a regularization term. The PLE objective function has been defined in Sec. 1.4.8 

assuming a Poisson noise model and is given here again for reader’s convenience: 

( ) ( ) ( )ˆ arg max log ; , R

R

p
R R p

L y R R
µ

µ µ µ µ β µ= − = Ψ                          (5.1) 

Note that the regularization term has been expressed in vector form. The specific form of the 

penalty here includes the operator ΨR, a p-norm metric (with p = pR and an exponent pR), and a 

scalar regularization strength βR. This general form of penalty allows for varied control of image 

properties and has a number of different interpretations including penalties on roughness,106 total 

variation,108 and other decompositions of the image. (E.g., one may select ΨR to be an arbitrary 

sparsifying transform, particularly for pR≤1, which encourages sparse solutions in the transformed 

domain.) In this chapter, a ΨR operator is selected that computes the pairwise difference between 

voxels in a first-order neighborhood around each voxel as in traditional roughness penalties. 
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Among popular approaches for solving PLE, the SQS approach232 is used in this chapter 

that allows for highly parallelizable image updates. To satisfy the five conditions of finding a 

parabolic surrogate in SQS approach,232 a modified p-norm111 was introduced which replaced a δ-

neighborhood about the origin in the traditional p-norm with a quadratic function. This 

modification ensures the differentiability of the p-norm operator at the origin. Both the function 

values and the derivatives match at the transition point ±δ after the modification. Throughout this 

chapter, either p = 1 or p = 2 is used, and the modified p-norm becomes equivalent to the Huber 

function131 or the standard L2 norm, respectively. In both cases, the modified p-norm can be easily 

shown to satisfy the conditions for application of SQS. 

5.2.2 Deformable Prior Image Registration, Penalized-Likelihood 

Estimation 

Prior images typically contain a great deal of patient-specific anatomical information. Thus, such 

images have great potential for regularization of the reconstruction problem and consequent dose 

reduction. One specific way to do this is to modify Eq. (5.1) with an additional penalty term 

(referred to as the prior image penalty), which encourages similarity between the estimated image 

and the prior image by penalizing their differences. However, one must recognize that changes 

between a prior image and the current patient anatomy can be introduced in two possible ways: 1) 

true anatomical changes, which are the result of disease progression or surgical interventions (e.g. 

tumor growth, bone drill-out); and 2) changes due to motion, which are caused by patient motion 

between scans (e.g. patient re-positioning, respiratory or cardiac motion). Thus, directly enforcing 

similarity to a prior image without the compensation of changes due to motion will limit the utility 

of the prior image and potentially provide incorrect information due to the misregistration. In other 

words, “efficient” or “complete” extraction of information from a prior image is only possible when 

proper registration is used to eliminate mismatches due to motion. Moreover, recognizing that the 
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accuracy of an initial one-time registration procedure (e.g., staged registration followed by 

reconstruction) is limited by registration of low-fidelity data, the registration parameters are 

incorporated into a joint image reconstruction and registration objective function - solving for both 

registration and reconstruction parameters. This joint approach is expected to achieve improved 

results since updated image estimates can help to refine registration estimates and vice versa. This 

approach is referred to as dPIRPLE, and its objective function can be written as 

{ } ( )

( ) ( )( )
,

,

ˆˆ , arg max ,

arg max log ; PR

R P

pp
R R P P Pp p

L y

µ λ

µ λ

µ λ µ λ

µ β µ β µ λ µ

= Φ

= − − −Ψ Ψ W
              (5.2) 

where the last term denotes the prior image penalty with μP denoting the prior image. The prior 

image penalty term in Eq. (5.2) has a distinct set of parameters (βP and pP), which allows control of 

this penalization independent from that of the roughness penalty. Varying βP controls the strength 

of prior image information in the reconstruction. The parameter pP also affects the balance of prior 

information relative to other terms and can be freely chosen to penalize the difference image using 

different norms. For example, pP=2 tends to apply larger penalties for greater differences, thereby 

enforcing smooth differences and blending features in the prior image and current measurements. 

In contrast, pP=1 tends to apply relatively smaller penalties for greater differences and therefore 

allowing or encouraging large and sparse differences. Similar ideas can be found in compressed 

sensing theory that recovers sparse solutions by using an L1 norm constraint.217 This norm selection 

is important to minimize bias in regions where change occurs between the prior and current scans. 

Specifically, in this study, pP=1 is used which encourages similarity between the current 

reconstruction and prior image data but allows for potentially large but sparse differences. With 

proper selection of βP, this penalty is thereby expected to allow the sparse anatomical change (e.g. 

lung nodule) to appear in the reconstructed image and not to significantly bias the reconstructed 

image towards the prior data in the region of anatomical change. In this case, the operator ΨP can 
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be interpreted as a sparsifying operator. Options for this operator include an image gradient operator 

(e.g., finite differences on local voxels) or the identity matrix (if image changes are already sparse). 

In Eq. (5.2), W(λ) represents a deformation operator that is a function of the deformation 

parameters λ. While there exist many methods to deformably register a 3D volume, the cubic B-

spline-based FFD233 is chosen as the deformation model. Specifically, one can write 

( )
i x

i
x i

x N

x xxλ λ β
σ∈

− = +  
 

∑W                                              (5.3) 

where β(·) is the tensor product of cubic B-spline functions, xi are the control points, 𝜎𝜎 is the control 

point spacing, λi are the B-spline coefficient vectors (i.e., control point displacements), and Nx is 

the set of control points within the B-spline support of x. Cubic B-spline FFD has several 

advantageous properties as a deformation model.234 First, it has low-dimensional parameterizations 

and local support, which reduces computational complexity and allows highly localized 

deformation to be modeled. Second, it provides C2 continuity at the knots, allowing gradient-based 

optimization approaches to be used. Third, the FFD grids can be constructed hierarchically to allow 

the registration to be performed using morphological pyramids, reducing the susceptibility to local 

minima during optimization. 

The estimator in Eq. (5.2) is a general estimator, but one can identify a number of specific 

forms. For example, if W(λ) in Eq. (5.2) is replaced with an identity matrix, the objective function 

will not consider any deformation when incorporating the prior image. This approach is referred to 

as Prior Image, Penalized-Likelihood Estimation (PIPLE). If W(λ) is replaced with a rigid 

transformation (3 translation and 3 rotation parameters), this approach is referred to as rigid 

PIRPLE. The general form in which W represents a FFD is termed dPIRPLE. 
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5.2.3 Strategy for solving dPIRPLE 

The implicitly defined dPIRPLE approach of Eq. (5.2) requires a strategy for finding both the 

attenuation and the deformation parameters. One straightforward method might be to combine both 

types of parameters and solve by a general "off-the-shelf" gradient-based optimization approach. 

However, methods that are not tomography-specific or registration-specific, may be exceptionally 

time-consuming due to the large scale parameter space and further complicated by local minima 

due to the non-convexity in FFD registration. As such, an alternating maximization approach is 

used that (a) maximizes the dPIRPLE objective with respect to attenuation parameters with fixed 

registration (referred to as “image update”) using a tomography-specific optimizer and (b) 

maximizes over registration parameters with fixed attenuation (referred to as “registration update”) 

using a FFD-specific algorithm. This alternating approach between image and registration updates 

can be expected to handle the large scale parameter space and local minima better than general 

optimization approaches. 

 

Figure 5.1: Flow chart for solving the dPIRPLE objective function using an alternating 
maximization approach. 
 

The flow chart in Fig. 5.1 illustrates this alternating approach. After initializing the 

parameter pair with (μ[0,0], λ[0,0]), a number of registration updates (S1) are applied to λ in a 
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registration block, followed by a number of image reconstruction updates (T1) applied to μ in an 

image block. The superscripts in the square bracket [i, j] denote the "outer loop" alternation number 

(i) and the "inner loop" number (j) of image or registration updates applied. After a first alternation, 

S2 registration updates are applied to λ in a new registration block to start another alternation. 

Starting the workflow with a registration block is preferred since patient motion can then be at least 

partially compensated before any use of the prior image. 

In the image block, since the deformation parameters are fixed, the dPIRPLE objective 

function becomes dependent only on the attenuation parameters and therefore is equivalent to a 

standard PLE with a prior image penalty without registration. Since the prior image penalty shares 

the same structure as the image roughness penalty, it can be easily shown that the prior image 

penalty also satisfies the conditions of finding a parabolic surrogate in SQS approach.232 Therefore, 

the objective function in the image block can be optimized by SQS as summarized in Table 5.1. 

The optimum curvature232 is used for the surrogate of the likelihood term in this study. 

In the registration block, since the deformation parameters only appear in the prior image 

penalty term, for registration updates, the dPIRPLE objective function can be reduced to only this 

term. The objective function can be further transformed into a minimization of image differences 

after applying the deformation operation, which is essentially a standard image registration problem 

with a modified p-norm operator as similarity metric as shown below 
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                                    (5.4) 

For example, when pP=2, the objective function is equivalent to the common Sum of Squared 

Differences (SSD) similarity metric for registration. Therefore, the objective function in the 

registration block can be solved using any number of existing methods for deformable registration 
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with minor modifications. Moreover, morphological pyramids can be used as part of the update 

strategy to prevent local minima in the registration update. 

Although keeping the objective functions strictly the same between the two alternating 

updates is preferred in general, it has been found in this study that differing pP values in each 

scenario can provide better convergence behavior in the registration update while still encouraging 

sparse differences in the image update. Specifically, a higher value of pP is used in the registration 

update than in image update. While a deterministic approach (limited-memory BFGS) was used 

previously as the optimization algorithm in registration update,235 a stochastic approach named 

Adaptive Stochastic Gradient Descent (ASGD)236 is used here. This algorithm employs a strategy 

of randomly sampling a subset of image voxels and achieves a substantial reduction in computation 

time per iteration, while keeping favorable convergence properties. The gradient of the objective 

function used in ASGD approach can be written as 

( ) ( ) ( ) ( )( )( ), ,
T

P P i P P P Pi
i

fλ µ λ µ λ β λ µ µ λ µ
λ
∂  ∇ Φ = Φ = − −    ∂

Ψ W Ψ W
             (5.5) 

where Pf  denotes the derivative of the modified p-norm function in prior image penalty on each 

element of the operand. ( )i λW  denotes the derivative of the deformation operator with respect to 

the ith deformation parameter. 

Table 5.1 presents the pseudocode for the alternating maximization approach. In the 

registration block, the 1st (outer) loop corresponds to the morphological pyramids and the 2nd (inner) 

loop corresponds to the ASGD updates. The details of the random sampling and step size in ASGD 

updates can be found in the paper by Klein et al.236 In the image block, ih  denotes the derivatives 

of the marginal log-likelihoods, Rf  is the derivatives of the modified p-norm function in image 

roughness penalty, ci is the optimum curvature of the marginal log-likelihoods, ωf (t) is the 

curvature of the penalty function defined as ( ) ( ) /f t f t tω =  , K is the number of neighboring voxels 
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used to penalize the jth voxel, and [ ]+⋅  is the non-negativity constraint. The image update equation 

Eq. (5.7) in Table 5.1 is a modified form of Eq. (10) in the paper by Stayman et al.111 that includes 

a deformation operator with fixed λ on the prior image. The convergence properties and the 

alternating maximization schedules of the proposed algorithm are discussed in Sec. 5.3.2. 

 

Table 5.1: Pseudocode for the dPIRPLE algorithm. 
 

Input μ[0,0], λ[0,0] 
for z = 1 to max_alternations (Z) 
   % Registration Update Block 
   for each image pyramid 
      for s = 1 to number_of_ASGD_updates (Sz) 
         Randomly sample a subset of image voxels 
         Approximate gradient [ ] [ ]11, , 1( , )zz T z s

sg λ µ λ−− −= ∇ Φ  using sampled voxels and Eq. (5.5) 
         Compute an adaptive step size γs 
         [ ] [ ], , 1z s z s

s sgλ λ γ−= −                                                (5.6) 
      end 
   end 
   % Image Update Block 
   for t = 1 to number_of_SQS_updates (Tz) 
      for j = 1 to number_of_voxels 
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      end 
   end 
end 
return [ ] [ ], ,,Z ZZ T Z Sµ λ  
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5.2.4 Computational complexity and implementation 

The computational complexity of dPIRPLE is divided between the image update and the 

registration update. In the image update, the complexity may be characterized by the number of 

projection operations needed (forward projections and backprojections), which are the dominant 

factors for the computation time. Every SQS update requires 3 projection operations if optimum 

curvature is used. As such, the execution of the dPIRPLE algorithm with respect to image 

reconstruction in Table 5.1 requires 
1

3 Z
zz

T
=

×∑  back/projections, where Z denotes the number of 

alternations. In the registration update, computation time stems from four main sources: 1) 

computing the gradient of the reduced objective function; 2) evaluating the reduced objective 

function when computing the step size; 3) computing the Jacobian matrix (of the deformation 

operator W over deformation parameters λ) at the beginning of each level of the pyramid236; and 4) 

warping and interpolating the moving image at the end of each registration block. The use of the 

ASGD approach substantially reduces the computation time from the first two sources by randomly 

sampling a subset of the image voxels to compute the gradient and computing the step size 

adaptively based on the gradient information instead of function evaluation. As such, the execution 

of the dPIRPLE algorithm with respect to registration in Table 5.1 is dominated by Z Jacobian 

calculations at each of the 4 levels of the pyramid and Z warping and interpolation operations. 

The dPIRPLE algorithm was implemented in Matlab (The Mathworks, Natick, MA), while 

computationally intensive functions were calculated using optimized C++ libraries. Specifically, 

the projection operations in the image update used CUDA-based libraries, and the registration 

update used the image registration toolbox Elastix.237 

The performance of dPIRPLE was compared with a number of other approaches including 

FBP, PLE, PIPLE, and rigid PIRPLE. All the iterative approaches utilized matched separable 
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footprint projection operations, which is a modified form93 of the separable footprint technique,98 

and FBP used a voxel-driven interpolating backprojection. 

5.2.5 Cadaver experiments 

Experiments were carried out on a cadaver torso on a CBCT test-bench. This study emulated a 

clinical scenario in which an initial diagnostic image has been acquired and a period of time has 

elapsed and a subsequent follow-up image is necessary. The initial image volume serves as a 

patient-specific prior image that is used to improve image quality and reduce the required radiation 

dose in subsequent follow-up scans. Specifically, a lung nodule surveillance scenario was emulated 

in which a suspicious nodule is imaged in a follow-up study to determine growth rates. In the 

cadaver experiments, a baseline scan was first acquired using a sufficiently large number of 

projections, to form a high-quality patient-specific prior image. Then, a follow-up scan was 

acquired with a substantial reduction in the radiation dose through a reduction in either the number 

of projections or the exposure per projection. The patient-specific prior image was then used in 

conjunction with the follow-up scan to reconstruct current anatomy and to detect a newly formed 

nodule in the presence of patient motion between scans. 

The CBCT system consisted an x-ray source (DU694 in an EA10 housing; Dunlee, Aurora, 

IL), a flat-panel detector (PaxScan 4343CB with 1536×1536 pixels at 0.278 mm pixel pitch after 

2×2 binning; Varian Medical Systems, Palo Alto, CA), and a motion control system (Parker 

Hannifin, OH), as shown in Fig. 5.2(a). While the bench offers a wide range of source-detector 

motions, in this study, a system geometry was chosen that contains a 150 cm SDD and 120 cm 

SAD. All images were reconstructed with 260 × 300 × 330 voxels and 1 × 1 × 1 mm3 voxel size. 

The system geometry was calibrated using a separate scan following the calibration method 

described by Cho et al.238 

 



140 

 

 

Figure 5.2: (a) Experimental setup on the CBCT test-bench for cadaver experiments. (b) Simulation 
of lung tumor growth via petroleum jelly injection into the cadaver lung. A semiopaque rendering 
of a generic skeleton is overlaid on the photograph to illustrate the anatomical position of the 
cadaver. 
 

 

Figure 5.3: Three views of the patient-specific prior image, formed by PLE (pR = 2, βR = 106) 
reconstruction of the fully sampled dataset before the injection. Two zoomed-in regions in each 
view correspond to prior image (left) and current anatomy (right). 
 

A baseline scan was first acquired with 360 projections over 360o (referred to as fully 

sampled dataset), 100 kVp and 1.25 mAs/projection (referred to as standard exposure). A PLE 

reconstruction (pR=2, βR=106) of this dataset was used as a patient-specific prior image, as shown 

in Fig. 5.3. Approximately 1 cm3 petroleum jelly (~0.013 mm-1 attenuation) was then injected into 

the right lung of the cadaver by a thoracic surgeon, as shown in Fig. 5.2(b). Many types of motion 

were imparted to the cadaver during this procedure, including the deformation of the abdominal 
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soft tissues, flexing of the spine, and contraction of the chest wall. Two follow-up scans were 

acquired after the procedure: one with the same fully sampled protocol as used in the baseline scan 

and one with 0.1 mAs/projection (referred to as the low exposure dataset). A PLE reconstruction 

(pR=2, βR=106) of the fully sampled follow-up scan was used as the “ground truth” (and is referred 

to as the current anatomy). Various sparse datasets were investigated through retrospectively 

selecting a reduced number of projections from fully sampled data. 

To determine the robustness of the deformable registration method with regard to patient 

motion, a simulation study was conducted. In this study, a large number of instances of random 

rigid motion were applied to the high-quality prior image. These misregistered prior images were 

used as inputs to the dPIRPLE reconstruction and registration performance after a single 

registration was assessed. Performance analysis after a single registration leads to a somewhat 

conservative estimate of the capture range of patient motion since subsequent alternations have the 

potential to recover from a poor first registration. However, focusing on a single registration 

allowed for an assessment of a relatively large ensemble of misregistrations, and recovery after a 

poor first registration was generally not observed.  

The first registration is comprised of an initial rigid registration step followed by the 

deformable registration step described in Sec. 5.2.2. The rigid registration uses Mutual 

Information239 as the similarity metric and ASGD as the optimization. (The initial rigid registration 

was not used in the results above.) Random rigid misregistration was generated as perturbations 

from the nominal pose of the prior image. The nominal pose corresponded to the optimal rigid 

alignment of the prior image and the current anatomy, derived from an accurate rigid registration 

of the prior image and the fully sampled current anatomy reconstruction. Perturbations in each of 

the six parameters of rigid motion (i.e. translations in X, Y, and Z and rotations about X, Y, and Z) 

were described by Gaussian probability distributions with three standard derivations in each 

distribution as 100 mm in X (Anterior-Posterior), 100 mm in Y (Left-Right), 200 mm in Z (Superior-

Interior), 10 degrees about X, 10 degrees about Y, and 10 degrees about Z. This perturbation model, 
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adapted from previous work by Otake et al.,240 was intended to emulate realistic variability in 

clinical setup of the patient in a diagnostic CT scanner. Each misregistration was quantified by 

computing the mean displacement averaged over all the voxels in the entire FOV of the CBCT. 

5.2.6 Evaluation methods 

To assess the accuracy and image quality of the reconstructed images, reconstructions were 

compared to the ground truth current anatomy using three metrics, including global root mean 

square error (RMSE), local RMSE, and structural similarity (SSIM) index.241 

The RMSE between two images u and v is: 

( )2

1

1 N

i i
i

RMSE u v
N

µ

µ =

= −∑                                                (5.8) 

where Nµ is the number of voxels in either image. The RMSE values have the same units as the 

image values (i.e. linear attenuation coefficients), that is, mm-1. The global RMSE of a 

reconstructed image is computed over the entire FOV of the CBCT, which reflects the overall 

accuracy of the reconstructed image. The local RMSE was computed in a region of interest (ROI, 

100 × 100 × 100 voxels) that included the nodule and the adjacent soft tissue in the lung, reflecting 

reconstruction accuracy in close proximity to the nodule. 

SSIM is a good complementary metric to RMSE, since it relates to the perceptual quality 

of an image, whereas the latter relates to quantitative accuracy. The SSIM is defined as a linear 

combination of luminance (l), contrast (c), and structure (s): 

( ) ( ) ( ) ( ), , , ,SSIM u v l u v c u v s u v= ⋅ ⋅                                               (5.9) 

where 

( ) ( ) ( )2 2
1 1, 2l u v uv C u v C= + + +                                      (5.10a) 

( ) ( ) ( )2 2
2 2, 2 u v u vc u v C Cσ σ σ σ= + + +                                    (5.10b) 
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( ) ( ) ( )3 3, uv u vs u v C Cσ σ σ= + +                                          (5.10c) 

and 𝑢𝑢�  and 𝑣̅𝑣  denote the mean voxel values, 𝜎𝜎𝑢𝑢  and 𝜎𝜎𝑣𝑣  are standard deviations, and 𝜎𝜎𝑢𝑢𝑢𝑢  is the 

sample covariance. The constants C1, C2, and C3 were chosen as in the paper by Wang et al.241 to 

prevent instability in the computation of these three similarity measures. SSIM was computed in a 

ROI (16 × 16 × 16 voxels) about the nodule and the adjacent tissues. 

To assess registration accuracy, the error vectors of the deformation field were generated 

from subtracting this field with the “true” field, which was approximated by registering the prior 

image with current anatomy as estimated by the fully sampled dataset. The deformation field 

vectors, the error vectors, and the error vector magnitudes were all visualized. Quantitatively, the 

average magnitude of the error vectors was computed over the object region (no air voxels) and 

compared to the average magnitude of the deformation field vectors. Additionally, both the 

difference images between the deformed prior image and the "true" current anatomy and the RMSE 

of the difference images were computed. 

5.3 Results 

The experimental results are organized into three parts. First, parameter selection, convergence 

properties, and the alternating maximization schedule for dPIRPLE were investigated. All these 

results used the same sparsely sampled dataset (20 projections equally spaced over 190o) with a 

fixed exposure (1.25 mAs per projection), representing an 18-fold exposure reduction over a fully 

sampled dataset. Second, the reconstruction results of dPIRPLE using the same dataset were then 

compared to FBP and other iterative approaches (PLE, rigid PIRPLE, single-registration 

dPIRPLE). Third, the reconstruction results were evaluated at different measurement sparsity and 

exposure levels to investigate the robustness of dPIRPLE in preserving image quality and its limits 

in enabling exposure reduction. 
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5.3.1 Parameter Selection for dPIRPLE 

Table 5.2 summarizes the major parameters used in dPIRPLE in this study. Variables are divided 

into two categories: 1) parameters that define the dPIRPLE objective function (i.e. first 7 

parameters); and 2) parameters involved in solving the dPIRPLE objective function (i.e. last 3 

parameters). 

 

Table 5.2: Summary of major parameters in dPIRPLE. 

Symbol Name Nominal Values or Range 

ΨR Sparsifying operator in image roughness 
penalty First order difference operator 

pR Modified p-norm in image roughness penalty 1 

βR Penalty strength in image roughness penalty 102 ~ 103.5 

ΨP Sparsifying operator in prior image penalty Identity matrix 

pP Modified p-norm in prior image penalty 1 (Image update);  
2 (Registration update) 

βP Penalty strength in prior image penalty 102.5 ~ 104 

δ Size of quadratic region in modified p-norm 10-4 mm-1 

σ B-spline control point spacing 10 voxels 

Z Maximum number of alternations in 
optimization 20 

{S1,S2,…,SZ} Number of ASGD updates per pyramid {1000,1000,…,1000} 

{T1,T2,…,TZ} Number of SQS updates per alternation {50, 50,…,50} 
 

 

In these studies, pR=1 was selected for its edge-preserving effect in the reconstructed image, 

and ΨP was chosen as the identity matrix since μ-W(λ)μP is already very sparse for the lung nodule 

growth scenario. In the alternating optimization algorithm, a lower pP (=1) was used in the image 

update to encourage sparse differences, while a higher pP (=2) was used in the registration update 

to obtain better convergence. A four-level morphological pyramid was used in all the registrations 

with a control point spacing of 10 voxels at the final pyramid and a downsampling scheme of 8, 4, 

2, and 1. 
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Previous work111 found that the optimal values of the three regularization parameters δ, βP, 

and βR in the PIRPLE objective function vary with differing datasets including differences in x-ray 

technique, system geometry, object, number of projections, and volume size/sampling. Therefore, 

parameter values need to be carefully selected for each dataset to achieve optimal image quality. 

That study showed that δ needs to be below a certain threshold relative to the expected attenuation 

differences in the reconstruction (and values larger than this threshold have little effect on 

reconstruction quality). In the current study, δ=10-4 mm-1 was found small enough for all the 

datasets. For each dataset, optimal βP and βR were then selected by performing a pair of one-

dimensional parameter sweeps as described in previous work,111 that is, optimizing first over βP 

while holding βR fixed at an initially small value, and then optimizing over βR at the optimal βP, 

using RMSE as the metric. It has been observed in this study that as long as the initial βR is chosen 

to be a small value and within the wide range of proper starting points (e.g. 100 to around 103.5 in 

Fig. 5.4), this pair of 1D sweeps would always reach close to the optimum. (More details on the 

double 1D sweep can be found in the sensitivity to parameter selection section in previous work.111) 

This pair of 1D sweeps (c.f., a full 2D sweep over βP and βR) is computationally convenient and 

takes advantage of the typical shape of RMSE(βP, βR) as illustrated in Fig. 5.4 (dashed lines). The 

optimal (βP, βR) resulting from the double 1D sweep was nearly identical to the true 2D optimum 

(asterisk). This result demonstrates that the method proposed in previous work111 is also useful with 

respect to a deformable registration estimate (previously demonstrated with respect to rigid 

registration). 
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Figure 5.4: Example optimization of (βP, βR) from a pair of 1D parameter sweeps (dashed lines) 
compared to the true 2D optimum (asterisk). Results here used the global RMSE as a metric; 
however, very similar results are seen when using local RMSE. 

 

The last three parameters in Table 5.2 are important in determining the schedule of the 

proposed alternating maximization approach, and the choice of those parameters is investigated in 

Sec. 5.3.3. A PLE image was found to give excellent initialization of the attenuation parameters in 

dPIRPLE. This choice provided a better starting point than a flat (zero) image, helping to speed 

convergence in the image update. Moreover, the PLE image also provided a feature rich dataset for 

estimating the deformation as compared to the prior image, which is critical in the first registration 

block. In contrast, initializing with a flat image can be detrimental to registration and is not 

particularly good for reconstruction. The deformation parameters of dPIRPLE were initialized with 

all zeros in the first level of the morphological pyramid in the first registration block. For fair 

comparison, all prior-image-based approaches (PIPLE, rigid PIRPLE, and dPIRPLE) used the same 

initialization image and δ, except that βR and βP were optimized separately for each approach and 

each dataset. PLE was initialized with a FBP image and used the same δ, while βR was optimized 

for each dataset. 
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5.3.2 Convergence properties of dPIRPLE 

Before evaluating the convergence properties of dPIRPLE with respect to registration, the accuracy 

of the final registration estimate was measured. Figure 5.5(a-b) shows the final deformation field 

in the axial and sagittal views, which clearly depict the movement of the body toward the posterior 

and the right side, as well as the anterior displacement of the heart. Note that each vector in the 

deformation field is plotted in the reverse direction from the physical deformation (i.e., pointing 

from a voxel in the current anatomy to the corresponding voxel in the prior image). Also note that 

the visualized deformation field vectors have a subsampled density (with a factor of 15) and a 

scaled vector length (with a factor of 2) from the original deformation field vectors to help better 

visualize the field. Figure 5.5(c-d) shows the error vectors generated from subtracting this final 

deformation field with the “true” field. Note that within the object the average magnitude of the 

error vectors is 0.77 mm, smaller than the 1 mm voxel size and much smaller than the average 

magnitude of the vectors in the estimated deformation field (6.56 mm). Error vectors with larger 

magnitudes outside the object are attributed to noise in air. To further visualize the deformation 

field error, the magnitudes of the error vectors were plotted in Fig. 5.5(e-f). Small to moderate 

errors (~0-2.5 mm) are evident within the object, such as the superior medial region in (e) and the 

inferior right region in (f), corresponding to errors in estimating the deformation of vasculature in 

the mediastinum and a slight mismatch in the displacement of the heart, respectively. 
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Figure 5.5: (a, b) Deformation field estimated by dPIRPLE using 20 projections. The image below 
the deformation field is a merged image from the prior image and the current anatomy. The yellow 
and blue color correspond to positive and negative image value differences between the prior image 
and the current anatomy, while the original greyscale is used in the region where the image value 
differences are small. (c, d) Error vectors between deformation field estimated by dPIRPLE and 
the “true” deformation field approximated by registering the prior image with current anatomy. (e, 
f) Plot of the magnitude of error vectors (with a trace of the body outline superimposed). 
 

The convergence properties of dPIRPLE in registration were evaluated by examining the 

progression of the registration residual error at different alternations (i.e., outer loop iterations) as 

shown in Fig. 5.6. The registration residual error was computed using the difference image between 

the deformed prior image and current anatomy. It can be seen that the majority of mismatch was 

compensated after the 1st alternation of registration, which substantially prevented incorrect 

structures from being injected into subsequent image updates. The moving image used in this 1st 

registration was the initialization image in dPIRPLE, that is, a PLE image reconstructed using the 

sparsely sampled dataset (shown later in Fig. 5.9, third row). However, remaining differences 

continued to be reduced between the 1st and the 20th alternation, especially in the areas of the ribs 

and primary bronchi, demonstrating the importance of the joint estimation. Note that the bright spot 

at z=1 and z=20 was not registration error but was created due to the introduced nodule which is 

inherent in the difference image between deformed prior and current anatomy. The local RMSE 
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between the deformed prior image and current anatomy was 76.5 × 10-4 mm-1 at z=0, 29.3 × 10-4 

mm-1 at z=1, 24.6 × 10-4 mm-1 at z=20, and 22.6 × 10-4 mm-1 using the “true” registration. These 

values reflect the same qualitative improvements as can be seen throughout iterations providing 

additional indication of the advantage of the joint estimation approach. 

 

Figure 5.6: Axial and sagittal views of a sequence of registration residual errors in dPIRPLE using 
20 projections over 190o. The value z reflects the estimation at the zth alternation of registration 
updates. 
 

The convergence of dPIRPLE was also quantified by plotting its objective function 

difference versus iteration in Fig. 5.7(a). The objective function value at the solution, denoted as 

Φ[∞], was approximated by the value at the end of all 20 alternations (Z=20) including 20 

registration blocks and 20 image blocks. Note that the cumulative number of image updates n 

labeled on the horizontal axis was a measurement of all the SQS updates spanning over alternations 

(
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= ∑ ). In each image block, a number of Tz (=50) SQS updates were performed, followed 

by a registration block with a number of Sz (=1000) registration updates in each level of the 

pyramid, followed by the next image block, etc. Note that the objective function values in 

Fig. 5.7(a) were computed using Eq. (5.2) with pP=1 (no change between image and registration 
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blocks). Figure 5.7(a) shows that the objective function increased monotonically within every 

image block due to the monotonicity of the SQS approach. The increase in objective function values 

was greatest in the 1st registration block and exhibited smaller improvement in subsequent 

registration blocks, consistent with the progression of the residual registration error in Fig. 5.6. 

The convergence of dPIRPLE was also evaluated in comparison to other iterative 

approaches using local RMSE. As shown in Fig. 5.7(b), PLE quickly reduced the RMSE but 

plateaued at a relatively high RMSE. PIPLE did not substantially reduce the RMSE due to the 

mismatched prior image. In contrast, both rigid PIRPLE and dPIRPLE saw steady reduction 

throughout the iterations, while dPIRPLE showed a higher reduction rate than rigid PIRPLE. Note 

that the RMSE was compared at the same iteration rather than at the same computation time. 

dPIRPLE and rigid PIRPLE with Tz=50 required 77.5% and 4.7% more computation time than 

PIPLE due to the registration step, while PLE required 15.5% less time than PIPLE due to the lack 

of a prior image penalty. The amount of time needed for the deformable registration in dPIRPLE 

is discussed in the following section. 

 

Figure 5.7: (a) The dPIRPLE objective function difference analyzed as a function of the cumulative 
number of image updates, Tz=50. (b) Local RMSE versus iteration number for all approaches. 
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5.3.3 Alternating maximization schedule 

The alternating maximization schedule is determined by three parameters: the maximum number 

of alternations in the optimization (Z), the number of ASGD updates per pyramid level in the zth 

alternation (Sz), and the number of SQS updates in the zth alternation (Tz). Z=20 was found to be 

sufficient to produce a nearly converged dPIRPLE image with little or no change in the image after 

Z=20. While the proposed alternating algorithm allows Sz and Tz to vary during alternations, only 

the case of constant S and T was considered in this study. (Finding optimal values of Sz and Tz at 

each alternation to achieve fastest convergence is the subject of future work.) Within each level of 

the pyramid, since the registration updates are dominated by the Jacobian calculation, one can 

perform many registration updates after the Jacobian calculation without substantially increasing 

the computation time. In this work, S=1000 was selected since larger S leads to marginal changes 

in the deformation field. In contrast, the number T has more influence in determining the 

computation time of the dPIRPLE technique. Increasing T means more SQS updates in one image 

block and relatively less frequent registration. If registration computation time were not an issue, it 

is arguably preferable to do registration updates more frequently so that the deformation estimation 

is more accurate at each image update. However, because multi-resolution deformable registration 

does have significant computational cost, there exists a trade-off between computation time and 

registration update frequency (and therefore reconstruction accuracy), primarily determined by T. 

To investigate this trade-off, Fig. 5.8 depicts the local RMSE after n cumulative image 

updates for various T values. Note that T=1000 means one registration followed by 1000 SQS 

updates, corresponding to the simple staged estimation scenario with one registration followed by 

reconstruction. The T=1000 case shows significantly higher local RMSE, again demonstrating the 

importance of the joint estimation. In the zoomed region, T=50, 25, and 5 all exhibit similarly low 

local RMSE at the 1000th iteration. However, since T=50 requires the least computation time among 

those three choices (as shown in Table 5.3), T=50 was selected as the optimal T in these studies. 
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With more relaxed time constraints, one might choose different optimal T values according to 

different clinical requirements. The computation times in Table 5.3 were measured on a high 

performance workstation equipped with two Intel Xeon E5-2600 processors and one Nvidia 

GeForce GTX 680 graphics card. 

 

Figure 5.8: Local RMSE computed versus the cumulative number of image updates for dPIRPLE 
at various T values. 
 

Table 5.3: Computation time at various settings of T. 

T Registration Time (min) Reconstruction Time (min) Total Time (h) 

5 1100 142 20.7 
25 220 142 6 
50 110 142 4.2 
100 55 142 3.3 
1000 5.5 142 2.5 

 

0 200 400 600 800 1000

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2 x 10-3

Iteration

Lo
ca

l R
M

SE

 

 

T=1000
T=100
T=50
T=25
T=5

500 600 700 800 900 1000
1.6

1.7

1.8

 

 

x 10-3

 

            

nCumulative number of image updates n



153 

 

5.3.4 Reconstruction results 

The reconstruction results of dPIRPLE were compared with other approaches as well as the "true" 

current anatomy, as shown in Fig. 5.9. All of these results used the same sparsely sampled dataset 

(20 projections equally spaced over 190o) with a fixed exposure (1.25 mAs per projection), 

representing an 18-fold exposure reduction over a fully sampled dataset. All iterative approaches 

(PLE, rigid PIRPLE, single-registration dPIRPLE, and dPIRPLE) used 1000 iterations (i.e. 1000 

SQS updates) to generate nearly converged images. FBP exhibited substantial artifacts from sparse 

sampling which made reliable nodule detection very difficult. PLE reduced the artifacts, but strong 

regularization resulted in relatively low spatial resolution which made nodule detection and volume 

changes difficult to assess. Rigid PIRPLE appeared to overcome ambiguous structures in areas of 

more rigid motion such as the ribs, spine, and primary bronchi, but mismatch in the more 

deformable areas resulted in errors in reconstruction of the nodule. Single-registration dPIRPLE 

corresponds to a scenario of one deformable registration followed by 1000 SQS updates (i.e. 

T=1000 case in Sec. 5.3.3). Despite fairly accurate nodule reconstruction, incorrect anatomy can 

be seen in a few locations across the anatomy such as inside the dashed circle, mainly caused by 

registration residual errors after the 1st registration. In contrast, dPIRPLE presented a highly 

accurate estimate of the true anatomy and the nodule. 
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Figure 5.9: Reconstruction results of FBP, PLE (βR=103), rigid PIRPLE (βP=104, βR=103.5), single-
registration dPIRPLE (βP=104, βR=103.5), and dPIRPLE (βP=104, βR=103.5) with 20 projections and 
1.25 mAs/projection. The local RMSE of the reconstruction result is displayed in each case. Note 
the accurate estimate of nodule and lung structures (e.g. airways) in dPIRPLE. 
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5.3.5 Performance with varying sparsity 

To investigate the performance of dPIRPLE in comparison with other iterative approaches and 

varying levels of projection sparsity, subsets of data from a full set of 360 projections over 360o 

were selected to form sparse datasets of 200, 100, 40, 20, and 10 projections in a short scan orbit 

that covers 200o. Moreover, the standard exposure (1.25 mAs/projection) used in Sec. 5.3.1-5.3.4 

was replaced with a low exposure (0.1 mAs/projection) acquisition to further challenge dPIRPLE 

at every sparsity level. For each approach and each dataset, an optimal βR (PLE) or pair of (βP, βR) 

(PIPLE, rigid PIRPLE, and dPIRPLE) was chosen using the aforementioned 1D parameter sweep 

to find the lowest global RMSE and SSIM. If the two metrics resulted in different optima, an 

average value between the two optima was used. 

Figure 5.10 summarizes the reconstructed images for each approach over a range of sparse 

sampling. While all approaches exhibit accurate estimates at 200 projections (i.e., one projection 

per degree covering 180o plus fan angle), as the sparsity increases, PLE, PIPLE, and rigid PIRPLE 

all exhibit apparent reductions in image quality. In PLE, as the sparsity increases, both the spatial 

resolution and the contrast over the entire image drop quickly. Visualization of the nodule becomes 

less accurate and hard to identify when the number of projections drops to 20 or below. In PIPLE, 

with the addition of patient-specific prior information, both the contrast and spatial resolution are 

better maintained compared to PLE at each level of sparsity. However, due to a lack of registration, 

anatomical mismatches are readily apparent. As the sparsity increases, the nodule becomes more 

and more distorted due to the reduced information provided by the measurements, and the nodule 

largely disappears at 10 projections. The joint registration in rigid PIRPLE helps to reduce a number 

of mismatches associated and improves overall image quality compared to PIPLE at each level of 

sparsity. However, errors are still visible in areas of more deformable anatomy. In particular, 

artifacts and a loss of spatial resolution are evident at soft tissue and airway boundaries in the lung. 

Moreover, the accuracy in reconstruction of the nodule is degraded as the sparsity increases. The 
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remaining mismatches due to deformation are further corrected in dPIRPLE, and a high degree of 

accuracy is maintained over a broad range in sparsity. At the lowest number of projections (10), 

dPIRPLE was still somewhat able to preserve the nodule shape and achieve much better nodule 

reconstruction compared to other approaches, although a reduction in the nodule contrast can be 

seen. 

 

Figure 5.10: PLE, PIPLE, rigid PIRPLE and dPIRPLE reconstruction images at different levels of 
projection sparsity at low exposure (0.1 mAs/projection). 

 

The accuracy of the reconstructed images was quantified using global RMSE and SSIM. 

Figure 5.11(a) shows that RMSE exhibited a clear monotonic dependence on the sparsity for all 

iterative approaches. Moreover, the sensitivity to sampling was substantially lower for dPIRPLE 

than for other iterative approaches. Note that the use of a prior image without registration (PIPLE) 
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resulted in even higher error than the case without a prior image (PLE), illustrating the importance 

of proper registration. The SSIM results in Fig. 5.11(b) show similar trends as in Fig. 5.11(a), and 

a notable difference in the sensitivity to sampling is observed for dPIRPLE in comparison to the 

other approaches. A possible reason is that the SSIM metric in Fig. 5.11(b) only considers the 

nodule area instead of the entire image and the residual registration errors in the other approaches 

have more influence on the image quality in the vicinity of the nodule. Figure 5.11 also shows 

better image estimation in dPIRPLE than PLE at 200 and 100 projections, indicating that 

incorporating a patient-specific prior image can increase imaging performance even at moderate or 

full sampling. 

 

Figure 5.11: Global image accuracy [(a) RMSE] and local image quality [(b) SSIM] for PLE, 
PIPLE, rigid PIRPLE, and dPIRPLE reconstruction computed as a function of sparsity at low 
exposure (0.1 mAs/projection). 
 

5.3.6 Capture range of the deformable registration in dPIRPLE 

Previous sections demonstrated accurate registration from the deformable registration method used 

in dPIRPLE for the specific patient motion introduced in the cadaver experiment. A simulation 

study was also conducted to determine the robustness (i.e. capture range) of the deformable 

registration method with regard to patient motion. Figure 5.12 shows the RMSE between the 
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registered prior image and the current anatomy as a function of the mean displacement after both 

the initial rigid registration and after both rigid and deformable registration. The RMSE remained 

consistently small when the mean displacement was less than 125 mm and became relatively large 

when the mean displacement was over 125 mm. Even though the deformable registration is able to 

decrease the RMSE substantially across the entire range, those cases with RMSE > 30 mm-1 do not 

provide clinically useful image reconstructions. Thus, deformable registration does not compensate 

for a poor rigid registration and the delineation between success and failure cases lies at a mean 

displacement of 125 mm (indicated by the dashed line).  While the 125 mm capture range may be 

appropriate for many clinical tasks, this range may be extended with a more robust initialization of 

the rigid registration.240 

 

Figure 5.12: RMSE between the registered prior image and the current anatomy as a function of 
the mean displacement after both the initial rigid registration and after both rigid and deformable 
registration. Each vertical pair of data points correspond to one instance of random rigid motion 
that was added to the prior image before registration. The dashed line indicates the delineation 
between success and failure cases at a mean displacement of 125 mm. 
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5.4 Conclusions and discussion 

This chapter introduced a model-based framework, dPIRPLE, that jointly: 1) estimates 3D 

deformation between a high-quality patient-specific prior image and current anatomy based on 

subsequent data acquisitions, and 2) estimates a reconstructed image from noisy measurements 

using the deformed prior image. The proposed framework is solved using an alternating 

maximization strategy, and both the parameter selection and optimization schedule were 

investigated. Cadaver experiments were conducted emulating a lung nodule surveillance scenario, 

and the dPIRPLE algorithm demonstrated superior reconstruction accuracy and image quality 

compared to FBP, PLE, PLE with an unregistered prior image (PIPLE), and PLE with rigid 

registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels. 

While dPIRPLE provides a general framework that allows for different kinds of 

deformable registration in the registration block, a specific registration method utilizing a cubic B-

spline-based FFD model and ASGD algorithm was selected in this work. This particular 

registration method was able to capture a large portion of the deformation in the very first 

registration block and continued to be iteratively refined with additional alternations of the 

maximization algorithm. These alternations were found to be essential in minimizing residual errors 

and maximizing imaging performance. However, despite the success of the dPIRPLE approach 

using B-spline-based FFD, some residual errors were observed even after a large number of 

alternations. These residual mismatches could possibly be resolved using more sophisticated 

registration methods, and is the subject of future work. For example, the deformation field 

estimation might be further refined by applying the Demons algorithm and its variants.242–244 The 

capture range of the deformable registration in dPIRPLE was characterized by adapting a large 

number of random rigid motions to the prior image. A more realistic way may be to perform cadaver 

or phantom studies with increasing levels of non-rigid motion and is the subject of future work. 
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Investigation of the schedule for dPIRPLE alternating maximization demonstrated the 

trade-off between the reconstruction image accuracy and the computation time. In this chapter, the 

trade-off was primarily determined by the parameter T, the number of image updates in one image 

block. However, this chapter also presumed a constant number of image updates (T) and 

registration updates (S) per block during alternations. The more generalized scenario where Tz and 

Sz may vary at the zth alternation may potentially provide greater opportunity to balance accuracy 

versus computation time. For example, since more dramatic changes in the image estimate typically 

happen in earlier image updates, one might start with relatively low Ti for the up-to-date 

deformation estimate and gradually increase Ti to reduce the computation time. Such studies are 

the subject of ongoing and future work. 

The use of the modified p-norm in the prior image penalty term allowed additional 

flexibility to encourage or enforce differences from the prior image in the reconstruction. In this 

chapter, investigations used a strategy where norms were mismatched between the image update (a 

modified L1 norm) and the registration update (L2 norm). This approach was found to be 

advantageous in improving convergence and avoiding local minima. However, despite the desirable 

convergence properties seen in practice with this method, this norm mismatch leads to solutions 

that do not strictly maximize the original objective (either the L1 or L2 form). Although beyond the 

scope of this chapter, this issue may be handled by applying methods similar to graduated non-

convexity optimization.245 For example, one could start the first registration block with pP=2 and 

gradually reduce the value of pP in subsequent registration blocks to pP=1. In this fashion, the 

desirable convergence properties observed above could be combined with a stricter convergence in 

a single objective. 

Proper selection of regularization parameters is important for all model-based 

reconstruction approaches including dPIRPLE. Incorrect selection of regularization parameters, 

especially prior image penalty strength βP, will not only reduce reconstructed image quality but 

have the potential to bias the reconstruction towards the prior data (i.e. to show no change). The 
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studies in this chapter employed the same method as in previous work111 to select optimal 

regularization parameters and demonstrated that knowledgeable 1D parameter sweeps in βP and βR 

individually can be used to identify optimal dPIRPLE parameters accurately and much more 

efficiently than an explicit, computationally intense 2D parameter sweep. When a truth image is 

not provided, one could still perform the basic search method with visual assessment instead of 

using a RMSE metric. These approaches still require several reconstructions to perform the 

optimization sweep. One method that can be used to help reduce this computational burden will be 

introduced in the next chapter, which leverages analytical approximations to the implicitly defined 

estimator along with predictive performance metrics to determine the optimal penalty strength. This 

method enables efficient selection of proper regularization parameters especially prior image 

penalty strength βP, ensuring minimal bias of the reconstructed image towards the prior data in 

regions where change is present between the current and prior anatomy. Moreover, although the 

penalty strength βP and βR are treated as scalars in this work, this method is sufficiently flexible to 

allow the use of a spatially varying map of βP or βR to design and customize a spatially varying 

penalty strength. This is similar to other intentionally spatially varying regularization approaches 

used in PLE to enforce spatially uniform resolution134 or optimization of task-based detectability.136 

In the context of prior-image-based reconstruction, spatially varying penalty design could enforce 

more uniform inclusion of prior image information or intentionally nonuniform designs based on 

where anatomical change is found. More about the design of prior image strength including 

spatially varying penalty design will be covered in the next chapter. 

One very important question associated with all prior-image-based reconstruction methods 

concerns the veracity of features found in the reconstruction. In these studies, false structures were 

observed in reconstructions where registration was absent or insufficiently accurate (e.g., doubling 

of anatomy in extreme circumstances). Moreover, despite these obvious flaws in the image, the 

apparent image quality (e.g., sharpness) of the image can remain high. Thus, even though such 

image defects were not observed with dPIRPLE, it would be valuable to have an assessment that 
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identifies potential false structure. In the paper by Stayman et al.,246 a methodology was proposed 

whereby the reconstruction is decomposed into portions individually attributable to the data and 

the prior image. Such an approach could potentially be applied in dPIRPLE to ensure that false 

structures are not present in reconstructions. 

While this chapter focused on the lung nodule surveillance application, the general 

framework is applicable to many other scenarios where patient-specific prior images, imaging 

sequences, or longitudinal studies are available, including image-guided radiation therapy, post-

operative treatment assessment, and monitoring of patients in the intensive care unit. Many of these 

applications have more stringent timing constraints and will require refinements and more 

computationally efficient implementations of the dPIRPLE approach. For example, a fully GPU-

based implementation of dPIRPLE is expected to accelerate parallelizable operations (the current 

implementation only uses the GPU for projection operations and requires frequent and inefficient 

data transfers between CPU and GPU). Employing GPU for registration in dPIRPLE alone could 

potentially reduce each registration update from current minutes to seconds.247 Furthermore, 

combining ordered subsets and momentum methods has recently been shown to substantially 

accelerate the x-ray CT image reconstruction.167,168 Recent experiments191 have suggested that 

standard non-sparse reconstructions for interventional systems can be computed in a few minutes. 

With such improvements, the dPIRPLE approach is expected to be valuable in a wide range of 

imaging scenarios and in different anatomical sites.  

Moreover, extensions to the approach whereby prior image data is available from alternate 

imaging modalities can further generalize the application of dPIRPLE. In image-guided surgery, 

for example, dPIRPLE could be adapted to using a preoperative diagnostic CT prior image to 

improve image quality and reduce dose in intraoperative CBCT. A similar scenario can be 

envisioned for image-guided radiotherapy. dPIRPLE may also be applied to dual-energy CT in 

which a high-fidelity high-energy image is used to improve low-fidelity low-energy image with 

certain mechanism to prevent from perturbing the accuracy of the attenuation coefficients. Even 
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more varied approaches with cross-modality registration are potentially possible using MRI and 

nuclear imaging studies. Such extensions would bring a wider spectrum of interesting challenges 

to the dPIRPLE framework, such as other forms of reduced fidelity data (e.g., alternate sparse 

samplings) and the need for novel similarity metrics for inclusion of cross-modality prior images. 

To address the potential additional difficulties in inconsistent intensity values, possible solutions 

may include matching the intensity values of the prior image to those of the current anatomy,248 

employing a similarity metric that does not require consistent intensity values such as a mutual-

information-based metric,249 or exploiting feature-based registration methods such as registering 

the surface point sets of both images.250 Another potential difficulty lies in that motion between 

scans is likely to be much larger than the one introduced in the cadaver experiment for some 

applications, for example when a prior image is acquired months before. Section 5.3.6 has 

demonstrated that dPIRPLE has a fairly wide capture range thereby being able to compensate fairly 

large motion. For even larger motion, more advanced methods are needed that would tolerate large 

initial misregistration. For pulmonary imaging, this might include approaches that exploit airway 

bifurcation structures and lung surface meshes.251 
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Chapter 6 

6. Control of Change Admission in Prior-Image-Based 

Reconstruction 

6.1 Introduction 

6.1.1 Balancing prior information with new data 

As shown in the previous chapter, MBIR can exploit anatomical information from prior images to 

improve image quality and/or reduce radiation dose. The general framework referred to as 

PIRPLE111 and the dPIRPLE variant incorporating a deformable registration model demonstrates 

the strong advantages presented by prior-image-based reconstruction (PIBR) methods, particularly 

under conditions of sparse, low-dose sampling, and sequential imaging studies. 

Despite the benefits of using patient-specific prior images in image reconstruction, a key 

question needs to be answered in PIRPLE (and dPIRPLE) as well as other PIBR methods: To what 

extent should prior image information be used to achieve accurate image reconstruction? That is, 

how much information should come from the prior image and how much should come from the 

measurements. Such balance is typically controlled via regularization parameters, such as βP in 

PIRPLE (and dPIRPLE), 𝛼𝛼 𝜆𝜆⁄  in PICCS with statistical weights,218 βM in the Reconstruction of 

Difference method,252 and β in image reconstruction that penalizes differences between image 

patches.219 Inappropriate selection of the prior image strength can lead to poor reconstruction. 

Specifically, the use of too little prior image information fails to produce a significant imaging 

benefit with low fidelity data, while the use of too much prior image information can force the 
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reconstructed image to simply replicate the prior image, potentially obscuring anatomical changes 

and producing false structures. Further complicating the balance is that the optimal prior image 

strength can vary across different patients, anatomical changes (e.g., attenuation, shape, and size), 

acquisition geometry, x-ray techniques, and image reconstruction parameters (e.g., voxel size, 

volume size). 

Traditional methods for choosing the proper prior image strength include exhaustive 

searches and heuristics / look-up tables. Exhaustive search involves performing a large number of 

image reconstructions with different regularization parameter values and choosing a value 

corresponding to an image that optimizes a certain image quality metric; however, this method can 

be extremely time-consuming, since each reconstruction requires iterative solution. Heuristics and 

look-up tables do not require image reconstruction and therefore require much less time, but they 

can be subject to error and suboptimal solutions due to the aforementioned variations of the optimal 

strength across imaging studies. 

In this chapter, a novel method is proposed that prospectively estimates the optimal prior 

image strength for PIBR without heuristics or exhaustive search. This method leverages an 

analytical approximation to PIBR objective functions containing non-quadratic penalties.246 A 

predictive performance metric is introduced that utilizes the approximate analytical solution and a 

specification of an anticipated change (i.e., an anatomical change for which accurate reconstruction 

is to be ensured). This performance metric is, in turn, used to estimate the optimal prior image 

strength. Additionally, because optimal prior image strength can depend on the location of 

anatomical change, a spatially varying map of prior image strength is proposed to optimally admit 

changes everywhere in the image. Thus, the proposed design can ensure accurate reconstructions 

without a priori knowledge of the change location. 

The proposed methodology is investigated both in an ellipse phantom and in a realistic 

thorax phantom emulating a lung nodule surveillance scenario. Performance is compared with 

traditional exhaustive searches, and the optimality of the spatially varying design is explored. 
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Additionally, the dependence of optimal prior image strength on different properties of the change 

(i.e., attenuation, shape, size) is also investigated. 

6.1.2 Acknowledgement and unique contributions 

The methods and results reported below were reported in conference proceedings and journal 

articles as follows: 

(1)       H. Dang, Jeffrey H. Siewerdsen, and J. Webster Stayman, "Regularization design and control 

of change admission in prior-image-based reconstruction," SPIE Medical Imaging, San 

Diego, CA, Vol. 9033, 90330O (2014). 

