19 research outputs found

    Spatial Displays and Spatial Instruments

    Get PDF
    The conference proceedings topics are divided into two main areas: (1) issues of spatial and picture perception raised by graphical electronic displays of spatial information; and (2) design questions raised by the practical experience of designers actually defining new spatial instruments for use in new aircraft and spacecraft. Each topic is considered from both a theoretical and an applied direction. Emphasis is placed on discussion of phenomena and determination of design principles

    Towards Understanding and Expanding Locomotion in Physical and Virtual Realities

    Get PDF
    Among many virtual reality interactions, the locomotion dilemma remains a significant impediment to achieving an ideal immersive experience. The physical limitations of tracked space make it impossible to naturally explore theoretically boundless virtual environments with a one-to-one mapping. Synthetic techniques like teleportation and flying often induce simulator sickness and break the sense of presence. Therefore, natural walking is the most favored form of locomotion. Redirected walking offers a more natural and intuitive way for users to navigate vast virtual spaces efficiently. However, existing techniques either lead to simulator sickness due to visual and vestibular mismatch or detract users from the immersive experience that virtual reality aims to provide. This research presents innovative techniques and applications to enhance the user experience by expanding walkable, physical space in Virtual Reality. The thesis includes three main contributions. The first contribution proposes a mobile application that uses markerless Augmented Reality to allow users to explore a life-sized virtual library through a divide-and-rule approach. The second contribution presents a subtle redirected walking technique based on inattentional blindness, using dynamic foveated rendering and natural visual suppressions like blinks and saccades. Finally, the third contribution introduces a novel redirected walking solution that leverages a deep neural network, to predict saccades in real-time and eliminate the hardware requirements for eye-tracking. Overall, this thesis offers valuable contributions to human-computer interaction, investigating novel approaches to solving the locomotion dilemma. The proposed solutions were evaluated through extensive user studies, demonstrating their effectiveness and applicability in real-world scenarios like training simulations and entertainment

    Determining principles for the development of virtual environments for future clinical applications

    Get PDF
    The aim of the present research was to determine a range of principles for the development of virtual natural environments (VNEs), using low-cost commercial-off-the-shelf simulation technologies, for bedside and clinical healthcare applications. A series of studies have been conducted to systematically investigate different aspects of the VNEs on a wide variety of participants, ranging from undergraduate and postgraduate students, hospital patients and clinicians, to West Country villagers. The results of these studies suggest that naturalistic environmental spatial sounds can have a positive impact on user ratings of presence and stress levels. High visual fidelity and real-world-based VNEs can increase participants’ reported ratings of presence, quality and realism. The choice of input devices also has a significant impact on usability with these types of virtual environment (VE). Overall, the findings provide a strong set of principles supporting the future development of VNEs. Highly transferrable tools and techniques have also been developed in order to investigate the exploitation of new digital technology approaches in the generation of believable and engaging real-time, interactive virtual natural environments that can be modified and updated relatively easily, thereby delivering a system that can be regularly modified and updated to meet the needs of individual patients

    Engineering data compendium. Human perception and performance, volume 3

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual)

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology, Volume 1

    Get PDF
    These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace

    Databook for human factors engineers. Volume 2 - Common formulas, metrics, definitions

    Get PDF
    Human factors engineering manual including mathematical formulas, nomographs, conversion tables, units of measurement, and nomenclature

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore