2,151 research outputs found

    Respiratory Motion Detection and Correction in ECG-Gated SPECT: a New Approach

    Get PDF
    Objective: Gated myocardial perfusion single-photon emission computed tomography (GSPECT) has been established as an accurate and reproducible diagnostic and prognostic technique for the assessment of myocardial perfusion and function. Respiratory motion is among the major factors that may affect the quality of myocardial perfusion imaging (MPI) and consequently the accuracy of the examination. In this study, we have proposed a new approach for the tracking of respiratory motion and the correction of unwanted respiratory motion by the use of respiratory-cardiac gated-SPECT (RC-GSPECT). In addition, we have evaluated the use of RC-GSPECT for quantitative and visual assessment of myocardial perfusion and function. Materials and Methods: Twenty-six patients with known or suspected coronary artery disease (CAD)-underwent two-day stress and rest 99mTc-Tetrofosmin myocardial scintigraphy using both conventional GSPECT and RC-GSPECT methods. The respiratory signals were induced by use of a CT real-time position management (RPM) respiratory gating interface. A PIO-D144 card, which is transistor-transistor logic (TTL) compatible, was used as the input interface for simultaneous detection of both ECG and respiration signals. Results: A total of 26 patients with known or suspected CAD were examined in this study. Stress and rest myocardial respiratory motion in the vertical direction was 8.8-16.6 mm (mean, 12.4 ± 2.9 mm) and 7.8-11.8 mm (mean, 9.5 ± 1.6 mm), respectively. The percentages of tracer intensity in the inferior, inferoseptal and septal walls as well as the inferior to lateral (I/L) uptake ratio was significantly higher with the use of RC-GSPECT as compared to the use of GSPECT (p < 0.01). In a left ventricular ejection fraction (LVEF) correlation analysis between the use of rest GSPECT and RC-GSPECT with echocardiography, better correlation was noted between RC-GSPECT and echocardiography as compared with the use of GSPECT (y = 0.9654x + 1.6514; r = 0.93, p < 0.001 versus y = 0.8046x + 5.1704; r = 0.89, p < 0.001). Nineteen (19/26) patients (73.1) showed abnormal myocardial perfusion scans with reversible regional myocardial defects; of the 19 patients, 14 (14/26) patients underwent coronary angiography. Conclusion: Respiratory induced motion can be successfully corrected simultaneously with the use of ECG-gated SPECT in MPI studies using this proposed technique. Moreover, the use of ECG-gated SPECT improved image quality, especially in the inferior and septal regions that are mostly affected by diaphragmatic attenuation. However, the effect of respiratory correction depends mainly on the patient respiratory pattern and may be clinically relevant in certain cases

    Characterization and Compensation of Hysteretic Cardiac Respiratory Motion in Myocardial Perfusion Studies Through MRI Investigations

    Get PDF
    Respiratory motion causes artifacts and blurring of cardiac structures in reconstructed images of SPECT and PET cardiac studies. Hysteresis in respiratory motion causes the organs to move in distinct paths during inspiration and expiration. Current respiratory motion correction methods use a signal generated by tracking the motion of the abdomen during respiration to bin list- mode data as a function of the magnitude of this respiratory signal. They thereby fail to account for hysteretic motion. The goal of this research was to demonstrate the effects of hysteretic respiratory motion and the importance of its correction for different medical imaging techniques particularly SPECT and PET. This study describes a novel approach for detecting and correcting hysteresis in clinical SPECT and PET studies. From the combined use of MRI and a synchronized Visual Tracking System (VTS) in volunteers we developed hysteretic modeling using the Bouc-Wen model with inputs from measurements of both chest and abdomen respiratory motion. With the MRI determined heart motion as the truth in the volunteer studies we determined the Bouc Wen model could match the behavior over a range of hysteretic cycles. The proposed approach was validated through phantom simulations and applied to clinical SPECT studies

    MRI of the lung (3/3)-current applications and future perspectives

    Get PDF
    BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations

    Improvements in Cardiac Spect/CT for the Purpose of Tracking Transplanted Cells

    Get PDF
    Regenerative therapy via stem cell transplantation has received increased attention to help treat the myocardial injury associated with heart disease. Currently, the hybridisation of SPECT with X-ray CT is expanding the utility of SPECT. This thesis compared two SPECT/CT systems for attenuation correction using slow or fast-CT attenuation maps (mu-maps). We then developed a method to localize transplanted cells in relation to compromised blood flow in the myocardium following a myocardial infarction using SPECT/CT. Finally, a method to correct for image truncation was studied for a new SPECT/CT design that incorporated small field-of-view (FOV) detectors. Computer simulations compared gated-SPECT reconstructions using slow-CT and fast-CT mu-maps with gated-CT mu-maps. Using fast-CT mu-maps improved the Root Mean Squared (RMS) error from 4.2% to 4.0%. Three canine experiments were performed comparing SPECT/CT reconstruction using the Infinia/Hawkeye-4 (slow-CT) and Symbia T6 (fast-CT). Canines were euthanized prior to imaging, and then ventilated. The results showed improvements in both RMS errors and correlation coefficients for all canines. A first-pass contrast CT imaging technique can identify regions of myocardial infarction and can be fused with SPECT. Ten canines underwent surgical ligation of the left-anterior-descending artery. Cells were labeled with 111In-tropolone and transplanted into the myocardium. SPECT/CT was performed on day of transplantation, 4, and 10 days post-transplantation. For each imaging session first-pass perfusion CT was performed and successfully delineated the infarct zone. Delayed-enhanced MRI was performed and correlated well with first-pass CT. Contrast-to-noise ratios were calculated for 111In-SPECT and suggested that cells can be followed for 11 effective half-lives. We evaluated a modified SPECT/CT acquisition and reconstruction method for truncated SPECT. Cardiac SPECT/CT scans were acquired in 14 patients. The original projections were truncated to simulate a small FOV acquisition. Data was reconstructed in three ways: non-truncated and standard reconstruction (NTOSEM), which was our gold-standard; truncated and standard reconstruction (TOSEM); and truncated and a modified reconstruction (TMOSEM). Compared with NTOSEM, small FOV imaging incurred an average cardiac count ratio error greater than 100% using TOSEM and 8.9% using TMOSEM. When we plotted NTOSEM against TOSEM and TMOSEM the correlation coefficient was 0.734 and 0.996 respectively

    Development and evaluation of a new fully automatic motion detection and correction technique in cardiac SPECT imaging

    Get PDF
    In cardiac SPECT perfusion imaging, motion correction of the data is critical to the minimization of motion introduced artifacts in the reconstructed images. Software-based (data-driven) motion correction techniques are the most convenient and economical approaches to fulfill this purpose. However, the accuracy is significantly affected by how the data complexities, such as activity overlap, non-uniform tissue attenuation, and noise are handled. We developed STASYS, a new, fully automatic technique, for motion detection and correction in cardiac SPECT. We evaluated the performance of STASYS by comparing its effectiveness of motion correcting patient studies with the current industry standard software (Cedars-Sinai MoCo) through blind readings by two readers independently. For 204 patient studies from multiple clinical sites, the first reader identified (1) 69 studies with medium to large axial motion, of which STASYS perfectly or significantly corrected 86.9% and MoCo 72.5%; and (2) 20 studies with medium to large lateral motion, of which STASYS perfectly or significantly corrected 80.0% and MoCo 60.0%. The second reader identified (1) 84 studies with medium to large axial motion, of which STASYS perfectly or significantly corrected 82.2% and MoCo 76.2%; and (2) 34 studies with medium to large lateral motion, of which STASYS perfectly or significantly corrected 58.9% and MoCo 50.0%. We developed a fully automatic software-based motion correction technique, STASYS, for cardiac SPECT. Clinical studies showed that STASYS was effective and corrected a larger percent of cardiac SPECT studies than the current industrial standard software

    Non-Invasive Imaging for the Assessment of Cardiac Dose and Function Following Focused External Beam Irradiation