(2)          H. Dang, J. H. Siewerdsen, and J. W. Stayman, "Prospective regularization design in prior-

image-based reconstruction," Physics in Medicine and Biology, 60 (24), 9515-9536 (2015). 

with permission from the publisher for reproduction of content in this dissertation. The author’s 

primary contributions in this work were as follows: development of a method that prospectively 

estimates optimal prior image strength for accurate reconstruction of anatomical changes in prior-

image-based reconstruction; introduction of spatially varying prior image penalty for optimal 

admission of the anatomical change everywhere in the image; phantom experiments; quantitative 

evaluation of the reported method including estimation accuracy and computation time; and 

investigation of the dependence of optimal prior image strength on contrast, location, size, and 

shape of the anatomical change. Valuable discussion with Dr. Rick Colbeth, Dr. Sungwon Yoon, 

and Mr. Edward Shapiro at Varian Medical Systems (Palo Alto, CA) is gratefully appreciated. The 

work was supported by research collaboration with Varian Medical Systems (Palo Alto, CA) and 

by the National Institutes of Health Grant No. 2R01-CA-112163. 
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6.2 Methods 

6.2.1 Regularization design in prior-image-based reconstruction (PIBR) 

While a number of PIBR approaches exist, the investigations below focused specifically on the 

PIRPLE methodology. It is expected that the basic framework can be extended to other approaches, 

including PICCS with statistical weights,218 image reconstruction using non-local prior 

functions,219 and reconstruction of difference using prior images.252 The PIRPLE method employs 

a PLE framework which incorporates patient-specific prior image information through a 

regularization term. The objective function of PIRPLE contains three terms: 1) a data fidelity term 

that uses the measured data based on measurement statistics; 2) an image roughness regularization 

term that enforces local smoothness and/or edge-preservation in the image estimate; and 3) a prior 

image regularization term that enforces similarity of the image estimate to a prior image while 

allowing sparse differences (i.e., anatomical changes) between the two. The prior image is 

simultaneously registered to the current patient anatomy in either a rigid fashion111 or a non-rigid 

fashion (as shown in the previous chapter) to account for patient motion between the previous scan 

and the current scan. In this chapter, the PIRPLE objective function without registration is 

considered: 

( ) ( )ˆ arg max ; PR

R P

pp
PIRPLE R R P P Pp p

L y
µ

µ µ β µ β µ µ= − − −Ψ Ψ                      (6.1) 

As in the previous chapter, pR = 1 is chosen because L1 norm penalty function or its variants (e.g., 

Huber function131) has been shown to encourage edge preservation and achieve improved noise-

resolution tradeoff in the reconstructed image compared to quadratic penalty function,13,93 and pP = 

1 is chosen because L1 norm penalty function or its variants has been shown to encourage similarity 

of the reconstructed image to the prior image but also allow for sparse differences.110,111 The 

sparsifying operator ΨR is chosen to compute first-order neighborhood pairwise voxel differences, 
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and ΨP is the identity matrix since the anatomical changes between the prior image and the current 

anatomy are already sparse. In situations where the anatomical changes are less sparse (e.g., in the 

case of a much larger anatomical change), a sparsifying transform other than the identity matrix 

would be encouraged. 

Accurate reconstruction of anatomical changes in PIBR requires a proper balance between 

the information from the prior image and the measurements. In PIRPLE, this balance is governed 

primarily by the prior image strength parameter βP. A larger βP leads to the use of more information 

from the prior image in the current image reconstruction, while smaller βP restricts the amount of 

information from the prior image. Accurate reconstruction of anatomical changes in PIRPLE is 

also affected by the image roughness strength βR through the control of image smoothness. Previous 

work by Stayman et al.111 suggests that the optimization of these two parameters is often separable, 

suggesting that the two parameters can be selected independently. Specifically, previous work111 

found that the optimal value of βP is nearly independent of βR when βR is low. Therefore, a 1D 

optimization over βP can be first performed with a low βR to estimate the optimal βP, which is 

followed by another 1D optimization over βR with the optimal βP. The optimal βP and βR estimated 

from this pair of separate 1D optimization using RMSE from a truth image as the metric has been 

found to closely match the optimal βP and βR estimated from an exhaustive 2D optimization.111 This 

chapter focuses on investigating the selection of the optimal prior image strength βP in the context 

of a fixed image roughness strength βR, which is the first step of these two 1D optimizations. 

6.2.2 Approximate analytical solution of PIBR 

The objective function of PIRPLE in Eq. (6.1) does not generally admit a closed-form solution 

because of the nonlinearities of both the log-likelihood function and the non-quadratic 

regularization. In the previous chapter, this objective function is solved iteratively using 

optimization approaches. However, it is possible to derive an approximate closed-form solution of 
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the objective. Such approximation does not necessarily avoid a full iterative solution for the desired 

reconstruction of subsequent imaging studies, but may suffice for prospective regularization 

design. In this chapter, an approximate closed-form solution is derived by substituting each non-

quadratic term in Eq. (6.1) with a quadratic term. 

First, the data fidelity term can be approximated by a weighted least-squares term using a 

second-order Taylor approximation of the log-likelihood function.139 The simplified objective 

function can be written as: 

( )2ˆ arg min PR

R P

pp
R R P P Pp p

l
µ

µ µ β µ β µ µ≈ − + + −
W

A Ψ Ψ                      (6.2) 

where the weighted least-squares in Eq. (6.2) are the same as the one defined in Sec. 1.4.9. Note 

that in some cases the Gaussian assumption of the penalized weighted least-squares data fidelity 

term is preferred over the nonlinear Poisson likelihood. For example, the diagonal weighting W 

can be modified to accommodate various data corrections that modify the noise structure as 

illustrated in Chapter 2. 

Second, non-quadratic regularization (image roughness regularization and prior image 

regularization) terms can also be approximated by quadratic terms. Using the modified L1 norm 

and choosing a proper operating point about which one wishes to form approximate penalty 

estimates, the modified norm can be approximated by a quadratic function. One may approximate 

the scalar function applied to each element of the vector argument of the modified norm as follows: 

( ) ( ) ( ) 2
i i i i if x g x xκ τ≈ =                                              (6.3a) 
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             (6.3b) 

where f denotes the modified penalty for the p = 1 scenario which is equivalent to the Huber 

function. The function f has a scalar input xi, and may be approximated with the quadratic function 
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g. The function g includes a coefficient κi that is computed as a function of the operating point τi. 

As shown in Eq. (6.3b), when τi is chosen to be within the quadratic neighborhood ([-δ, δ]) of the 

function f, the values of the function f and g are exactly matched for any xi within the quadratic 

neighborhood. This scenario is illustrated in Fig. 6.1(a). When τi is chosen to be outside the 

quadratic neighborhood, the values of the function f and g are exactly matched at xi = τi and remain 

close to each other around xi = τi, as shown in Fig. 6.1(b). Such quadratic approximation of the non-

quadratic regularization yields two important observations. First, for each input element of f, a 

separate operating point will be chosen, and a separate parabola will be constructed indicating a 

location-dependent approximation. Second, since the approximation is most accurate around the 

operating point, it is desirable to select an operating point that is equal to or close to the value at 

which the penalty is evaluated. 

 

Figure 6.1: Approximation of the modified penalty function f (equivalent to the Huber function) 
with a quadratic function g about an operating point τi. The operating point is selected either within 
(a) or outside of (b) the quadratic neighborhood ([-δ, δ]) of the function f. 
 

Using the quadratic approximation in Eq. (6.3), the entire modified L1 norm can be 

approximated and represented in the following matrix form: 

( ) ( ) ( ) ( ){ }( )1 2
1

T
i i i ii i

x f x x x xκ τ κ τ= ≈ =∑ ∑ D                       (6.4) 

where ‖𝑥𝑥‖11 denotes the modified L1 norm of a vector x, and κ and τ denote a vector of coefficients 

and operating points, respectively. One can then apply Eq. (6.4) to the two non-quadratic 

regularization terms in Eq. (6.2) to yield two quadratic terms: 
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( ) ( ) ( )2ˆ arg min
TT

R R R R P P P P P Pl
µ

µ µ β µ µ β µ µ µ µ ≈ − + + − − W
A Ψ D Ψ Ψ D Ψ (6.5a) 

( ){ } ( )( ){ },R R P P Pκ µ κ µ µ= = −D D Ψ D D Ψ                              (6.5b) 

For each regularization term, an operating point must be defined in the quadratic approximations. 

Ideally, this operating point should be an image volume close to the solution of the original 

objective function. Presuming one has an image estimate 𝜇𝜇�, this leads to an operating point 𝚿𝚿𝑅𝑅𝜇𝜇� 

for the image roughness regularization and 𝚿𝚿𝑃𝑃(𝜇𝜇� − 𝜇𝜇𝑃𝑃) for the prior image regularization, as 

shown in Eq. (6.5b). When the image estimate 𝜇𝜇� is chosen to be close to the PIRPLE solution 

𝜇̂𝜇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, such selection of the operation point is expected to yield accurate approximation of the 

regularization terms evaluated at 𝜇̂𝜇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Details on choosing a specific image estimate 𝜇𝜇� will be 

discussed in the next section. 

The objective function in Eq. (6.5a) now contains three quadratic terms thereby admitting 

a closed-form solution, which can be written as: 

( ) ( )1
ˆ T T T T T

R R R R P P P P P P P P Plµ β β β µ
−

≈ + + +A WA Ψ D Ψ Ψ D Ψ A W Ψ D Ψ            (6.6) 

This closed-form solution will be used later in Sec. 6.2.4 to estimate the optimal prior image 

strength. 

6.2.3 Selection of an operating point 

Proper selection of the operating points 𝚿𝚿𝑅𝑅𝜇𝜇�  and 𝚿𝚿𝑃𝑃(𝜇𝜇� − 𝜇𝜇𝑃𝑃)  in Eq. (6.5b) is important for 

accurate approximation of the actual solution of PIRPLE. Ideally, one should use the PIRPLE 

solution as 𝜇𝜇� so that the value of the approximate quadratic function exactly matches that of the 

Huber function. This is referred to as the Ideal estimate, whose approximate solution of PIRPLE is 

denoted 𝜇̂𝜇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 . While this estimate requires a full PIRPLE reconstruction, which is 

computationally expensive and supersedes the need for an approximate solution, the Ideal estimate 
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is useful in investigating the accuracy of the underlying quadratic approximation of the non-

quadratic regularizations. 

A practical operating point is one that can be used for prospective regularization design 

without having performed the reconstruction. In sequential imaging studies, one often has general 

knowledge of the anticipated change (or perhaps the kind of changes one might wish to see) in the 

subsequent scan. For example, in pulmonary nodule surveillance, clinicians may have some 

knowledge of the nodule’s attenuation, size, and shape in a follow-up scan based on the progress 

of the disease and based on the appearance of the nodule in a previous scan. Similar situations can 

be found in image-guided radiation therapy, where clinicians may anticipate the location of a tumor 

or tissue at risk in the current scan based on its location in previous scans. Likewise in image-

guided procedures where specific tissue volumes are targeted for resection or specific implants are 

introduced into the patient, and preoperative scans provide the basis for prior image information.  

While knowledge of possible change in the image volume generally includes varying levels 

of certainty about the specific attenuation, location, shape, and size, it is convenient to start with 

the assumption that the change is known. Similarly, for prospective regularization design, one 

might presume that a particular change is present in order to ensure that the regularization design 

is appropriate should the actual change be present. In this case, one could form an image estimate 

𝜇𝜇� as the sum of a prior image 𝜇𝜇𝑃𝑃 and some presumed change 𝜇𝜇𝐶𝐶: 

P Cµ µ µ= +                                                              (6.7) 

This method is referred to as the P+C estimate, with the approximate PIRPLE solution based on 

Eq. (6.6) denoted as 𝜇̂𝜇𝑃𝑃+𝐶𝐶. Since the image estimate 𝜇𝜇� in the P+C estimate does not use the PIRPLE 

solution, a full image reconstruction is not required in this method. Moreover, one could use the 

approximate solution from the first P+C estimate (denoted as 𝜇̂𝜇𝑃𝑃+𝐶𝐶1 ) as the image estimate 𝜇𝜇� to 

perform another P+C estimate, and repeat n times to get the nth iteration P+C estimate (denoted as 

𝜇̂𝜇𝑃𝑃+𝐶𝐶𝑛𝑛 ). Iterating on the P+C estimate is expected to yield better selection of the operating point, 



173 

 

thereby resulting in more accurate approximation of the PIRPLE solution, though such a procedure 

will increase the computation time associated with the estimation. All the estimation methods 

mentioned in this section along with the full PIRPLE reconstruction method are summarized in 

Table 6.1. 

 

Table 6.1: Summary of different ways of selecting the operating point for the approximate 
analytical solution of PIRPLE. An operating point is not needed if doing a full PIRPLE 
reconstruction (first row), while it is needed and defined as the PIRPLE solution in Ideal estimate 
(second row), defined as the sum of a prior image and some presumed change in P+C estimate 
(third row), and defined as the results from the (n-1)th iteration P+C estimate in the nth iteration P+C 
estimate (last row). 
 

Method Name  𝝁𝝁� in the Operating Point Output Image 

PIRPLE Reconstruction  N/A 𝜇̂𝜇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
Ideal Estimate 𝜇̂𝜇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝜇̂𝜇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 

P+C Estimate (1 iteration) 𝜇𝜇𝑃𝑃 + 𝜇𝜇𝐶𝐶 𝜇̂𝜇𝑃𝑃+𝐶𝐶1  
P+C Estimate (n iterations) 𝜇̂𝜇𝑃𝑃+𝐶𝐶𝑛𝑛−1 𝜇̂𝜇𝑃𝑃+𝐶𝐶𝑛𝑛  

 

6.2.4 Predictive performance metric 

Previous work by Stayman et al.111 considered optimal prior image strength βP based on minimizing 

the RMSE of a PIRPLE-reconstructed image with respect to a truth image in a ROI containing the 

change. In this chapter, a predictive performance metric is proposed which uses the approximate 

analytical solution introduced in the previous section to estimate a value of βP that optimally admits 

a given anatomical change in the image reconstruction. The metric can be written as: 

( )ˆ ˆarg min
P

P P C P
β

β µ µ µ β= + −
S

                                           (6.8) 

which computes the RMSE between the approximate solution and the sum of a prior image and 

some presumed change in a ROI that contains the change. This ROI is referred to as the Change 

ROI and is represented using a binary mask S in Eq. (6.8). 
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A simple scheme is chosen to minimize the metric in Eq. (6.8) by evaluating at different 

βP with regular spacing and choosing the βP that yields the minimal metric value. More 

sophisticated searches for the optimal βP value are the subject of future work. Since the system 

matrix A is typically very large and is not computed explicitly, the inverse operation in Eq. (6.6) is 

solved in practice using a linear conjugate gradient (CG) method. Specifically, a system of linear 

equations are formed in a matrix form as 𝑍𝑍𝑍𝑍 = 𝑏𝑏, in which matrix Z corresponds to the term 

𝐀𝐀𝑇𝑇𝐖𝐖𝐖𝐖+ 𝛽𝛽𝑅𝑅𝚿𝚿𝑅𝑅
𝑇𝑇𝑫𝑫𝑅𝑅𝚿𝚿𝑅𝑅 + 𝛽𝛽𝑃𝑃𝚿𝚿𝑃𝑃

𝑇𝑇𝑫𝑫𝑃𝑃𝚿𝚿𝑃𝑃  in Eq. (6.6), vector b corresponds to the term 𝐀𝐀𝑇𝑇𝐖𝐖𝑙𝑙 +

𝛽𝛽𝑃𝑃𝚿𝚿𝑃𝑃
𝑇𝑇𝑫𝑫𝑃𝑃𝚿𝚿𝑃𝑃𝜇𝜇𝑃𝑃 in Eq. (6.6), and the vector x computed by a linear CG method corresponds to the 

image estimate 𝜇̂𝜇 in Eq. (6.6). Since computing an approximate solution is much faster than doing 

a full image reconstruction, the proposed method is expected to be much more efficient than a 

traditional exhaustive search that requires full image reconstructions.  

6.2.5 Spatially varying prior image strength map 

The optimal prior image strength for a given anatomical change has been found to be shift-variant 

from previous work.253 That is, optimal strength designed at one location is not necessarily optimal 

for other locations even for identical anatomical changes. Thus, this shift-variance introduces a 

challenge for regularization design when the location of the change is not known a priori. To 

address this problem, a spatially varying βP map is proposed, similar to other intentionally spatially 

varying regularization approaches such as for enforcing uniform resolution134 and optimization of 

task-based detectability.136 Specifically, the approach performs individual optimizations of βP at 

every possible location (given a specific presumed anatomical change positioned at each location) 

to form a βP map that optimally admits change everywhere. Although repeating the proposed 

regularization design method at every location requires significantly more computation time than 

for only one location, such designs can be performed at any time after the prior image scan and 

before the subsequent scan. For example, surveilling a solitary pulmonary nodule involves a time 
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between scans of several months,254 leaving ample time between any two adjacent scans for 

performing such design. Similarly in fractionated radiotherapy, there is typically several days 

between the planning scan and the first day of treatment, and one day between subsequent scans at 

each fraction of treatment. In practice, such design can also be accelerated by estimating the optimal 

βP at each grid point and interpolating the results across the image. The design of a spatially varying 

βP map is first demonstrated in the ellipse phantom in Sec. 6.3.3 and then used to reconstruct a 

solitary pulmonary nodule in the thorax phantom in Sec. 6.3.5. 

6.2.6 Digital phantoms and simulation studies 

Two digital phantoms are used in this work and are shown in Fig. 6.2. The ellipse phantom in Fig. 

6.2(a) consists of three components: 1) a background ellipse (major axis 41 cm, minor axis 32.4 

cm) with attenuation (0.021 mm-1) similar to soft tissue; 2) a dense circular insert with attenuation 

(0.041 mm-1) comparable to bone; 3) and a low-density circular insert with attenuation 

(0.001 mm-1) close to air. These components together comprise the anatomical information in the 

previous scan. For subsequent scans, an anatomical change (a small disc) was introduced in one or 

both of the two locations shown in Fig. 6.2(a). The ellipse phantom is used in Sec. 6.3.3 to 

demonstrate the shift-variance of the optimal βP and the design of a spatially varying βP map, and 

used in Sec. 6.3.4 to study the dependence of the optimal βP on three properties of an anatomical 

change (attenuation, shape, and size). In all of these studies, a system geometry was chosen that 

contained a 150 cm SDD, 122 cm SAD, and 0.556 × 0.556 mm2 detector pixel sizes. Only 20 

projections equally distributed over 190o were acquired in the subsequent scan, representing a factor 

of 18 exposure reduction as compared to a typical complete scan (360 projections over 360o). The 

20 projections were simulated using 106 photons per detector pixel with Poisson noise. 

The thorax phantom in Fig. 6.2(b) was generated from an axial slice of a CT scan of a 

cadaver torso. A lung nodule surveillance scenario was emulated in which a uniform disc emulating 
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a lung nodule (not present in the prior image scan but present in the subsequent scan) was placed 

in either the center or the periphery of the lung as shown in Fig. 6.2(b). The thorax phantom is used 

in Sec. 6.3.1 and 6.3.2 to evaluate the accuracy of the approximate analytical solution and predictive 

performance metric, and used in Sec. 6.3.5 to evaluate the design of a spatially varying βP map in 

a lung nodule surveillance scenario. The projections were generated using the same system 

geometry and x-ray technique as for the ellipse phantom, except for a lower number of photons per 

detector pixel (105). 

All PIRPLE reconstructions and image estimates used 340 × 420 × 1 voxels for the ellipse 

phantom and 260 × 300 × 1 voxels for the thorax phantom, both with 1 × 1 × 1 mm3 voxel sizes. 

The Change ROI in the predictive performance metric was set to a circular region with a radius of 

30 voxels (large enough to cover the change) as illustrated by the dashed circles in Fig. 6.2. It was 

found that changing the size of the Change ROI (still large enough to cover the change) did not 

change the results reported below; therefore, the size of the Change ROI was fixed in this study. 

The size of the quadratic neighborhood δ in the Huber function was set to be 10-4 mm-1 as in the 

previous chapter. The image roughness strength βR was fixed at 102 in the ellipse phantom 

experiments and 10 in the thorax phantom experiments. 

 

Figure 6.2: (a) Ellipse phantom with attenuation (mm-1): 0.021 (background ellipse), 0.041 (bright 
circular insert), and 0.001 (dark circular insert). An anatomical change is introduced in one or both 
of Location I and Location II in the subsequent scan. The dashed circles illustrate the Change ROIs 
used in the predictive performance metric. (b) Thorax phantom generated from an axial slice of a 
CT scan of a cadaver torso. A uniform circular lung nodule was introduced in the subsequent scan 
in the center or the periphery of the lung to emulate a lung nodule surveillance scenario. 
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6.2.7 Computational complexity and implementation 

The computational complexity of both the proposed method (using P+C estimate) and the 

traditional exhaustive search are primarily determined by the total number of projection operations 

(forward projections and backprojections). Both methods use the same number of projection 

operations every iteration – CG iteration for the proposed method and SQS iteration for the 

exhaustive search (assuming pre-computed curvatures in SQS). However, the proposed method 

tends to require fewer iterations, because the objective function of the P+C estimate is quadratic 

and thereby easier to solve than the objective function in PIRPLE reconstruction which is not 

quadratic (not even guaranteed to be concave). The computation time of both methods are 

compared in the Results Section. 

Both the PIRPLE reconstruction and image estimates were implemented in Matlab (The 

Mathworks, Natick MA), with the projection operations executed on GPU using CUDA-based 

libraries. The projection operations were implemented based on separable footprints.98 All 

experiments were performed on a workstation equipped with one GeForce GTX TITAN (Nvidia, 

Santa Clara CA) graphics card. 

6.3 Results 

6.3.1 Evaluation of approximate analytical solution 

The proposed approximate analytical solution was evaluated in the thorax phantom by introducing 

a uniform disc emulating a lung nodule in the center of the lung as shown in Fig. 6.2(b). The 

uniform disc had a radius of 6 mm and attenuation of 0.021 mm-1 (i.e., 50 HU assuming 0.02 mm-

1 water attenuation), which is typical values for a solid solitary pulmonary nodule.254 This 

experiment assumed that the actual change could be exactly anticipated in the prospective 
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regularization design, so the presumed change used in the P+C estimate was set to be the same as 

the actual change. Figure 6.3 illustrates the PIRPLE reconstructions and image estimates using a 

number of βP values. In the top row, the nodule reconstructed by PIRPLE exhibited low resolution 

and a high level of noise when using a very low βP (due to high angular undersampling in the 

projection data) while it began to shrink or even disappear when using a very high βP, demonstrating 

the importance of using appropriate prior image strength in PIBR. The Ideal estimate exhibited a 

high level of agreement with the PIRPLE reconstruction for all βP, suggesting high accuracy in the 

quadratic approximation of the nonquadratic regularization given an ideal operating point. 

However, the Ideal estimate still requires a full PIRPLE reconstruction, which supersedes the need 

for an approximate solution. The P+C estimate did not use PIRPLE reconstruction results but 

exhibited some level of agreement with the PIRPLE reconstruction after one iteration of the P+C 

estimate and a high level of agreement after five iterations of the P+C estimate. These results 

suggest the possibility of approximating PIRPLE results without performing full image 

reconstructions.  

The computation time of traditional exhaustive search (PIRPLE reconstruction) and the 

proposed method (P+C estimate) were also compared. For this dataset, PIRPLE reconstruction 

required 2000 SQS iterations to obtain a nearly converged image (RMSE less than 1 HU compared 

to a PIRPLE image formed using more than 20000 SQS iterations), while the P+C estimate only 

required 500 CG iterations to obtain a nearly converged image (similarly, RMSE less than 1 HU 

compared to a P+C estimate using more than 5000 CG iterations). The total computation time was 

~180 seconds for a PIRPLE reconstruction and ~10 seconds for a P+C estimate. This suggests that 

the proposed method can reduce the computation time required for finding the optimal prior image 

strength by over an order of magnitude, compared to traditional exhaustive search. 
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Figure 6.3: PIRPLE reconstruction, Ideal estimate, P+C estimate (1 iteration), and P+C estimate (5 
iterations) of a simulated circular solitary pulmonary nodule at various βP. Note that too small βP 
or too large βP leads to little benefits or false features (false negative) in PIRPLE reconstruction. 
Only 20 projections equally distributed over 190o were used. (Grayscale window: [0 0.04] mm-1.) 
 

6.3.2 Evaluation of predictive performance metric 

The qualitative comparisons from the previous section are substantiated with quantitative measures 

in this section. Specifically, Figure 6.4 illustrates the evaluation of the proposed predictive 

performance metric at different βP (with a uniform log spacing of 100.1) using either PIRPLE 

reconstruction or one of the image estimate methods and the previously described experimental 

setup. The proposed metric using PIRPLE reconstruction exhibited a single well-defined minimum 

in the range of βP (100 to 107). The minimizer (βP = 103.3) from this method was used as the ground 

truth for the optimal βP. The metric using the Ideal estimate closely approximated the results using 

PIRPLE reconstructions, especially in the region where βP was greater than 103, and estimated the 

same optimum as the ground truth. This is consistent with the qualitative results in the previous 

section. When a (single iteration) P+C estimate was used, the metric plot yielded a similar shape 

and predicted a minimizer (103.4) very close to the ground truth. Using five iterations of the P+C 
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estimate moved the curve much closer to the curve of PIRPLE reconstruction and predicted the 

same optimum as the ground truth. These results suggest that the proposed method can yield the 

same or very similar optimal βP while having a significant computational advantage over traditional 

exhaustive search. The well-defined optimum in all plots – including the P+C estimates – suggests 

that direct minimization of the metric in Eq. (6.8) using more sophisticated optimization approaches 

may be possible and offer additional computational speedups.  

 

 

Figure 6.4: Evaluation of the proposed predictive performance metric at different βP (with a uniform 
log spacing of 100.1) using either PIRPLE reconstruction or one of the image estimation methods. 
Note that all the methods yielded almost the same optimal βP, while the proposed method (using 
P+C estimate) does not require full image reconstruction. 
 

6.3.3 Location dependence of regularization design in PIBR and 

evaluation of spatially varying prior image strength map 

Thus far, the location of the anatomical change is assumed to be known exactly. It remains a key 

question whether an optimal βP designed for the presumed location remains optimal at other 

locations. To answer this question, the same change was introduced to either of the two locations 

in the ellipse phantom as shown in Fig. 6.2(a). The change was a disc with 0.05 mm-1 attenuation 
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and 10 mm radius. Figure 6.5 shows the PIRPLE reconstructions and the predictive performance 

metric values at various βP for the two locations. A clear difference in the optimal βP for the two 

locations can be seen both in the PIRPLE reconstructions (optimal images outlined in black box) 

and in the metric curves. The optimal βP was 103.2 for Location I and 104.5 for Location II, which 

differed over an order of magnitude. As a result, suboptimal reconstruction of the change could be 

seen at each of the two locations when using a βP optimized for the other location, as seen in Fig. 