    Get PDF
    Technological advances in imaging and radiotherapy have led to significant improvement in the survival rate of breast cancer patients. However, a larger proportion of patients are now exhibiting the less understood, latent effects of incidental cardiac irradiation that occurs during left-sided breast radiotherapy. Here, we examine the utility of four-dimensional computed tomography (4D-CT) for the accurate assessment of cardiac dose; and a hybrid positron emission tomography (PET) magnetic resonance imaging (MRI) system to longitudinally study radiation-induced cardiac effects in a canine model. Using 4D-CT and deformable dose accumulation, we assessed the variation caused by breathing motion in the estimated dose to the heart, left-ventricle, and left anterior descending artery (LAD) of left-sided breast cancer patients. The LAD showed substantial variation in dose due to breathing. In light of this, we suggest the use of 4D-CT and dose accumulation for future clinical studies looking at the relationship between LAD dose and cardiac toxicity. Although symptoms of cardiac dysfunction may not manifest clinically for 10-15 years post radiation, PET-MRI can potentially identify earlier changes in cardiac inflammation and perfusion that are typically asymptomatic. Using PET-MRI, the progression of radiation-induced cardiac toxicity was assessed in a large animal model. Five canines were imaged using 13N-ammonia and 18F-fluorodeoxyglucose (FDG) PET-MRI to assess changes in myocardial perfusion and inflammation, respectively. All subjects were imaged at baseline, 1 week, 4 weeks, 3 months, 6 months, and 12 months after focused cardiac irradiation. To the best of our knowledge PET has not been previously used to assess cardiac perfusion following irradiation. The delivered dose to the heart, left ventricle, LAD, and left circumflex artery were comparable to what has been observed during breast radiotherapy. Relative to baseline, a transient increase in myocardial perfusion was observed followed by a gradual return to baseline. However, a persistent increase in FDG uptake was observed throughout the entire left ventricle, including both irradiated and less-irradiated portions of the heart. In light of these findings, we suggest the use of this imaging approach for future human studies to assess mitigation strategies aimed at minimizing cardiac exposure and long-term toxicity subsequent to left-sided breast irradiation

    Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans

    Get PDF
    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC

    Analysis of first pass myocardial perfusion imaging with magnetic resonance

    Get PDF
    Early diagnosis and localisation of myocardial perfusion defects is an important step in the treatment of coronary artery disease. Thus far, coronary angiography is the conventional standard investigation for patients with known or suspected coronary artery disease and it provides information about the presence and location of coronary stenoses. In recent years, the development of myocardial perfusion CMR has extended the role of MR in the evaluation of ischaemic heart disease beyond the situations where there have already been gross myocardial changes such as acute infarction or scarring. The ability to non-invasively evaluate cardiac perfusion abnormalities before pathologic effects occur, or as follow-up to therapy, is important to the management of patients with coronary artery disease. Whilst limited multi-slice 2D CMR perfusion studies are gaining increased clinical usage for quantifying gross ischaemic burden, research is now directed towards complete 3D coverage of the myocardium for accurate localisation of the extent of possible defects. In 3D myocardial perfusion imaging, a complete volumetric data set has to be acquired for each cardiac cycle in order to study the first pass of the contrast bolus. This normally requires a relatively large acquisition window within each cardiac cycle to ensure a comprehensive coverage of the myocardium and reasonably high resolution of the images. With multi-slice imaging, long axis cardiac motion during this large acquisition window can cause the myocardium imaged in different cross- sections to be mis-registered, i.e., some part of the myocardium may be imaged more than twice whereas other parts may be missed out completely. This type of mis-registration is difficult to correct for by using post-processing techniques. The purpose of this thesis is to investigate techniques for tracking through plane motion during 3D myocardial perfusion imaging, and a novel technique for extracting intrinsic relationships between 3D cardiac deformation due to respiration and multiple ID real-time measurable surface intensity traces is developed. Despite the fact that these surface intensity traces can be strongly coupled with each other but poorly correlated with respiratory induced cardiac deformation, we demonstrate how they can be used to accurately predict cardiac motion through the extraction of latent variables of both the input and output of the model. The proposed method allows cross-modality reconstruction of patient specific models for dense motion field prediction, which after initial modelling can be use in real-time prospective motion tracking or correction. In CMR, new imaging sequences have significantly reduced the acquisition window whilst maintaining the desired spatial resolution. Further improvements in perfusion imaging will require the application of parallel imaging techniques or making full use of the information content of the ¿-space data. With this thesis, we have proposed RR-UNFOLD and RR-RIGR for significantly reducing the amount of data that is required to reconstruct the perfusion image series. The methods use prospective diaphragmatic navigator echoes to ensure UNFOLD and RIGR are carried out on a series of images that are spatially registered. An adaptive real-time re-binning algorithm is developed for the creation of static image sub-series related to different levels of respiratory motion. Issues concerning temporal smoothing of tracer kinetic signals and residual motion artefact are discussed, and we have provided a critical comparison of the relative merit and potential pitfalls of the two techniques. In addition to the technical and theoretical descriptions of the new methods developed, we have also provided in this thesis a detailed literature review of the current state-of-the-art in myocardial perfusion imaging and some of the key technical challenges involved. Issues concerning the basic background of myocardial ischaemia and its functional significance are discussed. Practical solutions to motion tracking during imaging, predictive motion modelling, tracer kinetic modelling, RR-UNFOLD and RR-RIGR are discussed, all with validation using patient and normal subject data to demonstrate both the strength and potential clinical value of the proposed techniques.Open acces
    corecore