6.5(a). Interestingly, the optimal βP was lower in Location I (higher attenuation area) and higher in 

Location II (lower attenuation area). This may be interpreted by recognizing the role of βP in 

balancing the data fit term with the prior image penalty term in the PIRPLE objective function. The 

rays that go through Location II tend to have higher fluence than those that go through Location I, 

thereby leading to a larger value of the data fit term at Location II than at Location I. To maintain 

the same optimal balance between the two terms, a higher βP is then needed at Location II than at 

Location I. Note also that the proposed method (using the P+C estimate after one iteration) 

predicted the same optimal βP as the ground truth (using PIRPLE reconstruction) at both locations, 

again demonstrating the accuracy of the proposed method in estimating the optimal βP. 
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Figure 6.5: Comparison of PIRPLE reconstructions and the prospective performance metric for the 
same change at two different locations. A clear difference in the optimal βP (over an order of 
magnitude) between the two locations can be seen both in the PIRPLE reconstructions and in the 
metric curves. These results motivate the design of a spatially varying βP map. (Grayscale window: 
[0.03 0.052] mm-1 for Location I and [-0.02 0.052] mm-1 for Location II.) 
 

Because one may not generally know where a change might occur, the location-dependent 

prior image strength was also investigated. Specifically, a spatially varying βP map for the circular 

change mentioned above was generated by estimating the optimal βP at each grid point of the image 

(with a spacing of 20 voxels in each dimension and a total number of 229 grid points) and 

interpolating across the image using radial basis functions.189 Figure 6.6(a) shows a ground truth βP 

map whose optimal βP at each grid point was estimated using traditional exhaustive search. Spatial 

variations of the optimal βP for the same change are seen throughout the image. Figure 6.6(b) shows 

a βP map whose optimal βP at each grid point was estimated by the proposed method. This map 

shows good agreement with ground truth, (RMSE = 100.18) compared to the range of the optimal βP 

within each map (103.2~104.6). The total computation time for a βP map was ~15 hours using 
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traditional exhaustive search and below 1 hour using the proposed method, demonstrating the 

computational advantage of prospective design. 

Figure 6.6(c) shows PIRPLE reconstructions of the same change at both locations using 

either a scalar βP or a spatially varying βP map. PIRPLE reconstruction using a scalar βP optimized 

for Location I (𝛽̂𝛽𝑃𝑃𝐼𝐼 = 103.2) resulted in accurate reconstruction of the change in Location I but 

streaks and low resolution for the change in Location II (especially visible in difference images). 

Similarly, PIRPLE reconstruction using a scalar βP optimized for Location II (𝛽̂𝛽𝑃𝑃𝐼𝐼 = 104.5) lead to 

accurate reconstruction of the change in Location II but a change with incorrect size in Location I. 

Whereas PIRPLE reconstruction using the spatially varying βP map in Fig. 6.6(b) resulted in 

accurate reconstruction of both changes. 

 

Figure 6.6: (a-b) Spatially varying βP map generated using traditional exhaustive search (a) or the 
proposed method (b). The βP map in (b) exhibits good agreement with the βP map in (a). (c) PIRPLE 
reconstruction of the same change at both locations using a scalar βP optimized for Location I (𝛽̂𝛽𝑃𝑃𝐼𝐼 =
103.2), a scalar βP optimized for Location II (𝛽̂𝛽𝑃𝑃𝐼𝐼𝐼𝐼 = 104.5), and the spatially varying βP map in (b). 
The parameter ε stands for the RMSE of the PIRPLE reconstruction with respect to the truth image. 
(Grayscale window: [0.03 0.052] mm-1 for reconstructed images at Location I, [-0.02 0.052] mm-1 
for reconstructed images at Location II, and [-0.01 0.01] mm-1 for all the difference images.) 
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6.3.4 Attenuation, shape, and size dependence of regularization design 

in PIBR 

The dependence of the optimal βP on other properties of the anatomical change (besides location) 

including attenuation, shape, and size was also investigated. The ellipse phantom in Fig. 6.2(a) was 

used, and a change was introduced to Location II in the subsequent scan. The value of only one of 

the three properties was varied at a time. The proposed metric was evaluated at different βP with a 

uniform log spacing of 100.01. Since the optimal βP estimated by the traditional exhaustive search 

and the proposed method were almost the same, only the optimal βP estimated by the traditional 

exhaustive search are shown below. 

First, the attenuation of the change was varied from 0.004 mm-1 to 0.060 mm-1 (i.e., -800 

HU to 2000 HU assuming 0.02 mm-1 water attenuation) with an increment of 0.002 mm-1, covering 

a broad range of possible changes – e.g. low-attenuating pulmonary ground-glass nodules 

(about -700 HU)255 to high-attenuating bones. The shape and size of the change were fixed to a 10 

mm radius disc. Figure 6.7(a) shows the estimated optimal βP as a function of the attenuation of the 

change. Note that the optimal βP increased consistently as the attenuation increased, and the rate of 

the increase was higher for low attenuation changes (e.g., a change in soft tissue) and lower for 

high attenuation changes (e.g., a change in bone). This indicates a strong dependence of the optimal 

βP on the attenuation of the change especially for low attenuation changes. The difference in the 

dependence of the optimal βP between low attenuation changes and high attenuation changes may 

be explained by recognizing the effect of the use of too large βP – that is, the use of too large βP 

will enforce the reconstructed image to simply replicate the prior image, which prevents the change 

from being reconstructed in the image. Compared to high attenuation changes, low attenuation 

changes tend to be more vulnerable to such effect because they are more similar to the prior image. 
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Therefore, their optimal βP values have a stronger dependence on the attenuation of the change than 

high attenuation changes. 

Shape of the change was varied to simulate different levels of morphologic irregularity 

(e.g. tumor speculation). Specifically, shape was varied by modeling anatomical changes with a 

shape whose radius varied as a function of angle using a sinusoid plus a constant. The amplitude 

of the sinusoid was varied from 0 mm (a circular disc) to 9 mm (highly spiculated) with an 

increment of 1 mm. Change attenuation was fixed at 0.02 mm-1 (e.g., soft tissue), and the size was 

fixed such that the area of the change was 770 ± 1 mm2 for every selected amplitude (This was 

achieved by tuning the mean radius constant in the shape model). Figure 6.7(b) shows that optimal 

βP values exhibited only small variations as the amplitude of the sinusoidal contour increased, 

indicating a low dependence of optimal βP on the shape of the change. 

Lastly, the dependence on the size of the change was studied by varying the radius of a 

circular change from 3 mm to 20 mm with an increment of 1 mm. The attenuation was fixed to be 

0.02 mm-1 (e.g., soft tissue). Figure 6.7(c) shows that the optimal βP exhibited only small variations 

as the radius of the change increased, indicating a weak dependence of the optimal βP on the size 

of the change. 

The experiments on the shape and size of the change were also performed with respect to 

a high attenuation change (0.05 mm-1 attenuation), in which similarly weak dependence was 

observed. The results in this section together suggest that, when performing prospective 

regularization design, one may need to make sure that the attenuation of the presumed change is 

consistent with that of the actual change while such consistency may not need to be strictly enforced 

for the shape or size of the presumed change. 
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Figure 6.7: Illustration of the dependence of the optimal βP on the attenuation (a), shape (b), and 
size (c) of the anatomical change. One anatomical change was introduced to Location II of the 
ellipse phantom in Fig. 6.2(a), and only one of the three properties of the change mentioned above 
was varied at a time. The optimal βP was estimated by evaluating the proposed metric at different 
βP with a uniform log spacing of 100.01. A negative exponential function was fit to the data points 
in (a) to help illustrate the relationship in (a). (Grayscale window: [0 0.052] mm-1.) 
 

6.3.5 Evaluation of regularization design in lung nodule surveillance 

Prospective regularization design was applied in a lung nodule surveillance scenario with a solitary 

pulmonary nodule. The nodule was not present in a previous baseline exam but is present in a 

subsequent exam. The thorax phantom in Fig. 6.2(b) was used in this study and with a 6 mm radius 

nodule and an attenuation of 0.021 mm-1 (i.e., 50 HU). Presuming an unknown location, a spatially 

varying βP map was generated using the method described in Sec. 6.2.5. Figure 6.8(a) shows a 

ground truth βP map (generated using traditional exhaustive search) which exhibited a shift-variant 
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optimal βP within each side of the thoracic cavity as well as between sides. In this specific case, the 

optimal βP was higher in the right cavity than in the left cavity, which is due to the asymmetry in 

the anatomy between the two sides. For example, the heart and trachea were not exactly centered 

and the lung in the right cavity had collapsed. The optimal βP spanned almost an order of magnitude 

across the image (102.8 ~ 103.6). Figure 6.8(b) shows a βP map generated using the proposed method 

(including P+C estimate after one iteration), exhibiting good agreement with the ground truth βP 

map and at the same time achieving about ×20 reduction in computation time. 

 

Figure 6.8: Spatially varying βP map generated using traditional exhaustive search (a) or the 
proposed method (b) for optimally admitting a solitary pulmonary nodule everywhere in both sides 
of the thorax cavity. The optimal βP was estimated on an image grid with a spacing of 20 voxels in 
each dimension and then interpolated into a βP map using radial basis functions. The βP map in (b) 
exhibited good agreement with the βP map in (a) while reducing the computation time by a factor 
of ~20. 
 

The spatially varying βP map in Fig. 6.8(b) was then used in PIRPLE to reconstruct the 

actual solitary pulmonary nodule, which was simulated in the periphery of the right lung in the 

subsequent scan as shown in Fig. 6.2(b). The optimal βP for a nodule at this location was found to 

be 103.5 (using uniform log spacing of 100.1). Figure 6.9(a-d) shows a ROI of the current anatomy 

and images reconstructed by FBP, PIRPLE using a suboptimal scalar βP, and PIRPLE using the 

spatially varying βP map. The suboptimal scalar βP was chosen to be 102.8, which was optimal for 

the same nodule at the posterior of the left lung but was not optimal for the true change location. 

FBP image exhibited a high level of streaks and noise as a result of severe angular undersampling 
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and lack of support from prior image information (RMSE = 43.7 × 10-4 mm-1). PIRPLE image using 

a suboptimal scalar βP substantially reduced the streaks and noise, but still exhibited apparent error 

in the reconstructed nodule especially in the boundary of the nodule (error more pronounced in the 

difference image) (RMSE = 9.2 × 10-4 mm-1). Finally, PIRPLE image using the βP map exhibited 

excellent reconstruction of the nodule and the lowest error among all three methods (RMSE = 2.8 

× 10-4 mm-1).  

 

Figure 6.9: Image reconstruction of a solitary pulmonary nodule which was not present in a baseline 
exam (e) but appeared in the periphery of the right lung in the subsequent exam (a). (b-d) A ROI 
of the images reconstructed by FBP, PIRPLE using a suboptimal scalar βP, and PIRPLE using the 
spatially varying βP map in Fig. 6.8(b). (f-h) Difference image between each of the images in (b-d) 
and the current anatomy. The parameter ε stands for the RMSE of the difference image in (f-h). 
(Grayscale window: [0 0.04] mm-1 for reconstructed images and [-0.01 0.01] mm-1 for difference 
images.) 
 

6.3.6 Evaluation of regularization design in a nodule disappearance 

scenario 

The proposed regularization design method was also evaluated in a scenario in which a nodule was 

present in the prior image but not present in the current anatomy. This scenario is common in lung 

nodule surveillance, since benign nodules found in a previous exam can often be naturally resolved 

by the body before a follow-up exam is performed. Similar types of anatomical change can also be 
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found in radiation therapy, in which tumor shrinks or disappears in follow-up exams after 

successful treatment. A simulation study was carried out on the thorax phantom, which was the 

same as the study described in Sec. 6.3.1 except that the lung nodule was present in the prior image 

but not in the current anatomy. Figure 6.10(a) illustrates the truth image and PIRPLE 

reconstructions using a number of βP values. PIRPLE exhibited higher spatial resolution and a 

lower level of noise as βP increased from 101.5 to 103.5, but exhibited features (false positive) as βP 

kept increasing, indicating the importance of using proper prior image strength. Note that the false 

positive nodule information appeared first at the edge of the nodule and then at the interior of the 

nodule in the PIRPLE image. Figure 6.10(b) shows that the proposed metric using PIRPLE 

reconstruction still exhibited a single well-defined minimum (ground truth) in the nodule 

disappearance scenario. Moreover, a (single iteration) P+C estimate was still able to predict a 

minimizer very close to the ground truth. These results suggest that accurate estimation of the 

optimal prior image strength with substantial computational speedup can also be achieved in the 

nodule disappearance scenario. 

 

Figure 6.10: (a) PIRPLE reconstruction of the current anatomy (labeled as “Truth”) at various βP. 
A lung nodule was present in the prior image but not present in the current anatomy. Note that too 
small βP or too large βP leads to little benefits or false features (false positive) in PIRPLE 
reconstruction. (Grayscale window: [0 0.04] mm-1) (b) Evaluation of the proposed metric at 
different βP in the nodule disappearance scenario. Note that all the methods yielded almost the same 
optimal βP, while the proposed method (P+C estimate) does not require full image reconstruction. 
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6.4 Conclusions and discussion 

A novel method has been proposed that prospectively estimates the optimal prior image strength 

for accurate reconstruction of anatomical changes in PIBR. The approach uses an analytical 

approximation of PIBR objective functions and a predictive performance metric that leverages 

knowledge of a presumed change to estimate prior image strength that ensures accurate 

reconstruction of the change. The prospective regularization strategy yields accurate estimates of 

the optimal prior image strength and substantially reduces computational time (by a factor of 20) 

compared to traditional exhaustive search.  

A spatially varying prior image strength "map" was also introduced to optimally admit a 

presumed change everywhere in the image and eliminate the need to know the location of the 

change a priori. Optimal prior image strength was found to vary by at least an order of magnitude 

throughout the volume in phantom studies, indicating the potential importance of the spatially 

varying design. The optimal prior image strength was found to vary significantly with the 

attenuation difference associated with the anatomical change but was relatively insensitive to the 

shape and size of the change, suggesting accurate specification of change attenuation is important 

in regularization design in PIBR. Optimal penalty maps were found to improve the accuracy of 

lung nodule PIBR over uniformly penalized reconstructions. These results suggest great potential 

for the proposed method to provide prospective patient-, change-, and data-specific customization 

of the prior image strength to ensure reliable reconstruction of specific anatomical changes. While 

investigation in this chapter has concentrated on the PIRPLE approach, one might form analogous 

regularization strength maps for other approaches that require a balance between current imaging 

data and prior image data. This includes other prior-image-based reconstruction (e.g. PICCS) as 

well as reconstruction of difference approaches.252,256 

While the work reported in this chapter provides a general strategy for prospective 

regularization design in PIBR, there are a number of potential developments that could further 
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increase the utility of the underlying methodology. First, the predictive performance metric was 

solved in this chapter by evaluating the metric at different βP values with regular spacing. While 

faster than traditional exhaustive search, additional acceleration may be found via more 

sophisticated minimization methods (e.g. simplex method, etc.). Such directed searches will be 

more computationally efficient and would be increasingly important for computing spatially 

varying maps with larger fields-of-view. 

A second topic that needs to be investigated is the incorporation of image registration into 

the regularization design. Patient motion is commonly present between scans (e.g., due to patient 

re-positioning or respiratory/cardiac motion) and needs to be accommodated to ensure accurate use 

of the prior image information in PIBR. For the purpose of regularization design, one might adopt 

a two-step approach – first estimating the patient motion by performing one PIRPLE (for rigid 

motion) or dPIRPLE (for nonrigid motion) reconstruction using a nominal βP value or using a 

dedicated image registration method such as the one by Otake et al.,240 and then performing the 

proposed regularization design method with a prior image that has been deformed for motion 

compensation. While one might use the regularization design proposed in this chapter using the 

presumed change model with a perfectly registered prior image, the sensitivity of regularization 

design to registration errors also needs to be assessed. 

The predictive performance metric proposed in this chapter estimates the prior image 

strength that minimizes the RMSE of the approximate analytical solution from the prior image plus 

the anticipated change. While this metric can yield image reconstructions with overall high 

accuracy, other metrics that are sensitive to specific imaging tasks including detectability index and 

various observer models136,172,173,175,257 should also be considered. Such task-based metrics could be 

used to find optimal prior image strength for particular abnormalities. For example, detectability 

index136 may be computed using the approximate analytical solution to estimate the optimal prior 

image strength for detecting high-contrast, low-frequency lesions such as a solitary pulmonary 

nodule in lung nodule surveillance. 
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While the work in this chapter focused on anatomical change within a lung nodule 

surveillance scenario, there are many other potential applications of optimized PIBR regularization 

including accurate visualization of resections, device/implant placement, and monitoring of other 

treatments and interventions. While each of these potential applications deserves additional 

investigations into the specific challenges associated with PIBR in each area, the proposed 

methodology for balancing prior image information with measurement data is general. 

Optimization of this balance is critical for reliable reconstruction and this work represents an 

important step in providing a degree of robustness and controllability for PIBR approaches. Such 

reliability is a necessity for delivering on the huge potential of PIBR methods and finding more 

widespread clinical adoption. 
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Chapter 7 

7. Conclusions 

This dissertation has investigated the potential of advanced MBIR methods for improving image 

quality and reducing radiation dose in CBCT. A number of novel MBIR methods were developed 

that leverage advanced models of imaging physics, task-based assessment of imaging performance, 

and incorporation of patient-specific anatomical information from previously acquired images. The 

approaches uncovered in this work demonstrate substantial improvements in CBCT image quality 

(especially low-contrast, soft-tissue image quality) and reduction in radiation dose in applications 

ranging from detection of acute ICH to surveillance of lung nodules. Together, the findings support 

the proposed thesis statement and goal of this work: 

 

A major theme of the presented work was the investigation of new approaches to overcome 

conventional limitations in image quality and dose efficiency in CBCT. MBIR represents a 

promising software-based approach to achieve this goal that can be implemented in complement to 

hardware-based approaches such as new detector technology and system design. One powerful 

feature of MBIR is the inclusion of a comprehensive image reconstruction framework that allows 

the incorporation of a wealth of information regarding imaging physics, patient anatomy, and the 

imaging task associated with a particular procedure. Moreover, the overall framework developed 

Model-based iterative reconstruction (MBIR) methods can improve image quality and/or 

reduce radiation dose in cone-beam computed tomography (CBCT) through modeling of 

imaging physics, development of advanced regularization techniques, and incorporation of 

patient-specific prior image information. 
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in this dissertation offers a high degree of flexibility to allow the incorporation of different types 

of physical models and/or prior information in various applications, ranging from point-of-care 

detection of emergent head trauma to longitudinal screening / surveillance of lung nodules.  

7.1 Contributions 

Specific contributions to the field of medical imaging in this dissertation are summarized as follows. 

Chapter 2 reported a novel PWLS image reconstruction method that incorporates a general 

framework for accurately accommodating modified noise models for artifact-corrected CBCT 

data. A specific scenario was considered in which the two dominant artifact correction methods 

essential to high-quality CBCT of the head – scatter and beam hardening corrections – are 

applied. The noise amplification imparted by each of the two correction steps were modeled in 

analytical expressions and compensated by modifying the statistical weights in the resulting 

PWLS reconstruction method. An anthropomorphic head phantom emulating ICH was built 

and scanned on a CBCT test-bench equipped with a flat-panel detector. The physical 

experiments illustrated a high degree of changes in variance (more than two orders of 

magnitude) after artifact corrections, primarily attributed to scatter correction. The proposed 

PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and 

PWLS with conventional statistical weights (viz., at matched 0.50 mm spatial resolution, the 

contrast-to-noise ratio was 11.9 for the proposed method, compared to 5.6 and 9.9 for FBP and 

conventional PWLS, respectively). The method was particularly advantageous in regions such 

as skull base, where scatter and beam-hardening effects tend to be greatest. The results support 

the hypothesis that with high-fidelity artifact correction and MBIR using an accurate post-

artifact-correction noise model, CBCT can provide soft-tissue image quality suitable to reliable 

detection of ICH. The work supported the development of a dedicated system for point-of-care 

diagnosis of ICH currently in translation to first clinical studies.  
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Chapter 3 proposed a regularization approach in which a spatially varying penalty was 

determined that maximizes task-based imaging performance at every location in a 3D 

image. This approach was applied to the PWLS reconstruction method developed in Chapter 

2 for high-quality CBCT of the head, focusing on the task of detecting a small, low-contrast 

ICH. Modeling of local spatial resolution and noise was performed via a predictive framework 

by which regularization (specifically, the quadratic penalty strength) was varied throughout the 

image to maximize local task-based detectability index (𝑑𝑑′ ). Simulations and test-bench 

experiments showed that conventional (constant) regularization exhibited a fairly strong degree 

of spatial variation in 𝑑𝑑′, and the task-based method improved detectability by up to ~15%. 

The improvement was strongest in areas of high attenuation (skull base), where other methods 

tended to over-smooth the data. The proposed task-based method presents a promising means 

to improve imaging performance in MBIR, and together with the PWLS method proposed in 

the previous chapter, could support the development of high-quality CBCT systems for new 

applications requiring high image quality with respect to specific imaging tasks. 

Chapter 4 continued the investigation on high-quality CBCT of the head and reported a multi-

resolution MBIR approach to mitigate truncation effects for which the main source of 

truncation is the patient support / head holder. While conventional reconstruction methods 

employ a fixed voxel size throughout the image, the multi-resolution approach uses a fine voxel 

size within the untruncated region (i.e., inside the scan FOV encompassing the area of interest 

– in this case, the head) and a coarse voxel size in the truncated region (i.e., outside the san 

FOV). The multi-resolution approach allows extension of the reconstruction FOV to mitigate 

truncation effects without significantly increasing computational complexity of MBIR. The 

approach was implemented in the PWLS reconstruction framework developed in Chapter 2. 

Experiments involving an anthropomorphic head phantom with truncation due to a carbon-

fiber holder were shown to result in severe artifacts in conventional single-resolution PWLS, 
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whereas extending the reconstruction FOV strongly reduced truncation artifacts. For the same 

extended reconstruction FOV, the multi-resolution approach reduced computation time 

compared to the single-resolution approach (viz., time reduced by 40.7%, 83.0%, and over 95% 

for an image volume of 6003, 8003, 10003 voxels). Algorithm parameters (e.g., regularization 

strength, the ratio of the fine and coarse voxel size, and reconstruction FOV size) were 

investigated to guide reliable parameter selection. The method further supports translation of a 

newly developed CBCT head scanner in point-of-care imaging applications. It is also 

compatible with the methods reported in Chapters 2 and 3. 

Chapter 5 proposed a MBIR method that leverages patient-specific anatomical information from 

previously acquired images. The proposed framework jointly estimates the 3D deformation 

between an unregistered prior image and the current anatomy and reconstructs the current 

anatomical image using a MBIR approach that includes regularization based on the deformed 

prior image. This framework is referred to as deformable Prior Image Registration, Penalized-

Likelihood Estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-

based free-form-deformation model into the joint framework, which is solved using an 

alternating maximization strategy allowing for improvements in both the registration and 

reconstruction throughout the optimization process. Cadaver experiments were conducted on a 

CBCT test-bench emulating a lung nodule surveillance scenario. The dPIRPLE algorithm 

demonstrated superior reconstruction accuracy and image quality compared to more traditional 

reconstruction methods, including FBP, penalized-likelihood estimation, prior image 

penalized-likelihood estimation without registration, and prior image penalized-likelihood 

estimation with rigid registration over a wide range of sampling sparsity and exposure levels. 

This work demonstrates the strong potential of leveraging patient-specific prior image 

information into MBIR for the reduction of accumulative radiation dose in sequential imaging 

studies (e.g., an 18-fold exposure reduction in the cadaver experiments).  
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Chapter 6 continued the investigation of prior-image-based reconstruction (PIBR) and proposed a 

method that prospectively estimates the optimal amount of prior image information for accurate 

admission of specific anatomical changes in PIBR without performing full image 

reconstructions. This method leverages an analytical approximation to the implicitly defined 

PIBR estimator proposed in Chapter 5, and introduces a predictive performance metric 

leveraging this analytical form and knowledge of a particular presumed anatomical change 

whose accurate reconstruction is sought. Additionally, a map of spatially varying prior image 

strength is proposed to optimally admit changes everywhere in the image, eliminating the need 

to know the locations of structural changes a priori. Studies were conducted in both an ellipse 

phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The 

proposed method demonstrated accurate estimation of the optimal prior image strength while 

achieving a substantial computational speedup (about a factor of 20) compared to traditional 

exhaustive search. Moreover, in phantoms where the optimal prior image strength varied 

spatially by an order of magnitude or more, the use of the proposed prior image regularization 

strength “map” demonstrated accurate reconstruction of anatomical changes without 

foreknowledge of the location of structural change. Furthermore, the optimal prior image 

regularization strength was found to vary with attenuation differences associated with 

anatomical change but exhibited only small variations as a function of the shape and size of the 

change. The results suggest that, given a target value of change in attenuation, prospective 

patient-specific, change-specific, and data-specific customization of the prior image 

regularization strength can be performed to ensure reliable reconstruction of specific 

anatomical changes. 
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7.2 Future work 

The potential of MBIR in improving image quality and reducing radiation dose in CBCT brings 

numerous opportunities in translating the technology to clinical use and also invites efforts to 

address a number of important practical challenges. Among the opportunities is the translation of 

high-quality CBCT of the head to point-of-care environments such as the neuroscience critical care 

unit (NCCU). The MBIR methods in Chapters 2-4 demonstrated a level of image quality that 

appears to be sufficient for detecting acute ICH, and the imaging performance in clinical pilot 

studies is underway at the time of writing. Among the remaining challenges is that of patient motion, 

which invites future work on motion compensation and its integration into the MBIR 

framework.258,259 Another practical challenge is the artifacts caused by the presence of highly 

attenuating metal objects (e.g., surgical tools or implants) in the scan FOV, which is fairly common 

for patients in the NCCU and may obscure ICH detection. This challenge invites future work on 

metal artifact correction100,101,216,260 either as a separate process (whose effects on noise 

amplification may be compensated for using the general approach in Chapter 2) or as a part of the 

MBIR framework (e.g., by modeling the polyenergetic nature of x-rays). 

Closely related to the translation of high-quality CBCT to clinical application is the 

computation time associated with MBIR. Thanks to recent advances in accelerated algorithms for 

MBIR and computing power (e.g., GPU), a converged MBIR image in CBCT can be obtained in 

~2 minutes using hardware and software acceleration.168,191 The feasibility of the workflow 

associated with the current acceleration strategies remains to be evaluated. Some clinical 

applications may be more amenable to such workflow than others. Moreover, the effects of 

different acceleration methods168,191,261–264 on MBIR image quality invite more comprehensive 

investigation. 
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Another opportunity is the translation of MBIR methods leveraging patient-specific prior 

image information into sequential imaging studies. Among possible applications is the use of a 

planning CT image in CBCT scans in radiation therapy to improve the workflow in patient setup 

and enable online treatment planning.33,77 Another potential application involves imaging scenarios 

in which angular undersampling is difficult to avoid, as in perfusion imaging.265,266 The 

performance of the methods in Chapter 5-6 in these clinical applications remains to be fully 

investigated – for example, the robustness of the dPIRPLE algorithm against different deformation 

patterns. Other practical challenges include intensity inconsistencies between the planning CT and 

the subsequent CBCT and also invite future investigation. Despite such remaining challenges, 

MBIR methods such as those developed in this dissertation present an important element to the 

next generation of CBCT systems. 
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